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Motivation

Risk is like fire: If controlled it will help you; if uncontrolled it will rise up
and destroy you.

Theodore Roosevelt

The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair.

Douglas Adams
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Risk-Sensitive Sequential Decision-Making

Dµ(x) =

∞∑
t=0

γt R(xt, at) | x0 = x, µ

Return r.v. Reward Policy

a criterion that penalizes the variability induced by a given policy

minimize some measure of risk as well as maximizing a usual optimization
criterion
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Risk-Sensitive Sequential Decision-Making
Objective: to optimize a risk-sensitive criterion such as

expected exponential utility (Howard & Matheson 1972)

variance-related measures (Sobel 1982; Filar et al. 1989)

percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results:
(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)
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Discounted Reward Setting
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Discounted Reward MDPs

Return

Dµ(x) =
∑∞

t=0 γ
tR(xt, at) | x0 = x, µ

Mean of Return (value function)

Vµ(x) = E
[
Dµ(x)

]

Variance of Return (measure of variability)

Λµ(x) = E
[
Dµ(x)2

]
− Vµ(x)2 = Uµ(x)− Vµ(x)2
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Discounted Reward MDPs

Risk-Sensitive Criteria

1 Maximize Vµ(x0) s.t. Λµ(x0) ≤ α

2 Minimize Λµ(x0) s.t. Vµ(x0) ≥ α

3 Maximize the Sharpe Ratio: Vµ(x0)/
√

Λµ(x0)

4 Maximize Vµ(x0)− αΛµ(x0)
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Risk-Sensitive Discounted MDPs

A class of parameterized stochastic policies{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ <κ1

}
Optimization Problem

maxθ Vθ(x0) s.t. Λθ(x0) ≤ α~w�
maxλ minθ L(θ, λ)

4
= −Vθ(x0) + λ

(
Λθ(x0)− α

)
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Solving the risk-sensitive MDP

Three-Stage Solution:

inner-most stage Simulate the MDP and estimate Vµ(x0) and Λµ(x0) using a
TD-critic;

next outer stage Estimate ∇θL(θ, λ) using TD critic and then update θ along descent
direction; and

outer-most stage update the Lagrange multipliers λ using the variance constraint
(∇λL(θ, λ) = Λθ(x0)− α).

Using multi-timescale stochastic approximation all three stages happen
simultaneously with varying step-sizes

One needs to evaluate ∇θL(θ, λ) and ∇λL(θ, λ) to tune θ and λ
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Computing the Gradients

The Gradient∇θL(θ, λ)

(1− γ)∇θVθ(x0) =
∑
x,a

πθγ(x, a|x0) ∇θ logµ(a|x; θ) Qθ(x, a)

(1− γ2)∇θUθ(x0) =
∑
x,a

π̃θγ(x, a|x0) ∇θ logµ(a|x; θ) Wθ(x, a)

+ 2γ
∑
x,a,x′

π̃θγ(x, a|x0) P(x′|x, a) r(x, a) ∇θVθ(x′)

πθγ(x, a|x0) and π̃θγ(x, a|x0) are γ and γ2 discounted visiting state distributions of the Markov

chain under policy θ
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Why Estimating the Gradient is Challenging?

The Gradient∇θL(θ, λ)
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Why Simultaneous Perturbation?

Challenge: estimating∇θL(θ, λ)

two different sampling distributions (πθγ and π̃θγ) used for∇Vθ(x0) and
∇Uθ(x0)

∇Vθ(x′) appears in the second sum of∇Uθ(x0) equation

Solution: use SPSA

∂θ(i)Vθ(x0) ≈ Vθ+β∆(x0)− Vθ(x0)

β∆(i) , i = 1, . . . , κ1

∆ is a vector of independent Rademacher random variables

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 12 / 48



Why Simultaneous Perturbation?

Challenge: estimating∇θL(θ, λ)

two different sampling distributions (πθγ and π̃θγ) used for∇Vθ(x0) and
∇Uθ(x0)

∇Vθ(x′) appears in the second sum of∇Uθ(x0) equation

Solution: use SPSA

∂θ(i)Vθ(x0) ≈ Vθ+β∆(x0)− Vθ(x0)

β∆(i) , i = 1, . . . , κ1

∆ is a vector of independent Rademacher random variables

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 12 / 48



SPSA idea

Scalar θ:

dV(θ)

dθ
= lim
β→0

(
V(θ + β)− V(θ)

β

)
.

