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Abstract. We study a risk-constrained version of the stochastic shortest path
(SSP) problem, where the risk measure considered is Conditional Value-at-Risk
(CVaR). We propose two algorithms that obtain a locally risk-optimal policy by
employing four tools: stochastic approximation, mini batches, policy gradients
and importance sampling. Both the algorithms incorporate a CVaR estimation
procedure, along the lines of [3], which in turn is based on Rockafellar-Uryasev’s
representation for CVaR and utilize the likelihood ratio principle for estimating
the gradient of the sum of one cost function (objective of the SSP) and the gra-
dient of the CVaR of the sum of another cost function (constraint of the SSP).
The algorithms differ in the manner in which they approximate the CVaR es-
timates/necessary gradients - the first algorithm uses stochastic approximation,
while the second employs mini-batches in the spirit of Monte Carlo methods.
We establish asymptotic convergence of both the algorithms. Further, since esti-
mating CVaR is related to rare-event simulation, we incorporate an importance
sampling based variance reduction scheme into our proposed algorithms.

1 Introduction

Risk-constrained Markov decision processes (MDPs) have attracted a lot of attention
recently in the reinforcement learning (RL) community (cf. [8, 18, 14, 19]). However,
unlike previous works that focused mostly on variance of the return as a measure of
risk, we consider Conditional Value-at-Risk (CVaR) as a risk measure. CVaR has the
form of a conditional expectation, where the conditioning is based on a constraint on
Value-at-Risk (VaR).

The aim in this paper is to find a risk-optimal policy in the context of a stochastic
shortest path (SSP) problem. A risk-optimal policy is one that minimizes the sum of
one cost function (see Gθ(s0) in (1)), while ensuring that the conditional expectation
of the sum of another cost function (see Cθ(s0) in (1)) given some confidence level,
stays bounded, i.e., the solution to the following risk-constrained problem: For a given
α ∈ (0, 1) and Kα > 0,

min
θ∈Θ

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Cθ(s0)

≤Kα.

(1)

In the above, s0 is the starting state and the actions a0, . . . , aτ−1 are chosen according
to a randomized policy πθ governed by θ. Further, g(s, a) and c(s, a) are cost functions
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that take a state s and an action a as inputs and τ is the first passage time to the recurrent
state of the underlying SSP (see Section 2 for a detailed formulation). In [8], a similar
problem is considered in a finite horizon MDP, though under a strong separability as-
sumption for the cost function c(s, a).

The problem (1) is motivated by applications in finance and energy markets. For
example, consider a portfolio reallocation problem where the aim is to find an invest-
ment strategy that achieves a targeted asset allocation. The portfolio is composed of
assets (e.g. stocks) and the gains obtained by buying or selling assets is stochastic and
depends on the market situation. A risk-averse investor would prefer a investment strat-
egy that alters the mix of assets in the portfolio that (i) quickly achieves the target asset
allocation (modeled by the objective in (1)), and (ii) minimizes the worst-case losses
incurred (modeled by the CVaR constraint in (1)). Another problem of interest, as out-
lined in [8], is in the re-insurance business. The insurance companies collect premiums
for providing coverage, but run the risk of heavy payouts due to catastrophic events and
this problem can be effectively cast into the framework of a risk-constrained SSP.

Solving the risk-constrained problem (1) is challenging due to two reasons:
(i) Finding a globally risk-optimal policy is intractable even for a simpler case when the
risk is defined as the variance of the return of an MDP (see [12]). The risk-constrained
MDP that we consider is more complicated in comparison, since CVaR is a conditional
expectation, with the conditioning governed by an event that bounds a probability.
(ii) For the sake of optimization of the CVaR-constrained MDP that we consider in this
paper, it is required to estimate both VaR/CVaR of the total cost (Cθ(s0) in (1)) as well
as its gradient.
(iii) Since VaR/CVaR concerns the tail of the distribution of the total cost, a variance
reduction technique is required to speed up the estimation procedure.
We avoid the first problem by proposing a policy gradient scheme that is proven to
converge to a locally risk-optimal policy. The second problem is alleviated using two
principled approaches: stochastic approximation [15, 3] and mini-batch [2] procedures
for estimating VaR/CVaR and policy gradients using likelihood ratios [4]. The final
problem is solved by incorporating an importance sampling scheme.

