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Abstract

Motivated by models of human decision making proposed
to explain commonly observed deviations from conven-
tional expected value preferences, we formulate two stochas-
tic multi-armed bandit problems with distorted probabil-
ities on the cost distributions: the classic K-armed ban-
dit and the linearly parameterized bandit. In both settings,
we propose algorithms that are inspired by Upper Con-
fidence Bound (UCB) algorithms, incorporate cost distor-
tions, and exhibit sublinear regret assuming Hölder con-
tinuous weight distortion functions. For the K-armed set-
ting, we show that the algorithm, called W-UCB, achieves
problem-dependent regret O

(
L2M2 log n/Δ

2
α
−1

)
, where

n is the number of plays, Δ is the gap in distorted ex-
pected value between the best and next best arm, L and α
are the Hölder constants for the distortion function, and M
is an upper bound on costs, and a problem-independent re-
gret bound of O((KL2M2)α/2n(2−α)/2). We also present
a matching lower bound on the regret, showing that the re-
gret of W-UCB is essentially unimprovable over the class
of Hölder -continuous weight distortions. For the linearly
parameterized setting, we develop a new algorithm, a vari-
ant of the Optimism in the Face of Uncertainty Linear ban-
dit (OFUL) algorithm (Abbasi-Yadkori, Pál, and Szepesvári
2011) called WOFUL (Weight-distorted OFUL), and show
that it has regret O(d

√
n polylog(n)) with high probabil-

ity, for sub-Gaussian cost distributions. Finally, numerical
examples demonstrate the advantages resulting from using
distortion-aware learning algorithms.

Introduction

Consider the following two-armed bandit problem: The re-
wards of Arm 1 are $1 million w.p. 1/106 and 0 otherwise,
while Arm 2 rewards are $1000 w.p. 1/103 and 0 otherwise.
In this case, humans would usually prefer Arm 1 over Arm
2. The human preferences get flipped if we change to costs,
i.e., Arm 1 loses a million with a very low probability of
1/106, while Arm 2 loses $1000 w.p. 1/103. In this case,
Arm 2 is preferred over Arm 1. The above example illus-
trates that traditional expected value falls short in explaining
human preferences, and the reader is referred to the classic
Allais problem (Allais 1953) that rigorously argues against
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Figure 1: Graphical illustration of a typical weight function
that inflates low probabilities and deflates large probabili-
ties. The weight function used in the figure is the one rec-
ommended by Tversky and Kahneman (1992) based on em-
pirical tests involving human subjects.

expected utility theory as a model for human-based decision
making systems.

Violations of the expected value-based preferences in
human-based decision making systems can be alleviated by
incorporating distortions in the underlying probabilities of
the system (Starmer 2000) (Quiggin 2012, Chapter 4). Prob-
abilistic distortions have a long history in behavioral science
and economics, and we bring this idea to a multi-armed
bandit setup. In particular, we base our approach on rank-
dependent expected utility (RDEU) (Quiggin 2012), which
includes the popular cumulative prospect theory (CPT) of
Tversky and Kahneman (1992).

The distortions happen via a weight function w : [0, 1] →
[0, 1] that transforms probabilities in a nonlinear fashion.
As illustrated in Figure 1, a typical weight function, say
w : [0, 1] → [0, 1], has the inverted-S shape. In other words,
w inflates low probabilities and deflates large probabilities
and can explain human preferences well. For instance, in
the example above, if we choose w(1/106) > 1/106 and
take expectations w.r.t. the w-distorted distribution, then
Arm 1 would be preferable when the problem is setup
with rewards and Arm 2 for the problem with costs. The
suitability of this approach, esp. with a inverted-S shaped
weight function, to model human decision making (and
thus preferences) has been widely documented (Prelec 1998;
Wu and Gonzalez 1996; Conlisk 1989; Camerer 1989; 1992;
Cherny and Madan 2009; Gonzalez and Wu 1999).
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We use a traveler’s route choice as a running example to
illustrate the main ideas in this paper. The setting here is
that a human travels from a source (e.g., home) to a destina-
tion (e.g., office), both fixed, every day. He/she has multiple
routes to choose from, and each route incurs a stochastic
delay with unknown distributions. The problem then is to
choose a route that minimizes some function of delay. Us-
ing expected delay may not lead to a routing choice that is
appealing to the human traveler. In addition to the examples
mentioned earlier, intuitively humans would prefer a route
with a slight excess of delay over another that has a small
probability of getting into a traffic jam that takes hours to be
resolved. The requirement here is for an automated routing
algorithm, say one that sits as an application on the traveler’s
mobile device, that learns the best route for the traveler. The
algorithm is online and uses the delay information for a rec-
ommended route as feedback to find the best route. We treat
this problem in two regimes: first, a setting where the num-
ber of routes is small, so the traveler can afford to try each
of the routes a small number of times before fixing on the
“best” route; second, a big road network setting that involves
a large number of routes, which prohibits an approach that
requires trying the bulk of the routes before deciding which
is the “best”.

