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Abstract

In many sequential decision-making problems we may want to manage risk by
minimizing some measure of variability in rewards in addition to maximizing a
standard criterion. Variance-related risk measures are among the most common
risk-sensitive criteria in finance and operations research. However, optimizing
many such criteria is known to be a hard problem. In this paper, we consider both
discounted and average reward Markov decision processes. For each formulation,
we first define a measure of variability for a policy, which in turn gives us a set of
risk-sensitive criteria to optimize. For each of these criteria, we derive a formula
for computing its gradient. We then devise actor-critic algorithms for estimating
the gradient and updating the policy parameters in the ascent direction. We estab-
lish the convergence of our algorithms to locally risk-sensitive optimal policies.
Finally, we demonstrate the usefulness of our algorithms in a traffic signal control
application.

1 Introduction

The usual optimization criteria for an infinite horizon Markov decision process (MDP) are the ex-
pected sum of discounted rewards and the average reward. Many algorithms have been developed to
maximize these criteria both when the model of the system is known (planning) and unknown (learn-
ing). These algorithms can be categorized to value function based methods that are mainly based on
the two celebrated dynamic programming algorithms value iteration and policy iteration; and policy
gradient methods that are based on updating the policy parameters in the direction of the gradient
of a performance measure (the value function of the initial state or the average reward). However in
many applications, we may prefer to minimize some measure of risk as well as maximizing a usual
optimization criterion. In such cases, we would like to use a criterion that incorporates a penalty
for the variability induced by a given policy. This variability can be due to two types of uncertain-
ties: 1) uncertainties in the model parameters, which is the topic of robust MDPs (e.g., [12, 7, 24]),
and 2) the inherent uncertainty related to the stochastic nature of the system, which is the topic of
risk-sensitive MDPs (e.g., [10]).

In risk-sensitive sequential decision-making, the objective is to maximize a risk-sensitive criterion
such as the expected exponential utility [10], a variance-related measure [19, 8], or the percentile
performance [9]. The issue of how to construct such criteria in a manner that will be both con-
ceptually meaningful and mathematically tractable is still an open question. Although risk-sensitive
sequential decision-making has a long history in operations research and finance, it has only recently
grabbed attention in the machine learning community. This is why most of the work on this topic
(including those mentioned above) has been in the context of MDPs (when the model is known) and
much less work has been done within the reinforcement learning (RL) framework. In risk-sensitive
RL, we can mention the work by Borkar [4, 5] who considered the expected exponential utility and
the one by Tamar et al. [22] on several variance-related measures. Tamar et al. [22] study stochas-
tic shortest path problems, and in this context, propose a policy gradient algorithm for maximizing
several risk-sensitive criteria that involve both the expectation and variance of the return random
variable (defined as the sum of rewards received in an episode).
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In this paper, we develop actor-critic algorithms for optimizing variance-related risk measures in
both discounted and average reward MDPs. Our contributions can be summarized as follows:
• In the discounted reward setting we define the measure of variability as the variance of the return
(similar to [22]). We formulate a constrained optimization problem with the aim of maximizing the
mean of the return subject to its variance being bounded from above. We employ the Lagrangian
relaxation procedure [1] and derive a formula for the gradient of the Lagrangian. Since this re-
quires the gradient of the value function at every state of the MDP (see the discussion in Sections 3
and 4), we estimate the gradient of the Lagrangian using two simultaneous perturbation methods: si-
multaneous perturbation stochastic approximation (SPSA) [20] and smoothed functional (SF) [11],
resulting in two separate discounted reward actor-critic algorithms.1
• In the average reward formulation, we first define the measure of variability as the long-run vari-
ance of a policy, and using a constrained optimization problem similar to the discounted case, derive
an expression for the gradient of the Lagrangian. We then develop an actor-critic algorithm with
compatible features [21, 13] to estimate the gradient and to optimize the policy parameters.
• Using the ordinary differential equations (ODE) approach, we establish the asymptotic conver-
gence of our algorithms to locally risk-sensitive optimal policies. Further, we demonstrate the use-
fulness of our algorithms in a traffic signal control problem.
In comparison to [22], which is the closest related work, we would like to remark that while the au-
thors there develop policy gradient methods for stochastic shortest path problems, we devise actor-
critic algorithms for both discounted and average reward settings. Moreover, we note the difficulty
in the discounted formulation that requires to estimate the gradient of the value function at every
state of the MDP, and thus, motivated us to employ simultaneous perturbation techniques.

