
Simultaneous Perturbation Algorithms for Batch Off-Policy Search

Raphael Fonteneau† and Prashanth L.A.?

Abstract— We propose novel policy search algorithms in
the context of off-policy, batch mode reinforcement learning
(RL) with continuous state and action spaces. Given a batch
collection of trajectories, we perform off-line policy evaluation
using an algorithm similar to that in [1]. Using this Monte-
Carlo like policy evaluator, we perform policy search in a class
of parameterized policies. We propose both first order policy
gradient and second order policy Newton algorithms. All our
algorithms incorporate simultaneous perturbation estimates for
the gradient as well as the Hessian of the cost-to-go vector, since
the latter is unknown and only biased estimates are available.
We demonstrate their practicality on a simple 1-dimensional
continuous state space problem.

I. INTRODUCTION

This paper stands within the field of optimal control
in the context of infinite horizon discounted cost Markov
decision processes (MDPs) [2]. In particular, we consider
the batch mode setting [3], where we are given a set of
noisy trajectories of a system without access to any model
or simulator of that system. Formally, we are given a set of n
samples (also called transitions) {(xl, ul, cl, yl)}nl=1, where,
for every l ∈ {1, . . . , n}, the 4-tuple (xl, ul, cl, yl) denotes
the state xl, the action ul, a (noisy) cost received in (xl, ul)
and a (noisy) successor state reached when taking action
ul in state xl. The samples are generated according to some
unknown policy and the objective is to develop a (off-policy)
control scheme that attempts to find a near-optimal policy
using this batch of samples.

For this purpose, we first parameterize the policy and
hence the cost-to-go, denoted by Jθ(x0). Here θ is the
policy parameter, x0 is a given initial state and Jθ(x0) is the
expected cumulative discounted sum of costs under a policy
governed by θ (see (1)). Note that the policy parameterization
is not constrained to be linear. We develop algorithms that
perform descent using estimates of the cost-to-go Jθ(x0).
For obtaining these estimates from the batch data, we extend
a recent algorithm proposed for finite horizon MDPs [1],
to the infinite horizon, discounted setting. The advantage of
this estimator, henceforth referred to as MFMC, is that it is
off-policy in nature, computationally tractable and consistent
under Lipschitz assumption on the transition dynamics, cost
function and policy. Moreover, it does not require the use of
function approximators, but only needs a metric on the state
and action spaces.

Being equipped with the MFMC policy evaluator that
outputs an estimate of the cost-to-go Jθ(x0) for any policy

†Department of Electrical Engineering and Computer Science, University
of Liège, 4000 Liège, Belgiumraphael.fonteneau@ulg.ac.be
?SEQUEL project, INRIA Lille - Nord Europe, 59650 Villeneuve d’Ascq,

FRANCE prashanth.la@inria.fr

parameter θ, the requirement is for a control scheme that
uses these estimated values to update the parameter θ in the
negative descent direction. However, closed form expressions
of the gradient/Hessian of the cost-to-go are not available
and MFMC estimates possess a non-zero bias. To alleviate
this, we employ the well-known simultaneous perturbation
principle (cf. [4]) to estimate the gradient and Hessian,
respectively, of Jθ(x0) using estimates from MFMC and
propose two first order and two second order algorithms.
Our algorithms are based on two popular simultaneous
perturbation methods - Simultaneous Perturbation Stochastic
Approximation (SPSA) [5] and Smoothed Functional [6].

The first-order algorithms perform gradient descent using
either SPSA or SF estimates to update the policy parameter.
On the other hand, the second order algorithms incorporate a
Newton step by estimating the gradient as well as the Hessian
of the cost-to-go Jθ(x0) using SPSA or SF. We demonstrate
the empirical usefulness of our algorithms on a simple 1-
dimensional continuous state space problem.

To the best of our knowledge, the algorithms presented in
this paper are the first to solve batch, off-policy stochastic
control in continuous state and action spaces without using
function approximators for evaluating policies. Our approach
only requires (i) a (random) set of trajectories, (ii) metrics on
the state and action spaces, and (iii) a set of parameterized
policies.

