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Abstract. We propose a stochastic approximation based method with randomi-
sation of samples for policy evaluation using the least squares temporal difference
(LSTD) algorithm. Our method results in an O(d) improvement in complexity in
comparison to regular LSTD, where d is the dimension of the data. We provide
convergence rate results for our proposed method, both in high probability and in
expectation. Moreover, we also establish that using our scheme in place of LSTD
does not impact the rate of convergence of the approximate value function to the
true value function. This result coupled with the low complexity of our method
makes it attractive for implementation in big data settings, where d is large. Fur-
ther, we also analyse a similar low-complexity alternative for least squares re-
gression and provide finite-time bounds there. We demonstrate the practicality of
our method for LSTD empirically by combining it with the LSPI algorithm in a
traffic signal control application.

1 Introduction

Several machine learning problems involve solving a linear system of equations from
a given set of training data. In this paper we consider the problem of policy evaluation
in reinforcement learning (RL) using the method of temporal differences (TD). Given a
fixed training data set, one popular temporal difference algorithm for policy evaluation
is LSTD [4]. However, LSTD is computationally expensive as it requires O(d2) com-
putations. We propose a stochastic approximation (SA) based algorithm that draws data
samples from a uniform distribution on the training set. From the finite time analyses
that we provide, we observe our algorithm converges at the optimal rate, in high prob-
ability as well as in expectation. Moreover, using our scheme in place of LSTD does
not impact the rate of convergence of the approximate value function to the true value
function. This finding coupled with the significant decrease in the computational cost
of our algorithm, makes it appealing in the canonical big data settings.

The problem considered here is to estimate the value function V π of a given pol-
icy π. Temporal difference (TD) methods are well-known in this context, and they are
known to converge to the fixed point V π = T π(V π), where T π is the Bellman operator
(see Section 3.1 for a precise definition). A popular approach to overcome the curse of
dimensionality associated with large state spaces is to parameterize the value function
using a linear function approximation architecture. For every s in the state space S,
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we approximate V π(s) ≈ θTφ(s), where φ(·) is a d-dimensional feature vector with
d << |S|, and θ is a tunable parameter. The function approximation variant of TD [23]
is known to converge to the fixed point of Φθ = ΠT π(Φθ), where Π is the orthogonal
projection onto the space within which we approximate the value function, and Φ is the
feature matrix that characterises this space.

LSTD estimates the fixed point of ΠT π using empirical data D := {(si, ri, s′i), i =
1, . . . , T )} obtained by simulating the Markov decision process (MDP) with the un-
derlying policy π. For every i = 1, . . . , T , the 3-tuple (si, ri, s

′
i) corresponds to a

transition from state si to s′i under action π(si) and the resulting reward is denoted
by ri. The LSTD estimate is given as the solution to θ̂T = Ā−1

T b̄T , where ĀT =
1
T

∑T
i=1 φ(si)(φ(si)− βφ(s′i))

T, and b̄T = 1
T

∑T
i=1 riφ(si).

Computing the inverse of the matrix ĀT is computationally expensive, especially
when d is large. Indeed, assuming that the features φ(si) evolve in a compact subset
of Rd, the complexity of the above approach is O(d2T ), where Ā−1

T is computed itera-
tively using the Sherman-Morrison lemma. On the other hand, if we employ the Strassen
algorithm or the Coppersmith-Winograd algorithm for computing Ā−1

T , the complexity
is of the order O(d2.807) and O(d2.375), respectively, in addition to O(d2T ) complexity
for computing ĀT .

A common trick, in practice, to alleviate this problem in high dimensions, is to re-
place the inversion of the ĀT matrix by an iterative procedure that performs a fixed
point iteration. From a theoretical standpoint, this comes under the purview of stochas-
tic approximation (SA), and one requires that the samples be chosen randomly to ensure
convergence. In this paper, we analyse such an SA based scheme and show that it con-
verges to the LSTD solution. The advantage is that the SA based scheme incurs lower
computational cost in comparison to the approaches mentioned above. We also analyse
a similar low-complexity alternative for the classic least squares parameter estimation
problem.

We provide convergence rate results for our proposed method, both in high proba-
bility and in expectation. In particular, we show that, with probability 1 − δ, the SA
based scheme constructs an ε-approximation of the corresponding LSTD solution with
O(d ln(1/δ)/ε2) complexity, irrespective of the number of samples T . Moreover, we
also establish that using the SA based scheme in place of LSTD does not impact the
rate of convergence of the approximate value function to the true value function (see
Theorem 2).