We formalize two probabilistically distorted bandit set-
tings that correspond to the two routing setups mentioned
above. The first is the classic K-armed setting, while the
second is the linear bandit setting. In both settings, we de-
fine the weight-distorted value μx for any arm x in the space
of arms X as follows:

μx=

∫ ∞

0

w(P [Yx > z])dz−
∫ ∞

0

w(P [−Yx > z])dz, (1)

where w is the weight function that satisfies w(0) = 0
and w(1) = 1 and Yx is the random variable (r.v.) corre-
sponding to the stochastic rewards from arm x ∈ X . By
choosing the identity weight function w(p) = p, we obtain
μx = E(Y+

x ) − E(Y−x ) = E(Yx), where y+ = max(y, 0)
and y− = max(−y, 0) denote the positive and negative parts
of y ∈ R, respectively. Thus, μx as in (1) generalizes stan-
dard expected value. As discussed earlier, w has to be chosen
in a non-linear fashion, to capture human preferences, which
has strong empirical support.

In our setting, the goal is find an arm x∗ that maximizes
(1). The problem is challenging because the current ban-
dit solutions, for instance, the popular UCB algorithm, can-
not handle distortions. This is because the environment pro-
vides samples from the distribution Fx when arm x is pulled,
while the integral in (1) involves a distorted distribution. The
implication is that a simple sample mean and a confidence
term suggested by the Hoeffding inequality is enough to de-
rive the UCB values for any arm in the regular setting involv-
ing expected values. On the other hand, one requires a good
enough estimate of Fx to estimate μx. Just for the sake of
example, a (α-Hölder continuous) weight function such as
w(t) := tα, when applied to a Bernoulli(p) distribution, dis-
torts the mean to pα from p, and can introduce an arbitrarily
large scaling for arms with real expectations close to 0. It fol-
lows that nonlinear weight distortion can, in fact, change the

order of the optimal arm, resulting in a distortion-unaware
algorithm like UCB converging to the wrong arm and incur-
ring linear regret. The W-UCB algorithm that we propose in-
corporates a empirical distribution-based approach, similar
to that of Prashanth et al. (2016), to estimate μx. However,
unlike the latter, our algorithm incorporates a confidence
term relying on the Dvoretzky-Kiefer-Wolfowitz (DKW) in-
equality (Wasserman 2015) that ensures the W-UCB values
are a high-probability bound on the true value μx. We pro-
vide upper bounds on the regret of W-UCB, assuming w is
Hölder continuous and provide empirical demonstrations on
a setting from Tversky and Kahneman (1992).

Next, we consider a linear bandit setting with weight dis-
tortions that can be motivated as follows: Consider a net-
work graph G = (V,E), |E| = d, with a source s ∈ V and
destination t ∈ V . The interaction proceeds over multiple
rounds, where in each round m, the user picks a route xm

from s to t (a route is a collection of edges encoded by a
vector of 0 − 1 values in d dimensions) and experiences a
stochastic delay xT

m (θ +Nm). Here θ ∈ R
d is an underly-

ing model parameter and Nm ∈ R
d is a random noise vec-

tor, both unknown to the learner. The physical interpretation
is that the nodes represent geographical locations (say junc-
tions) and the edges are roads that connect nodes. An edge
from i to j will have an edge weight θij , which quantifies
the delay for this edge.