Using a Taylor expansion of V(θ) around θ, we obtain:

V(θ + β) = V(θ) + β
dV(θ)

dθ
+
β2

2
d2V(θ)

dθ2 + o(β2),

Thus,
V(θ + β)− V(θ)

β
=

dV(θ)

dθ
+ o(β).

Vector θ ∈ Rκ1 :

∂θ(i)Vθ(x0) ≈ Vθ+β∆(x0)− Vθ(x0)

β∆(i) , i = 1, . . . , κ1

where ∆ is a vector of independent Rademacher random variables.
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Simultaneous Perturbation (SP) Methods

θt

+

β∆t

a+
t ∼ µ(·|x+

t ; θ+t )
r+
t

at ∼ µ(·|xt; θt)
rt

δ+t , �+t , v+
t , u+

t

Critic

δt, �t, vt, ut

Critic

θt+1

Actor

Update

using

θt

(8) 

or  (9)

Idea: Estimate the gradients ∇θVθ(x0) and ∇θUθ(x0) using two simulated trajectories
corresponding to policies with parameters θ and θ+ = θ + β∆, β > 0.
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Critic Update
Approximation

V̂(x) ≈ v>φv(x) and Û(x) ≈ u>φu(x)

Update rule
Trajectory 1 Trajectory 2

Value vt+1 = vt + ζ3(t)δtφv(xt) v+
t+1 = v+

t + ζ3(t)δ+
t φv(x+

t )

Square-Value ut+1 = ut + ζ3(t)εtφu(xt) u+
t+1 = u+

t + ζ3(t)ε+t φu(x+
t )

δt, δ
+
t , εt, ε

+
t denote the TD-errors.

Tamar et al (2013) Temporal difference methods for the variance of the reward to go. In: ICML
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Critic Update (contd)

TD-errors δt, εt in Trajectory 1 (policy θ)

δt = r(xt, at) + γv>t φv(xt+1)− v>t φv(xt)

εt = r(xt, at)
2 + 2γr(xt, at)v>t φv(xt+1) + γ2u>t φu(xt+1)− u>t φu(xt)

TD-errors δ+
t , ε

+
t in Trajectory 2 (perturbed policy θ + β∆)

δ+
t = r(x+

t , a
+
t ) + γv+>

t φv(x+
t+1)− v+>

t φv(x+
t )

ε+t = r(x+
t , a

+
t )2 + 2γr(x+

t , a
+
t )v+>

t φv(x+
t+1) + γ2u+>

t φu(x+
t+1)− u+>

t φu(x+
t )
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Actor Update

θ
(i)
t+1 = Γi

[
θ
(i)
t + ζ2(t)

( (1 + 2λtv>t φv(x0)
)
(v+

t − vt)>φv(x0)− λt(u+
t − ut)>φu(x0)

β∆
(i)
t︸ ︷︷ ︸

∇θL(θ,λ)

)]

λt+1 = Γλ

[
λt + ζ1(t)

(
u>t φu(x0)−

(
v>t φv(x0)

)2 − α︸ ︷︷ ︸
∇λL(θ,λ)

)]

Step-sizes {ζ3(t)}, {ζ2(t)}, and {ζ1(t)} chosen s.t.

Critic is on the fastest time-scale,

Policy parameter update is on the intermediate, and

Lagrange multiplier update is on the slowest time-scale
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Average Reward Setting
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Notation

Average Reward

ρ(µ) = lim
T→∞

1
T
E

[
T−1∑
t=0

Rt | µ
]

=
∑
x,a

dµ(x)µ(a|x)r(x, a)

Variance

Λ(µ) =
∑
x,a

πµ(x, a)
[
r(x, a)− ρ(µ)

]2
= lim

T→∞

1
T
E

[
T−1∑
t=0

(
Rt − ρ(µ)

)2 | µ
]

Stream of rewards: (0,0,0,0,. . . ) or (100,-100,100,-100,. . . )
The long-term frequency of occurrence of state-action pairs determines the variability
in the average reward

Filar et al(1989) Variance-penalized Markov decision processes. Mathematics of Operations Research 14(1):147–161
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in the average reward