The contributions of this paper are summarized as follows:
(I) First, using the representation of CVaR (and also VaR) as the solution of a certain
convex optimization problem by Rockafellar and Uryasev [16], we develop a stochastic
approximation procedure, along the lines of [3], for estimating the CVaR of a policy
for an SSP. In addition, we also propose a mini-batch variant to estimate CVaR. Mini-
batches are in the spirit of Monte Carlo methods and have been proposed in [2] under a
different optimization context for stochastic proximal gradient algorithms.
(II) Second, we develop two novel policy gradient algorithms for finding a (locally)
risk-optimal policy of the CVaR-constrained SSP. The first algorithm is a four time-
scale stochastic approximation scheme that (a) on the fastest two timescales, estimates
VaR/CVaR and uses the policy-gradient principle with likelihood ratios to estimate
the gradient of the total cost Gθ(s0) as well as CVaR of another cost sum Cθ(s0);
(b) updates the policy parameter in the negative descent direction on the intermediate
timescale and performs dual ascent for the Lagrange multiplier on the slowest timescale.
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On the other hand, the second algorithm operates on two timescales as it employs mini-
batches to estimate the CVaR as well as the necessary gradients.
(III) Third, we adapt our proposed algorithms to incorporate importance sampling (IS).
This is motivated by the fact that when the confidence level α is close to 1, estimating
VaR as well as CVaR takes longer as the interesting samples used to estimate CVaR
come from the tail of the distribution of the total cost Cθ(s0) random variable. We
provide a non-trivial adaptation of the IS scheme proposed in [11] to our setting. Un-
like [11] which requires the knowledge of transition dynamics, we use the randomized
policies to derive sampling ratios for the IS procedure.

The rest of the paper is organized as follows: In Section 2 we formalize the CVaR-
constrained SSP and in Section 3 describe the structure of our proposed algorithms.
In Section 4 we present the first algorithm based on stochastic approximation and in
Section 5 we present the mini-batch variant. In Section 6, we sketch the convergence of
our algorithms and later in Section 7 describe the importance sampling variants of our
algorithms. In Section 8, we review relevant previous works. Finally, in Section 9 we
provide the concluding remarks.

2 Problem Formulation

In this section, we first introduce VaR/CVaR risk measures, then formalize the stochas-
tic shortest path problem and subsequently define the CVaR-constrained SSP.

2.1 Background on VaR and CVaR

For any random variable X , we define the VaR at level α ∈ (0, 1) as

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α} .
If the distribution ofX is continuous, then VaR is the lowest solution to P (X ≤ ξ) = α.
VaR as a risk measure has several drawbacks, which precludes using standard stochas-
tic optimization methods. This motivated the definition of coherent risk measures in
[1]. A risk measure is coherent if it is convex, monotone, positive homogeneous and
translation equi-variant. CVaR is one popular risk measure defined by

CVaRα(X) := E [X |X ≥ VaRα(X)] .

Unlike VaR, the above is a coherent risk measure.

2.2 Stochastic Shortest Path (SSP)

We consider a SSP with a finite state space S = {0, 1, . . . , r}, where 0 is a special cost-
free and absorbing terminal state. The set of feasible actions in state s ∈ S is denoted
by A(s). A transition from state s to s′ under action a ∈ A(s) occurs with probability
pss′(a) and incurs the following costs: g(s, a) and c(s, a), respectively.

A policy specifies how actions are chosen in each state. A stationary randomized
policy π(·|s) maps any state s to a probability vector on A(s). As is standard in policy
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gradient algorithms, we parameterize the policy and assume that the policy is contin-
uously differentiable in the parameter θ ∈ R

d. Since a policy π is identifiable by its
parameter θ, we use them interchangeably in this paper.

As defined in [5], a proper policy is one which ensures that there is a positive proba-
bility that the terminal state 0 will be reached, starting from any initial state, after utmost
r transitions. This in turn implies the states 1, . . . , r are transient. We assume that class
of parameterized policies considered, i.e., {πθ | θ ∈ Θ}, is proper. We assume that Θ
is a compact and convex subset of Rd.

2.3 CVaR-Constrained SSP

As outlined earlier, the risk-constrained objective is:

min
θ∈Θ

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Cθ(s0)

≤Kα.

where τ denotes the first visiting time to terminal state 0, i.e., τ = min{m | sm = 0}.
The actions a0, . . . , aτ−1 are chosen according to the randomized policy πθ . Further, α
and Kα are constants that specify the confidence level and constraint bound for CVaR,
respectively.

Using the standard trick of Lagrangian relaxation for constrained optimization prob-
lems, we convert (1) to the following unconstrained problem:

max
λ

min
θ

[Lθ,λ(s0) := Gθ(s0) + λ
(
CVaRα(C

θ(s0))−Kα

)]
. (2)

3 Algorithm Structure

In order to solve (2), a standard constrained optimization procedure operates as follows:

Simulation. This is the inner-most loop where the SSP is simulated for several
episodes and the resulting costs are aggregated.