II. RELATED WORK

The work presented in this paper mainly relates to two
fields of research: batch mode reinforcement learning and
policy gradient methods.

Genesis of batch mode RL may be found in [7], where
the authors use least-squares techniques in the context of
temporal difference (TD) learning methods for estimating the
return of control policies. This approach has been extended
to the problem of optimal control in [8]. Algorithms similar
to value iteration have also been proposed in the batch mode
RL setting and the reader is referred to [9] (using kernel
approximators), [3] (using ensembles of regression trees)
and [10] (using neural networks). More recently, new batch
mode RL techniques have been proposed in [11] and this
does not require the use of function approximators for policy
evaluation. Our policy evaluator is based on the Monte Carlo-
like technique proposed in [11].

Policy gradient methods [12] can be seen as a subclass
of direct policy search techniques [13] that aim at finding a
near-optimal policy within a set of parameterized policies.
Actor-critic algorithms are relevant in this context and the
reader is referred to [14] and the references therein. The

actor-critic algorithms mentioned above work in an approx-
imate dynamic programming setting. In other words, owing
to the high-dimensional state spaces encountered often in
practice, the algorithms approximate the value function with
a (usually linear) function approximation architecture. Thus,
the quality of the policy obtained by the algorithms are
contingent upon the quality of the approximation architecture
and selection of approximation architecture is in itself a
hot topic of research in RL. In contrast, we do not employ
function approximators and instead, use a Monte-Carlo like
policy evaluation scheme to develop policy gradient/Newton
algorithms.

III. THE SETTING

We consider a stochastic discrete-time system with state
space X ⊂ RdX , dX ∈ N and action space U ⊂ RdU , dU ∈
N. The dynamics of this system is governed by:

xt+1 = f (xt, ut, wt) , ∀t ∈ N

where xt and ut denote the state and action at time t ∈
N, while wt ∈ W denotes a random disturbance drawn
according to a probability distribution pW(·). Each system
transition from time t to t + 1 incurs an instantaneous cost
c (xt, ut, wt). We assume that the cost function is bounded
and translated into the interval [0, 1].

Let µ : X → U be a control policy that maps states
to actions. In this paper, we consider a class of policies
parameterized by θ ∈ Θ, i.e., µθ : X → U . We assume
that Θ is a compact and convex subset of RN , N ∈ N. Since
a policy µ is identifiable with its parameter θ, we shall use
them interchangeably in the paper.

The classical performance criterion for evaluating a policy
µ is its (expected) cost-to-go, which is the discounted sum
of costs that an agent receives, while starting from a given
initial state x0 and then following a policy µ, i.e.,

Jµ(x0) = E

[∞∑
t=0

γtc(xt, µ(xt), wt) | x0, µ

]
, (1)

where xt+1 = f(xt, µ(xt), wt) and wt ∼ pW(·),∀t ∈ N.

In the above, γ ∈ (0, 1) denotes the discount factor.
In a batch mode RL setting, the objective is to find a

policy that minimizes the cost-to-go Jµ(x0). However, the
problem is challenging since the functions f , c and pW(·)
are unknown (not even accessible to simulation). Instead, we
are provided with a batch collection of n ∈ N\{0} one-step
system transitions Fn, defined as

Fn =
{(
xl, ul, cl, yl

)}n
l=1

,

where cl := c
(
xl, ul, wl

)
is the instantaneous cost and

yl := f
(
xl, ul, wl

)
is the next state. Here, both cl and yl

are governed by the disturbance sequence wl ∼ pW(·), for
all l ∈ {1, . . . , n}.

The algorithms that we present next incrementally update
the policy parameter θ in the negative descent direction using
either the gradient or Hessian of Jθ(x0). The underlying

policy evaluator that provides the cost-to-go inputs for any
θ is based on MFMC, while the gradient/Hessian estimates
are based on the principle of simultaneous perturbation [4].