2 Preliminaries
We consider problems in which the agent’s interaction with the environment is modeled as a
MDP. A MDP is a tuple (X ,A, R, P, P0) where X = {1, . . . , n} and A = {1, . . . ,m} are the
state and action spaces; R(x, a) is the reward random variable whose expectation is denoted by
r(x, a) = E

[
R(x, a)

]
; P (·|x, a) is the transition probability distribution; and P0(·) is the initial

state distribution. We also need to specify the rule according to which the agent selects actions
at each state. A stationary policy µ(·|x) is a probability distribution over actions, conditioned on
the current state. In policy gradient and actor-critic methods, we define a class of parameterized
stochastic policies

{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ1

}
, estimate the gradient of a performance mea-

sure w.r.t. the policy parameters θ from the observed system trajectories, and then improve the policy
by adjusting its parameters in the direction of the gradient. Since in this setting a policy µ is rep-
resented by its κ1-dimensional parameter vector θ, policy dependent functions can be written as a
function of θ in place of µ. So, we use µ and θ interchangeably in the paper.

We denote by dµ(x) and πµ(x, a) = dµ(x)µ(a|x) the stationary distribution of state x and state-
action pair (x, a) under policy µ, respectively. In the discounted formulation, we also define the
discounted visiting distribution of state x and state-action pair (x, a) under policy µ as dµγ(x|x0) =

(1− γ)
∑∞
t=0 γ

t Pr(xt = x|x0 = x0;µ) and πµγ (x, a|x0) = dµγ(x|x0)µ(a|x).

3 Discounted Reward Setting
For a given policy µ, we define the return of a state x (state-action pair (x, a)) as the sum of dis-
counted rewards encountered by the agent when it starts at state x (state-action pair (x, a)) and then
follows policy µ, i.e.,

Dµ(x) =

∞∑
t=0

γtR(xt, at) | x0 = x, µ, Dµ(x, a) =

∞∑
t=0

γtR(xt, at) | x0 = x, a0 = a, µ.

The expected value of these two random variables are the value and action-value functions of policy
µ, i.e., V µ(x) = E

[
Dµ(x)

]
and Qµ(x, a) = E

[
Dµ(x, a)

]
. The goal in the standard discounted

reward formulation is to find an optimal policy µ∗ = arg maxµ V
µ(x0), where x0 is the initial state

of the system. This can be easily extended to the case that the system has more than one initial state
µ∗ = arg maxµ

∑
x∈X

P0(x)V µ(x).

1We note here that our algorithms can be easily extended to other variance-related risk criteria such as the
Sharpe ratio, which is popular in financial decision-making [18] (see Appendix D of [17]).
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The most common measure of the variability in the stream of rewards is the variance of the return

Λµ(x) = E
[
Dµ(x)2]− V µ(x)2 = Uµ(x)− V µ(x)2, (1)

first introduced by Sobel [19]. Note that Uµ(x)
4
= E

[
Dµ(x)2

]
is the square reward value function

of state x under policy µ. Although Λµ of (1) satisfies a Bellman equation, unfortunately, it lacks
the monotonicity property of dynamic programming (DP), and thus, it is not clear how the related
risk measures can be optimized by standard DP algorithms [19]. This is why policy gradient and
actor-critic algorithms are good candidates to deal with this risk measure. We consider the following
risk-sensitive measure for discounted MDPs: for a given α > 0,

max
θ
V θ(x0) subject to Λθ(x0) ≤ α. (2)

