
J Optim Theory Appl
DOI 10.1007/s10957-013-0507-1

Simultaneous Perturbation Newton Algorithms
for Simulation Optimization

Shalabh Bhatnagar · L.A. Prashanth

Received: 17 April 2013 / Accepted: 6 December 2013
© Springer Science+Business Media New York 2013

Abstract We present a new Hessian estimator based on the simultaneous perturba-
tion procedure, that requires three system simulations regardless of the parameter di-
mension. We then present two Newton-based simulation optimization algorithms that
incorporate this Hessian estimator. The two algorithms differ primarily in the manner
in which the Hessian estimate is used. Both our algorithms do not compute the inverse
Hessian explicitly, thereby saving on computational effort. While our first algorithm
directly obtains the product of the inverse Hessian with the gradient of the objective,
our second algorithm makes use of the Sherman–Morrison matrix inversion lemma to
recursively estimate the inverse Hessian. We provide proofs of convergence for both
our algorithms. Next, we consider an interesting application of our algorithms on a
problem of road traffic control. Our algorithms are seen to exhibit better performance
than two Newton algorithms from a recent prior work.

Keywords Newton algorithms · Stochastic approximation · Simultaneous
perturbation stochastic approximation · Three-simulation · Hessian estimate ·
Sherman–Morrison lemma · Application to road traffic control

Communicated by Ilio Galligani.

S. Bhatnagar (B)
Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012,
India
e-mail: shalabh@csa.iisc.ernet.in

L.A. Prashanth
Nord Europe, Team SequeL, INRIA, Lille, France
e-mail: prashanth.la@inria.fr

mailto:shalabh@csa.iisc.ernet.in
mailto:prashanth.la@inria.fr

J Optim Theory Appl

1 Introduction

Simulation optimization approaches are a class of techniques that aim at solving the
problem of optimizing a parameterized performance objective using simulated out-
comes or observations. Many times the performance objective and so also its gradi-
ent or higher order derivatives are not known analytically, however, noisy samples
obtained from simulation are available. The problem of interest is to perform opti-
mization under such ‘noisy’ information, many times without knowing the system
model such as the transition probabilities of an underlying Markov process. A host
of methods developed over the course of the past few decades have been devised to
tackle this problem. For continuous parameter optimization problems, perturbation
analysis (PA) [1, 2], and likelihood ratio (LR) approaches [3] work with sample path
gradients. Where applicable, these approaches are known to be highly efficient. How-
ever, in many systems of interest, PA and LR approaches cannot be easily applied as
they require strict regularity conditions on the system model and performance objec-
tive.

A number of approaches have been aimed at estimating the gradient of the objec-
tive function. The earliest amongst them is due to Kiefer and Wolfowitz [4] whose
gradient estimation procedure requires 2N simulations for one estimate of the per-
formance gradient with respect to an N -dimensional parameter. A one-sided version
of this procedure requires (N + 1) system simulations. The simultaneous perturba-
tion stochastic approximation (SPSA) algorithm due to Spall [5], on the other hand,
requires only two simulations regardless of the parameter dimension (N) and has
been found to be very effective in several settings. The SPSA algorithm is a random
search procedure that estimates the gradient at each update epoch by running the two
aforementioned simulations with randomly perturbed parameters. A one-simulation
version of this algorithm presented in [6], however, does not perform well in practice
(unlike its two-simulation counterpart). In [7], SPSA-based algorithms for the long-
run average cost objective have been presented. In [8], SPSA algorithms for the aver-
age cost objective that are based on certain deterministic perturbation constructions
(instead of random perturbations) have been proposed. A one-simulation algorithm
in [8] that incorporates a Hadamard matrix based construction for the perturbations is
seen to perform significantly better than its corresponding random perturbation (one-
simulation) counterpart. This is because the Hadamard matrix based construction is
observed in [8] to result in a frequent and regular cancellation of bias terms in the
gradient estimator, as opposed to its random perturbation counterpart. In [9, 10], ran-
dom perturbation algorithms with Gaussian distributed perturbations have also been
proposed. A textbook account of various simultaneous perturbation based stochastic
search procedures is available in [11].

There has also been work done on the development of Newton-based algorithms
and corresponding techniques for Hessian estimation. In [12], Hessian estimates that
require O(N2) samples of the objective function at each update epoch have been pre-
sented. In a novel extension of the simultaneous perturbation technique for gradient
estimation, Spall [13] presents simultaneous perturbation estimates of the Hessian
that require four simulations. Four Newton-based simultaneous perturbation algo-
rithms for the long-run average cost objective have been presented in [14]. These

J Optim Theory Appl

require four, three, two and one simulation(s), respectively. The four-simulation algo-
rithm in [14] incorporates a similar Hessian estimator as the one proposed in [13]. It
was observed through experiments in [14] that the four-simulation algorithm shows
the best results, followed by the three-simulation algorithm in cases where the pa-
rameter dimension is low. However, in the case of parameters with higher dimension,
the three-simulation algorithm shows the best results overall, followed by the four-
simulation algorithm.

The three-simulation Hessian estimate in [14] is not balanced (i.e., it is not sym-
metric) and hence results in certain bias terms (that however have zero mean). In this
paper, we present a novel balanced estimate of the Hessian that is based on three sim-
ulations. As a consequence of its ‘balanced’ nature, many of the aforementioned bias
terms are not present in our Hessian estimate. We also present two Newton-based
algorithms that incorporate the (above) balanced Hessian estimate. In Newton-based
algorithms, one typically needs to compute the inverse of the Hessian estimate at each
update epoch. This operation is computationally intensive, particularly when the pa-
rameter dimension is high. However, our algorithms require less computation as they
do not require an explicit Hessian inversion. Our first algorithm makes use of a pa-
rameter whose update involves the true Hessian as well as gradient estimates of the
objective function, and which upon convergence gives implicitly the product of the
Hessian inverse with the objective function gradient.

In our second algorithm, we circumvent the problem of computational complexity
of the procedure that would otherwise result from an explicit Hessian inversion by
incorporating an update procedure obtained from the Sherman–Morrison lemma for
matrix inversion (that we derive for our case using the Woodbury identity). A similar
procedure in the case of the two-simulation algorithm from [14] has been proposed
in the context of discrete optimization in service systems (see Chap. 12 of [11]). This
procedure directly updates the inverse of the Hessian and thereby has lower compu-
tational requirements. We provide a proof of convergence for both our algorithms.

Finally, as an application setting, we consider the problem of road traffic control,
i.e., of finding an optimal order to switch traffic lights dynamically in vehicular traffic
networks (see [15, 16]). Our algorithms are seen to perform significantly better than
the two Newton algorithms proposed in [14], which are based on four and three simu-
lations, respectively. As mentioned previously, the four-simulation algorithm of [14]
uses similar gradient and Hessian estimators as the algorithm in [13]. Our algorithms
also show better results in most cases over a large set of fixed threshold schemes. In
order to save space, some details of the experimental set-up have been described in
an online technical report [17].

The rest of the paper is organized as follows. In Sect. 2, we present the basic
problem framework. We present the algorithms in Sect. 3. The convergence analysis
is given in Sect. 4 while the simulation results, in Sect. 5. Finally, concluding remarks
are in Sect. 6.

2 The Framework

Let {Xn,n ≥ 1} be an R
d -valued (d ≥ 1) Markov process parameterized with a pa-

rameter θ ∈ C ⊂ R
N , where C is a given compact and convex set. Let p(θ, dx, dy),

J Optim Theory Appl

x, y ∈ R
d denote the transition probabilities. We assume that for any given θ ∈ C,

{Xn} is ergodic Markov. Let h : Rd → R be a given Lipschitz continuous cost func-
tion. Our aim is to find a θ∗ ∈ C that minimizes over all θ ∈ C, the long-run average
cost

J (θ) := lim
l→∞

1

l

l−1∑

j=0

h(Xj). (1)

The above limit exists because of the ergodicity of {Xn} for any θ ∈ C.