The rate results coupled with the low complexity of our scheme make it more
amenable to practical implementation in the canonical big data settings, where both
d and T are large. Further, we provide explicit constants in the high probability bounds
and we believe this opens several avenues for the use of SA based low complexity al-
ternatives in higher level decision making procedures, for instance, least squares policy
iteration (LSPI) [11] and linear bandit [5] algorithms. We demonstrate the practical-
ity of our solution scheme for LSTD empirically by using it as a subroutine in the
LSPI algorithm for adaptive traffic signal control1. In particular, for the experiments we

1 See [16] for another set of experiments that combines the SA based low-complexity variant
for least squares regression with the LinUCB algorithm for contextual bandits, using the large
scale news recommendation dataset from Yahoo [24].
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employ step-sizes that were used to derive the finite-time bounds (see Corollary 1). We
demonstrate that this choice results in rapid convergence of our SA based scheme in the
experiments and also that the performance of the SA variant of LSPI is comparable to
that of LSPI.

The rest of the paper is organized as follows: In Section 2, we review relevant previ-
ous works and relevant literature. In Section 3 we present the fast LSTD algorithm based
on stochastic approximation and in Section 4 we provide the non-asymptotic bounds for
this algorithm. In Section 5, we outline the variants of our algorithm to incorporate reg-
ularization and iterate averaging, while in Section 7, we provide extensions to solve
the problem of least squares regression. Next, in Section 6, we provide outlines for the
proof and derivation of rates. In Section 8, we provide experiments on a traffic signal
control application. Finally, in Section 9 we provide the concluding remarks.

2 Literature Review

Our algorithms are based on the well-known stochastic approximation technique, orig-
inally proposed for finding zeroes of a nonlinear function in [17]. The reader is referred
to [10] for a textbook introduction to SA. Iterate averaging is a standard approach to
accelerate the convergence of SA schemes and was proposed independently in [18] and
[13]. Non asymptotic bounds for Robbins Monro schemes have been provided in [7]
and extended to incorporate iterate averaging in [6].

In the context of the problem of prediction in RL, temporal difference (TD) learn-
ing is a well-known algorithm. See [3,20] for a textbook introduction and [23] for an
asymptotic analysis. LSTD [4] is a popular batch algorithm that converges asymptoti-
cally to the TD solution. Finite time analysis of LSTD is provided in [12] and we extend
it to the case when LSTD solution is replaced by a SA iterate.

A popular line of research in RL is on improving the complexity of TD-like algo-
rithms (cf. GTD [21], GTD2 [22], iLSTD [8] and the references therein). The popular
Computer Go with dimension d = 106 [19] and several practical applications (e.g.
transportation, networks) involve high-feature dimensions. Moreover, considering that
linear function approximation is effective with a large number of features, our O(d)
improvement in complexity of LSTD by employing SA is meaningful.

In comparison to previous work, we would like to point out that there is no finite
time analysis of GTD-type algorithms. While iLSTD is an efficient approximation to
LSTD, analysis in [8] requires that the feature matrix be sparse. In contrast, we pro-
vide finite-time bounds and do not make any sparsity assumption. To the best of our
knowledge, efficient SA algorithms that approximate LSTD without impacting its rate
of convergence to true value function, have not been proposed before in the literature.
The high probability bounds that we derive for the SA based scheme do not directly
follow from earlier work on LSTD algorithms. Further, unlike [7], we provide explicit
constants in the bounds that we derive (see Corollary 1) and we employ these in our
experiments as well.

Stochastic gradient descent (SGD) is a well-known method for optimising a function
given only noisy observations. In the context of machine learning, finite time analysis
of such methods have been provided in [1]. While the bounds in [1] are given in ex-
pectation, many machine learning applications require high probability bounds, which
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we provide for our case. Regret bounds for online SGD techniques have been given iin
[25,9]: the gradient descent algorithm in [25] is in the setting of optimising the average
of convex loss functions whose gradients are available, while that in [9] is for strongly
convex loss functions.

In comparison to previous work w.r.t. least squares regression, we highlight the fol-
lowing differences: (i) Earlier works on least squares regression (cf. [9]) require the
knowledge of the strong convexity constant in deciding the step-size, while we average
the iterates to get rid of this dependency. (ii) Our analysis is much simpler (since we
work directly with least squares problems) and we make all the constants explicit for
the problems considered.

3 Fast LSTD Using Stochastic Approximation (fLSTD-SA)

We propose here a stochastic approximation variant of the least squares temporal differ-
ence (LSTD) algorithm, whose iterates converge to the same fixed point as the regular
LSTD algorithm, while incurring much smaller overall computational cost.

The algorithm, which we call fast LSTD through Stochastic Approximation (fLSTD-
SA), is a simple stochastic approximation scheme with randomised samples. The re-
sults that we present establish that fLSTD-SA computes an ε-approximation to the
LSTD solution θ̂T with probability 1 − δ, while incurring a complexity of the order
O(d ln(1/δ)/ε2), irrespective of the number of samples T . In turn, this enables us to
give a performance bound for the approximate value function computed by fLSTD-SA.
A schema of fLSTD-SA is given in Figure 1.