IV. ALGORITHM STRUCTURE

In a deterministic optimization setting, an algorithm at-
tempting to find the minima of the cost-to-go Jθ(x0) would
update the policy parameter in the descent direction as
follows:

θi(t+ 1) = Γi(θ(t)− a(t)A−1
t ∇θJθ(x0)), (2)

where At is a positive definite matrix and a(t) is a step-
size that satisfies standard stochastic approximation condi-
tions:

∑
t
a(t) = ∞ and

∑
t
a(t)2 < ∞. Further, Γ(θ) =

(Γ1(θ1), . . . ,ΓN (θN)) is a projection operator that projects
the iterate θ to the nearest point in the set Θ ∈ RN . The
projection is necessary to ensure stability of the iterate θ
and hence the overall convergence of the scheme (2).

For the purpose of obtaining the estimate of the cost-
to-go vector Jθ(x0) for any θ, we adapt the MFMC (for
Model-Free Monte Carlo) estimator proposed in [1]) to our
(infinite-horizon discounted) setting1. The MFMC estimator
works by rebuilding (from one-step transitions taken in Fn)
artificial trajectories that emulate the trajectories that could
be obtained if one could do Monte Carlo simulations. An
estimate Ĵθ of the cost-to-go Jθ is obtained by averaging
the cumulative discounted cost of the rebuilt artificial trajec-
tories.

Using the estimates of MFMC, it is necessary to build a
higher-level control loop to update the parameter θ in the
descent direction as given by (2). However, closed form
expressions of the gradient and the Hessian of Jθ(x0) are
not available and instead, we only have (biased) estimates
of Jθ(x0) from MFMC. Thus, the requirement is for a
simulation-optimization scheme that approximates the gra-
dient/Hessian of Jθ(x0) using estimates from MFMC.

Simultaneous perturbation methods [4] are well-known
simulation optimization schemes that perturb the parameter
uniformly in each direction in order to find the minima of a
function observable only via simulation. These methods are
attractive since they require only two simulations irrespective
of the parameter dimension. Our algorithms are based on
two popular simultaneous perturbation methods - Simultane-
ous Perturbation Stochastic Approximation (SPSA) [5] and
Smoothed Functional [6]. The algorithms that we propose
mainly differ in the choice of At in (2) and the specific
simultaneous perturbation method used:
MCPG-SPSA. Here At = I (identity matrix). Thus,

MCPG-SPSA is a first order scheme that updates the
policy parameter in the descent direction. Further, the
gradient ∇θJθ(x0) is estimated using SPSA.

MCPG-SF. This is the Smoothed functional (SF) variant of
MCPG-SPSA.

1Besides being adapted to the batch mode setting, the MFMC estimator
also has the advantage of having a linear computational complexity and
consistency properties (see Section V).

Algorithm 1 Structure of our algorithms.
Input: θ0, initial parameter vector; δ > 0; ∆;
MFMC(θ), the model free Monte Carlo like policy evalu-
ator
for t = 0, 1, 2, . . . do

Call MFMC(θ(t) + p1(t))
Call MFMC(θ(t) + p2(t))
Compute θ(t+ 1) (Algorithm-specific)

end for
Return θ(t)

MCPN-SPSA. Here At = ∇2Jθ(x0), i.e., the Hessian of
the cost-to-go. Thus, MCPN is a second order scheme
that update the policy parameter using a Newton step.
Further, the gradient/Hessian are estimated using SPSA.

MCPN-SF. This is the SF variant of MCPN-SPSA.
As illustrated in Fig. 1, our algorithms operate on the prin-

ciple of simultaneous perturbation and involve the following
steps:
(i) estimate, using MFMC, the cost-to-go for two perturba-
tion sequences θ(t) + p1(t) and θ(t) + p2(t);
(ii) obtain the gradient/Hessian estimates (see (4)–(8)) from
the cost-to-go values Jθ(t)+p1(t)(x0) and Jθ(t)+p2(t)(x0);
(iii) update the parameter θ in the descent direction using
the gradient/Hessian estimates obtained above.
The choice of perturbation sequences p1(t) and p2(t) is
specific to the algorithm (see Sections VI and VII).