To solve (2), we employ the Lagrangian relaxation procedure [1] to convert it to the following
unconstrained problem:

max
λ

min
θ

(
L(θ, λ)

4
= −V θ(x0) + λ

(
Λθ(x0)− α

))
, (3)

where λ is the Lagrange multiplier. The goal here is to find the saddle point of L(θ, λ), i.e., a
point (θ∗, λ∗) that satisfies L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ), ∀θ,∀λ > 0. This is achieved by de-
scending in θ and ascending in λ using the gradients ∇θL(θ, λ) = −∇θV θ(x0) + λ∇θΛθ(x0) and
∇λL(θ, λ) = Λθ(x0) − α, respectively. Since ∇Λθ(x0) = ∇Uθ(x0) − 2V θ(x0)∇V θ(x0), in order
to compute ∇Λθ(x0), we need to calculate ∇Uθ(x0) and ∇V θ(x0). From the Bellman equation of
Λµ(x), proposed by Sobel [19], it is straightforward to derive Bellman equations for Uµ(x) and the
square reward action-value function Wµ(x, a)

4
= E

[
Dµ(x, a)2

]
(see Appendix B.1 of [17]). Using

these definitions and notations we are now ready to derive expressions for the gradient of V θ(x0)
and Uθ(x0) that are the main ingredients in calculating ∇θL(θ, λ).

Lemma 1 Assuming for all (x, a), µ(a|x; θ) is continuously differentiable in θ, we have

(1− γ)∇V θ(x0) =
∑
x,a

πθγ(x, a|x0)∇ logµ(a|x; θ)Qθ(x, a),

(1− γ2)∇Uθ(x0) =
∑
x,a

π̃θγ(x, a|x0)∇ logµ(a|x; θ)W θ(x, a)

+ 2γ
∑
x,a,x′

π̃θγ(x, a|x0)P (x′|x, a)r(x, a)∇V θ(x′),

where π̃θγ(x, a|x0) = d̃θγ(x|x0)µ(a|x) and d̃θγ(x|x0) = (1−γ2)
∑∞
t=0 γ

2t Pr(xt = x|x0 = x0; θ).

The proof of the above lemma is available in Appendix B.2 of [17]. It is challenging to devise an
efficient method to estimate ∇θL(θ, λ) using the gradient formulas of Lemma 1. This is mainly
because 1) two different sampling distributions (πθγ and π̃θγ) are used for ∇V θ(x0) and ∇Uθ(x0),
and 2) ∇V θ(x′) appears in the second sum of ∇Uθ(x0) equation, which implies that we need
to estimate the gradient of the value function V θ at every state of the MDP. These are the main
motivations behind using simultaneous perturbation methods for estimating∇θL(θ, λ) in Section 4.

4 Discounted Reward Algorithms
In this section, we present actor-critic algorithms for optimizing the risk-sensitive measure (2) that
are based on two simultaneous perturbation methods: simultaneous perturbation stochastic approx-
imation (SPSA) and smoothed functional (SF) [3]. The idea in these methods is to estimate the
gradients ∇V θ(x0) and ∇Uθ(x0) using two simulated trajectories of the system corresponding to
policies with parameters θ and θ+ = θ+β∆. Here β > 0 is a positive constant and ∆ is a perturba-
tion random variable, i.e., a κ1-vector of independent Rademacher (for SPSA) and GaussianN (0, 1)
(for SF) random variables. In our actor-critic algorithms, the critic uses linear approximation for the
value and square value functions, i.e., V̂ (x) ≈ v>φv(x) and Û(x) ≈ u>φu(x), where the features
φv(·) and φu(·) are from low-dimensional spaces Rκ2 and Rκ3 , respectively.