Policy Update. This is the intermediate loop where the gradient of the Lagrangian
along θ is estimated using simulated values above. The gradient estimates are then
used to update policy parameter θ along a descent direction. Note that this loop is
for a given value of λ; and

Lagrange Multiplier Update. This is the outer-most loop where the Lagrange multi-
plier λ is updated along an ascent direction, using the converged values of the inner
two loops.

Using two-timescale stochastic approximation (see Chapter 6 of [7]), the policy and
Lagrange multiplier update can run in parallel as follows:

θn+1 = Γ
(
θn − γn∇θLθ,λ(s0)

)
and λn+1 = Γλ

(
λn + βn∇λLθ,λ(s0)

)
, (3)
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θn

Using policy πθn ,

simulate SSP

Simulation

Estimate CVaRα(C
θ(s0))

CVaR Estimation

Estimate ∇θG
θ(s0)

Policy Gradient

Estimate ∇θCVaRα(C
θ(s0))

CVaR Gradient

Update θn

using (9)

Policy Update

θn+1

Fig. 1. Overall flow of our algorithms

where Γ and Γλ are projection operators that keep the iterates θn and λn bounded
within the compacts sets Θ and [0, λmax] for some λmax > 0, respectively. Further,
γn, βn, n ≥ 0 are step-sizes that satisfy the following assumption:

∞∑
n=1

βn = ∞,

∞∑
n=1

γn = ∞,

∞∑
n=1

(
β2
n + γ2n

)
<∞ and

βn
γn

→ 0. (4)

The last condition above ensures that θ-recursion proceeds on a faster timescale in com-
parison to λ-recursion.

Simulation Optimization. No closed form expression for the gradient of the Lagrangian
Lθ,λ(s0) is available and moreover,Gθ(s0) and Cθ(s0) are observable only via simula-
tion. Observe that∇θLθ,λ(s0) = ∇θG

θ(s0)+λ∇θCVaRα(C
θ(s0)) and∇λLθ,λ(s0) =

CVaRα(C
θ(s0))−Kα. Hence, in order to update according to (3), we need to estimate,

for any policy parameter θ, the following quantities via simulation:
(i) CVaRα(C

θ(s0)); (ii) ∇θG
θ(s0); and (iii) ∇θCVaRα(C

θ(s0)).
In the following sections, we describe two algorithms that differ in the way they es-
timate each of the above quantities and subsequently establish that the estimates (and
hence the overall algorithms) converge.

4 Algorithm 1: PG-CVaR-SA

Algorithm 1 describes the complete algorithm along with the update rules for the vari-
ous parameters. The algorithm involves the following crucial components - simulation
of the SSP, VaR/CVaR estimation and policy gradients for the objective as well as the
CVaR constraint. Each of these components is described in detail in the following.
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Algorithm 1. PG-CVaR-SA
Input: parameterized policy πθ(·|·), step-sizes {ζn,1, ζn,2, γn, βn}n≥1

Initialization: Starting state s0, initial policy θ0, , number of iterations M >> 1.
for n = 1, 2, . . . ,M do

Simulation

Simulate the SSP for an episode using actions an,0, . . . , an,τn−1 generated using πθn−1

Obtain cost estimates: Gn :=

τn−1∑

j=0

g(sn,j , an,j) and Cn :=

τn−1∑

j=0

c(sn,j , an,j)

Obtain likelihood derivative: zn :=

τn−1∑

j=0

∇ log πθ(sn,j , an,j)

VaR/CVaR estimation:

VaR: ξn = ξn−1 − ζn,1

(
1− 1

1− α
1{Cn≥ξn−1}

)
, (5)

CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (6)

Policy Gradient:

Total Cost: Ḡn = Ḡn−1 − ζn,2(Gn − Ḡn), Gradient: ∂Gn = Ḡnzn. (7)

CVaR Gradient:

Total Cost: C̃n = C̃n−1 − ζn,2(Cn − C̃n), Gradient: ∂Cn = (C̃n − ξn)zn1{Cn≥ξn}.
(8)

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(
λn−1 + βn(ψn −Kα)

)
. (9)

end for
Output (θM , λM ).

4.1 SSP Simulation

In each iteration of PG-CVaR-SA, an episode of the underlying SSP is simulated. Each
episode ends with a visit to the recurrent state 0 of the SSP. Let τn denote the time of this
visit in episode n. The actions an,j, j = 0, . . . , τn−1 in episode n are chosen according

to the policy πθn−1 . Let Gn :=
τn−1∑
j=0

g(sn,j, an,j) and Cn :=
τn−1∑
j=0

c(sn,j, an,j) denote

the accumulated cost values. Further, let zn :=
τn−1∑
j=0

∇ log πθ(sn,j , an,j) denote the

likelihood derivative (see Section 4.3 below). The tuple (Gn, Cn, zn) obtained at the
end of the nth episode is used to estimate CVaR as well as policy gradients.
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4.2 Estimating VaR and CVaR

A well-known result from [16] is that both VaR and CVaR can be obtained from the
solution of a certain convex optimization problem and we recall this result next.