θt

+

−

p1(t)

p2(t)

MFMC(θ(t) + p1(t))

MFMC(θ(t) + p2(t))

Update θ(t)

(Algorithm-
specific)

θt+1

Fig. 1. Overall flow of simultaneous perturbation algorithms.

Remark 1: From a theoretical standpoint, the setting con-
sidered here is of deterministic optimization and the es-
timates from MFMC have non-zero, albeit bounded, non-
stochastic bias for a given sample of transitions. This is
unlike earlier work on SPSA, which mostly feature a stochas-
tic noise component that is zero-mean. While we establish
bounds on the bias of MFMC (see Lemmas 1 and 2 in [15]),
it is a challenge to establish asymptotic convergence and in
this regard, we note the difficulties involved in Section VIII.

V. MFMC ESTIMATION OF A POLICY

For the purpose of policy evaluation given a batch of
samples, we adapt the Model-free Monte Carlo estimator
(MFMC) algorithm, proposed in [1], to an infinite horizon
discounted setting.

From a sample of transitions Fn, the MFMC estimator
rebuilds p ∈ N \ {0} (truncated) artificial trajectories.

These artificial trajectories are used as approximations of p
trajectories that could be generated by simulating the policy
µθ we want to evaluate. The final MFMC estimate Ĵθ(x0) is
obtained by averaging the cumulative discounted costs over
these truncated artificial trajectories.

The trajectories here are rebuilt in a manner similar to the
procedure outlined in [1]. However, in our (infinite horizon)
setting, the horizon needs to be truncated for rebuilding the
trajectories. To this end, we introduce a truncation parameter
T that defines the length of the rebuilt trajectories. To limit
the looseness induced by such a truncation, the value of the
parameter T should be chosen as a function of the discount
factor γ, for instance, T = Ω

(
1

1−γ

)
. The MFMC estimation

Algorithm 2 MFMC algorithm.
Input: Fn, µθ(., .), x0, d(., .), T, p
G: current set of not yet used one-step transitions in Fn;
Initially, G ← Fn;
for i = 1 to p do
t← 0; xit ← x0;
while t < T do
uit ← µθ

(
xit
)
;

H ← arg min
(x,u,c,y)∈G

d
(
(x, u),

(
xit, u

i
t

))
;

lit ← lowest index in Fn of the transitions that belong
to H;
t← t+ 1; xit ← yl

i
t ;

G ← G \
{(
xl

i
t , ul

i
t , cl

i
t , yl

i
t

)}
;

end while
end for
Return Ĵθ (x0) = 1

p

∑p
i=1

∑T−1
t=0 γtcl

i
t .

can be computed using the algorithm provided in Algorithm
2.

Definition 1 (Model-free Monte Carlo Estimator):

Ĵθ (x0) =
1

p

p∑
i=1

T−1∑
t=0

γtcl
i
t .

where
{
lit
}i=p,t=T−1

i=1,t=0
denotes the set of indices of the

transitions selected by the MFMC algorithm (see Algorithm
2).
Note that the computation of the MFMC estimator Ĵθ (x0)
has a linear complexity with respect to the cardinality n of
Fn, the number of artificial trajectories p and the optimiza-
tion horizon T .

Remark 2: Through Lemmas 1 and 2 in [15], we bound
the distance between the MFMC estimate Ĵθ (x0) and the
true cost-to-go Jθ(x0) in expectation and high probability,
respectively.