SPSA-based gradient estimates were first proposed in [20] and have been widely studied and found
to be highly efficient in various settings, especially those involving high-dimensional parameters.
The SPSA-based estimate for∇V θ(x0), and similarly for∇Uθ(x0), is given by:
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Figure 1: The overall flow of our simultaneous perturbation based actor-critic algorithms.

∂θ(i) V̂
θ(x0) ≈ V̂ θ+β∆(x0)− V̂ θ(x0)

β∆(i)
, i = 1, . . . , κ1, (4)

where ∆ is a vector of independent Rademacher random variables. The advantage of this estimator
is that it perturbs all directions at the same time (the numerator is identical in all κ1 components).
So, the number of function measurements needed for this estimator is always two, independent of
the dimension κ1. However, unlike the SPSA estimates in [20] that use two-sided balanced estimates
(simulations with parameters θ−β∆ and θ+β∆), our gradient estimates are one-sided (simulations
with parameters θ and θ+β∆) and resemble those in [6]. The use of one-sided estimates is primarily
because the updates of the Lagrangian parameter λ require a simulation with the running parameter
θ. Using a balanced gradient estimate would therefore come at the cost of an additional simulation
(the resulting procedure would then require three simulations), which we avoid by using one-sided
gradient estimates.

SF-based method estimates not the gradient of a function H(θ) itself, but rather the convolution of
∇H(θ) with the Gaussian density function N (0, β2I), i.e.,

CβH(θ) =

∫
Gβ(θ − z)∇zH(z)dz =

∫
∇zGβ(z)H(θ − z)dz =

1

β

∫
−z′G1(z′)H(θ − βz′)dz′,

where Gβ is a κ1-dimensional probability density function. The first equality above follows by
using integration by parts and the second one by using the fact that ∇zGβ(z) = −z

β2 Gβ(z) and by
substituting z′ = z/β. As β → 0, it can be seen that CβH(θ) converges to ∇θH(θ) (see Chapter 6
of [3]). Thus, a one-sided SF estimate of∇V θ(x0) is given by

∂θ(i) V̂
θ(x0) ≈ ∆(i)

β

(
V̂ θ+β∆(x0)− V̂ θ(x0)

)
, i = 1, . . . , κ1, (5)

where ∆ is a vector of independent Gaussian N (0, 1) random variables.

The overall flow of our proposed actor-critic algorithms is illustrated in Figure 1 and involves the
following main steps at each time step t:
(1) Take action at ∼ µ(·|xt; θt), observe the reward r(xt, at) and next state xt+1 in the first trajectory.
(2) Take action a+

t ∼ µ(·|x+
t ; θ+

t ), observe the reward r(x+
t , a

+
t ) and next state x+

t+1 in the second
trajectory.
(3) Critic Update: Calculate the temporal difference (TD)-errors δt, δ+t for the value and εt, ε+t for
the square value functions using (7), and update the critic parameters vt, v+t for the value and ut, u+t
for the square value functions as follows:

vt+1 = vt + ζ3(t)δtφv(xt), v+
t+1 = v+

t + ζ3(t)δ+
t φv(x+

t ),

ut+1 = ut + ζ3(t)εtφu(xt), u+
t+1 = u+

t + ζ3(t)ε+t φu(x+
t ), (6)

where the TD-errors δt, δ+t , εt, ε
+
t in (6) are computed as

δt = r(xt, at) + γv>t φv(xt+1)− v>t φv(xt), δ+
t = r(x+

t , a
+
t ) + γv+>

t φv(x+
t+1)− v+>

t φv(x+
t ),

εt = r(xt, at)
2 + 2γr(xt, at)v

>
t φv(xt+1) + γ2u>t φu(xt+1)− u>t φu(xt),

ε+t = r(x+
t , a

+
t )2 + 2γr(x+

t , a
+
t )v+>

t φv(x+
t+1) + γ2u+>

t φu(x+
t+1)− u+>

t φu(x+
t ). (7)
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This TD algorithm to learn the value and square value functions is a straightforward extension of the
algorithm proposed in [23] to the discounted setting. Note that the TD-error ε for the square value
function U comes directly from the Bellman equation for U (see Appendix B.1 of [17]).
(4) Actor Update: Estimate the gradients ∇V θ(x0) and ∇Uθ(x0) using SPSA (4) or SF (5) and
update the policy parameter θ and the Lagrange multiplier λ as follows: For i = 1, . . . , κ1,