Theorem 1. For any random variable X , let

v(ξ,X) := ξ +
1

1− α
(X − ξ)+ and V (ξ) = E [v(ξ,X)] (10)

Then, VaRα(X) = (argmin V := {ξ ∈ R | V ′(ξ) = 0}), where V ′ is the derivative of
V w.r.t. ξ. Further, CVaRα(X) = V (VaRα(X)).

From the above, it is clear that in order to estimate VaR/CVaR, one needs to find a ξ
that satisfies V ′(ξ) = 0. Stochastic approximation (SA) is a natural tool to use in this
situation. We briefly introduce SA next and later develop a scheme for estimating CVaR
along the lines of [3] on the faster timescale of PG-CVaR-SA.

Stochastic Approximation. The aim is to solve the equation F (θ) = 0 when analytical
form of F is not known. However, noisy measurements F (θn) + ξn can be obtained,
where θn, n ≥ 0 are the input parameters and ξn, n ≥ 0 are zero-mean random vari-
ables, that are not necessarily i.i.d.

The seminal Robbins Monro algorithm solved this problem by employing the fol-
lowing update rule:

θn+1 = θn + γn(F (θn) + ξn). (11)

In the above, γn are step-sizes that satisfy
∞∑

n=1
γn = ∞ and

∞∑
n=1

γ2n < ∞. Under a sta-

bility assumption for the iterates and bounded noise, it can be shown that θn governed
by (11) converges to the solution of F (θ) = 0 (cf. Proposition 1 in Section 6).

CVaR Estimation Using SA. Using the stochastic approximation principle and the
result in Theorem 1, we have the following scheme to estimate the VaR/CVaR simulta-
neously from the simulated samples Cn:

VaR: ξn = ξn−1 − ζn,1(1− 1

1− α
1{Cn≥ξ}︸ ︷︷ ︸

∂v
∂ξ (ξ,Cn)

), (12)

CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (13)

In the above, (12) can be seen as a gradient descent rule, while (13) can be seen as a
plain averaging update. The scheme above is similar to the one proposed in [3], except
that the random variable Cθ(s0) (whose CVaR we try to estimate) is a sum of costs
obtained at the end of each episode, unlike the single-shot r.v. considered in [3]. The
step-sizes ζn,1, ζn,2 satisfy

∞∑
n=1

ζn,1 = ∞,

∞∑
n=1

ζn,2 = ∞,

∞∑
n=1

(
ζ2n,1 + ζ2n,2

)
<∞,

ζn,2
ζn,1

→ 0 and
γn
ζn,2

→ 0. (14)
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The last two conditions above ensure that VaR estimation recursion (12) proceeds on a
faster timescale in comparison to CVaR estimation recursion (13) and further, the CVaR
recursion itself proceeds on a faster timescale as compared to the policy parameter θ-
recursion.

Using the ordinary differential equation (ODE) approach, we establish later that the
tuple (ξn, ψn) converges to VaRα(C

θ(s0)),CVaRα(C
θ(s0)), for any fixed policy pa-

rameter θ (see Theorem 2 in Section 6).

4.3 Policy Gradient

We briefly introduce the technique of likelihood ratios for gradient estimation [9] and
later provide the necessary estimate for the gradient of total cost Gθ(s0).

Gradient Estimation Using Likelihood Ratios. Consider a Markov chain {Xn} with
a single recurrent state 0 and transient states 1, . . . , r. Let P (θ) := [[pXiXj (θ)]]

r
i,j=0

denote the transition probability matrix of this chain. Here pXiXj (θ) denotes the prob-
ability of going from state Xi to Xj and is parameterized by θ. Let τ denote the first
passage time to the recurrent state 0.

Let X := (X0, . . . , Xτ−1)
T denote the sequence of states encountered between

visits to the recurrent state 0. The aim is to optimize a performance measure F (θ) =
E[f(X)] for this chain using simulated values of X . The likelihood estimate is ob-
tained by first simulating the Markov chain according to P (θ) to obtain the samples
X0, . . . , Xτ−1 and then estimate the gradient as follows:

∇θF (θ) = E

[
f(X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]
.