Although our analysis for fLSTD-SA depends on a strong convexity assumption that
may not hold in all situations, we present also a variant of fLSTD-SA employing iterate
averaging for which error bounds can be given without resorting to a strong convexity
assumption.

θn

Pick in uniformly

in {1, . . . , T }

Random Sampling

Update θn

using (sin , rin , s
′
in)

SA Update

θn+1

Fig. 1. Overall flow of the fLSTD-SA algorithm

3.1 Background for LSTD

Consider an MDP with (finite) state space S, (finite) action space A and transition
probabilities p(s, a, s′), s, s′ ∈ S, a ∈ A. For a given stationary policy π : S → A, the
value function V π is defined by

V π(s) := E

[ ∞∑

t=0

γtr(st, π(st)) | s0 = s

]

, (1)
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where st denotes the state of the MDP at time t, β ∈ (0, 1) is the discount factor, and
r(s, a) denotes the instantaneous rewards obtained in state s with action a. The value
function V π can be expressed as the fixed point of the Bellman operator T π defined by

T π(V )(s) := r(s, π(s)) + β
∑

s′
p(s, π(s), s′)V (s′), (2)

When the cardinality of S is huge and in the absence of knowledge of the transition
dynamics, a popular approach is to parameterize the value function using a linear func-
tion approximation architecture, i.e., for every s ∈ S, we approximateV π(s) ≈ φ(s)Tθ,
where φ(s) is a d-dimensional feature vector with d << |S|, and θ is a tunable param-
eter. The well-known TD learning algorithm [3] attempts to find the fixed point of the
operator ΠT π given by

Φθ = ΠT π(Φθ), (3)

where B = {Φθ | θ ∈ R
d} is the space within which we want to approximate the value

function V π, Π is the orthogonal projection onto B, and Φ is the feature matrix with
rows φ(s)T, ∀s ∈ S denoting the features corresponding to state s ∈ S. Let θ∗ denote
the solution to (3), P the transition probability matrix with components p(s, π(s), s′)
and Ψ the stationary distribution (assuming it exists) of the Markov chain for the un-
derlying policy π. Then, θ∗ can be written as the solution to the following system of
equations (cf. [2, Section 6.3])

Aθ∗ = b, where A = ΦTΨ(I − βP )Φ and b = ΦTΨr. (4)

The LSTD approach is to approximate A and b using T samples {(si, ri, s′i), i =
1, . . . , T )} obtained by simulating the MDP with the underlying policy π.

An approximate solution to (4) is constructed as follows:

θ̂T = Ā−1
T b̄T (5)

where ĀT = T−1
∑T

i=1 φ(si)(φ(si) − βφ(s′i))
T, and b̄T = T−1

∑T
i=1 riφ(si). Here

φ(si) is a d-dimensional feature vector corresponding to state si, for all i = 1, . . . , T .
By invoking the strong law of large numbers, one can show that ĀT → A and b̄T → b
as the number of samples T tends to infinity.

3.2 Update Rule for Flstd-SA

Starting with an arbitrary θ0, we update the parameter θn as follows:

θn = θn−1 + γn
(
rin + βθT

n−1φ(s
′
in)− θT

n−1φ(sin)
)
φ(sin), (6)

where each in is chosen uniformly randomly from the set {1, . . . , T }. In other words,
we pick a sample with uniform probability 1/T from the set D := {(si, ri, s′i), i =
1, . . . , T )} and use it to perform a fixed point iteration in (6). The quantities γn above
are step sizes that are chosen in advance and satisfy standard stochastic approximation
conditions (see (A1) below). Notice that the above update is the usual TD update, except
that the samples are drawn uniformly randomly from the sample set D.
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4 Main Results

4.1 Error Bounds

We make the following assumptions for the analysis fLSTD-SA:
(A1) The step sizes γn satisfy

∑
n γn = ∞, and

∑
n γ

2
n < ∞.

(A2) Bounded features: ‖φ(si)‖2 ≤ 1, for i = 1, . . . , T .

(A3) Bounded rewards: |ri| ≤ Rmax < ∞ for i = 1, . . . , T and bounded linear space,
i.e., −Vmax ≤ Φθ ≤ Vmax < ∞.

(A4) Strong Convexity: Writing ΦT
�
= (φ(s1)

T; . . . ;φ(sT )
T), the covariance matrix

1
T Φ

T

TΦT is positive definite and its smallest (positive) eigenvalue is at least μ.
By working in a bounded linear space along with bounded rewards and features, along
with step sizes that satisfy standard stochastic approximation conditions, we ensure that
the parameter θ remains stable, and hence that (6) converges.

To obtain high probability bounds on the error we consider separately the deviation
of zn from its mean (see (7) in Theorem 1), and the size of its mean itself (see (8)
in Theorem 1). In this way the first quantity can be directly decomposed as a sum of
martingale differences, and then a standard martingale concentration argument applied,
while the second quantity can be analyzed by directly unrolling iteration (6) (a proof
outline is provided in Section 6, while the detailed proofs are available in [16]).