VI. FIRST ORDER ALGORITHMS

A. Gradient estimates

SPSA based estimation of the gradient of the cost-to-go,
originally proposed in [5], is illustrated as follows: For the

simple case of a scalar parameter θ,

dJθ

dθ
≈
(
Jθ+δ − Jθ

δ

)
. (3)

The correctness of the above estimate, in the limit as δ → 0,
can be seen by first order Taylor series expansions of Jθ+δ

and Jθ−δ around θ using a Taylor expansion. The above idea
of simultaneous perturbation can be extended to a vector-
valued parameter θ by perturbing each co-ordinate of θ
uniformly using Rademacher random variables. The resulting
SPSA based estimate of the gradient ∇θJθ(x0) is as follows:

∇θiJθ(x0) ≈ Jθ+δ∆(x0)− Jθ−δ∆(x0)

2δ∆i
, (4)

where ∆ = (∆1, . . . ,∆N)T with each ∆i being Rademacher
random variables.

SF is another popular simultaneous perturbation scheme,
proposed first in [6]. The gradient of the cost-to-go is
estimated via the SF approach as follows:

∇θiJθ(x0) ≈ ∆i

δ

(
Jθ+δ∆(x0)− Jθ−δ∆(x0)

)
, (5)

where ∆ is a (|N |)-vector of independent N (0, 1) random
variables. The main idea in proving the correctness of (5)
in the limit as δ → 0, is to convolve the gradient of the
cost-to-go Jθ(x0) with a Gaussian density function, apply
an integration-by-parts argument and then observe that it is
equivalent to convolving the gradient of Gaussian density
function with the cost-to-go (see Chapter 6 of [4] for a
detailed description).

B. MCPG-SPSA and MCPG-SF algorithms

On the basis of the gradient estimates in (4)–(5), the SPSA
and SF variants update the policy parameter θ as follows: For
all t ≥ 1, update

SPSA: θi(t+ 1) = Γi

(
θi(t) (6)

− a(t)
Ĵθ(t)+δ∆(t)(x0)− Ĵθ(t)−δ∆(t)(x0)

2δ∆i(t)

)
,

SF: θi(t+ 1) = Γi

(
θi(t) (7)

− a(t)
∆i(t)

2δ
(Ĵθ(t)+δ∆(t)(x0)− Ĵθ(t)−δ∆(t)(x0))

)
,

for all i = 1, 2, . . . , N . In the above,
(i) δ > 0 is a small fixed constant and ∆(t) is a N -vector
of independent Rademacher random variables for SPSA and
standard Gaussian random variables for SF;
(ii) Ĵθ(t)+δ∆(t)(x0) and Ĵθ(t)−δ∆(t)(x0) are the MFMC
policy evaluator’s estimates of the cost-to-go corresponding
to the parameters θ + δ∆ and θ − δ∆, respectively.
(iii) Γ(θ) = (Γ1(θ1), . . . ,ΓN (θN))T is an operator that
projects the iterate θ to the closest point in a compact and
convex set Θ ∈ RN ;
(iv) {a(t), t ≥ 1} is a step-size sequence that satisfies the
standard stochastic approximation conditions.

VII. SECOND ORDER ALGORITHMS

For the second order methods, we also need an estimate
of the Hessian ∇2

θJ
θ(x0), in addition to the gradient.

A. Hessian estimates

SPSA based estimate of the Hessian ∇2
θJ

θ(x0) is as
follows:

∇2
θiJ

θ(x0) ≈ Jθ+δ∆+δ∆̂(x0)− Jθ+δ∆(x0)

δ2∆i∆̂i

, (8)

where ∆ and ∆̂ represent N -vectors of Rademacher random
variables.

SF based estimate of the Hessian ∇2
θJ

θ(x0) is as follows:

∇2
θiJ

θ(x0) ≈ 1

δ2
H̄(∆)

(
Jθ+δ∆(x0) + Jθ−δ∆(x0)

)
, (9)

where ∆ is a N vector of independent Gaussian N (0, 1)
random variables and H̄(∆) is a N ×N matrix defined as

H̄(∆)
4
=

(
∆2

1 − 1
)

∆1∆2 · · · ∆1∆N

∆2∆1

(
∆2

2 − 1
)
· · · ∆2∆N

· · · · · · · · · · · ·
∆N∆1 ∆N∆2 · · ·

(
∆2
N − 1

)
 .
(10)

The reader is referred to Chapters 7 and 8 in [4] for a proof
of correctness of the above Hessian estimates.