Notice that the observations include a noise component
that scales with the route chosen – this is unlike the model
followed in earlier linear bandit works (Abbasi-Yadkori,
Pál, and Szepesvári 2011; Dani, Hayes, and Kakade 2008),
where the noise was independent of the arm chosen. Our
noise model makes practical sense because the observed de-
lay in a road traffic network depends on the length of the
route, for e.g., one would expect more noise in a detour in-
volving ten roads than in a direct one-road route. The aim
is to find a low-delay route that satisfies the user. The set-
ting is such that the number of routes is large (so the reg-
ular K-armed bandits don’t scale) and one needs to utilize
the linearity in the costs (delays) to find the optimal route,
where optimality is qualified in terms of a weight-distorted
expectation.

For the linear bandit setting, we propose a variant of
the OFUL algorithm (Abbasi-Yadkori, Pál, and Szepesvári
2011), that incorporates weight-distorted values in the arm
selection step. The regret analysis of the resulting WOFUL
algorithm poses novel challenges compared to that in the lin-
ear bandit problem, primarily because the instantaneous cost
(and hence regret) at each round is in fact a nonlinear func-
tion of the features of the played arm. This occurs due to the
distortion in expectation caused by the weight function, al-
though the actual observation (e.g., network delay in the ex-
ample above) is linear in expectation over the played arm’s
features. The weight function can not only change the opti-
mal arm but can also potentially amplify small differences
in real expected values of arms to much larger values, lead-
ing to a blowing up of overall regret. However, our analysis
shows that regret in weight-distorted cost as the performance
metric can be controlled at the same rate as that in standard
linear bandit models, irrespective of the structure of the dis-
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tortion function. More specifically, we show, using a careful
analysis of the effect of weight distortion, that the regret of
the WOFUL algorithm is no more than O (d

√
n polylog(n))

in n rounds with high probability, similar to the guarantee
enjoyed by the OFUL algorithm in linear bandits (note how-
ever that the identity of the optimal arm may be different due
to weight distortion in costs).

Related work: The closest related previous contribution
is that of Prashanth et al. (2016), where the authors bring
in ideas from CPT to a reinforcement learning (RL) set-
ting. In contrast, we formulate two multi-armed bandit mod-
els that incorporate weight-distortions. From a theoretical
standpoint, we handle the exploration-exploitation tradeoff
via UCB-inspired algorithms, while the focus of Prashanth
et al. (2016) was to devise a policy-gradient scheme given
biased estimates of a certain CPT-value defined for each pol-
icy. Moreover, we provide finite-time regret bounds for both
bandit settings, while the guarantees for the policy gradient
algorithm in Prashanth et al. (2016) are asymptotic in nature.

Previous works involving RDEU and CPT are huge in
number; at a conceptual level, the work in this paper in-
tegrates machine learning (esp. bandit learning) with an
RDEU approach that involves a probabilistic distortions via
a weight function. To the best of our knowledge, RDEU/CPT
papers in the literature assume model information, i.e., a set-
ting where the distributions of the arms are known, while we
have a model-free setting where one can only obtain sample
values from the arms’ distributions. Our setting makes prac-
tical sense; for instance, in the traveler’s route choice prob-
lem one can only obtain sample delays for a particular route,
while the distribution governing the delays for any route is
not known explicitly.

K-armed bandit with weight distortion

Suppose there are K arms with unknown distributions
Fk, k = 1, . . . ,K. In each round m = 1, . . . , n, the algo-
rithm pulls an arm Im ∈ {1, . . . ,K} and obtains a sample
cost from the distribution FIm of arm Im.

The classic objective is to play (or pull) the arm whose
expected cost is the least. In this paper, we take a different
approach inspired by non-expected utility (EU) approaches
and use the weight distorted-cost μk as the performance cri-
terion for any arm k. The latter quantity, defined in (1), can
be seen to be equivalent to the following:

μk :=

∫ ∞

0

w(1− Fk(z))dz −
∫ ∞

0

w(Fk(−z))dz, (2)

where w : [0, 1] → [0, 1] is a weight function that distorts
probabilities.

The optimal arm is one that minimizes the weight-
distorted cost, i.e., μ∗ = mink μk. The optimal arm is not
necessarily unique, i.e., there may exist multiple arms with
the optimal weight-distorted cost μ∗.