Theorem 1. Under (A1)-(A4), we have ∀ε > 0,

P (‖θn − θ̂T ‖2−E‖θn − θ̂T ‖2 ≥ ε) ≤ exp

(

−ε2/(2

n∑

i=1

L2
i )

)

, (7)

E‖θn − θ̂T ‖2 ≤ exp(−(1− β)μΓn)‖θ0 − θ̂T ‖2
︸ ︷︷ ︸

initial error

+

(
n−1∑

k=1

H2
βγ

2
k+1 exp(−2(1− β)μ(Γn − Γk+1)

) 1
2

︸ ︷︷ ︸
sampling error

, (8)

where Li := γi
∏n−1

j=i (1− 2γj+1μ((1− β)− β(2− β)γj+1))
1/2, Γn :=

∑n
i=1 γi and

H2
β := Rmax(Rmax + 2) + (1 + β)2V 2

max.

The initial error depends on the initial point θ0 of the algorithm. The sampling error
arises out of a martingale difference sequence that depends on the random deviation of
the stochastic update from the standard fixed point iteration, and is the dominant term
in (8). Under a suitable choice of step-sizes (see Corollary 1), it can be shown that the
initial error is forgotten faster than the sampling error.

The above theorem assumes no specific form for the step-sizes γn. Specifying the
step-size sequence, we can merge the two claims above to deduce the following bounds
on the approximation error zn with explicit constants:
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Corollary 1 (Error Bound for iterates of fLSTD-SA). Under (A2)-(A4), choosing
γn = (1−β)c

2(c+n) and c such that (1− β)2μc ∈ (1.33, 2), we have, for any δ > 0,

E‖θn − θ̂T ‖2 ≤ K1(n)√
n+ c

and P

(

‖θn − θ̂T ‖2 ≤ K2(n)√
n+ c

)

≥ 1− δ, (9)

where K1(n) and K2(n) are functions of order O(1), defined by:

K1(n) =

√
c‖θ0 − θ̂T ‖2

n((1−β)2μc−1)/2
+
(1− β)cHβ

2
, K2(n) =

(1− β)c
√

log δ−1

2
√(

4
3 (1− β)2μc− 1

)+K1(n).

Remark 1. We note that setting c such that (1 − β)2μc = η ∈ (1.33, 2) we can rewrite
the constants in Corollary 1 as:

K1(n) =
‖θ0 − θ̂T ‖2

(1− β)
√

μn(η−1)
+

Hβ

2(1− β)μ
, K2(n) =

√
log δ−1

2(1− β)μ
√(

4
3η − 1

)+K1(n).

So both the bounds in expectation and high probability have a linear dependence on the
inverse of (1− β)μ.

4.2 Performance Bound

Let ṽT := ΦθT denote the approximate value function obtained from T steps of fLSTD-
SA, and let v denote the true value function, evaluated at the states s1, . . . , sT . Then the
following lower bound on the performance of ṽT can be deduced from Corollary 1 in
conjunction with Theorem 1 of [12]:

Theorem 2. Under conditions of Corollary 1, for any δ > 0, with probability 1− δ,

‖v − ṽT ‖T ≤ ‖v −Πv‖T√
1− β2

︸ ︷︷ ︸
residual error

+O

(√
d

(1− β)2μT

)

︸ ︷︷ ︸
estimation error

+O

(√
1

(1 − β)μT
ln

1

δ

)

︸ ︷︷ ︸
approximation error

,

where ‖f‖2T := T−1
∑T

i=1 f(si)
2, for any function f .

The residual and estimation errors (first and second terms in the RHS above) are
artifacts of function approximation and least squares methods, respectively. The third
term, of order O(1/

√
T ), is a consequence of using fLSTD-SA in place of the LSTD.

From the above theorem, we observe that using our scheme in place of LSTD does not
impact the rate of convergence of the approximate value function ṽT to the true value
function v. This finding coupled with the fact that our scheme is of low complexity
makes it attractive for implementation in big data settings, where the feature dimension
d is large.
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5 Variants

To obtain the best performance from fLSTD-SA we need to know the value of μ. How-
ever with minor adjustments to the analysis we can provide two variants of fLSTD-SA
for which it is not necessary to know the value of μ to obtain the (optimal) approxima-
tion error of order O(n−1/2) and explicit constants.

5.1 Regularization

A popular approach is to search not for the LSTD solution, but instead for a regularized
LSTD solution defined as follows:

θ̂regT = (ĀT + μI)−1b̄T (10)

where μ is now a constant set in advance. The update rule for this variant is

θregn =(1− γnμ)θn−1 + γn
(
rin + βθT

n−1φ(s
′
in)− θT

n−1φ(sin)
)
φ(sin). (11)

This algorithm retains all the properties of the non-regularized fLSTD-SA algorithm,
except that it converges to the solution of (10) rather than to that of (5). In particular the
conclusions of Theorem 1, and of Corollary 1 hold without requiring assumption (A4),
but measuring θn − θ̂regT , the error to the regularized fixed point θ̂regT .