B. MCPN-SPSA and MCPN-SF algorithms

Let H(t) = [Hi,j(t)]
|N |,|N |
i=1,j=1 denote the estimate of the

Hessian w.r.t. θ of the cost-to-go Jθ(x0) at instant t, with
H(0) = ωI for some ω > 0. On the basis of (8), MCPN-
SPSA would estimate the individual components Hi,j(t) as
follows: For all t ≥ 1, i, j ∈ {1, . . . , N}, i ≤ j, update

Hi,j(t+ 1) = Hi,j(t)+

a(t)

(
Ĵθ(t)+δ∆(t)+δ∆̂(t)(x0)− Ĵθ(t)+δ∆(t)(x0)

δ2∆j(t)∆̂i(t)
−Hi,j(t)

)
,

and for i > j, set Hi,j(t + 1) = Hj,i(t + 1). In the above,
δ > 0 is a small fixed constant and ∆(t) and ∆̂(t) are
N vectors of Rademacher random variables. Now form the
Hessian inverse matrix M(t) = Υ(H(t))−1. The operator
Υ(·) ensures that the Hessian estimates stay within the set of
positive definite and symmetric matrices. This is a standard
requirement in second-order methods (See [16] for one
possible definition of Υ(·)). Using these quantities, MCPN-
SPSA updates the parameter θ along a descent direction as
follows: ∀t ≥ 1,

θi(t+ 1) = Γi

(
θi(t)−

a(t)

N∑
j=1

Mi,j(t)
Ĵθ(t)+δ∆(t)(x0)− Ĵθ(t)−δ∆(t)(x0)

2δ∆j(t)

)
. (11)

Along similar lines, using (9), the SF variant of the above
algorithm would update the Hessian estimate as follows: For

all t ≥ 1, i, j, k ∈ {1, . . . , N}, j ≤ k, update

Hi,i(t+ 1) =Hi,i(t) + a(t)

((
∆2
i (t)− 1

)
δ2

(Ĵθ(t)+δ∆(t)(x0)

+ Ĵθ(t)−δ∆(t)(x0))−Hi,j(t)

)
, (12)

Hj,k(t+ 1) =Hj,k(t) + a(t)

(
∆i(t)∆j(t)

δ2
(Ĵθ(t)+δ∆(t)(x0)

+ Ĵθ(t)−δ∆(t)(x0))−Hj,k(t)

)
, (13)

and for j > k, we set Hj,k(t + 1) = Hk,j(t + 1). In the
above, ∆(t) is a N vector of independent Gaussian N (0, 1)
random variables. As before, form the Hessian estimate
matrix H(t) and its inverse M(t) = Υ(H(t))−1. Then, the
policy parameter θ is then updated as follows: ∀t ≥ 1,

θi(t+ 1) = Γi

(
θi(t)− (14)

a(t)

N∑
j=1

Mi,j(t)∆j(t)
(Ĵθ(t)+δ∆(t)(x0)− Ĵθ(t)−δ∆(t)(x0))

2δ

)
.

Remark 3: A computationally efficient alternative to in-
verting the Hessian H is to use the Woodbury’s identity. See
Section 6.2 of [15] for a detailed description.

VIII. NOTES ON CONVERGENCE

In this section, we describe the difficulty in establishing
the asymptotic convergence for the MCPG-SPSA algorithm
- a difficulty common to all our algorithms. An important
step in the analysis is to prove that the bias in the MFMC
estimator contributes a asymptotically negligible term to the
θ-recursion (6). In other words, it is required to show that
(6) is asymptotically equivalent to the following in the sense
that the difference between the two updates is o(1):

θi(t+ 1) = Γi

(
θi(t)

− a(t)
Jθ(t)+δ∆(t)(x0)− Jθ(t)−δ∆(t)(x0)

2δ∆i(t)

)
. (15)

As a first step towards establishing this equivalence, we first
re-write the θ-update in (6) as follows:

θi(t+ 1) = Γi

(
θi(t)

− a(t)
Jθ(t)+δ∆(t)(x0)− Jθ(t)−δ∆(t)(x0)

2δ∆i(t)
+ a(t)ξ(t)

)
,

where ξ(t) =
εθ(t)+δ∆(t) − εθ(t)−δ∆(t)

2δ∆i(t)
. In the above, we

have used the fact MFMC returns an estimate Ĵθ(x0) =
Jθ(x0) + εθ, with εθ denoting the bias.