With the above notion of weight-distorted cost, we define
the cumulative regret Rn as Rn =

∑K
k=1 Tk(n)μk − nμ∗,

where Tk(n) =
∑n

m=1 I(Im = k) is the number of times
arm k is pulled up to time n. The expected regret can be writ-
ten as ERn =

∑K
k=1 E[Tk(n)]Δk, where Δk = μk − μ∗

denotes the gap between the weight-distorted costs of the
optimal arm and of arm k. Note that this definition of regret
arises from the interpretation that each arm k is associated
with a deterministic value μk. The least possible cumulative
cost that can be suffered in n rounds is thus nμ∗, while that
suffered by a given strategy is

∑K
k=1 Tk(n)μk. Thus, the re-

gret as defined above is a measure of the rate at which a
strategy converges to playing the optimal arm in the sense
of weighted or distorted cost.

We remark that the regret performance measure, as de-
fined above, is explicitly defined within a stochastic model
for rewards. Thus, low-regret algorithms designed for the
nonstochastic setting, e.g., EXP3 (Auer et al. 2003), are not
inherently suitable for this problem, as they do not factor in
the distortion caused in (expected) reward. A similar obser-
vation holds for conventional stochastic bandit algorithms
such as UCB, and algorithms sensitive to arm reward vari-
ances such as UCB-V (Audibert, Munos, and Szepesvári
2009) – once weight distortion is incorporated, the algorithm
will converge to an arm that is not weight-distorted value
optimal. Thus, applying a variance-sensitive algorithm (like
UCB-V) will still yield linear regret in the distorted setting.

W-UCB Algorithm

Estimating the weight-distorted cost for any arm k is chal-
lenging, and one cannot use a Monte Carlo approach with
sample means because weight-distorted cost involves a dis-
torted distribution, whereas the samples come from the
undistorted distribution Fk. Thus, one needs to estimate
the entire distribution, and for this purpose, we adapt the
quantile-based approach of Prashanth et al. (2016).

Estimating μk: At time instant m, let Yk,1, . . . , Yk,l de-
note the samples from the cost distribution Fk for arm k,
where we have used l to denote the number of samples
Tk(m − 1) for notational convenience. Order the samples
in ascending fashion as Y[k,1] ≤ Y[k,2] ≤ · · · ≤ Y[k,lb] ≤
0 ≤ Y[k,lb+1] ≤ · · · ≤ Y[k,l], where lb ∈ {0, 1, 2, . . . , l}
denotes the index of a ‘boundary’ sample after which a sign
change occurs. The first integral in (2) is estimated by the
quantity

μ̂+
k,l :=

l∑
i=lb+1

Y[k,i]

(
w

(
l + 1− i

l

)
−w

(
l − i

l

))
, (3)

while the second integral in (2) is estimated by the quantity

μ̂−k,l :=
lb∑
i=1

Y[k,i]

(
w

(
i− 1

l

)
− w

(
i

l

))
. (4)

We finally estimate μk as follows:

μ̂k,l = μ̂+
k,l − μ̂−k,l. (5)

From (2) and (5) above, it can be seen that μ̂k,l is the weight-
distorted cost of the empirical distribution of samples from
arm k seen thus far, i.e.,

μ̂k,l :=

∫ ∞

0

w(1− F̂k,l(z))dz −
∫ ∞

0

w(F̂k,l(−z))dz,
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where F̂k,l(x) := 1
l

∑l
i=1 I[Yk,i≤x] denotes the empirical

distribution of r.v. Yx. In particular, the first and second in-
tegral above correspond to (3) and (4), respectively.

We next provide a sample complexity result for the accu-
racy of the estimator μ̂k,l under the following assumptions:
(A1) The weight function w is Hölder continuous with con-
stant L and exponent α ∈ (0, 1]: supx �=y

|w(x)−w(y)|
|x−y|α ≤ L.

(A2) The arms’ costs are bounded by M > 0 almost surely.
(A1) is necessary to ensure that the weight-distorted value

μk, k = 1, . . . ,K is finite. Moreover, the popular choice for
the weight function, proposed by Tversky and Kahneman
(1992) and illustrated in Figure 1, is Hölder continuous.
Theorem 1 (Sample complexity of estimating distorted
cost). Assume (A1)-(A2). Then, for any ε > 0 and any
k ∈ {1, . . . ,K}, we have P (|μ̂k,m − μk| > ε) ≤
2 exp

(−2m(ε/LM)2/α
)
.

For the special case of Lipschitz weight functions w, set-
ting α = 1 in the above theorem, we obtain a sample com-
plexity of order O

(
1/ε2

)
for accuracy ε.