Assumption 2.1 J (θ) is twice continuously differentiable in θ .

Assumption 2.1 is a standard requirement in most Newton search schemes (see, for
instance, [10, 11, 13, 14]). Let {θ(n)} be a sequence of random parameters on which
the process {Xn} depends. Let Hn := σ(θ(m),Xm,m ≤ n), n ≥ 1 be the associated
σ -fields. We call {θ(n)} nonanticipative if for all Borel sets A ⊂ R

d ,

P(Xn+1 ∈ A | Hn) = p
(
θ(n),Xn,A

)
a.s.

The sequences {θ(n)} obtained using both our algorithms in the next section can be
seen to be nonanticipative. We shall assume the existence of a stochastic Lyapunov
function (below).

Assumption 2.2 There exist ε0 > 0, K ⊂ R
d compact and V ∈ C(Rd) such that

lim‖x‖→∞ V (x) = ∞. Further, under any nonanticipative {θ(n)},
1. supn E[V (Xn)

2] < ∞ and
2. E[V (Xn+1) | Hn] ≤ V (Xn) − ε0, whenever Xn /∈ K , n ≥ 0.

Here we let ‖ · ‖ be the Euclidean norm. Also, for any matrix A ∈ R
N×N , its norm

is defined as the induced matrix norm ‖A‖ := max{x∈RN |‖x‖=1} ‖Ax‖. By an abuse of
notation, both the vector and the matrix norms are denoted using ‖ · ‖.

We require Assumption 2.2 to ensure that the system remains stable under
a tunable parameter. In Newton search algorithms that are geared towards find-
ing a local minimum, one normally projects the Hessian estimate after each it-
eration onto the space of positive definite and symmetric matrices in order for
the algorithm to progress in the negative gradient direction. Let Γ : RN×N →
{positive definite and symmetric matrices} denote this projection operator. We let
Γ (A) = A if A is positive definite and symmetric. In general, Γ can be obtained
from various methods such as the modified Choleski factorization scheme [18] or the
procedures in [13] and [19].

Assumption 2.3 Let {An} and {Bn} be any sequences of matrices in R
N×N such

that limn→∞ ‖An − Bn‖ = 0. Then limn→∞ ‖Γ (An)−Γ (Bn)‖ = 0 as well. Further,
for any sequence {Cn} of matrices in R

N×N with supn ‖Cn‖ < ∞, supn ‖Γ (Cn)‖,
supn ‖{Γ (Cn)}−1‖ < ∞ as well.

J Optim Theory Appl

Assumption 2.3 has also been used in other Newton-based schemes (see, for in-
stance, [10, 11, 14]). As argued in [10, 14], the continuity requirement in Assump-
tion 2.3 can be easily imposed in the modified Choleski factorization procedure (see
[13, 18]). The procedure in [19] has also been shown to satisfy this requirement.
A sufficient condition for the other requirements in Assumption 2.3 is that for some
scalars c1, c2 > 0,

c1‖z‖2 ≤ zT Γ (Cn)z ≤ c2‖z‖2, ∀z ∈R
N,n ≥ 0. (2)

Then all eigenvalues of Γ (Cn), ∀n, lie between c1 and c2. Further, supn ‖Γ (Cn)‖,
supn ‖{Γ (Cn)}−1‖ < ∞ (see Propositions A.9 and A.15 in [18]).

3 The Algorithms

Both our algorithms incorporate three step-size sequences denoted {a(n)}, {b(n)} and
{c(n)}. We let the step-sizes satisfy the properties in the assumption below.

Assumption 3.1 Let a(n), b(n), c(n) > 0 for all n. Further,
∑

n

a(n) =
∑

n

b(n) =
∑

n

c(n) = ∞,
∑

n

(
a(n)2 + b(n)2 + c(n)2) < ∞, (3)

lim
n→∞

a(n)

c(n)
= lim

n→∞
c(n)

b(n)
= 0. (4)

The conditions (3) are routinely used for step-sizes. As a consequence of the sec-
ond requirement in (3), the step-sizes a(n), b(n), c(n) → 0 as n → ∞ and, in par-
ticular, the ‘noise terms’ in the algorithm diminish asymptotically. Thus, the various
recursions in the algorithm can be considered to be noisy Euler discretizations (with
diminishing step-sizes) of associated ODEs. Diminishing step-sizes of the algorithm
also result in shrinking of the corresponding timescales for the various recursions.
The first requirement in (3) is therefore needed to ensure that any given finite time
interval in ODE time can be simulated by a finite (that could however be large) num-
ber of iterations, as a result of which the algorithm does not converge prematurely.
The requirements in (4) imply that a(n) converges to 0 at a faster rate as compared
to c(n) (as n → ∞). Likewise, c(n) converges to 0 faster than b(n). Thus recursions
governed by b(n) are the fastest while those governed by a(n) are the slowest. Fur-
ther, recursions governed by c(n) converge faster than those governed by a(n) and
slower than the ones governed by b(n). This is mainly because one expects that be-
yond some integer m0 (i.e., ∀n ≥ m0), the increments in the recursions governed by
b(n) (c(n)) would be uniformly larger than corresponding increments in recursions
governed by c(n) (a(n)).

Both our algorithms incorporate a new Hessian estimation scheme. The motivation
for the Hessian estimate comes from the following form of the second derivative of
the objective function when θ is a scalar:

d2J (θ)

dθ2
= lim

δ→0

(
J (θ + δ) + J (θ − δ) − 2J (θ)

δ2

)
. (5)

J Optim Theory Appl

We extend the estimate in (5) to vector parameters by using the simultaneous pertur-
bation approach. Our estimate involves three simulation runs with a nominal (unper-
turbed) parameter and two different perturbed parameter vectors.

Both our algorithms aim at reducing the computational load involved with in-
verting the Hessian matrix at each update epoch. Our first algorithm (Algorithm 1)
achieves the inversion in an indirect manner by making use of an additional recursion
to estimate the product of the inverse of the Hessian with the gradient of the objective
and uses only the Hessian update in the process. The second algorithm (Algorithm 2),
on the other hand, incorporates the Sherman–Morrison lemma for matrix inversion
(that we derive here from the Hessian update using the Woodbury identity) to directly
update the inverse of the Hessian.

Let �(n) = (�1(n), . . . ,�N(n))T and �̂(n) = (�̂1(n), . . . , �̂N (n))T , where
�i(n), �̂i(n), n ≥ 0, i = 1, . . . ,N , denote perturbation random variables. We make
the following assumption on these:

Assumption 3.2 The random variables �1(n), . . . ,�N(n), �̂1(n), . . . , �̂N(n),
n ≥ 0 are independent and identically distributed (i.i.d.), mean-zero with each
�j(n), �̂j (n), j = 1, . . . ,N , taking values in a compact interval E ⊂ R. In addi-
tion, there exists a constant K̄ < ∞, such that for any n ≥ 0, and l ∈ {1, . . . ,N},

E
[(

�l(n)
)−2] = E

[(
�̂l(n)

)−2] ≤ K̄.

Further, �(n), �̂(n) are both independent of σ(θ(l), l ≤ n), the σ -field generated by
the sequence of parameter updates obtained till the nth iteration.

We denote by (�(n))−1, the quantity (�(n))−1 = (1/�1(n), . . . ,1/�N(n))T .
Both our algorithms perform data averaging to estimate the long-run average cost
for a given parameter value along the fastest timescale (using step-sizes b(n),n ≥ 0)
while the parameter itself is updated along the slowest scale (using a(n),n ≥ 0). The
Hessian updates are performed along a timescale (with step-sizes c(n), n ≥ 0) that
lies in between the two scales.