Let ζ(t) =
∑t
s=0 a(s)ξs+1. Then, a critical requirement

for establishing the equivalence of (6) with (15) is the
following condition:

sup
s≥0

(ζ(t+ s)− ζ(t))→ 0 as t→∞.

0 0.2 0.4 0.6 0.8 1

11.2

11.3

11.4

iterations

J
θ
(x

0
)

Fig. 2. Jθ(x0) vs. θ. Note that the global minimum is θmin = 0.06.

While the bias εθ of MFMC can be bounded (see Lemma
2 in [15]), it is difficult to ensure that the above condition
holds.

Assuming that the bias is indeed asymptotically negligible,
the asymptotic convergence of MCPG can be established in
a straightforward manner. In particular, using the ordinary
differential equation (ODE) approach [17], it can be shown
that (15) is a discretization (and hence converges to the
equilibria) of the following ODE:

θ̇ = Γ̄
(
∇θJθ(x0)

)
, (16)

where Γ̄ is a projection operator that ensures θ evolving
according to (16) remains bounded. The reader is referred
to Section 7 in [15] for the precise convergence claims and
the associated proofs.

IX. NUMERICAL ILLUSTRATION

We consider the 1-dimensional system ruled by the fol-
lowing dynamics:

f(x, u, w) = sinc(10 ∗ (x+ u+ w)), where
sinc(x) = sin(πx)/(πx).

The cost function is defined as follows:

c(x, u, w) = − 1

2π
exp

(
−x

2 + u2

2
+ w

)
.

We consider a class of linearly parameterized policies:

µθ(x) = θx, ∀θ ∈ [0, 1].

The disturbances are drawn according to a uniform distribu-
tion between [− ε

2 ,
ε
2] with ε = 0.01. The initial state of the

system is fixed to x0 = −1 and the discount factor is set
to γ = 0.95. The truncation of artificial trajectories is set
to T = 1

1−γ = 20, and the number of artificial trajectories
rebuilt by the MFMC estimator is set to p = dln(n/T)e. We
give in Figure 2 a plot of the evolution of the expected return
Jθ(x0) as a function of θ (obtained through extensive Monte
Carlo simulations). We observe that the expected cost-to-go
Jθ(x0) is minimized for values of θ around 0.06.

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

iterations

θ<
a
lg
>

(t
)

MCPG-SPSA
MCPG-SF

(a) MCPG-SPSA vs. MCPG-SF

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

iterations

θ<
a
lg
>

(t
)

MCPN-SPSA
MCPN-SF

(b) MCPN-SPSA vs. MCPN-SF

Fig. 3. Empirical illustration of the MCPG and MCPN algorithms on an
academic benchmark.

In order to observe the impact of the randomness of the
set of transitions (induced by the disturbances) on the algo-
rithms, we generate 50 samples of transitions F1

n, . . . ,F50
n ,

each sample containing n = 200 transitions. For each
set F in, i = 1 . . . 50, the set of state-action pairs Pn =
{(xl, ul)}nl=1 is the same and generated deterministically
from a grid, i.e. Pn = {(−1 + 2 ∗ i/σ,−1 + 2 ∗ j/σ)}σ−1

i,j=0

with σ = b
√
nc. The randomness of each set F in comes from

the disturbances wl l = 1 . . . n along which transitions are
generated.

Then, for each sample F in, we run all the four algorithms -
MCPG-SPSA, MCPG-SF, MCPN-SPSA and MCPN-SF - for
500 iterations. This generates the sequences

(
θi,<alg>(t)

)
t
,

where < alg > denotes the algorithm. For each algorithm
run, we set δ = 0.1 and the step-size a(t) = 1

t , for all t.
Further, the operator Γ projects θ(t) into the interval [0, 1],
while the Hessian operator Υ projects into [0.1,∞).