B-values (weighted UCB values): At instant m, define
the B-value for any arm k, as a function of the number of
samples l and constants α ∈ [0, 1], L > 0,M > 0, as:

Bm,l(k) = μ̂k,l − γm,l, where γm,l := LM

(
3 logm

2l

)α
2

.

The r.v. μ̂k,l, defined by (5), is an estimate of μk that uses
the l = Tk(m − 1) sample costs of arm k seen so far
and γm,l is the confidence width, which together with μ̂m,l

ensures that the true weight-distorted value μk lies within
[μ̂k,l − γm,l, μ̂k,l + γm,l] with high probability, i.e., for
k = 1, . . . ,K, both P (μ̂k,l + γm,l ≤ μk) ≤ 2m−3 and
P (μ̂k,l − γm,l ≥ μk) ≤ 2m−3.

Using the B-values defined above, the W-UCB algorithm
chooses the arm Im at instant m as follows:

If m ≤ K, then play Im = m (initial round-robin phase),
Else, play Im = argmin

k={1,...,K}
Bm,Tk(m−1)(k). (6)

Theorem 2 (Regret bound). Under (A1)-(A2), the expected
cumulative regret Rn of W-UCB is bounded as follows:

ERn ≤
∑

{k:Δk>0}

3(2LM)2/α log n

2Δ
2/α−1
k

+MK

(
1 +

2π2

3

)
.

The theorem above involves the gaps Δk. We next present
a gap-independent regret bound in the following result:
Corollary 1 (Gap-independent regret). Under (A1)-(A2),
the expected cumulative regret Rn of W-UCB satisfies
the following gap-independent bound. There exists a uni-
versal constant c > 0 such that for all n, ERn ≤
MKα/2

(
3
2 (2L)

2/α log n+ c
)α

2 n
2−α
2 .

Remark 1. (Lipschitz weights) We can recover the O(
√
n)

regret bound (or same dependence on the gaps) as in regular
UCB for the case when α = 1, i.e., Lipschitz weights. On the
other hand, when α < 1, the regret bounds are weaker than
O(

√
n).

The following result shows that one cannot hope to obtain
better regret than that of W-UCB (Theorem 2) over the class
of Hölder-continuous weight functions, i.e., weight func-
tions satisfying (A1)-(A2), by exhibiting a matching lower
bound.

Theorem 3 (Regret lower bound). For any learning algo-
rithm with sub-polynomial regret in the time horizon, there
exists (1) a weight function which is monotone increasing
and α-Hölder continuous with constant L, and (2) a set of
cost distributions for the arms with support bounded by M ,
for which the algorithm’s regret satisfies

E [Rn] = Ω

(∑
{k:Δk>0}

(LM)2/α log n

4Δ
2/α−1
k

)
.

A more precise statement of the above result, and the
proofs of Theorems 1–3, can be found in (Gopalan et al.
2016).

Linearly parameterized bandit

with weight distortion

The setting here involves arms that are given as the compact
set X ⊂ R

d (each element of X is interpreted as a vector
of features associated with an arm). The learning game pro-
ceeds as follows. At each round m = 1, 2, . . ., the learner
(a) plays an arm xm ∈ X , possibly depending on the history
of observations thus far, and
(b) observes a stochastic, nonnegative cost given by

cm := xT

m (θ +Nm) , (7)

where Nm := (N1
m, . . . , Nd

m) is a vector of i.i.d. stan-
dard Gaussian random variables, independent of the previ-
ous vectors N1, . . . , Nm−1, and θ ∈ R

d is an underlying
model parameter. Both θ and Nm, m ≥ 1, are unknown to
the learner.

Given a weight function w : [0, 1] → [0, 1], we define the
weight-distorted cost μ(x, θ) for arm x ∈ X , with underly-
ing model parameter θ, to be the quantity

μx(θ) :=

∫ ∞

0

w(1−F θ
x (z))dz+

∫ ∞

0

w(F θ
x (−z))dz, (8)

where F θ
x (z) := P [xT(θ +N) ≤ z], z ∈ R, is the cu-

mulative distribution function of the stochastic cost from
playing arm x ∈ X . An arm x is said to be optimal if
its weight-distorted cost equals the least possible weight-
distorted cost achieved across all arms, i.e., if μx = μ∗ :=
minx′∈X μx′(θ). As in the K-armed setting, the perfor-
mance measure is the cumulative regret Rn over n rounds,
defined as Rn =