Policy Gradient for the Objective. For estimating the gradient of the objectiveGθ(s0),
we employ the following well-known estimate (cf. [4]):

∇θG
θ(s0) = E

[(
τ−1∑
n=0

g(sn, an)

)
∇ logP (s0, . . . , sτ−1) | s0 = s0

]
, (15)

where ∇ logP (s0, . . . , sτ ) is the likelihood derivative for a policy parameterized by θ,
defined as

∇ logP (s0, . . . , sτ−1) =

τ−1∑
m=0

∇ log πθ(am |sm ). (16)

The above relation holds owing to the fact that we parameterize the policies and hence,
the gradient of the transition probabilities can be estimated from the policy alone. This
is the well-known policy gradient technique that makes it amenable for estimating gra-
dient of a performance measure in MDPs, since the transition probabilities are not re-
quired and one can work with policies and simulated transitions from the MDP.
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4.4 Policy Gradient for the CVaR Constraint

For estimating the gradient of the CVaR of Cθ(s0) for a given policy parameter θ, we
employ the following likelihood estimate proposed in [20]:

∇θCVaRα(C
θ(s0)) (17)

= E
[(
Cθ(s0)− VaRα(C

θ(s0))
)∇ logP (s0, . . . , sτ−1) | Cθ(s0)≥VaRα(C

θ(s0))
]
,

where ∇ logP (s0, . . . , sτ ) is as defined before in (16).
Since we do not know VaRα(C

θ(s0)), in Algorithm 1 we have an online scheme
that uses ξn (see (12)) to approximate VaRα(C

θ(s0)), which is then used to derive an
approximation to the gradient ∇θCVaRα(C

θ(s0)) (see (8)).

5 Algorithm 2: PG-CVaR-mB

As illustrated in Figure 2, in each iteration n of PG-CVaR-mB, we simulate the SSP
for mn episodes. Recall that each episode starts in the state s0 and ends in the ab-
sorbing state 0. At the end of the simulation, we obtain the total costs and likeli-
hood derivative estimates {Gn,j , Cn,j , zn,j}mn

j=1. Using these, the following quantities -
CVaRα(C

θ(s0)), ∇θCVaRα(C
θ(s0)) and ∇θG

θ(s0) - are approximated as follows:

VaR: ξn =
1

mn

mn∑
j=1

(
1− 1{Cn,j≥ξn−1}

1− α

)
, CVaR: ψn =

1

mn

mn∑
j=1

v(ξn−1, Cn,j)

Total Cost: Ḡn =
1

mn

mn∑
j=1

Gn,j , Policy Gradient: ∂Gn = Ḡnzn.

Total Cost: C̄n =
1

mn

mn∑
j=1

Cn,j , CVaR Gradient: ∂Cn = (C̃n − ξn)zn1{C̄n≥ξn}.

The above approximations can be seen as empirical means of functions of Gn,j , Cn,j ,
zn,j , respectively.

The policy and Lagrange multiplier updates are as in the earlier algorithm, i.e., ac-
cording to (9).
Mini-Batch Size. A simple setting for the batch-size mn is Cnδ for some δ > 0,
i.e., mn increases as a function of n. We cannot have constant batches, i.e., δ = 0,
since the bias of the CVaR estimates and the gradient approximations has to vanish
asymptotically.

θn−1

Using policy πθn−1 ,

simulate mn episodes

Simulation

Obtain

{Gn,j , Cn,j , zn,j}mn
j=1

Cost/Likelihood Estimates

Estimate CVaR and

policy/CVaR gradients

Averaging

θn

Fig. 2. Illustration of mini-batch principle in PG-CVaR-mB algorithm



164 L.A. Prashanth

6 Outline of Convergence

We analyze our algorithms using the theory of multiple time-scale stochastic approx-
imation [7, Chapter 6]. For the analysis of our algorithms, we make the following as-
sumptions:
(A1) For any θ ∈ Θ, the random variable Cθ(s0) has a continuous distribution.
(A2) For any θ ∈ Θ, the policy πθ is proper and continuously differentiable in θ.
(A3) Step-sizes βn, γn satisfy the conditions in (4), while ζn,1, ζn,2 satisfy those in (14).
We first provide the analysis for PG-CVaR-SA algorithm and later describe the neces-
sary modification for the mini-batch variant1.

Before the main proof, we recall the following well-known result (cf. Chapter 2 of
[7]) related to convergence of stochastic approximation schemes under the existence of
a so-called Lyapunov function:

Proposition 1. Consider the following recursive scheme:

θn+1 = θn + γn(F (θn) + ξn+1), (18)

where F : Rd → Rd is a L-Lipschitz map and ξn a square-integrable martingale
difference sequence with respect to the filtration Fn := σ(θm, ξm,m ≤ n). Moreover,

E[‖ξn+1‖22 | Fn] ≤ K(1+ ‖θn‖22) for some K > 0. The step-sizes γn satisfy
∞∑
n=1

γn =

∞ and
∞∑
n=1

γ2n <∞.