θ
(i)
t+1 = Γi

[
θ

(i)
t +

ζ2(t)

β∆
(i)
t

((
1 + 2λtv

>
t φv(x0)

)
(v+
t − vt)>φv(x0)− λt(u+

t − ut)>φu(x0)
)]
, SPSA (8)

θ
(i)
t+1 = Γi

[
θ

(i)
t +

ζ2(t)∆
(i)
t

β

((
1 + 2λtv

>
t φv(x0)

)
(v+
t − vt)>φv(x0)− λt(u+

t − ut)>φu(x0)
)]
, SF (9)

λt+1 = Γλ

[
λt + ζ1(t)

(
u>t φu(x0)−

(
v>t φv(x0)

)2 − α)]. (10)

Note that 1) the λ-update is the same for both SPSA and SF methods, 2) ∆
(i)
t ’s are independent

Rademacher and Gaussian N (0, 1) random variables in SPSA and SF updates, respectively, 3) Γ
is an operator that projects a vector θ ∈ Rκ1 to the closest point in a compact and convex set
C ⊂ Rκ1 , and Γλ is a projection operator to [0, λmax]. These projection operators are necessary to
ensure convergence of the algorithms, and 4) the step-size schedules {ζ3(t)}, {ζ2(t)}, and {ζ1(t)}
are chosen such that the critic updates are on the fastest time-scale, the policy parameter update
is on the intermediate time-scale, and the Lagrange multiplier update is on the slowest time-scale
(see Appendix A of [17] for the conditions on the step-size schedules). A proof of convergence
of the SPSA and SF algorithms to a (local) saddle point of the risk-sensitive objective function

L̂(θ, λ)
4
= −V̂ θ(x0) + λ(Λ̂θ(x0)− α) is given in Appendix B.3 of [17].

5 Average Reward Setting

The average reward per step under policy µ is defined as (see Sec. 2 for the definitions of dµ and πµ)

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑
t=0

Rt | µ

]
=

∑
x,a

dµ(x)µ(a|x)r(x, a).

The goal in the standard (risk-neutral) average reward formulation is to find an average optimal
policy, i.e., µ∗ = arg maxµ ρ(µ). Here a policy µ is assessed according to the expected differential
reward associated with states or state-action pairs. For all states x ∈ X and actions a ∈ A, the
differential action-value and value functions of policy µ are defined as

Qµ(x, a) =

∞∑
t=0

E
[
Rt − ρ(µ) | x0 = x, a0 = a, µ

]
, V µ(x) =

∑
a

µ(a|x)Qµ(x, a).

In the context of risk-sensitive MDPs, different criteria have been proposed to define a measure of
variability, among which we consider the long-run variance of µ [8] defined as

Λ(µ) =
∑
x,a

πµ(x, a)
[
r(x, a)− ρ(µ)

]2
= lim

T→∞

1

T
E

[
T−1∑
t=0

(
Rt − ρ(µ)

)2 | µ] . (11)

This notion of variability is based on the observation that it is the frequency of occurrence of state-
action pairs that determine the variability in the average reward. It is easy to show that

Λ(µ) = η(µ)− ρ(µ)2, where η(µ) =
∑
x,a

πµ(x, a)r(x, a)2.