3.1 Algorithm 1

We present below a step-by-step summary of the algorithm update procedure.

Step 1 Run three parallel simulations X−−(l), X++(l) and Xo(l), l ≥ 0, which are
respectively governed by the parameter sequences θ−−(n) := θ(n) − δ�(n) −
δ�̂(n), θ++(n) := θ(n)+δ�(n)+δ�̂(n) and θo(n) := θ(n), n ≥ 0. Here δ > 0
be a given small constant. Further, l and n are related according to l = nL+m,
for some m ∈ {0,1, . . . ,L − 1} and a given L ≥ 1.

Step 2 Let Zw(nL+m), w ∈ {−−,++, o}, denote quantities used for averaging the
cost function in the four simulations. Initialize Zw(0) = 0, ∀w ∈ {−−,++, o}
and update Zw(·) on the fastest timescale as follows: ∀m = 0,1, . . . ,L − 1,

Z−−(nL + m + 1) = Z−−(nL + m) + b(n)
(
h
(
X−−(nL + m)

) − Z−−(nL + m)
)
,

(6)

J Optim Theory Appl

Z++(nL + m + 1) = Z++(nL + m) + b(n)
(
h
(
X++(nL + m)

) − Z++(nL + m)
)
,

(7)

Zo(nL + m + 1) = Zo(nL + m) + b(n)
(
h
(
Xo(nL + m)

) − Zo(nL + m)
)
. (8)

Step 3 Update the estimate of the Hessian on the medium timescale as follows: For
i, j = 1, . . . ,N ,

Hi,j (n + 1) = Hi,j (n) + c(n)

(
Z++(nL) + Z−−(nL) − 2Zo(nL)

δ2�i(n)�̂j (n)
− Hi,j (n)

)
.

(9)

Next form the matrix P(n) = Γ ([[Hk,l(n)]]Nk,l=1). Update

β(n + 1) = β(n) + c(n)

(
−P(n)β(n) +

(
Z−−(nL) − Z++(nL)

2δ

(
�(n)

)−1
))

.

(10)

Step 4 With the quantity β(n) computed in step 3, update the parameter θ(n) on the
slowest timescale as follows:

θ(n + 1) = Π
(
θ(n) − a(n)β(n)

)
. (11)

Step 5 Repeat steps 1-4 with the new parameter θ(n + 1), until n = T , where T is a
large positive integer.

Remark 3.1 Note that a direct inversion of the Hessian update in the above algorithm
is avoided through the use of the recursion (10) that will be seen to converge (as
δ → 0) for a given parameter update to the product of the projected Hessian inverse
with the gradient of the objective. A timescale separation between the θ -update (11)
with that of the β-recursion (10) helps in this process.

Remark 3.2 We observe here as with [10, 14] that updating the Hessian H(n) and the
parameter θ(n) along the subsequence {nL} of (sequence) {n} of recursion epochs,
for a given L > 1, actually improves performance. Thus, in between two successive
updates of Hi,j , β and θ , the quantities Z−−, Z++ and Zo are updated for L it-
erations. The convergence proof however works for any finite value of L ≥ 1. It is
generally observed that a value of L in between 50 and 500 usually works well. For
our experiments, we chose L = 100.

Remark 3.3 One may define θ−−(n) := θ(n) − δ1�(n) − δ2�̂(n) and θ++(n) :=
θ(n) + δ1�(n) + δ2�̂(n), respectively, for some δ1, δ2 > 0 that are not necessarily
equal (see [13, 14]). The convergence analysis in such a case would carry through in
the same manner as for the case of δ1 = δ2 = δ (below).

J Optim Theory Appl

3.2 Algorithm 2

Our second algorithm directly updates the Hessian inverse through an application
of the Sherman–Morrison lemma for matrix inversion that we derive here from the
Woodbury identity. A similar procedure for a two-simulation algorithm (2SA) from
[14] has been suggested in the context of discrete optimization in service systems
(see Chap. 12 of [11]). For matrices A, B , L and D of dimensions n × n, n × m,
m × m and m × n, respectively, n,m ≥ 1, the Woodbury’s identity states that

(A + BLD)−1 = A−1 − A−1B
(
L−1 + DA−1B

)−1
DA−1. (12)

Now recall the Hessian update (9) and note that the same can be rewritten as

H(n + 1) = A(n) + B(n)L(n)D(n),

where

A(n) := (
1 − c(n)

)
H(n),

B(n) := c(n)

δ

(
1

�1(n)
, . . . ,

1

�N(n)

)T

,

D(n) := 1

δ

(
1

�̂1(n)
, . . . ,

1

�̂N(n)

)
,

and

L(n) := (
Z++(nL) + Z−−(nL) − 2Zo(nL)

)
.

Letting M̌(n) := H(n)−1 assuming H(n) is positive definite, one obtains from
(12) the following:

M̌(n + 1) = M̌(n)

(1 − c(n))

− M̌(n)

(1 − c(n))
c(n)B(n)

(
1

L(n)
+ D(n)M̌(n)

(1 − c(n))
c(n)B(n)

)−1
D(n)M̌(n)

(1 − c(n))
.

Upon simplification, one obtains

(
1

L(n)
+ D(n)M̌(n)

(1 − c(n))
c(n)B(n)

)−1

= (
1 − c(n)

)
L̂(n),

where

L̂(n) = L(n)

(1 − c(n) + c(n)L(n)D(n)M̌(n)B(n))
.

J Optim Theory Appl

Note that L̂(n) is a scalar. Thus, one obtains the following recursion for directly
updating M̌(n) = H(n)−1 and which corresponds to an application of the Sherman–
Morrison lemma for matrix inversion in this case.

M̌(n + 1) = M̌(n)

(1 − c(n))

(
I − c(n)L̂(n)B(n)D(n)M̌(n)

)
, (13)

where I denotes the identity matrix. In practice, H(n) may not be positive definite,
however, Γ (H(n)) will be so. Hence, we project M̌(n) after each update to the set
of positive definite and symmetric matrices using the operator Γ . Thus, M(n) =
Γ (M̌(n)) will be positive definite and symmetric.

The overall sequence of steps in Algorithm 2 is similar to that of Algorithm 1. In
fact, steps 1 and 2 in Algorithm 2 are exactly the same as in Algorithm 1, and are
not being described to prevent repetition. However, steps 3 and 4 in Algorithm 2 are
considerably different from Algorithm 1 and are described below.

Step 3 Update the estimate M(n) of the Hessian inverse on the medium timescale as
follows: For i, j = 1, . . . ,N ,

M̌(n + 1) = M̌(n)

(1 − c(n))

(
I − c(n)L̂(n)B(n)D(n)M̌(n)

)
, (14)

with M̌(n), L̂(n),B(n),D(n) as above. Next, set M(n) = Γ (M̌(n)). Finally,
we have

Step 4 Update the parameter θ(n) on the slowest timescale using the Hessian in-
verse estimate M(n) as well as the average cost estimates Z++(·),Z−−(·) cor-
responding to the parameters θ++(·), θ−−(·), respectively, as follows:

θ(n + 1) = Π

(
θ(n) − a(n)M(n)

(
Z++(nL) − Z−−(nL)

2δ

(
�(n)

)−1
))

.

(15)

Note that Remarks 3.2 and 3.3 also hold in the case of Algorithm 2.

4 Convergence Analysis

Both our algorithms involve multi-timescale stochastic approximation. We follow the
ODE approach for their analysis. Chapter 6 of [20] contains a general treatment of
multi-timescale algorithms using the ODE approach.