5.2 Iterate Averaging

Another well-known approach is to employ the Polyak-Ruppert scheme of averaging
the iterates, together with choosing larger step-sizes. In particular, we fix the step-size

γn := (1−β)
2

(
c

c+n

)α

, and then use the averaged iterate θ̄n+1 := (θ1 + . . . + θn)/n

to approximate the LSTD solution. Here the quantities θn are just the iterates of the
fLSTD-SA presented earlier. An analogue of Corollary 1 for iterate averaging is as
follows (see [16] for a detailed proof):

Corollary 2. Under (A2)-(A3), choosing γn = (1−β)
2

(
c

c+n

)α

, with α ∈ (1/2, 1) and

c ∈ (1.33, 2), we have, for any δ > 0,

E‖θ̄n − θ̂T ‖2 ≤ KIA
1 (n)

(n+ c)α/2
and P

(

‖θ̄n − θ̂T ‖2 ≤ KIA
2 (n)

(n+ c)α/2

)

≥ 1− δ, (12)

where, writing C =
∑∞

n=1 exp(−μcn1−α)(< ∞),

KIA
1 (n) :=

C‖θ0 − θ̂T ‖2
(n+ c)

(1−α)/2
+

Hβc
α(1 − β)

(μcα(1− β)2)
α 1+2α

2(1−α)

, and

KIA
2 (n) :=

√
log δ−1

μ(1 − β)

[

3α +

[
2α

μcα(1− β)2
+

2α

α

]2
]

1

(n+ c)(1−α)/2
+KIA

1 (n).

Thus, it is possible to remove the dependency on the knowledge of μ for the choice
of c through averaging of the iterates, at the cost of (1 − α)/2 in the rate. However,
choosing α close to 1 causes a sampling error blowup. As suggested by earlier works
on stochastic approximation, it is preferred to average after a few iterations since the
initial error is not forgotten exponentially faster than the sampling error with averaging.
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6 Outline of Analysis

In this section we give outline proofs of the main results concerning the fLSTD-SA
algorithm. We split these into two sections: first, we sketch the martingale analysis
that leads to the proof of Theorem 1 and which forms the template for the proof for
extension to least squares regression (see Appendix C in [16]) and the regularized and
iterate averaged variants of fLSTD-SA (see Corollary 2); second, we give the derivation
of the rates when the step sizes a chosen in specific forms.

6.1 Outline of Theorem 1 Proof

Denote the approximation error by zn := θn − θ̂T . Recall that Theorem 1 decomposes
the problem of bounding zn into bounding the deviation from its mean in high proba-
bility and then the mean of zn itself. In the following, we first provide a sketch of the
proof of high probability bound and later outline the proof for the bound in expectation.
For the former, we employ a proof technique similar to that used in [7]. However, our
analysis is much simpler and we make all the constants explicit for the problem at hand.
Moreover, in order to eliminate a possible exponential dependence of the constants in
the resulting bound on the inverse of (1− β)μ, we depart from the argument in [7].

Proof (High probability bound.). (Sketch) Recall that zn := θn − θ̂T . We rewrite
‖zn‖22 −E‖zn‖22 as a telescoping sum of martingale differences:

‖zn‖2 − E‖zn‖2 =

n∑

i=1

gi − E[gi |Fi−1 ] =

n∑

i=1

Di,

where Di := gi − E[gi |Fi−1 ], gi := E[‖zn‖2 |θi ], and Fi denotes the sigma algebra
generated by the random variables {i1, . . . , in}.

The next step is to show that the functions gi are Lipschitz continuous in the re-
wards, with Lipschitz constants Li. In order to obtain constants with no exponential
dependence on the inverse of (1 − β)μ we depart from the general scheme of [7], and
use our knowledge of the form of the update function fi to eliminate the noise due to the
rewards between time i+ 1 and time n. Specifically, letting Θi

j(θ) denote the mapping
that returns the value of the iterate θj at instant j, given that θi = θ, we show that

E
[
‖Θi

n(θ)−Θi
n(θ

′)‖22
]
= E

[
E
(
[I − γn[φ(sin)φ(sin )

T − βφ(sin)φ(s
′
in)

T]]

.(Θi
n−1(θ)−Θi

n−1(θ
′)) | Θi

n−1(θ), Θ
i
n−1(θ

′)
)]

≤ (1− γnμ(1 − β − γnβ(2− β)))E
[
‖Θi

n−1(θ)−Θi
n−1(θ

′)‖22
]
,

where we used the specific form of fi in obtaining the equality, and have applied as-
sumption (A4) to obtain the inequality. Unrolling this iteration then yields the new
Lipschitz constants.

