Reinforcement Learning for Traffic Signal Control

Prashanth L.A.

Postdoctoral Researcher, INRIA Lille - Team SequeL

work done as a PhD student at Department of Computer Science and Automation, Indian Institute of Science

October 2014

Prashanth L.A. (INRIA)

Reinforcement Learning for Traffic Signal Control

October 2014 1 / 14

Traffic signal control using RL

On a good day, the traffic is ...

Prashanth L.A. (INRIA)

Traffic signal control using RL

And on a bad day, it can be . . .

Prashanth L.A. (INRIA)

Aim: Maximize traffic flow (long-term performance criterion)

Input: Coarse congestion estimates *Output:* Policy for switching traffic lights

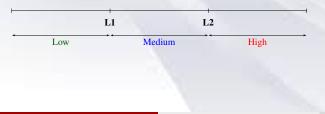
Prashanth L.A. (INRIA)

Aim: Maximize traffic flow (long-term performance criterion)

Input: Coarse congestion estimates *Output:* Policy for switching traffic lights

Aim: Maximize traffic flow (long-term performance criterion)

Input: Coarse congestion estimates *Output:* Policy for switching traffic lights



Aim: Maximize traffic flow (long-term performance criterion)

Input: Coarse congestion estimates *Output:* Policy for switching traffic lights

Dynamic: Adapts to traffic conditions

Model free: Do not assume a system model

Scalable: Easily implementable on large road networks Solution: Reinforcement Learning

Prashanth L.A. (INRIA)

Dynamic: Adapts to traffic conditions

Model free: Do not assume a system model

Scalable: Easily implementable on large road networks Solution: Reinforcement Learning

Prashanth L.A. (INRIA)

Dynamic: Adapts to traffic conditions

Model free: Do not assume a system model

Solution: Reinforcement Learning

Scalable: Easily implementable on large road networks

Dynamic: Adapts to traffic conditions

Model free: Do not assume a system model

Solution: Reinforcement Learning

Scalable: Easily implementable on large road networks

Dynamic: Adapts to traffic conditions

Model free: Do not assume a system model

Solution: Reinforcement Learning

Scalable: Easily implementable on large road networks

Traffic Signal Control MDP

State.
$$s_n = (q_1, \dots, q_N, t_1, \dots, t_N)$$

Actions. $a_n = \{ \text{feasible sign configurations in state } s_n \}$ Cost.

$$k(s_n, a_n) = r_1 * \left(\sum_{i \in I_p} q_i(n) + t_i(n) \right) + s_1 * \left(\sum_{i \notin I_p} q_i(n) + t_i(n) \right)$$

weightage to main road traffic

more w

Qlearning based TLC algorithm

Q-learning

$$Q(s_{n+1}, a_{n+1}) = Q(s_n, a_n) + \alpha(n) \left(k(s_n, a_n) + \gamma \min_{a} Q(s_{n+1}, a) - Q(s_n, a_n) \right).$$

Why function approximation?

- need look-up table to store Q-value for every (s, a)
- Computationally expensive
 - two-junction corridor: 10 signalled lanes, 20 vehicles on each lane
 - $|S \times A(S)| \sim 10^{14}$
- Situation aggravated when we consider larger road networks

Q-learning with Function Approximation

Approximation.

$$Q(s,a) \approx \theta^T \sigma_{s,a} \leftarrow$$
Parameter $\theta \in \mathbb{R}^d$
Feature $\sigma_{s,a} \in \mathbb{R}^d$

Note: $d \ll |S \times A(S)|$

Feature-based analog of Q-learning.

$$\theta_{n+1} = \theta_n + \alpha(n)\sigma_{s_n,a_n}(k(s_n,a_n) + \gamma \min_{v \in A(s_{n+1})} \theta_n^T \sigma_{s_{n+1},v} - \theta_n^T \sigma_{s_n,a_n})$$

Prashanth L.A. (INRIA)

Feature Selection

State (s_n)	Action (a_n)	Feature (σ_{s_n,a_n})
$q_i(n) < L1$ and $t_i(n) < T1$	RED	0
	GREEN	1
$q_i(n) < L1$ and $t_i(n) > T1$	t(n) < L1 and t(n) > T1 RED 0	0.2
$q_i(n) < L1$ and $l_i(n) \ge 1$ 1	GREEN	0.8
$L1 \leq q_i(n) < L2$ and $t_i(n) < T1$	RED	0.4
	GREEN	0.6
$L1 \leq q_i(n) < L2$ and $t_i(n) \geq T1$	L_{2} and $t_{2}(n) > T_{1}$ RED 0.6	0.6
$L_1 \leq q_i(n) \leq L_2$ and $l_i(n) \geq 1$	GREEN	0.4
$q_i(n) \ge L2$ and $t_i(n) < T1$	RED	0.8
	GREEN	0.2
$a_i(n) > I2$ and $t_i(n) > T1$	RED	1
$q_i(n) \ge L2$ and $t_i(n) \ge T1$	GREEN	0

Prashanth L.A. (INRIA)

Threshold tuning using SPSA

- Problem: hard to obtain exact queue lengths in practice
- Solution: Use broad congestion estimates based on thresholds

	L1		L2	
Lo	→ ←	Medium		High

- How to optimize *Li*'s? Use Simultaneous Perturbation Stochastic Approximation
- Combine the optimization procedure with TLC algorithms:
 - Full state Q-learning algorithm with state aggregation
 - Function approximation Q-learning TLC
 - Priority based (naive?) scheme

Feature Adaptation

Recall the approximation.

$$Q(s,a) \approx \theta^{T} \sigma_{s,a}$$
Parameter $\theta \in \mathbb{R}^{d}$
Feature $\sigma_{s,a} \in \mathbb{R}^{d}$

Is to possible to adapt features online to make them optimal?

We propose an *online feature adaptation* algorithm to find the "optimal" features

Prashanth L.A. (INRIA)

Reinforcement Learning for Traffic Signal Control

October 2014 11 / 14

Publications I

Prashanth L. A. and S. Bhatnagar,

Reinforcement learning with function approximation for traffic signal control *IEEE Transactions on Intelligent Transportation Systems*, 2011.

Prashanth L. A. and S. Bhatnagar, Threshold Tuning using Stochastic Optimization for Graded Signal Control, *IEEE Transactions on Vehicular Technology*, 2012.

Prashanth L.A. and S.Bhatnagar, Reinforcement Learning with Average Cost for Adaptive Control of Traffic Lights at Intersections, *IEEE Conference on Intelligent Transportation Systems*, 2011.

1

S. Bhatnagar, V. Borkar and **Prashanth.L.A.**, Adaptive Feature Pursuit: Online Adaptation of Features in Reinforcement Learning, *Reinforcement Learning and Approximate Dynamic Programming for Feedback Control, by F. Lewis and D. Liu (eds.), IEEE Press Computational Intelligence Series.*

S.Bhatnagar, H.L.Prasad and **Prashanth.L.A.**, Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods, *Lecture Notes in Control and Information Sciences Series, Springer (Accepted)*, 2012.

Publications II

S. Bhatnagar and Prashanth L. A.,

Simultaneous Perturbation Newton Algorithms for Simulation Optimization, Journal of Optimization Theory and Applications, 2013.

Prashanth L. A. and Mohammad Ghavamzadeh, Actor-Critic Algorithms for Risk-Sensitive MDPs

Advances in Neural Information Processing Systems (NIPS), 2013 (Full oral presentation).

The road ahead

Prashanth L.A. (INRIA)