4.1 Convergence Analysis of Algorithm 1

We begin with an analysis of recursions (6)–(8). First note that since h(·) is Lipschitz
continuous,

∣∣h(x)
∣∣ ≤ ∣∣h(x) − h(0)

∣∣ + ∣∣h(0)
∣∣ ≤ K‖x‖ + ∣∣h(0)

∣∣ ≤ K̂
(
1 + ‖x‖),

J Optim Theory Appl

where K > 0 is the Lipschitz constant and K̂ = max(K, |h(0)|). For n ≥ 0, let
b̂(n) := b([n

L
]), where [n

L
] denotes the integer part of n

L
. Note that the requirements in

(3)–(4) continue to hold when the sequence b(n),n ≥ 0 is replaced with b̂(n), n ≥ 0.
One can now rewrite (6)–(8) as follows: For w ∈ {−−,++, o}, n ≥ 0,

Zw(n + 1) = Zw(n) + b̂(n)
(
h
(
Xw(n)

) − Zw(n)
)
. (16)

For nL ≤ l < (n + 1)L, let θ̌ (l) := θ(n), �̌(l) := �(n) and ˇ̂
�(l) := �̂(n). Let

F(l) := σ
(
θ̌ (p), �̌(p),

ˇ̂
�(p),Xw

p , p ≤ l, w ∈ {−−,++, o}), l ≥ 1,

denote a sequence of σ -fields. Consider sequences {Mw(p),p ≥ 1}, w ∈ {−−,++,

o}, that are defined as follows:

Mw(p) :=
p∑

m=1

b̂(m)
(
h
(
Xw

m

) − E
[
h
(
Xw

m

) |F(m − 1)
]) =

p∑

m=1

b̂(m)Nw(m),

where Nw(m) := h(Xw
m) − E[h(Xw

m) | F(m − 1)], m ≥ 1 is the corresponding mar-
tingale difference sequence.

Lemma 4.1 The sequences {(Mw(p),F(p))}, w ∈ {−−,++, o} are almost surely
convergent martingale sequences.

Proof It is easy to see that {Mw(p),p ≥ 1}, w ∈ {−−,++, o} are martingale se-
quences. Now note that

∑

p

E
[(

Mw(p + 1) − Mw(p)
)2 | F(p)

]

=
∑

p

b̂2(p + 1)
(
E

[(
h
(
Xw

p+1

) − E
[
h
(
Xw

p+1

) |F(p)
])2 | F(p)

])

≤ K0

∑

p

b̂2(p + 1)E
[(

1 + ‖Xw
p+1‖2) | F(p)

]
,

almost surely, for some constant K0 > 0. As a consequence of Assumption 2.2,
supp E[‖Xw

p+1‖2 | F(p)] < ∞ almost surely. Further, from the square summability

of b̂(p) (cf. (3)), it follows that
∑

p

E
[(

Mw(p + 1) − Mw(p)
)2 | F(p)

]
< ∞ a.s.

Now by the martingale convergence theorem (cf. Theorem 3.3.4, pp. 53–54 of [21]),
{Mw(p),p ≥ 1} are almost surely convergent sequences. �

Let s(n) := ∑n−1
i=0 a(i), n ≥ 1, with s(0) := 0. Define θ(t), t ∈ [0,∞[as follows:

θ(s(n)) := θ(n), n ≥ 0 and for t ∈]s(n), s(n + 1)[, θ(t) is obtained from the continu-
ous linear interpolation of θ(s(n)) and θ(s(n + 1)). Also, define �(t), �̂(t), t ≥ 0

J Optim Theory Appl

as follows: �(t) := �(n) and �̂(t) := �̂(n), for t ∈ [s(n), s(n + 1)[, n ≥ 0. Let
t (n) := ∑n−1

m=0 b̂(m), n ≥ 1 with t (0) := 0. Let Zw(t (n)) := Zw(n) with linear in-
terpolation on [t (n), t (n + 1)].

Consider now the following system of ODEs:

Żw(t) = J
(
θw(t)

) − Zw(t), w ∈ {−−,++, o}, (17)

Ḣi,j (t) = 0, i, j ∈ {1, . . . ,N}, β̇(t) = 0, θ̇ (t) = 0. (18)

In the light of (18), one may let θw(t) := θw (i.e., independent of t). In such a case,
(17) can be rewritten as

Żw(t) = J
(
θw

) − Zw(t), w ∈ {−−,++, o}. (19)

Proposition 4.1 We have ‖Zw(n) − J (θw(n))‖ → 0 as n → ∞ with probability one.

Proof Rewrite recursions (9), (10) and (11) as follows: For i, j = 1, . . . ,N , ∀n ≥ 0,

Hi,j (n + 1) = Hi,j (n) + b(n)
c(n)

b(n)

(
Z++(nL) + Z−−(nL) − 2Zo(nL)

δ2�i(n)�̂j (n)
− Hi,j (n)

)
,

(20)

β(n + 1) = β(n) + b(n)
c(n)

b(n)

(
−P(n)β(n) +

(
Z−−(nL) − Z++(nL)

2δ

(
�(n)

)−1
))

,

(21)

θ(n + 1) = Π

(
θ(n) − b(n)

a(n)

b(n)
β(n)

)
. (22)

Now since both c(n)=o(b(n)) and a(n)=o(b(n)), it is easy to see that (Hi,j (t (n)+·),
β(t (n) + ·), θ(t (n) + ·), i, j = 1, . . . ,N) is a noisy Euler discretization of the ODEs
(18) for large n. Thus, one may let (as a consequence of the above), θw(n) := θw

(i.e., invariant of n) for n sufficiently large. Now note that (16) can be rewritten as

Zw(n + 1) = Zw(n) + b̂(n)
(
J
(
θw

) + ξ1(n) + Nw(n) − Zw(n)
)
, (23)

where ξ1(n) = E[h(Xw(n)) | F(n−1)]−J (θw). In fact, ξ1(n) → 0 almost surely as
n → ∞ along the ‘natural timescale’. This follows from the ergodicity of Xw(n),n ≥
0, given θw (see Theorem 7, Corollary 8, p. 74 and Theorem 9, p. 75 in [20]). From
Assumption 2.2, it follows that supn E[h(Xw(n)) |F(n − 1)] < ∞ almost surely.
Further, from Assumption 2.1 and the fact that θw ∈ C, a compact set, it follows
that supθw∈C |J (θw)| < ∞. Thus, supn |ξ1(n)| < ∞ almost surely. Now b̂(n) → 0 as
n → ∞. Further, in lieu of the foregoing, supθw,n |J (θw) + ξ1(n) + Nw(n)| < ∞
with probability one. Thus, ∃N1 > 0 such that for n ≥ N1, Zw(n + 1) is a con-
vex combination of Zw(n) and an almost surely uniformly bounded quantity. Thus,
supn |Zw(n)| < ∞ almost surely and (23) can be seen to be a noisy Euler discretiza-
tion (with diminishing noise) of (19). The claim now follows from Theorem 1 of [22,
p. 339]. �

J Optim Theory Appl

Now note that the recursion (9) can be rewritten as follows: ∀i, j ∈ {1,2, . . . ,N},

Hi,j (n + 1) = (
1 − c(n)

)
Hi,j (n)

+ c(n)

(
E

[
Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)

∣∣∣∣F(n)

]
+ ξ2(n) + Ni,j (n)

)
, (24)

where

Ĵ
(
θ(n),�(n), �̂(n)

) := J
(
θ(n) + δ�(n) + δ�̂(n)

) + J
(
θ(n) − δ�(n) − δ�̂(n)

)

− 2J
(
θ(n)

)
,

ξ2(n) := (Z+(nL) + Z−(nL) − 2Zo(nL))�i (n)�̂j (n) − Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)
,

Ni,j (n) := Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)
− E

[
Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)

∣∣∣∣F(n − 1)

]
.