Filar et al(1989) Variance-penalized Markov decision processes. Mathematics of Operations Research 14(1):147–161
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Risk-sensitive MDP

Objective

max
θ
ρ(θ) subject to Λ(θ) ≤ α~w�

max
λ

min
θ

(
L(θ, λ)

4
=− ρ(θ) + λ

(
Λ(θ)− α

))

As before, one needs ∇θL(θ, λ) to tune policy parameter θ
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Notation (again)

Average Reward

ρ(µ) =
∑
x,a

dµ(x)µ(a|x)r(x, a) =
∑
x,a

πµ(x, a)r(x, a),

Variance

Λ(µ) = η(µ)− ρ(µ)2, where η(µ) =
∑
x,a

πµ(x, a)r(x, a)2.
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Computing the gradients

∇ρ(θ) =
∑
x,a

π(x, a; θ)∇ logµ(a|x; θ)Q(x, a; θ)

∇η(θ) =
∑
x,a

π(x, a; θ)∇ logµ(a|x; θ)W(x, a; θ)

Uµ and Wµ are the differential value and action-value functions that satisfy

η(µ) + Uµ(x) =
∑

a

µ(a|x)
[
r(x, a)2 +

∑
x′

P(x′|x, a)Uµ(x′)
]

η(µ) + Wµ(x, a) = r(x, a)2 +
∑

x′
P(x′|x, a)Uµ(x′)

Bhatnagar et al (2009) Natural actor-critic algorithms. In: Automatica
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RS-AC algorithm

Initialization: policy parameters θ0; value function weights v0, u0; initial state x0
for t = 0, 1, 2, . . . do

Draw action at ∼ µ(·|xt; θt) and observe next state xt+1, reward R(xt, at)

Average Updates: ρ̂t+1 =
(
1− ζ4(t)

)
ρ̂t + ζ4(t)R(xt, at)

η̂t+1 =
(
1− ζ4(t)

)
η̂t + ζ4(t)R(xt, at)

2

TD Errors: δt = R(xt, at)− ρ̂t+1 + v>t φv(xt+1)− v>t φv(xt)

εt = R(xt, at)
2 − η̂t+1 + u>t φu(xt+1)− u>t φu(xt)

Critic Update: vt+1 = vt + ζ3(t)δtφv(xt), ut+1 = ut + ζ3(t)εtφu(xt)

Actor Update: θt+1 = Γ
(
θt − ζ2(t)

(
− δtψt + λt(εtψt − 2ρ̂t+1δtψt)

))
λt+1 = Γλ

(
λt + ζ1(t)(η̂t+1 − ρ̂2

t+1 − α)
)

end for
return policy and value function parameters θ, λ, v, u
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Experimental Results
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Traffic Signal Control MDP

Problem Description

State: vector of queue lengths and elapsed times xt = (q1, . . . , qN , t1, . . . , tN)

Action: feasible sign configurations

Cost:

h(xt) =r1 ∗
[∑

i∈Ip

r2 ∗ qi(t) +
∑
i/∈Ip

s2 ∗ qi(t)
]

+ s1 ∗
[∑

i∈Ip

r2 ∗ ti(t) +
∑
i/∈Ip

s2 ∗ ti(t)
]

Aim: find a risk-sensitive control strategy that minimizes the total delay
experienced by road users, while also reducing the variations
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Results - Average Reward Setting
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Results - Discounted Reward Setting
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CVaR as Risk Measure
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Conditional Value-at-Risk (CVaR)

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α}
CVaRα(X) :=E [X|X ≥ VaRα(X)] .

Unlike VaR, CVaR is a coherent risk measure 1

1
convex, monotone, positive homogeneous and translation equi-variant
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Practical Motivation

Portfolio Re-allocation

Portfolio composed of assets (e.g. stocks)

Stochastic gains for buying/selling assets

Aim find an investment strategy that
achieves a targeted asset allocation Stock 1 Stock 2

Stock 3

Current

Target

A risk-averse investor would prefer a strategy that

1 quickly achieves the target asset allocation;

2 minimizes the worst-case losses incurred
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CVaR-Constrained SSP
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Stochastic Shortest Path