Lyapunov function. Suppose there exists a continuously differentiable V : Rd →
[0,∞) such that lim‖θ‖2→∞ V (θ) = ∞. Writing Z := {θ ∈ Rd | V (θ) = 0} 	= φ, V
satisfies 〈F (θ),∇V (θ)〉 ≤ 0 with equality if and only if θ ∈ Z.

Then, θn governed by (18) converges a.s. to an internally chain transitive set con-
tained in Z.

The steps involved in proving the convergence of PG-CVaR-SA are as follows:

Step 1: CVaR Estimation on Fastest Time-scale

Owing to the time-scale separation, θ and λ can be assumed to be constant while ana-
lyzing the VaR/CVaR recursions (12)–(13). The main claim is given as follows:

Theorem 2. For any given policy parameter θ and Lagrange multiplier λ, the tuple
(ξn, ψn) governed by (12)–(13) almost surely converges to the corresponding true val-
ues (VaRα(C

θ(s0)),CVaRα(C
θ(s0))), as n→ ∞.

The claim above regarding ξn can inferred by observing that V (see (10)) itself serves
as the Lyapunov function and the fact that the step-sizes satisfy (A3) implies the iterates
remain bounded. Thus, by an application of Proposition 1, it is evident that the recursion
(12) converges to a point in the set {ξ | V (ξ) = 0}. Since every local minimum is a
global minimum for V , the iterates ξn will converge to VaRα(C

θ(s0)). Establishing the
convergence of the companion recursion for CVaR in (13) is easier because it is a plain
averaging update that uses the VaR estimate ξn from (12).

1 Due to space limitations, the detailed convergence proofs will be presented in a longer version
of this paper.
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Step 2: Policy Update on Intermediate Time-scale

We provide the main arguments to show that θn governed by (9) converges to asymp-
totically stable equilibrium points of the following ODE:

θ̇t = Γ̌
(∇θLθt,λ(s0)

)
= Γ̌

(∇θG
θt(s0) + λ∇θCVaRα(C

θt(s0))
)
, (19)

where Γ̌ is a projection operator that keeps θt evolving according to (19) bounded with
the compact and convex set Θ ∈ R

d. Since λ is on the slowest timescale, its effect
is ’quasi-static’ on the θ-recursion. Further, since the CVaR estimation and necessary
gradient estimates using likelihood ratios are on the faster timescale, the θ-update in (9)
views these quantities as almost equilibrated. Thus, the θ-update in (9) can be seen to
be asymptotically equivalent to the following in the sense that the difference between
the two updates is o(1):

θn+1 = θn − γn
(∇θG

θn(s0) + λ∇θCVaRα(C
θn(s0))

)
,

Thus, (9) can be seen to be a discretization of the ODE (19). Moreover, Lθ,λ(s0) serves

as the Lyapunov function for the above recursion, since
dLθ,λ(s0)

dt
= ∇θLθ,λ(s0)θ̇ =

∇θLθ,λ(s0)
( − ∇θLθ,λ(s0)

)
< 0. Thus, by an application of Kushner-Clark lemma

[10], one can claim the following:

Theorem 3. For any given Lagrange multiplier λ, θn governed by (9) almost surely
converges to the asymptotically stable attractor, say Zλ, for the ODE (19), as n→ ∞.

Step 3: Lagrange Multiplier Update on Slowest Time-scale

This is easier in comparison to the other steps and follows using arguments similar to
that used for constrained MDPs in general in [6]. The λ recursion views θ as almost
equilibrated owing to time-scale separation and converges to the set of asymptotically
stable equilibria of the following system of ODEs:

λ̇t = Γ̌λ

(∇λLθλt ,λt(s0)
)

= Γ̌λ

(
CVaRα(C

θλt
(s0))−Kα

)
(20)

where θλ is the value of the converged policy parameter θ when multiplier λ is used.
Γ̌λ is a suitably defined projection operator that keeps λt bounded within [0, λmax].

Theorem 4. Let F �
= {λ | λ ∈ [0, λmax], Γ̌λ

[
CVaRα(C

θλ

(s0)) − Kα

]
= 0, θλ ∈

Zλ}. Then, λn governed by (9) converges almost surely to F as n→ ∞.