We consider the following risk-sensitive measure for average reward MDPs in this paper:

max
θ
ρ(θ) subject to Λ(θ) ≤ α, (12)

for a given α > 0. As in the discounted setting, we employ the Lagrangian relaxation procedure to
convert (12) to the unconstrained problem

max
λ

min
θ

(
L(θ, λ)

4
= −ρ(θ) + λ

(
Λ(θ)− α

))
.

Similar to the discounted case, we descend in θ using ∇θL(θ, λ) = −∇θρ(θ) + λ∇θΛ(θ) and ascend
in λ using ∇λL(θ, λ) = Λ(θ) − α, to find the saddle point of L(θ, λ). Since ∇Λ(θ) = ∇η(θ) −
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2ρ(θ)∇ρ(θ), in order to compute ∇Λ(θ) it would be enough to calculate ∇η(θ). Let Uµ and Wµ

denote the differential value and action-value functions associated with the square reward under
policy µ, respectively. These two quantities satisfy the following Poisson equations:

η(µ) + Uµ(x) =
∑
a

µ(a|x)
[
r(x, a)2 +

∑
x′

P (x′|x, a)Uµ(x′)
]
,

η(µ) +Wµ(x, a) = r(x, a)2 +
∑
x′

P (x′|x, a)Uµ(x′). (13)

We calculate the gradients of ρ(θ) and η(θ) as (see Lemma 5 of Appendix C.1 in [17]):

∇ρ(θ) =
∑
x,a

π(x, a; θ)∇ logµ(a|x; θ)Q(x, a; θ), (14)

∇η(θ) =
∑
x,a

π(x, a; θ)∇ logµ(a|x; θ)W (x, a; θ). (15)

Note that (15) for calculating ∇η(θ) has close resemblance to (14) for ∇ρ(θ), and thus, similar
to what we have for (14), any function b : X → R can be added or subtracted to W (x, a; θ)
on the RHS of (15) without changing the result of the integral (see e.g., [2]). So, we can replace
W (x, a; θ) with the square reward advantage functionB(x, a; θ) = W (x, a; θ)−U(x; θ) on the RHS
of (15) in the same manner as we can replace Q(x, a; θ) with the advantage function A(x, a; θ) =
Q(x, a; θ) − V (x; θ) on the RHS of (14) without changing the result of the integral. We define the
temporal difference (TD) errors δt and εt for the differential value and square value functions as

δt = R(xt, at)− ρ̂t+1 + V̂ (xt+1)− V̂ (xt), εt = R(xt, at)
2 − η̂t+1 + Û(xt+1)− Û(xt).

If V̂ , Û , ρ̂, and η̂ are unbiased estimators of V µ, Uµ, ρ(µ), and η(µ), respectively, then we can show
that δt and εt are unbiased estimates of the advantage functions Aµ and Bµ, i.e., E[δt|xt, at, µ] =
Aµ(xt, at), and E[εt|xt, at, µ] = Bµ(xt, at) (see Lemma 6 in Appendix C.2 of [17]). From this,
we notice that δtψt and εtψt are unbiased estimates of∇ρ(µ) and∇η(µ), respectively, where ψt =
ψ(xt, at) = ∇ logµ(at|xt) is the compatible feature (see e.g., [21, 13]).