State. S = {0, 1, . . . , r}

Actions. A(s) = {feasible actions in state s}

Costs. g(s, a) and c(s, a)

used in the objective used in the constraint
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CVaR-Constrained SSP

minimize the total cost:

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0 = s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to (CVaR constraint):

CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0 = s0

]
︸ ︷︷ ︸

Cθ(s0)
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Lagrangian Relaxation

minθ Gθ(s0) s.t. CVaRα(Cθ(s0) ≤ Kα

~w�
maxλ minθ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
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Solving the CVaR-constrained SSP

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and

outer-most stage update the Lagrange multipliers λ using the variance constraint

1
Note: ∇θL

θ,λ
(s0

) = ∇θGθ(s0
) + λ∇θCVaRα(Cθ(s0

)), ∇λL
θ,λ

(s0
) = CVaRα(Cθ(s0

))− Kα
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Solving the CVaR-constrained SSP

Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and

outer-most stage update the Lagrange multipliers λ using the variance constraint

θn+1 = Γ
(
θn − γn∇θLθ,λ(s0)

)
and λn+1 = Γλ

(
λn + γn∇λLθ,λ(s0)

)
,

1
converge to a (local) saddle point of θ,λ(s0

), i.e., to a tuple (θ
∗
, λ
∗
) that are a local minimum w.r.t. θ and a local maximum w.r.t. λ

ofLθ,λ(s0
)
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θn
Using policy πθn ,

simulate an SSP episode

Simulation

Estimate ∇θGθ(s0)

Policy Gradient

Estimate CVaRα(Cθ(s0))

CVaR Estimation

Estimate
∇θCVaRα(Cθ(s0))

CVaR Gradient

Update θn

Policy Update

θn+1

Figure : Overall flow of our algorithms.
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Estimating CVaR: A convex optimization problem 2

For any random variable X, let

v(ξ,X) :=ξ +
1

1− α (X − ξ)+ and

V(ξ) =E [v(ξ,X)]

Then,

VaRα(X) = (arg min V := {ξ ∈ R | V ′(ξ) = 0})

CVaRα(X) = V(VaRα(X))

2
Rockafellar, R.T., Uryasev, S. (2000), “Optimization of conditional value-at-risk”. In:Journal of risk
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Estimating VaRα(Cθ(s0))

Observation: to estimate VaR, one needs to find ξ∗ that satisfies V ′(ξ∗) = 0

ξn−1
Observe a new sample Cn

of Cθ(s0)

SSP simulation

Update ξn

using
∂v
∂ξ

(ξ,Cn)

GD Update

ξn

Step-sizes

ξn = ξn−1 − ζn,1

(
1− 1

1− α1{Cn≥ξ}

)

Sample gradient

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 39 / 48



Estimating VaRα(Cθ(s0))

Observation: to estimate VaR, one needs to find ξ∗ that satisfies V ′(ξ∗) = 0

ξn−1
Observe a new sample Cn

of Cθ(s0)

SSP simulation

Update ξn

using
∂v
∂ξ

(ξ,Cn)

GD Update

ξn

Step-sizes

ξn = ξn−1 − ζn,1

(
1− 1

1− α1{Cn≥ξ}

)

Sample gradient

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 39 / 48



Estimating VaRα(Cθ(s0))

Observation: to estimate VaR, one needs to find ξ∗ that satisfies V ′(ξ∗) = 0

ξn−1
Observe a new sample Cn

of Cθ(s0)

SSP simulation

Update ξn

using
∂v
∂ξ

(ξ,Cn)

GD Update

ξn

Step-sizes

ξn = ξn−1 − ζn,1

(
1− 1

1− α1{Cn≥ξ}

)

Sample gradient

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 39 / 48



Estimating VaRα(Cθ(s0))

Observation: to estimate VaR, one needs to find ξ∗ that satisfies V ′(ξ∗) = 0

ξn−1
Observe a new sample Cn

of Cθ(s0)

SSP simulation

Update ξn

using
∂v
∂ξ

(ξ,Cn)

GD Update

ξn

Step-sizes

ξn = ξn−1 − ζn,1

(
1− 1

1− α1{Cn≥ξ}

)

Sample gradient

Prashanth L.A. (INRIA) Algorithms for Risk-Sensitive Reinforcement Learning 39 / 48