Now we can invoke a standard martingale concentration bound: Using the Li-
Lipschitz property of the gi functions and the assumption (A3) we find that

P (‖zn‖2 − E‖zn‖2 ≥ ε) = P

(
n∑

i=1

Di ≥ ε

)

≤ exp(−λε) exp

(
αλ2

2

n∑

i=1

L2
i

)

.
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The claim follows by optimizing the above over λ. The full proof is available in [16].

Proof (Bound in expectation.). (Sketch) First we extract a martingale difference from
the update rule (6): Recall that zn := θn−θ̂T . Let fn(θ) := (θTxin−(rin+βθTx′

in))xin

and let F (θ) := Ein(fn(θ)). Then, we have

zn = θn − θ̂T = θn−1 − θ̂T − γn (F (θn−1)−ΔMn) ,

where ΔMn+1(θ) = Fn(θ) − fn(θ) is a martingale difference. Now since θ̂T is the
LSTD solution, F (θ̂T )) = 0. Moreover, F (·) is linear, and so we obtain

zn =zn−1 − γn
(
zn−1Ān −ΔMn

)
= Πnz0 −

n∑

k=1

γkΠnΠ
−1
k ΔMk,

where Ān =
1

n

n∑

i=1

xi(xi − βx′
i)

T and Πn :=
∏n

k=1

(
I − γkĀk

)
.

By Jensen’s inequality, we obtain

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2 =

(

E‖Πnz0‖22 +
n∑

k=1

γ2
kE‖ΠnΠ

−1
k ΔMk‖22

) 1
2

(13)

The rest of the proof amounts to bounding the martingale difference ΔMn as follows:

E[‖ΔMn‖22] ≤ Eit〈fit(θt−1), fit (θt−1)〉 ≤ Rmax(Rmax + 2) + (1 + β)2‖θt−1‖22 ≤ H2
β.

6.2 Derivation of Rates

Now we give the proof of Corollary 1, which gives explicitly the rate of convergence of
the approximation error in high probability for the specific choice of step sizes:

Proof (Proof of Corollary 1:). Note that when γn = (1−β)c
2(c+n) ,

n∑

i=1

L2
i =

n∑

i=1

(1 − β)2c2

4(c+ i)2

n∏

j=i

(

1− 2μ
(1− β)c

2(c+ n)
((1− β) − β(2− β)

(1 − β)c

2(c+ n)
)

)

≤
n∑

i=1

(1− β)2c2

4(c+ i)2
exp

⎛

⎝−3

4
(1 − β)2μc

n∑

j=i

1

(c+ n)

⎞

⎠

≤ (1 − β)2c2

4(n+ c)
3
4 (1−β)2μc

n∑

i=1

(i + c)−(2− 3
4 (1−β)2μc).

We now find three regimes for the rate of convergence, based on the choice of c:

(i)
∑n

i=1 L
2
i = O

(
(n+ c)

3
4 (1−β)2μc

)
when 3

4 (1− β)2μc ∈ (0, 1),

(ii)
∑n

i=1 L
2
i = O

(
n−1 lnn

)
when 3

4 (1 − β)2μc = 1, and

(iii)
∑n

i=1 L
2
i = (1−β)2c2

4( 3
4 (1−β)2μc−1)

(n+ c)−1 when 3
4 (1− β)2μc ∈ (1, 2).
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(We have used comparisons with integrals to bound the summations.) Thus, setting
2/((1−β)2μ) > c > 1/((1−β)2μ), the high probability bound from Theorem 1 gives

P (‖θn − θ̂T ‖2 − E‖θn − θ̂T ‖2 ≥ ε) ≤ exp

(

− ε2(n+ c)

2Kμ,c,β

)

(14)

where Kμ,c,β := (1−β)2c2

4((1−β)2μc−1) .
Under the same choice of step-size, the bound in expectation in Theorem 1 we have:

n−1∑

k=1

H2
βγ

2
k+1 exp(−2(1− β)μ(Γn − Γk+1))

≤
(1− β)2c2H2

β

4(n+ c)(1−β)2μc

n∑

k=1

(c+ k)−(2−(1−β)2μc) ≤
(1 − β)2c2H2

β

4(n+ c)

we in the last inequality we have again compared the sum with an integral. Similarly

exp(−(1 − β)μΓn) ≤
(

c

n+ c

) (1−β)2μc
2

≤
(

c

n+ c

) 1
2

.

So we have

E‖θn − θ̂T ‖2 ≤
(√

c‖θ0 − θ∗‖2 +
(1− β)cHβ

2

)

(c+ n)−
1
2 , (15)

and the result now follows.

7 Extension to Least Squares Regression

In this section, we describe the classic parameter estimation problem using the method
of least squares, the standard approach to solve this problem and a low-complexity
alternative using stochastic approximation.