6 Average Reward Algorithm

We now present our risk-sensitive actor-critic algorithm for average reward MDPs. Algorithm 1
presents the complete structure of the algorithm along with update rules for the average rewards
ρ̂t, η̂t; TD errors δt, εt; critic vt, ut; and actor θt, λt parameters. The projection operators Γ and Γλ
are as defined in Section 4, and similar to the discounted setting, are necessary for the convergence
proof of the algorithm. The step-size schedules satisfy the standard conditions for stochastic approx-
imation algorithms, and ensure that the average and critic updates are on the (same) fastest time-scale
{ζ4(t)} and {ζ3(t)}, the policy parameter update is on the intermediate time-scale {ζ2(t)}, and the
Lagrange multiplier is on the slowest time-scale {ζ1(t)}. This results in a three time-scale stochastic
approximation algorithm. As in the discounted setting, the critic uses linear approximation for the
differential value and square value functions, i.e., V̂ (x) = v>φv(x) and Û(x) = u>φu(x), where
φv(·) and φu(·) are feature vectors of size κ2 and κ3, respectively. Although our estimates of ρ(θ)
and η(θ) are unbiased, since we use biased estimates for V θ and Uθ (linear approximations in the
critic), our gradient estimates ∇ρ(θ) and ∇η(θ), and as a result ∇L(θ, λ), are biased. Lemma 7 in
Appendix C.2 of [17] shows the bias in our estimate of ∇L(θ, λ). We prove that our actor-critic
algorithm converges to a (local) saddle point of the risk-sensitive objective function L(θ, λ) (see
Appendix C.3 of [17]).

7 Experimental Results

We evaluate our algorithms in the context of a traffic signal control application. The objective in our
formulation is to minimize the total number of vehicles in the system, which indirectly minimizes
the delay experienced by the system. The motivation behind using a risk-sensitive control strategy
is to reduce the variations in the delay experienced by road users.

We consider both infinite horizon discounted as well average settings for the traffic signal
control MDP, formulated as in [15]. We briefly recall their formulation here: The state at
each time t, xt, is the vector of queue lengths and elapsed times and is given by xt =
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Algorithm 1 Template of the Average Reward Risk-Sensitive Actor-Critic Algorithm
Input: parameterized policy µ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameters θ = θ0; value function weight vectors v = v0 and u = u0; initial state
x0 ∼ P0(x)
for t = 0, 1, 2, . . . do

Draw action at ∼ µ(·|xt; θt)
Observe next state xt+1 ∼ P (·|xt, at)
Observe reward R(xt, at)

Average Updates: ρ̂t+1 =
(
1− ζ4(t)

)
ρ̂t + ζ4(t)R(xt, at), η̂t+1 =

(
1− ζ4(t)

)
η̂t + ζ4(t)R(xt, at)

2

TD Errors: δt = R(xt, at)− ρ̂t+1 + v>t φv(xt+1)− v>t φv(xt)

εt = R(xt, at)
2 − η̂t+1 + u>t φu(xt+1)− u>t φu(xt)

Critic Updates: vt+1 = vt + ζ3(t)δtφv(xt), ut+1 = ut + ζ3(t)εtφu(xt) (16)

Actor Updates: θt+1 = Γ
(
θt − ζ2(t)

(
− δtψt + λt(εtψt − 2ρ̂t+1δtψt)

))
(17)

λt+1 = Γλ
(
λt + ζ1(t)(η̂t+1 − ρ̂2

t+1 − α)
)

(18)

end for
return policy and value function parameters θ, λ, v, u

(
q1(t), . . . , qN (t), t1(t), . . . , tN (t)

)
. Here qi and ti denote the queue length and elapsed time since

the signal turned to red on lane i. The actions at belong to the set of feasible sign configurations.
The single-stage cost function h(xt) is defined as follows:

h(xt) = r1

[∑
i∈Ip

r2 · qi(t) +
∑
i/∈Ip

s2 · qi(t)
]

+ s1

[∑
i∈Ip

r2 · ti(t) +
∑
i/∈Ip

s2 · ti(t)
]
, (19)

where ri, si ≥ 0 such that ri + si = 1 for i = 1, 2 and r2 > s2. The set Ip is the set of prioritized
lanes in the road network considered. While the weights r1, s1 are used to differentiate between the
queue length and elapsed time factors, the weights r2, s2 help in prioritization of traffic.