Proposition 4.2 For all i, j ∈ {1, . . . ,N},

lim
δ→0

∣∣∣∣E
[
Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)

∣∣∣∣F(n)

]
− ∇2

i,j J
(
θ(n)

)∣∣∣∣ = 0 a.s.

Proof We first consider the case when i, j ∈ {1, . . . ,N}, i �= j . It is easy to see from
suitable Taylor’s expansions that

Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)

= (�(n) + �̂(n))T ∇2J (θ(n))(�(n) + �̂(n))

�i (n)�̂j (n)
+ o(δ)

=
N∑

l=1

N∑

m=1

�l(n)∇2
lmJ (θ(n))�m(n)

�i(n)�̂j (n)
+ 2

N∑

l=1

N∑

m=1

�l(n)∇2
lmJ (θ(n))�̂m(n)

�i(n)�̂j (n)

+
N∑

l=1

N∑

m=1

�̂l(n)∇2
lmJ (θ(n))�̂m(n)

�i(n)�̂j (n)
+ o(δ).

It is now easy to see that

• E[∑N
l=1

∑N
m=1

�l(n)∇2
lmJ (θ(n))�m(n)

�i(n)�̂j (n)
|F(n)]

= E[∑N
l=1

∑N
m=1

�̂l (n)∇2
lmJ (θ(n))�̂m(n)

�i(n)�̂j (n)
| F(n)] = 0 a.s.,

• E[∑N
l=1

∑N
m=1

�l(n)∇2
lmJ (θ(n))�̂m(n)

�i(n)�̂j (n)
|F(n)] = ∇2

i,j J (θ(n)) a.s..

J Optim Theory Appl

Thus,

E

[
Ĵ (θ(n),�(n), �̂(n))

δ2�i (n)�̂j (n)

∣∣∣∣F(n)

]
= 2∇2

i,j J
(
θ(n)

) + o(δ).

The case when i = j , i, j ∈ {1, . . . ,N} follows in a similar manner. The claim fol-
lows. �

Consider now the following system of ODEs: ∀i, j = 1, . . . ,N ,

Ḣi,j (t) = ∇2
i,j J

(
θ(t)

) − Hi,j (t), θ̇ (t) = 0. (25)

In lieu of (25), one may let θ(t) := θ (invariant of t) as before. We now have the
following result.

Lemma 4.2 We have |Hi,j (n) − ∇2
i,j J (θ(n))| → 0 as n → ∞ and δ → 0 with prob-

ability one.

Proof Recall that the Hessian update (9) can be rewritten as (24). It has been
shown in Proposition 4.1 that supn |Zw(n)| < ∞ a.s., ∀w ∈ {−−,++, o}. Further,
supθ∈C J (θ) < ∞ by Assumption 2.1. Thus, supn |ξ2(n)| < ∞ almost surely. Fur-
ther, ξ2(n) → 0 as n → ∞ by Proposition 4.1. Also, as with Lemma 4.1, it is easy to
see that

∑n
l=1 c(l)Ni,j (l), n ≥ 0 is an almost surely convergent martingale sequence.

Hence, it follows that supn |Hi,j (n)| < ∞ a.s. and that Ni,j (n) = o(1) as well. The
claim now follows Theorem 1 of [22, p. 339]. �

Corollary 4.1 ‖P(n) − Γ (∇2J (θ(n)))‖ → 0 as n → ∞ and δ → 0 with probability
one.

Proof Follows from Lemma 4.2 and Assumption 2.3. �

Consider now the following N sequences: For i = 1, . . . ,N ,

χi
4(n) :=

n−1∑

m=0

c(m)

(
Z++(mL) − Z−−(mL)

2δ�i(m)
− E

[
Z++(mL) − Z−−(mL)

2δ�i(m)

∣∣∣∣F(m)

])
,

n ≥ 1.

Lemma 4.3 Each of the sequences (χi
4(n),F(n)), n ≥ 1, i = 1, . . . ,N is an almost

surely convergent zero-mean martingale.

Proof It is easy to see that (χi
4(n),F(n)) are zero-mean martingales. Now

supn |Zw(nL)| < ∞ a. s. ∀w (see proof of Proposition 4.1). Further, from the square
summability condition on the step-sizes c(n), n ≥ 0 in (3), it can be seen that the
quadratic variation processes of each of these martingales are almost surely conver-
gent. The claim now follows as a consequence of the martingale convergence theorem
(cf. [21, Theorem 3.3.4, pp. 53–54]) applied individually to each martingale. �

J Optim Theory Appl

Lemma 4.4
∥∥∥∥E

[
Z++(nL) − Z−−(nL)

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]
− ∇J

(
θ(n)

)∥∥∥∥ → 0,

as n → ∞ and δ → 0 with probability one.

Proof Note that
∥∥∥∥E

[
Z++(nL) − Z−−(nL)

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]
− ∇J

(
θ(n)

)∥∥∥∥

≤
∥∥∥∥E

[
Z+(nL) − Z−(nL)

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]

− E

[
J (θ(n) + δ�(n) + δ�̂(n)) − J (θ(n) − δ�(n) − δ�̂(n))

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]∥∥∥∥

+
∥∥∥∥E

[
J (θ(n) + δ�(n) + δ�̂(n)) − J (θ(n) − δ�(n) − δ�̂(n))

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]

− ∇J
(
θ(n)

)∥∥∥∥.

The term given by the first norm on the RHS above vanishes asymptotically with
probability one as n → ∞ by Proposition 4.1. From suitable Taylor’s expansions of
J (θ(n)+ δ�(n)+ δ�̂(n)) and J (θ(n)− δ�(n)− δ�̂(n)) around θ(n), it can be seen
that

E

[
J (θ(n) + δ�(n) + δ�̂(n)) − J (θ(n) − δ�(n) − δ�̂(n))

2δ�i(n)

∣∣∣∣F(n)

]

= ∇iJ
(
θ(n)

) + o(δ).

The claim now follows. �

We consider now the recursion (10).

Proposition 4.3 We have

∥∥β(n) − Γ
(∇2J

(
θ(n)

))−1∇J
(
θ(n)

)∥∥ → 0,

as δ → 0 and n → ∞, a.s.

Proof The proof relies on an important result by Borkar and Meyn (cf. Theorems
2.1–2.2 of [23]; see also Theorem D.1 of [11, p. 296]). Note that (10) can be rewritten
as

β(n + 1) = β(n) + c(n)
(−Γ

(∇2J
(
θ(n)

))
β(n) − ∇J

(
θ(n)

) + ξ3(n) + ξ4(n) + ξ5(n)
)
,

(26)

J Optim Theory Appl

where

ξ3(n) := (Γ (∇2J (θ(n))) − P(n))β(n),

ξ4(n) :=
(

−Z−−(nL) − Z++(nL)

2δ

(
�(n)

)−1

+ E

[
Z−−(nL) − Z++(nL)

2δ

(
�(n)

)−1
∣∣∣∣F(n)

])
,

ξ5(n) :=
(

−E

[
Z−−(nL) − Z++(nL)

2δ

(
�(n)

)−1
∣∣∣∣F(n)

]
+ ∇J

(
θ(n)

))
.

Now note that ξ3(n) → 0 as n → ∞ and δ → 0 from Corollary 4.1. Further, ξ5(n) →
0 as n → ∞ and δ → 0, as a consequence of Lemma 4.4. Let

ξ i
4(n) := −Z−−(nL) − Z++(nL)

2δ�i(n)
+ E

[
Z−−(nL) − Z++(nL)

2δ�i(n)

∣∣∣∣F(n)

]
.