∑n
m=1 μxm(θ) − nμ∗, where xm is the

arm chosen by the bandit algorithm in round m.
Algorithm 1 presents the pseudocode for the proposed al-

gorithm, which follows the general template for linear bandit
algorithms (cf. ConfidenceBall in (Dani, Hayes, and Kakade
2008) or OFUL in (Abbasi-Yadkori, Pál, and Szepesvári
2011)), but deviates in the step when an arm is chosen.
In particular, in any round m of the algorithm, WOFUL
uses μx(θ) as the decision criterion for any arm x ∈ X
and θ ∈ Cm, where μx(θ) is the weight-distorted value
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Algorithm 1 WOFUL

Input: regularization constant λ ≥ 0, confidence δ ∈
(0, 1), norm bound β, weight function w.
Initialization: A1 = λId×d (d× d identity matrix), b1 =

0, θ̂1 = 0.
for m = 1, 2, . . . do

Set Cm :=

{
θ ∈ R

d :
∥∥∥θ − θ̂m

∥∥∥
Am

≤ Dm

}
and

Dm :=

√
2 log

(
det(Am)1/2 λd/2

δ

)
+ β

√
λ.

Let (xm, θ̃m) := argmin
(x,θ′)∈X×Cm

μx(θ
′).

Choose arm xm and observe cost cm.
Update Am+1 = Am +

xmxT
m

‖xm‖2 ,
bm+1 = bm + cmxm

‖xm‖ , and

θ̂m+1 = A−1
m+1bm+1

end for

that is defined in (8) and Cm is the confidence ellipsoid
that is specified in Algorithm 1. This is unlike regular lin-
ear bandit algorithms, which use xTθ as the cost for any
arm x ∈ X and θ ∈ Cm. Note that the “in-parameter” or
arm-dependent noise model (7) also necessitates modifying
the standard confidence ellipsoid construction of (Abbasi-
Yadkori, Pál, and Szepesvári 2011) by rescaling with the
arm size (the Am and bm variables in Algorithm 1). For a
positive semidefinite matrix M and a vector x, we use the
notation ‖x‖M =

√
xTMx to denote the Euclidean norm of

x weighted by M .
Remark 2. (Computation cost) The computationally in-
tensive step in WOFUL is the optimization of the weight-
distorted value over an ellipsoid in the parameter space
(the third line in the for loop). This can be explicitly
solved as follows. For a fixed x ∈ X , we can let
θ̄m,x := argmin

θ′∈Cm

μx(θ
′) = argmin

θ′∈Cm

xTθ′ = θ̂m −
DmA−1

m x/ ‖x‖A−1 This is because the weight-distorted
value is monotone under translation (see Lemma 5 be-
low). The cost-minimizing arm is thus computed as xm =
argmin{μx1(θ̄m,1), . . . , μx|X|(θ̄m,|X |)}.
Theorem 4 (Regret bound for WOFUL). Suppose that the
weight function w satisfies 0 ≤ w(p) ≤ 1, ∀p ∈ (0, 1), ∀x ∈
X : xTθ ∈ [−1, 1], and ‖θ‖2 ≤ β. Then, for any δ > 0, the
regret Rn of WOFUL, run with parameters λ > 0, B, δ and
w, satisfies P

(
Rn ≤ √

32dnDn log n ∀n ≥ 1
) ≥ 1− δ.

Remark 3. If for all x ∈ X , ‖x‖2 ≤ 
, then the quantity Dn

appearing in the regret bound above is O
(√

d log
(
n�2

λδ

))
(Abbasi-Yadkori, Pál, and Szepesvári 2011, Lemma 10);
thus, the overall regret is1 Õ (d

√
n).