In this setting, we are given a set of samples D := {(xi, yi), i = 1, . . . , T } with the
underlying observation model yi = xT

iθ
∗ + ξi (ξi is zero mean and variance bounded

by σ < ∞, and θ∗ is an unknown parameter). The least squares estimate θ̂T minimizes∑T
i=1(yi − θTxi)

2. It can be shown that θ̂T = Ā−1
T bT , where ĀT = T−1

∑T
i=1 xix

T
i

and b̄T = T−1
∑T

i=1 xiyi.
Notice that, unlike the RL setting, θ̂T here is the minimizer of an empirical loss

function. However, as in the case of LSTD, the computational cost for a Sherman-
Morrison lemma based approach for solving the above would be of the order O(d2T ).
Similarly to the case of the fLSTD-SA algorithm, we update the iterate θn using a SA
scheme as follows (starting with an arbitrary θ0),

θn = θn−1 + γn(yin − θT

n−1xin)xin , (16)

where, as before, each in is chosen uniformly randomly from the sample set D and γn
are step-sizes.
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Unlike fLSTD-SA which is a fixed point iteration, the above is a stochastic gradient
descent procedure. Nevertheless, using the same proof template as for fLSTD-SA ear-
lier, we can derive bounds on the approximation error, i.e., the distance between θn and
least squares solution θ̂T , both in high probability as well as expectation.

Results. As in the case of fLSTD-SA, we assume that the features are bounded, the
noise is i.i.d, zero-mean and bounded and the matrix ĀT is positive definite, with small-
est eigenvalue at least μ > 0. An analogue of Corollary 1 for this setting is as follows
(See Appendix C in [16] for a detailed proof.):

Corollary 3. Choosing γn = c
2(c+n) and c such that μc ∈ (1.33, 2), for any δ > 0,

E‖θn − θ̂T ‖2 ≤ KLS
1√

n+ c
and P

(

‖θn − θ̂T ‖2 ≤ KLS
2√

n+ c

)

≥ 1− δ,

where, defining h(n) := c
[(

σ + 2‖θ0 − θ̂T ‖22
)
+ 4‖θ0 − θ̂T ‖2 lnn+ 2 ln2 n

]
,

KLS
1 (n) :=

√
c‖θ0 − θ̂T ‖2

(n+ c)(μc−1)/2
+

h(n)

2
, KLS

2 (n) :=

√
c

√
((μc)/2− 1)

√

log
1

δ
+K1(n).

8 Traffic Control Application

LSPI [11] is a well-known algorithm for control based on the policy iteration procedure
for MDPs. It performs policy evaluation and policy improvement in tandem. For the
purpose of policy evaluation, LSPI uses a LSTD-like algorithm called LSTDQ, which
learns the state-action value function. In contrast, LSTD learns the state value function.

We now briefly describe LSTDQ and its fast SA variant fLSTDQ-SA: We are given
a set of samples D := {(si, ai, ri, s′i), i = 1, . . . , T )}, where each sample i denotes a
one-step transition of the MDP from state si to s′i under action ai, while resulting in a
reward ri. LSTDQ attempts to approximate the Q-value function for any policy π by
solving the linear system θ̂T = Ā−1

T b̄T , where ĀT = T−1
∑T

i=1 φ(si, ai)(φ(si, ai) −
βφ(s′i, π(s

′
i)))

T, and b̄T = T−1
∑T

i=1 riφ(si, ai). fLSTDQ-SA approximates LSTDQ
by an iterative update scheme as follows (starting with an arbitrary θ0):

θk = θk−1 + γk
(
rik + βθT

k−1φ(s
′
ik , πn(s

′
ik))− θT

k−1φ(sik , aik)
)
φ(sik , aik) (17)

From Section 3, it is evident that the claims in Theorem 1 and Corollary 1 hold for the
above scheme as well.

The idea behind the experimental setup is to study both LSPI and a variant of LSPI,
referred to as fLSPI-SA, where we use fLSTDQ-SA as a subroutine to approximate the
LSTDQ solution. Algorithm 1 provides the pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The
problem here is to adaptively choose the sign configurations for the signalized inter-
sections in the road network considered, in order to maximize the traffic flow in the
long run. Let L be the total number of lanes in the road network considered. Further,
let qi(t), i = 1, . . . , L denote the queue lengths and ti(t), i = 1, . . . , L the elapsed time
(since signal turned to red) on the individual lanes of the road network. Following [14],
the traffic signal control MDP is formulated as follows:
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Algorithm 1. fLSPI-SA

Input: Sample set D := {si, ai, ri, s
′
i}Ti=1, obtained from an initial (arbitrary) policy

Initialisation: ε, τ , step-sizes {γk}τk=1, initial policy π0 (given as θ0)
π ← π0, θ ← θ0
repeat

Policy Evaluation
Approximate LSTDQ(D,π) using fLSTDQ-SA(D,π) as follows:
for k = 1 . . . τ do