Then, ξ4(n) = (ξ i
4(n), i = 1, . . . ,N)T . Further, from Lemma 4.3,

∑
n c(n)ξ i

4(n) < ∞
almost surely. Consider now the following system of ODEs:

β̇(t) = −Γ
(∇2J

(
θ(t)

))
β(t) + ∇J

(
θ(t)

)
, θ̇ (t) = 0. (27)

As a consequence of the second ODE in (27), θ(t) := θ (i.e., a time-invariant quan-
tity). Now note that g(β) := −Γ (∇2J (θ))β + ∇J (θ) is Lipschitz continuous in
β . Further, g∞(β) := limr→∞ g(rβ)

r
= −Γ (∇2J (θ))β . Since Γ (∇2J (θ)) is a posi-

tive definite matrix, the ODE β̇(t) = g∞(β(t)) has the origin as its unique globally
asymptotically stable equilibrium. Thus, assumptions (A1) and (A2) of [23] hold true.
From Theorem 2.1 of [23], supn ‖β(n)‖ < ∞ almost surely and the claim follows
from Theorem 2.2 of [23]. �

Finally, we consider the recursion (11). The ODE associated with (11) is

θ̇ (t) = Π̂
(−Γ

(∇2J
(
θ(t)

))−1∇J
(
θ(t)

))
, (28)

where the operator Π̂(·) is defined as follows: for any bounded and continuous func-
tion v : R →R,

Π̂i

(
v(y)

) := lim
η→0

(
Πi(y + ηv(y)) − Πi(y)

η

)
, i = 1, . . . ,N.

Further, for x = (x1, . . . , xN)T , Π̂(x) := (Π̂1(x1), . . . , Π̂N (xN))T .
Let K := {θ ∈ C | Π̂(−Γ (∇2J (θ))−1∇J (θ)) = 0}. For given η > 0, let Kη

denote the set of points in a η-neighbourhood of the set K , i.e., Kη := {θ ∈ C |
‖θ − θ0‖ < η, θ0 ∈ K}.

Theorem 4.1 Under Assumptions 2.1–2.3, 3.1 and 3.2, given η > 0, there exists δ̂ >

0 such that for all δ ∈]0, δ̂[, θ(n) → Kη , as n → ∞, with probability one.

J Optim Theory Appl

Proof Note that (11) can be rewritten as

θ(n + 1) = Π
(
θ(n) − a(n)Γ

(∇2J
(
θ(n)

))−1∇J
(
θ(n)

) + a(n)α̂(n)
)
, (29)

where α̂(n) = (Γ (∇2J (θ(n)))−1∇J (θ(n))−β(n)). By Proposition 4.3, ‖α̂(n)‖ → 0
with probability one as n → ∞. Further, since θ(n) ∈ C (a compact set) for all n and
by Assumptions 2.1 and 2.3, it follows that supn ‖Γ (∇2J (θ(n)))−1∇J (θ(n))‖ < ∞
almost surely. Also, supn ‖β(n)‖ < ∞ almost surely as well (see proof of Proposi-
tion 4.3). It thus follows that supn ‖α̂(n)‖ < ∞ almost surely as well. Now using a
similar argument as in Theorem 5.3.1 of [24, pp. 191–196] (see also Theorem E.1 in
[11, p. 298]), (29) can be seen to be a noisy Euler discretization of the ODE (28). It
is easy to see that J (·) itself serves as an associated Lyapunov function for (28) since

dJ (θ)

dθ
= ∇J (θ)T θ̇ = ∇J (θ)T Π̂

(−Γ
(∇2J (θ)

)−1∇J (θ)
) ≤ 0.

Note that J (·) is continuous and hence uniformly bounded on the compact set C.
Let μ = supθ J (θ) < ∞. Then {θ | J (θ) ≤ μ} = C. The claim now follows from
Lasalle’s invariance theorem, see [25], also stated as Theorem 2.3 in [26, p. 76]. �

Remark 4.1 Let R := {θ ∈ C | Π̂(−Γ (∇2J (θ))−1∇J (θ)) = −Γ (∇2J (θ))−1∇J (θ)}.
Note that C0 ⊆ R. Further, for θ ∈ R, dJ (θ)

dt
< 0 if ∇J (θ) �= 0. For θ ∈ R ∩ K ,

∇J (θ) = 0 since Γ (∇2J (θ))−1 is positive definite and symmetric. In addition, there
may be spurious fixed points within K that would however lie in ∂C (the boundary
of C), see [26, p. 79]. Now note that S := {θ ∈ C | ∇J (θ) = 0} constitutes the set of
all Kuhn–Tucker points which includes local minima as well as unstable equilibria.
Any stochastic approximation scheme in general may get trapped in an unstable equi-
librium (see [20, Chap. 4.3]). In most practical scenarios (as with our experiments),
because of the inherent randomness in the parameter updates, stochastic approxima-
tion algorithms are seen to converge to stable equilibria. Finally, the choice of the
parameter δ has a bearing on the performance of algorithm. A very low δ has the ef-
fect of increasing the variability in the estimates while a large δ leads to inaccuracies
resulting from the bias terms, see Sect. 5 for detailed experiments with various values
of δ.

4.2 Convergence Analysis of Algorithm 2

Recall that the recursions (6)–(8) for averaging the cost functions corresponding to
different parameters, are the same for both Algorithms 1 and 2. Thus, the conclusions
of Proposition 4.1 continue to hold.

Lemma 4.5 We have ‖M(n) − Γ (∇2J (θ(n)))−1‖ → 0 as n → ∞ with probability
one.

Proof Recall that the update of M̌(n) (cf. (14)) is obtained via the Hessian update
(9), see the calculation leading up to (13). From Lemma 4.2, we have

∥∥H(n) − ∇2J
(
θ(n)

)∥∥ → 0,

J Optim Theory Appl

as n → ∞ almost surely. The claim follows as a consequence of Assumption 2.3 and
the facts that M̌(n) = H(n)−1 and M(n) = Γ (M̌(n)). �

Consider now the recursion (15). The ODE associated with (15) is

θ̇ (t) = Π̂
(−Γ

(∇2J
(
θ(t)

)−1)∇J
(
θ(t)

))
, (30)

with Π̂(·) defined as before. Let Ǩ := {θ ∈ C | ∇J (θ)T Π̂(−Γ (∇2J (θ)−1)∇J (θ)) =
0}. For given η > 0, let Ǩη := {θ ∈ C | ‖θ − θ0‖ < η, θ0 ∈ Ǩ}.

Theorem 4.2 Under Assumptions 2.1–2.3, 3.1 and 3.2, given η > 0, there exists
δ̂ > 0 such that for all δ ∈]0, δ̂[, θ(n) → Ǩη , as n → ∞, with probability one.

Proof Follows in a similar manner as the proof of Theorem 4.1. �

Finally, the conclusions in Remark 4.1 continue to hold in the case of Algorithm 2
as well. This completes the convergence analysis of both algorithms.

5 Numerical Experiments

We test the performance of our algorithms on a problem of traffic light control. The
problem here is to dynamically adapt the sign configurations, i.e., the specification
of green lights for the signalled lanes at traffic junctions in road networks, so that
the traffic flow is maximized in the long-run average sense. This problem has been
considered in detail in [15, 16], with the difference that the threshold parameter in
our case has a higher dimension as we consider feedback policies with more levels
than those considered in the aforementioned references. The state sn at instant n is the
vector of queue lengths and elapsed times on the signalled lanes of the road network
considered. Here, elapsed time on a lane refers to the time elapsed after the signal
turned to red on that lane. By using thresholds, we obtain rough estimates of the
congestion levels as well as the time for which any lane has not received the green
light. It should be noted that obtaining precise queue length information is often not
possible and one needs to work with coarse congestion levels.