Remark 4. For the identity weight function w(t) = t,
0 ≤ t ≤ 1 with L = α = 1, we recover the stochastic lin-
ear bandit setting, and the associated Õ (d

√
n) regret bound

1Õ(·) is a variant of the O(·) that ignores log-factors.
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Figure 2: Cumulative regret along with standard error from
100 replications for the UCB and W-UCB algorithms for 2
stochastic K-armed bandit environments: (a) Arm 1: ($50
w.p. 0.1, $0 w.p. 0.9) vs. Arm 2: $7 w.p. 1. (b) Arm 1: ($500
w.p. 0.01, $0 w.p. 0.99) vs. Arm 2: ($250 w.p. 0.03, $0 w.p.
0.97).

for linear bandit algorithms such as ConfidenceBall1 and
ConfidenceBall2 (Dani, Hayes, and Kakade 2008), OFUL
(Abbasi-Yadkori, Pál, and Szepesvári 2011). Hence, the re-
sult above is a generalization of regret bounds for standard
linear bandit optimization to the case where a non-linear
weight function of the cost distribution is to be optimized
from linearly parameterized observations. The distortion of
the cost distribution via a weight function, rather interest-
ingly, does not impact the order of the bound on problem-
independent regret, and we obtain Õ (d

√
n) here as well.

Remark 5. Note that the weight function w can be any non-
linear function bounded in [0, 1]; unlike the K-armed setting,
we do not impose a Hölder continuity assumption on w.
Remark 6. A lower bound of essentially the same order as
Theorem 4 (O(d

√
n)) holds for regret in (undistorted) lin-

ear bandits (Dani, Kakade, and Hayes 2007). One can show
a similar lower bound argument with distortions, implying
that the result of the theorem is not improvable (order-wise)
across weight functions.
Remark 7. (Linear bandits with arm-independent ad-
ditive noise) An alternative to modelling “in-parameter”
or arm-dependent noise (7) is to have independent addi-
tive noise, i.e., cm := xT

mθ + ηm. This is a standard
model of stochastic observations adopted in the linear ban-
dit literature (Abbasi-Yadkori, Pál, and Szepesvári 2011;
Dani, Hayes, and Kakade 2008). The key difference here is
that, unlike the setting in (7), the noise component ηm does
not depend on the arm played xm. In this case, Lemma 5 be-
low shows that μX+a ≥ μX , i.e., the distorted CPT value μ
preserves order under translations of random variables. As
a consequence of this fact, the WOFUL algorithm reduces
to the OFUL algorithm in the standard linear bandit setting
with arm-independent noise.

Proof sketch for Theorem 4. We upper-bound the instanta-
neous regret rm as follows: Letting x̂m = xm

‖xm‖ and N to
be a standard Gaussian r.v. in d dimensions, we have

rm = μxm
(θ)− μx∗(θ) ≤ μxm

(θ)− μxm
(θ̃m)

= ‖xm‖
(
μW+x̂T

mθ − μW+x̂T
mθ̃m

)
(9)

≤ 2 ‖xm‖
∣∣∣x̂T

m(θ − θ̃m)
∣∣∣ , (10)
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Figure 3: Expected value xT

algθ̂off and weight-distorted value
μxalg(θ̂off) for OFUL and WOFUL algorithms on a 3x3-grid
network. Here θ̂off is a ridge regression-based estimate of the
true parameter θ (see (7)) that is obtained by running an in-
dependent simulation and xalg is the route that the respective
algorithm converges. xOFUL is the blue-dotted route in the
figure, while xWOFUL includes the green-dotted detour.

and the rest of the proof uses the standard confidence ellip-
soid result that ensures θ resides in Cm with high proba-
bility. A crucial observation necessary to ensure (9) is that,
for any r.v. X and any a ∈ R, the difference in weight-
distorted cost μX+a − μX is a non-linear function of a (see
Lemma 5 below). Thus, it is not straightforward to compute
the weight-distorted cost after translation and this poses a
significant challenge in the analysis of WOFUL for the arm-
dependent noise model that we consider here.

Lemma 5. Let μX :=
∫∞
0

w(P [X > z])dz −∫∞
0

w(P [−X > z])dz. Then, for any a ∈ R, we have
μX+a = μX +

∫ 0

−a
[w(P [X > u]) + w(P [X < u])] du.

Consequently, since w is bounded by 1, we have
|μX+a − μX | ≤ 2|a|, for any a ∈ R.

The reader is referred to (Gopalan et al. 2016) for a detailed
proof.

Numerical Experiments

We describe two sets of experiments pertaining to K-
armed and linear bandit settings, respectively. For both
problems, we take the S-shaped weight function w(p) =

pη

(pη+(1−p)η)1/η
, with η = 0.61, to model perceived distor-

tions in cost. Tversky and Kahneman observe that this dis-
tortion weight function is a good fit to explain distorted value
preferences among human beings.