Estimating CVaRα(Cθ(s0))3

Recall CVaRα(Cθ(s0)) = E
[
v(VaRα(Cθ(s0)),Cθ(s0))

]
To estimate CVaR, one can

Monte-Carlo Average

1
m

m∑
n=1

v(ξn−1,Cn)

Use Stochastic Approximation

ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1,Cn))

3
O. Bardou et al. (2009) “Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling.”

In: Monte Carlo Methods and Applications
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Likelihood ratios for gradient estimation4

Markov chain. {Xn}

States. 0 recurrent and 1, . . . , r transient

Transition probability matrix. P(θ) := [[pXiXj(θ)]]
r
i,j=0

Performance measure. F(θ) = E[f (X)]

Simulate (using P(θ)) and obtain X := (X0, . . . ,Xτ−1)T

∇θF(θ) = E

[
f (X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]

4
Glynn, P.W. (1987) |“Likelilood ratio gradient estimation: an overview.” In: Winter simulation conference
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Policy gradient for the objective 5

Policy gradient:

∇θGθ(s0) = E
[(

τ−1∑
n=0

g(sn, an)

)
∇ log P(s0, . . . , sτ−1) | s0 = s0

]
,

Likelihood derivative:

∇ log P(s0, . . . , sτ−1) =
τ−1∑
m=0
∇ logπθ(am |sm )

5
Bartlett, P.L., Baxter, J. (2011) “Infinite-horizon policy-gradient estimation.”
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Policy gradient for the CVaR constraint 6

∇θCVaRα(Cθ(s0))

= E
[(

Cθ(s0)− VaRα(Cθ(s0))
)
∇ log P(s0, . . . , sτ−1) | Cθ(s0) ≥ VaRα(Cθ(s0))

]
,

where∇ log P(s0, . . . , sτ ) is the likelihood derivative

6
Tamar, A. et al. (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk.” In: arxiv:1404.3862
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Putting it all together. . .
Input: parameterized policy πθ(·|·), step-sizes {ζn,1, ζn,2, γn}n≥1
For each n = 1, 2, . . . do

Simulate the SSP using πθn−1 and obtain:

Gn :=
τn−1∑
j=0

g(sn,j, an,j),Cn :=
τn−1∑
j=0

c(sn,j, an,j) and zn :=
τn−1∑
j=0
∇ logπθ(sn,j, an,j)

VaR/CVaR estimation:

VaR: ξn = ξn−1 − ζn,1

(
1− 1

1−α 1{Cn≥ξn−1}
)
, CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1,Cn))

Policy Gradient:

Total Cost: Ḡn = Ḡn−1 − ζn,2(Gn − Ḡn), Gradient: ∂Gn = Ḡnzn

CVaR Gradient:

Total Cost: C̃n = C̃n−1 − ζn,2(Cn − C̃n), Gradient: ∂Cn = (C̃n − ξn)zn1{Cn≥ξn}

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(
λn−1 + γn(ψn − Kα)

)
.
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mini-Batches

θn−1
Using policy πθn−1 ,

simulate mn episodes

Simulation

Obtain

{Gn,j,Cn,j, zn,j}mn
j=1

Cost/Likelihood Estimates

Compute CVaRα(Cθ(s0)) and

∇θCVaRα(Cθ(s0)),∇θGθ(s0)

Averaging

θn

Figure : mini-batch idea

VaR: ξn =
1

mn

mn∑
j=1

(
1−

1{Cn,j≥ξn−1}
1− α

)
, CVaR: ψn =

1
mn

mn∑
j=1

v(ξn−1,Cn,j)

Total Cost: Ḡn =
1

mn

mn∑
j=1

Gn,j, Policy Gradient: ∂Gn = Ḡnzn.

Total Cost: C̄n =
1

mn

mn∑
j=1

Cn,j, CVaR Gradient: ∂Cn = (C̃n − ξn)zn1{C̄n≥ξn}.
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Comparison to Previous Work

Borkar V et al. (2010) propose an algorithm for a (finite horizon) CVaR constrained
MDP, under a separability condition.

Tamar et al. (2014) do not consider a risk-constrained SSP and instead optimize
only CVaR.

1
Borkar V (2010) “Risk-constrained Markov decision processes” In: CDC

2
Tamar et al (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk” In: arxiv:1404.3862
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For Further Reading

What next?
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