The single-stage cost is designed to balance efficiency (reduce the queue lengths)
and fairness (no lane receives the red signal for a prolonged period) and is given by

c(sn) := α1 ∗
(∑

i∈Ip

α2 ∗ q̃i (n) +
∑

i /∈Ip

β2 ∗ q̃i (n)

)

+ β1 ∗
(∑

i∈Ip

α2 ∗ t̃i (n) +
∑

i /∈Ip

β2 ∗ t̃i (n)

)
, (31)

where αi,βi ≥ 0 and αi + βi = 1, i = 1,2 and α2 > β2. Here, Ip denotes the set
of high priority lanes. The cost function thus assigns higher weight to delays and
elapsed times on high priority lanes over lanes with low priority. For instance, high

J Optim Theory Appl

Table 1 Priority assignment for each lane in the TLC policy

(a) Queue priority value based on qi

Condition Queue priority value

qi (n) < L1 1

L1 ≤ qi (n) < L2 2

L2 ≤ qi (n) < L3 3

L3 ≤ qi (n) < L4 4

L4 ≤ qi (n) < L5 5

qi (n) ≥ L5 6

(b) Elapsed priority value based on ti

Condition Elapsed priority value

ti (n) < T1 1

T1 ≤ ti (n) < T2 2

T2 ≤ ti (n) < T3 3

ti (n) ≥ T3 4

priority lanes could be those on the main road, while low priority lanes could cor-
respond to lanes on the side roads. The parameter on which the state depends is
θ := (L1,L2,L3,L4,L5, T1, T2, T3)

T.1 We use the following as the state feature that
coarsely describes the state:

sn(θ) := (
q̃1(n), . . . , q̃K(n), t̃1(n), . . . , t̃K(n)

)
, (32)

where

q̃i (n) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if qi(n) < L1

0.2, if L1 ≤ qi(n) ≤ L2

0.4, if L2 ≤ qi(n) ≤ L3

0.6, if L3 ≤ qi(n) ≤ L4

0.8, if L4 ≤ qi(n) ≤ L5

1, if qi(n) > L5

and t̃i (n) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ti (n) ≤ T1

0.33, if T1 ≤ ti (n) ≤ T2

0.66, if T2 ≤ ti (n) ≤ T3

1, if ti (n) > T3.

(33)

Here L1 < L2 < L3 < L4 < L5 and similarly T1 < T2 < T3. Further, qi(n) and ti (n)

are the queue length on lane i and the time elapsed since the signal turned red on
lane i, respectively, at instant n. At each time epoch, a decision on which sign config-
uration (from the set of feasible sign configurations in the given state) to switch next
is made based on a priority assignment scheme described in Table 1.

1Note that, unlike [15, 16], we include more thresholds in deciding the congestion level on a lane in the
network.

J Optim Theory Appl

A traffic light control algorithm based on graded thresholds was proposed in [16].
This algorithm, called PTLC, decided on the sign configuration by first assigning
a priority to each lane and then choosing a sign configuration that maximized the
sum of priorities of all the signalled lanes, among all possible sign configurations.
We adapt the PTLC algorithm to incorporate more thresholds. The priority for a lane
i is simply the product of the queue priority value and the elapsed priority value
calculated from Tables 1(a) and 1(b) based on the queue length qi and elapsed time ti
on lane i. The lanes in the sign configuration that receives the highest priority value
are switched to green at the next decision epoch.

The choice of thresholds is crucial as it depends on the road network considered as
well as the traffic dynamics. Thus, any given choice of thresholds need not be optimal
for all network settings. We combine the two algorithms proposed in Sect. 3 with the
PTLC feedback scheme using multi-timescale stochastic approximation as described
below.

• On the faster timescale, we obtain cost estimates Z−−,Z++ and Zo by simulat-
ing the traffic with the sign configurations chosen by the PTLC algorithm and the
threshold parameter θ−−, θ++ and θo, respectively.

• On the slower timescale, we use these quantities to estimate the gradient of the
long-run average cost J (θ) and tune the threshold parameter θ in the descent di-
rection using a Newton step.

The step-size sequences were chosen according to a(n) = 1
n

, c(n) = 1
n0.75 , and

b(n) = 1
n0.66 , n ≥ 1, respectively. Further, we use symmetric, ±1-valued Bernoulli

random variables that are independent and identically distributed (with p = 1
2) for

perturbing the parameter θ in our experiments. The aforementioned choices of the
step-sizes and the perturbations are seen to satisfy Assumptions 3.1 and 3.2.

Henceforth, we shall refer to the combination of PTLC with Algorithm 1 as PTLC-
H, while that of PTLC with Algorithm 2 will be referred to as PTLC-W. Further, for
the sake of comparison, we also implement the Newton-based 3SA and 4SA algo-
rithms of [14] that have been found to perform well in practice. In fact, these al-
gorithms (3SA and 4SA) have been found in [14] to show the best results there.
We shall refer to the combination of these algorithms with PTLC as PTLC-4SA and
PTLC-3SA, respectively.

For projecting the Hessian matrix H(n) onto the space of positive definite and
symmetric matrices, we first perform an eigenvalue decomposition of H(n), project
each eigenvalue onto [η, 1

η
], where 0 < η < 1 is a small number and reconstruct H(n)

using these projected eigenvalues. We set η = 0.15 in our experiments. The matrix M̌

in Algorithm 2 is projected in a similar fashion. The requirements in Assumption 2.3
are seen to be met with this choice of the projection operator.

We used the open source ‘Green Light District (GLD)’ software for our simula-
tions. We conducted our experiments on the following road networks:

(i) a 3×3-grid network (Fig. 1a),
(ii) a corridor with ten junctions (Fig. 1b), and

(iii) a network modelled after 9 junctions around the Indian Institute of Science cam-
pus in Bangalore. A Google map for this (last) network can be found in Fig. 1(c)
of [17].

J Optim Theory Appl

Fig. 1 Road Networks used for our experiments

Table 2 Comparison of PTLC algorithms using Ĵ (θ)

3×3-Grid network IISc network Ten-junction corridor

PTLC-4SA 1662.66 ± 4.27 154260.56 ± 387.05 2342.85 ± 39.73

PTLC-3SA 1896.72 ± 11.14 163523.28 ± 294.03 2543.01 ± 75.23

PTLC-H 1491.03 ± 3.63 128351.90 ± 190.46 1569.15 ± 1.33

PTLC-W 967.49 ± 2.69 133785.42 ± 189.96 1731.02 ± 20.76

The various parameters for the simulation of traffic using GLD are set as specified in
Sect. VI.B of [16].

All the experiments are run in two phases—a tuning phase followed by a con-
verged run phase. In the tuning phase, we run each algorithm for 500 iterations, where
each iteration involves three simulations—one with the nominal parameter θ and the
other two with the perturbed parameters θ + δ� + δ� and θ − δ� − δ�̂. The length
of each iteration for a particular choice of parameter is 100. After the completion of
the tuning phase, we freeze the parameter and run ten independent simulations with
this (converged) choice of the parameter for 10,000 samples. This latter step where
the simulations are conducted for the converged value of the parameter constitutes
for converged run phase. The results reported in the following section are averages
obtained over these ten simulation runs. The parameter δ in all the algorithms is set
to 0.2. This choice of δ is motivated by a sensitivity study conducted with various
values of δ, the results of which can be seen in Table 3 of [17].