Get random sample index: ik ∼ U({1, . . . , T})
Update fLSTD-SA iterate θk using (17)

end for
θ′ ← θτ , Δ = ‖θ − θ′‖2
Policy Improvement

Obtain a greedy policy π′ as follows: π′(s) = argmaxa∈A θ′Tφ(s, a)

θ ← θ′, π ← π′

until Δ < ε

State st =
(
q1(t), . . . , qL(t), t1(t), . . . , tL(t)

)
,

Action at belongs to the set of feasible sign configurations,

Single-stage cost h(st) = u1

[∑
i∈Ip

u2 · qi(t) +
∑

i/∈Ip
w2 · qi(t)

]
+ w1

[∑
i∈Ip

u2 ·

ti(t) +
∑

i/∈Ip
w2 · ti(t)

]
, where ui, wi ≥ 0 such that ui + wi = 1 for i = 1, 2 and

u2 > w2. Here, the set Ip is the set of prioritized lanes.

Table 1. Feature selection

State Action Feature φi(s, a)

qi < L1 and ti < T1 RED 0.01
GREEN 0.06

qi < L1 and ti ≥ T1
RED 0.02

GREEN 0.05

L1 ≤ qi < L2 and ti < T1
RED 0.03

GREEN 0.04

L1 ≤ qi < L2 and ti ≥ T1 RED 0.04
GREEN 0.03

qi ≥ L2 and ti < T1 RED 0.05
GREEN 0.02

qi ≥ L2 and ti ≥ T1 RED 0.06
GREEN 0.01

Function approximation is a standard technique employed to handle high-dimensional
state spaces (as is the case with the traffic signal control MDP on large road networks).
We employ the feature selection scheme from [15], which is briefly described in the
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Fig. 2. Norm difference, throughput and runtime performance of LSPI and fLSPI-SA

following: The features φ(s, a) corresponding to any state-action tuple (s, a) is a L-
dimensional vector, with one bit for each line in the road network. The feature value
φi(s, a), i = 1, . . . , L corresponding to lane i is chosen as described in Table. 1, with
qi and ti denoting the queue length and elapsed times for lane i. Thus, as the size of the
network increases, the feature dimension scales in a linear fashion.

Note that the above feature selection scheme depends on certain thresholds L1 and
L2 on the queue length and T1 on the elapsed times. The motivation for using such
graded thresholds is owing to the fact that queue lengths are difficult to measure pre-
cisely in practice. We set (L1,L2, T1) = (6, 14, 130) in all our experiments and this
choice has been used, for instance, in [15].

We implement both LSPI as well as fLSPI-SA for the above problem. We collect T =
10000 samples from a exploratory policy that picks the actions in a uniformly random
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manner. For both LSPI and fLSPI-SA, we set β = 0.9 and ε = 0.1. For fLSPI-SA,
we set τ = 500 steps. This choice is motivated by an experiment where we observed
that at 500 steps, fLSTD-SA is already very close to LSTDQ and taking more steps did
not result in any significant improvements for fLSPI-SA. We implement the regularized
variant of LSTDQ, with regularization constant μ set to 1. Motivated by Corollary 1,
we set the step-size γk = (1 − β)c/(2(c+ k)), with c = 1.33(1− β)−2.

Results We report the norm differences, total arrived road users (TAR) and run-times
obtained from our experimental runs in Figs. 2a–2c. Norm difference measures the dis-
tance in �2 norm between the fLSTD-SA iterate θk, k = 1, . . . , τ and LSTDQ solution
θ̂T in iteration 1 of fLSPI-SA. TAR is a throughput metric that denotes the total number
of road users who have reached their destination. The choice 1 of the iteration in Fig
2a is arbitrary, as we observed that fLSTD-SA iterate θτ is close to the corresponding
LSTDQ solution in each iteration of fLSPI-SA. The runtime reports in Fig. 2c are for
four different road networks of increasing size and hence, increasing feature dimension.

From Fig. 2a, we observe that fLSTD-SA algorithm converges rapidly to the corre-
sponding LSTDQ solution. Further, from the runtime plots (see Fig. 2c), we notice that
fLSPI-SA is several orders of magnitude faster than regular LSPI. From a traffic appli-
cation standpoint, we observe in Fig. 2b that fLSPI-SA results in a throughput (TAR)
performance that is on par with LSPI.

9 Conclusions

We analysed a stochastic approximation based algorithm with randomised samples for
policy evaluation by the method of LSTD. We provided convergence rate results for
this algorithm, both in high probability and in expectation. Further, we also established
that using this scheme in place of LSTD does not impact the rate of convergence of the
approximate value function to the true value function. This result coupled with the fact
that the SA based scheme possesses lower computational complexity in comparison to
traditional techniques, makes it attractive for implementation in big data settings, where
the feature dimension is large. On a traffic signal control application, we demonstrated
the practicality of a low-complexity alternative to LSPI that uses our SA based scheme
in place of LSTDQ for policy evaluation.
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