The proof of the above theorem follows using a standard stochastic approximation ar-
gument, as in [6, 14], that views λ-recursion as performing gradient ascent. By invoking
the envelope theorem of mathematical economics [13], the PG-CVaR-SA algorithm can
be shown to converge to a (local) saddle point of Lθ,λ(s0), i.e., to a tuple (θ∗, λ∗) that
are a local minimum w.r.t. θ and a local maximum w.r.t. λ of Lθ,λ(s0).
PG-CVaR-mB. The proof for mini-batch variant differs only in the first step, i.e., esti-
mation of VaR/CVaR and necessary gradients. Assuming that the number of mini-batch
samples mn → ∞, a straightforward application of law of large numbers establishes
that the empirical mean estimates for VaR, CVaR and the necessary gradients in PG-
CVaR-mB converge to their corresponding true values. The rest of the proof follows in
a similar manner as PG-CVaR-SA.
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7 Extension to Incorporate Importance Sampling

In this section, we incorporate an importance sampling procedure in the spirit of [11, 3]
to speed up the estimation procedure for VaR/CVaR in our algorithms.
Importance Sampling. Given a random variable X with density p(·) and a function
H(·), the aim of an IS based scheme is to estimate the expectation E(H(X)) in a
manner that reduces the variance of the estimates. SupposeX is sampled using another
distribution with density p̃(X, η) that is parameterized by η, such that p̃(X, η) = 0 ⇒
p(X) = 0, i.e., satisfies an absolute continuity condition. Then,

E(H(X)) = E

[
H(X)

p(X)

p̃(X, η)

]
. (21)

The problem is to choose the parameter η of the sampling distribution so as to minimize
the variance of the above estimate.

A slightly different approach based on mean-translation is taken in a recent method
proposed in [11]. By translation invariance, we have

E[H(X)] = E

[
H(X + η)

p(X + η)

p(X)

]
, (22)

and the objective is to find a η that minimizes the following variance term:

Q(η) := E

[
H2(X + η)

p2(X + η)

p2(X)

]
. (23)

If ∇Q can be written as an expectation, i.e., ∇Q(η) = E[q(η,X)], then one can hope
to estimate this expectation (and hence minimize Q) using a stochastic approximation
recursion. However, this is not straightforward since ‖q(η, x)‖2 is required to be sub-
linear to ensure convergence of the resulting scheme2.

One can get around this problem by double translation of η as suggested first in [11]
and later used in [3] for VaR/CVaR estimation. Formally, under classic log-concavity
assumptions on p(X), it can be shown thatQ is finite, convex and differentiable, so that

∇Q(η) :=E

[
H(X − η)2

p2(X − η)

p(X)p(X − 2η)

∇p(X − 2η)

p(X − 2η)

]
. (24)

Writing K(η,X) := p2(X−η)
p(X)p(X−2η)

∇p(X−2η)
p(X−2η) , one can boundK(η,X) by a determinis-

tic function of η as follows: |K(η,X)| ≤ e2ρ|η|
b

(A|x|b−1 + A|η|b−1 + B), for some
constants ρ,A and B. The last piece before present an IS scheme is related to con-
trolling the growth of H(X). We assume that H(X) is controlled by another function
W (X) that satisfies ∀x, |H(x)| ≤W (x),W (x+y) ≤ C(1+W (x))c(1+W (y))c and
E
[|X |2(b−1)W (X)4c

]
<∞.

An IS scheme based on stochastic approximation updates as follows:

ηn = ηn−1 − γnq̃(ηn−1, Xn), (25)

2 As illustrated in [3, Section 2.3], even for a standard Gaussian distributed X , i.e., X ∼
N (0, 1), the function q(η, x) = exp(|η|2/2− ηx)H2(x)(η − x) and hence not sub-linear.
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where q̃(η,X) := H(X − η)2e−2ρ|θ|bK(η,X). In lieu of the above discussion,
‖q̃(η,X)‖2 can be bounded by a linear function of ‖η‖2 and hence, the recursion (25)
converges to the set {η | ∇Q(η) = 0} (See Section 2.3 in [3] for more details).

IS for VaR/CVaR Estimation. Let D := (s0, a0, . . . , sτ−1, aτ−1) be the random vari-
able corresponding to an SSP episode and let Dn := (sn,0, an,0, . . . , sn,τ−1, an,τ−1)
be the nth sample simulated using the distribution of D. Recall that the objective is to
estimate the VaR/CVaR of the total cost Cθ(s0), for a given policy parameter θ using
samples from D.

Applying the IS procedure described above to our setting is not straightforward, as
one requires the knowledge of the density, say p(·), of the random variable D. Notice

that the density p(D) can be written as p(D) =
τ−1∏
m=0

πθ(am | sm)P (sm+1 | sm, am).

As pointed out in earlier works (cf. [17]), the ratio p(d)
p(d′) can be computed for two (in-

dependent) episodes d and d′ without requiring knowledge of the transition dynamics.