5.1 Results

For the purpose of evaluating the TLC algorithms, we use Ĵ (θ) and the average trip
waiting time (ATWT) as the performance metrics. Here Ĵ (θ) is the empirical average
of the cost function c(·), i.e., Ĵ (θ) = 1

T

∑T
m=1 c(sm). For our experiments, we set

T = 10,000. Table 2 presents the values of Ĵ (θ) obtained for the TLC algorithms on
all the road networks considered. We observe that our algorithms perform better than
both PTLC-4SA and PTLC-3SA (cf. [14]) on all the road networks considered, which
can possibly be attributed to the new Hessian estimate in our algorithms. Further,
unlike the 4SA algorithm of [14] which requires four simulations, both our algorithms

J Optim Theory Appl

require only three simulations each and exhibit overall better performance at reduced
cost.

Figure 2(a) presents the values of the ATWT performance obtained for the TLC
algorithms studied on a 3 × 3-grid network; we observe that our algorithms result
in waiting times that are either comparable (as in the PTLC-H case) or significantly
lower (as in the PTLC-W case) than the PTLC-4SA and PTLC-3SA algorithms. The
ATWT results of the TLC algorithms on the other two road networks exhibited a
similar trend. Figure 2(b) presents the convergence behaviour of the parameter com-
ponent L4 (that was arbitrarily chosen here) for the PTLC-H and PTLC-W algorithms
on a 3×3-grid network. Our algorithms are seen to converge during the simulation
run and exhibit a short transient phase.

We also performed experiments where PTLC was run with 32 different fixed val-
ues of the θ -parameter vector on the 3 × 3-grid network and the results of this ex-
periment are shown in Fig. 2(c). We show the values of Ĵ (θ) for the PTLC algorithm
in each case and compare these with the solutions obtained using PTLC-W. While
we label θ as 1,2, . . . ,32 on the x-axis in the figure, the precise values for each of
the 32 (multi-dimensional) parameters θ are described in Table 4 of [17]. We observe
that PTLC-W significantly outperforms the fixed θ counterparts for most parameter
choices. Further, among the choices of the parameters that performed better, we ob-
serve that PTLC-W results in a performance that is very close to the fixed parameter
counterpart.

It may be noted that our algorithms are local search techniques and hence are not
guaranteed to find the global optima. However, from our experiments, we observe
that incorporating our Newton-based schemes results in performance enhancements
for the PTLC algorithm on all the road network settings considered. Further, in com-
parison to the 4SA and 3SA algorithms of [14], our algorithms exhibit a superior
overall performance.

6 Conclusions

We presented in this paper a balanced three-simulation Hessian estimator based on
the simultaneous perturbation technique. Using this Hessian estimator, we also pre-
sented two Newton-based algorithms that work around the normally tedious proce-
dure of inverting the Hessian. We gave proofs of convergence for both our algorithms.
Numerical experiments on various settings of road traffic control illustrate that our
tuning algorithms in the setting of priority based traffic light control perform signifi-
cantly better than both the 3SA and 4SA algorithms of [14], as well as fixed parameter
algorithms, over a wide range of setting parameters. More experiments on other ap-
plications must however be tried to test the superiority of our algorithms over 3SA
and 4SA.

While our algorithms require less computation when compared with other
Newton-based approaches, they do have higher computational requirements than
simple gradient search schemes. It would thus be interesting to develop, in the future,
quasi-Newton algorithms for simulation optimization and study their performance
characteristics as quasi-Newton algorithms are known to have lower computational

J Optim Theory Appl

Fig. 2 Convergence and
performance plots of PTLC
algorithms on 3 × 3-grid
network

requirements than pure Newton methods. Another possible direction would be to de-
velop similar techniques for feature updates in reinforcement learning applications
[11].

J Optim Theory Appl

References

1. Chong, E.K.P., Ramadge, P.J.: Optimization of queues using an infinitesimal perturbation analysis-
based stochastic algorithm with general update times. SIAM J. Control Optim. 31(3), 698–732 (1993)

2. Ho, Y.C., Cao, X.R.: Perturbation Analysis of Discrete Event Dynamical Systems. Kluwer, Boston
(1991)

3. Andradóttir, S.: Optimization of the transient and steady-state behavior of discrete event systems.
Manag. Sci. 42(5), 717–737 (1996)

4. Kiefer, E., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math.
Stat. 23, 462–466 (1952)

5. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

6. Spall, J.C.: A one-measurement form of simultaneous perturbation stochastic approximation. Auto-
matica 33, 109–112 (1997)

7. Bhatnagar, S., Fu, M.C., Marcus, S.I., Bhatnagar, S.: Two-timescale algorithms for simulation opti-
mization of hidden Markov models. IIE Trans. 33(3), 245–258 (2001)

8. Bhatnagar, S., Fu, M.C., Marcus, S.I., Wang, I.: Two-timescale simultaneous perturbation stochas-
tic approximation using deterministic perturbation sequences. ACM Trans. Model. Comput. Simul.
13(2), 180–209 (2003)

9. Bhatnagar, S., Borkar, V.S.: Multiscale chaotic SPSA and smoothed functional algorithms for simu-
lation optimization. Simulation 79(10), 568–580 (2003)

10. Bhatnagar, S.: Adaptive Newton-based smoothed functional algorithms for simulation optimization.
ACM Trans. Model. Comput. Simul. 18(1), 2:1–2:35 (2007)

11. Bhatnagar, S., Prasad, H.L., Prashanth, L.A.: Stochastic Recursive Algorithms for Optimization: Si-
multaneous Perturbation Methods. Lecture Notes in Control and Information Sciences. Springer, Lon-
don (2013)

12. Fabian, V.: Stochastic approximation. In: Rustagi, J.J. (ed.) Optimizing Methods in Statistics, pp.
439–470. Academic Press, New York (1971)

13. Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans.
Autom. Control 45, 1839–1853 (2000)

14. Bhatnagar, S.: Adaptive multivariate three-timescale stochastic approximation algorithms for simula-
tion based optimization. ACM Trans. Model. Comput. Simul. 15(1), 74–107 (2005)

15. Prashanth, L.A., Bhatnagar, S.: Reinforcement learning with function approximation for traffic signal
control. IEEE Trans. Intell. Transp. Syst. 12(2), 412–421 (2011)

16. Prashanth, L.A., Bhatnagar, S.: Threshold tuning using stochastic optimization for graded signal con-
trol. IEEE Trans. Veh. Technol. 61(9), 3865–3880 (2012)

17. Bhatnagar, S., Prashanth, L.A.: Simultaneous perturbation Newton algorithms for
simulation optimization. Technical report, Stochastic Systems Lab., IISc, (2013).
http://stochastic.csa.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2013-4.pdf

18. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
19. Zhu, X., Spall, J.C.: A modified second-order SPSA optimization algorithm for finite samples. Int. J.

Adapt. Control Signal Process. 16, 397–409 (2002)
20. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University

Press, Cambridge (2008)
21. Borkar, V.S.: Probability Theory: An Advanced Course. Springer, New York (1995)
22. Hirsch, M.W.: Convergent activation dynamics in continuous time networks. Neural Netw. 2, 331–349

(1989)
23. Borkar, V.S., Meyn, S.P.: The O.D.E. method for convergence of stochastic approximation and rein-

forcement learning. SIAM J. Control Optim. 38(2), 447–469 (2000)
24. Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Unconstrained

Systems. Springer, New York (1978)
25. Lasalle, J.P., Lefschetz, S.: Stability by Liapunov’s Direct Method with Applications. Academic Press,

New York (1961)
26. Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications. Springer, New

York (1997)

http://stochastic.csa.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2013-4.pdf

	Simultaneous Perturbation Newton Algorithms for Simulation Optimization
	Abstract
	Introduction
	The Framework
	The Algorithms
	Algorithm 1
	Algorithm 2

	Convergence Analysis
	Convergence Analysis of Algorithm 1
	Convergence Analysis of Algorithm 2

	Numerical Experiments
	Results

	Conclusions
	References