Experiments for K-armed Bandit

We study two stylized 2-armed bandit problems which, in
part, draw upon experiments carried out by (1992) on hu-
man subjects in their studies of non-EU cumulative prospect
theory. Figures 2 (a) and (b) describe each problem setting
in detail (following the convention of this paper of modeling
costs, “$x w.p. p” is taken to mean a loss of $x suffered with
a probability of p.)

For the first problem, the weight function w gives the dis-
torted cost of arm 1 as $10.55, much higher than its expected
cost of $5 and thus more expensive due to the deterministic
Arm 2 with a (distorted and expected) cost of $7. The distor-
tion in costs thus shifts the optimal arm from Arm 1 to Arm

2, and an online learning algorithm must be aware of this
effect in order to attain low regret with respect to choosing
Arm 2. A similar pattern is true for the other problem in-
volving truly stochastic arms – weight distortion favors the
arm with the higher cost in true expectation.

We benchmark the cumulative regret of two algorithms
– (a) the well-known UCB algorithm (Auer, Cesa-Bianchi,
and Fischer 2002), and (b) W-UCB; the results are as in
Figure 2. In the experiments, UCB is not aware of the dis-
torted weighting and hence attains linear regret with respect
to playing the optimal distorted arm, due to converging to
essentially a ‘wrong’ arm. On the other hand, the W-UCB
algorithm, being designed to explicitly account for distorted
cost perception, estimates the distortion using sample-based
quantiles and exhibits significantly lower regret.

Experiments for Linear Bandit

We study the problem of optimizing the route choice of a hu-
man traveler using Green Light District (GLD) traffic simu-
lation software (Wiering et al. 2004). In this setup, a source-
destination pair is fixed in a given road network. Learning
proceeds in an online fashion, where the algorithm chooses
a route in each round, and the system provides the (stochas-
tic) delay for the chosen route. The objective is to find the
“best” path that optimizes some function of delay, while not
exploring too much. While traditional algorithms minimized
the expected delay, in this work, we consider the distorted
value (as defined in (8)) as the performance metric.

We implement both OFUL and WOFUL algorithms for
this problem. Since the weight function w is non-linear, a
closed form expression for μx(θ̂m) is not available and we
employ the empirical distribution scheme, described for the
K-armed bandit setting (see (5)), for estimating the weight-
distorted value. For this purpose, we simulate 25000 samples
of the Gaussian distribution, as defined in (7).

Figure 3 depicts the road network considered for our ex-
periments and presents the expected and weight-distorted
values for OFUL and WOFUL. These values are calculated
using a ridge regression-based estimate of the true param-
eter θ, which is obtained by running an independent sim-
ulation for 100, 000 steps. This is based on the assump-
tion of a linear (additive) relationship between the delay of
a route and the delays along each of its component lanes,
in steady state. As expected, OFUL (resp. WOFUL) algo-
rithm recommends a route xOFUL (resp. xWOFUL) with mini-
mum mean delay (resp. weight-distorted value). As shown
in Figure 3, xOFUL is the shortest path, while xWOFUL involves
a detour. The lower value of distorted value (delay) for the
longer path preferred by WOFUL, over the shorter path pre-
ferred by OFUL, is presumably due to the fact that the two
routes differ in the variance of the end-to-end delay. This
leads to rare events being overestimated by the weight func-
tion, ultimately making the former path more appealing to
the distortion-conscious WOFUL strategy. The reader is re-
ferred to (Gopalan et al. 2016) for details of the simulation
parameters and additional results on another road network.
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Conclusions and Future Work

We have designed online learning algorithms to minimize
weight-distorted cost – a generalization of expected value
– in both the standard (unstructured) k-armed bandit and
the linearly parameterized bandit settings. Moving forward,
it is of interest to study the general online reinforcement
learning problem with weight-distorted cost metrics. Ex-
isting algorithms for expected value maximization such as
UCRL (Jaksch, Ortner, and Auer 2010) and PSRL (Osband,
Russo, and Van Roy 2013) could be adapted for this purpose.
Other interesting directions include considering contextual
versions of the cost-distorted bandit problem, and perceived
distortions in the observations.
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proved algorithms for linear stochastic bandits. In Advances
in Neural Information Processing Systems, 2312–2320.
Allais, M. 1953. Le comportement de l’homme rationel
devant le risque: Critique des postulats et axioms de l’ecole
americaine. Econometrica 21:503–546.
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
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