Figure 3 presents the average evolution of the parameter
sequence in each of the 50 runs for all the algorithms
(bands around the average curves represent 95% confidence
intervals). From these plots, we observe that the MCPG-SF
approach outperforms the other algorithms on this academic
benchmark, with a much lower variance and higher precision.

X. CONCLUSIONS

We proposed novel policy search algorithms in a batch,
off-policy setting. All these algorithms incorporate simul-
taneous perturbation estimates for the gradient as well as
the Hessian of the cost-to-go vector, since the latter is
unknown and only biased estimates are available. We pro-
posed both first order policy gradient as well as second
order policy Newton algorithms, using both SPSA as well
as SF simultaneous perturbation schemes. We noted certain
difficulties in establishing asymptotic convergence of the
proposed algorithms, owing to the non-stochastic (and non-
zero) bias of the MFMC policy evaluation scheme. As a
future direction, we plan to investigate conditions under
which the bias of MFMC is asymptotically negligible.

Acknowledgements
The first author was supported by a post-doctoral fel-

lowship of the F.R.S. - FNRS (Belgian Funds for Sci-
entific Research). The second author would like to thank
the European Community’s Seventh Framework Programme
(FP7/2007 − 2013) under grant agreement no 270327 for
funding the research leading to these results.

REFERENCES

[1] R. Fonteneau, S. Murphy, L. Wehenkel, and D. Ernst, “Model-free
Monte Carlo–like policy evaluation,” in Proceedings of International
Conference on Artificial Intelligence and Statistics, 2010, pp. 217–224.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming
(Optimization and Neural Computation Series, 3). Athena Scientific,
May 1996.

[3] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
pp. 503–556, 2005.

[4] S. Bhatnagar, H. L. Prasad, and L. A. Prashanth, Stochastic Recursive
Algorithms for Optimization. Springer, 2013, vol. 434.

[5] J. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Transactions on Automatic
Control, vol. 37, no. 3, pp. 332–341, 1992.

[6] V. Katkovnik and Y. Kulchitsky, “Convergence of a class of random
search algorithms,” Automatic Remote Control, vol. 8, pp. 81–87,
1972.

[7] S. Bradtke and A. Barto, “Linear least-squares algorithms for temporal
difference learning,” Machine Learning, vol. 22, pp. 33–57, 1996.

[8] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Jounal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[9] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,”
Machine Learning, vol. 49, no. 2-3, pp. 161–178, 2002.

[10] M. Riedmiller, “Neural fitted Q iteration - first experiences with a
data efficient neural reinforcement learning method,” in European
Conference on Machine Learning, 2005, pp. 317–328.

[11] R. Fonteneau, S. Murphy, L. Wehenkel, and D. Ernst, “Batch mode
reinforcement learning based on the synthesis of artificial trajectories,”
Annals of Operations Research, vol. 208, pp. 383–416, 2013.

[12] P. L. Bartlett and J. Baxter, “Infinite-horizon policy-gradient estima-
tion,” Journal of Artificial Intelligence Research, vol. 15, pp. 319–350,
2001.

[13] J. Schmidhuber and J. Zhao, “Direct policy search and uncertain policy
evaluation,” In AAAI Spring Symposium on Search under Uncertain
and Incomplete Information, Stanford Univ, Tech. Rep., 1998.

[14] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-
critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, 2009.

[15] R. Fonteneau and L. A. Prashanth, “Simultaneous Perturbation Algo-
rithms for Batch Off-Policy Search,” arXiv preprint arXiv:1403.4514,
2014.

[16] P. Gill, W. Murray, and M. Wright, Practical Optimization. Academic
press, 1981.

[17] V. Borkar, Stochastic Approximation: a Dynamical Systems Viewpoint.
Cambridge University Press, 2008.