Given the above traffic control setting, we aim to minimize both the long run discounted as well
average sum of the cost function h(xt). The underlying policy for all the algorithms is a parame-
terized Boltzmann policy (see Appendix F of [17]). We implement the following algorithms in the
discounted setting:
(i) Risk-neutral SPSA and SF algorithms with the actor update as follows:

θ
(i)
t+1 = Γi

(
θ

(i)
t +

ζ2(t)

β∆
(i)
t

(v+
t − vt)>φv(x0)

)
SPSA,

θ
(i)
t+1 = Γi

(
θ

(i)
t +

ζ2(t)∆
(i)
t

β
(v+
t − vt)>φv(x0)

)
SF,

where the critic parameters v+t , vt are updated according to (6). Note that these are two-timescale
algorithms with a TD critic on the faster timescale and the actor on the slower timescale.
(ii) Risk-sensitive SPSA and SF algorithms (RS-SPSA and RS-SF) of Section 4 that attempt to
solve (2) and update the policy parameter according to (8) and (9), respectively. In the average
setting, we implement (i) the risk-neutral AC algorithm from [14] that incorporates an actor-critic
scheme, and (ii) the risk-sensitive algorithm of Section 6 (RS-AC) that attempts to solve (12) and
updates the policy parameter according to (17).

All our algorithms incorporate function approximation owing to the curse of dimensionality asso-
ciated with larger road networks. For instance, assuming only 20 vehicles per lane of a 2x2-grid
network, the cardinality of the state space is approximately of the order 1032 and the situation is
aggravated as the size of the road network increases. The choice of features used in each of our al-
gorithms is as described in Section V-B of [16]. We perform the experiments on a 2x2-grid network.
The list of parameters and step-sizes chosen for our algorithms is given in Appendix F of [17].

Figures 2(a) and 2(b) show the distribution of the discounted cumulative reward Dθ(x0) for the
SPSA and SF algorithms, respectively. Figure 3(a) shows the distribution of the average reward ρ for
the algorithms in the average setting. From these plots, we notice that the risk-sensitive algorithms
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Figure 2: Performance comparison in the discounted setting using the distribution of Dθ(x0).
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Figure 3: Comparison of AC vs. RS-AC in the average setting using two different metrics.

that we propose result in a long-term (discounted or average) reward that is higher than their risk-
neutral variants. However, from the empirical variance of the reward (both discounted as well as
average) perspective, the risk-sensitive algorithms outperform their risk-neutral variants.

We use average junction waiting time (AJWT) to compare the algorithms from a traffic signal control
application standpoint. Figure 3(b) presents the AJWT plots for the algorithms in the average setting
(see Appendix F of [17] for similar results for the SPSA and SF algorithms in the discounted setting).
We observe that the performance of our risk-sensitive algorithms is not significantly worse than their
risk-neutral counterparts. This coupled with the observation that our algorithms exhibit low variance,
makes them a suitable choice in risk-constrained systems.

8 Conclusions and Future Work

We proposed novel actor critic algorithms for control in risk-sensitive discounted and average reward
MDPs. All our algorithms involve a TD critic on the fast timescale, a policy gradient (actor) on
the intermediate timescale, and dual ascent for Lagrange multipliers on the slowest timescale. In
the discounted setting, we pointed out the difficultly in estimating the gradient of the variance of
the return and incorporated simultaneous perturbation based SPSA and SF approaches for gradient
estimation in our algorithms. The average setting, on the other hand, allowed for an actor to employ
compatible features to estimate the gradient of the variance. We provided proofs of convergence
(in the appendix of [17]) to locally (risk-sensitive) optimal policies for all the proposed algorithms.
Further, using a traffic signal control application, we observed that our algorithms resulted in lower
variance empirically as compared to their risk-neutral counterparts.

In this paper, we established asymptotic limits for our discounted and average reward risk-sensitive
actor-critic algorithms. To the best of our knowledge, there are no convergence rate results available
for multi-timescale stochastic approximation schemes and hence for actor-critic algorithms. This is
true even for the actor-critic algorithms that do not incorporate any risk criterion. It would be an
interesting research direction to obtain finite-time bounds on the quality of the solution obtained by
these algorithms.
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