In the following, we use p̃(Dn) :=
τ−1∏
m=0

πθ(an,m | sn,m) as a proxy for the den-

sity p(Dn) and apply the IS scheme described above to reduce the variance of the
VaR/CVaR estimation scheme (12)–(13). The update rule of the resulting recursion is
as follows:

ξn = ξn−1 − ζn,1e
−ρ|η|b

(
1− 1

1− α
1{Cn+ηn−1≥ξn−1}

p̃(Dn + ηn−1)

p̃(Dn)

)
, (26)

ηn = ηn−1 − ζn,1e
−2ρ|ηn−1|b1{Cn−ηn−1≥ξn−1}

p̃2(Dn − ηn−1)∇p̃(Dn − 2ηn−1)

p̃(Dn)p̃(Dn − 2η)p̃(Dn − 2ηn−1)
,

(27)

ψn = ψn−1 − ζn,2

(
ψn−1 − ξn−1 − 1

1− α
(Cn + μn−1 − ξn−1) (28)

1{Cn+μn−1≥ξn−1}
p̃(Dn + μn−1)

p̃(Dn)

)
,

μn = μn−1 − ζn,2
e−2ρ|μn−1|b

1 +W (−μn−1)2c + ξ2n−1

(Cn − μn−1 − ξn−1)
2
. (29)

× 1{Cn−μn−1≥ξn−1}
p̃2(Dn − μn−1)

p̃(Dn)p̃(Dn − 2μn−1)

∇p̃(Dn − 2μn−1)

p̃(Dn − 2μn−1)
.

In the above, (26) estimates the VaR, while (27) attempts to find the best variance
reducer parameter for VaR estimation procedure. Similarly, (28) estimates the CVaR,
while (27) attempts to find the best variance reducer parameter for CVaR estimation
procedure.
Note on Convergence. Since we approximated the true density p(D) above using the
policy, the convergence analysis of the above scheme is challenging. The nontrivial part
is to establish that one can use the approximation p̃(·) in place of the true density p(·)
and this is left for future work. Assuming that this substitution holds, it can be shown
that the tuple (ηn, μn) updated according to (27) and (29), converge to the optimal
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variance reducers (η∗, μ∗), using arguments similar to that in Proposition 3.1 of [3].
(η∗, μ∗) minimize the convex functions

Q1(η, ξ
∗
α) := E

[
1{Cθ(s0)≥ξ∗α}

p(D)
p(D−η)

]
and

Q2(μ, ξ
∗
α) := E

[(
Cθ(s0)− ξ∗α

)2
1{Cθ(s0)≥ξ∗α}

p(D)
p(D−μ)

]
,where ξ∗α is a VaRα(C

θ(s0)).

8 Comparison to Previous Work

In comparison to [8] and [20], which are the most closely related contributions, we
would like to point out the following:
(i) The authors in [8] develop an algorithm for a (finite horizon) CVaR constrained MDP,
under a separability condition for the single-stage cost. On the other hand, without a
separability condition, we devise policy gradient algorithms in a SSP setting and our
algorithms are shown to converge as well; and
(ii) The authors in [20] derive a likelihood estimate for the gradient of the CVaR of
a random variable. However, they do not consider a risk-constrained SSP and instead
optimize only CVaR. In contrast, we employ a convergent procedure for estimating
CVaR that is motivated by a well-known convex optimization problem [16] and then
employ policy gradients for both the objective and constraints to find a locally risk-
optimal policy.

9 Conclusions

In this paper, we considered the problem of solving a risk-constrained stochastic short-
est path. We used Conditional Value-at-Risk (CVaR) as a risk measure and this is
motivated by applications in finance and energy markets. Using a careful synthesis
of well-known techniques from stochastic approximation, likelihood ratios and im-
portance sampling, we proposed a policy gradient algorithm that is provably conver-
gent to a locally risk-optimal policy. We also proposed another algorithm based on the
idea of mini-batches for estimating CVaR from the simulated samples. Both the al-
gorithms incorporated a CVaR estimation procedure along the lines of [3], which in
turn is based on the well-known convex optimization representation by Rockafellar-
Uryasev [16]. Stochastic approximation or mini-batches are used to approximate CVaR
estimates/necessary gradients in the algorithms, while the gradients themselves are ob-
tained using the likelihood ratio technique. Further, since CVaR is an expectation that
conditions on the tail probability, to speed up CVaR estimation we incorporated an im-
portance sampling procedure along the lines of [3].

There are several future directions to be explored such as (i) obtaining finite-time
bounds for our proposed algorithms , (ii) handling very large state spaces using function
approximation, and (iii) applying our algorithms in practical contexts such as portfolio
management in finance/energy sectors and revenue maximization in the re-insurance
business.
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