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N —
Motivation

Risk is like fire: If controlled it will help you; if uncontrolled it will rise up
and destroy you.
Theodore Roosevelt

-
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Motivation

Risk is like fire: If controlled it will help you; if uncontrolled it will rise up
and destroy you.
Theodore Roosevelt |

The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair.

Douglas Adams)
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|
Risk-Sensitive Sequential Decision-Making

Risk-neutral Objective:

T—1
in G%(s°) =E = gt
ggg (s”) [n;) g(Smyam) |so=s",
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Risk-Sensitive Sequential Decision-Making

Risk-neutral Objective:

0cO

/ i /
Total Cost Cost Policy

T—1
min G (s%) :E[Z g(Smyam) | so = s°, 6]
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|
Risk-Sensitive Sequential Decision-Making

Risk-neutral Objective:

T—1
in G%(s°) =E s Ao = gt
min 6°6%) —E| 3 gloman) |05 0|

/ i /
Total Cost Cost Policy

@ a criterion that penalizes the variability induced by a given policy

@ minimize some measure of risk as well as maximizing a usual optimization
criterion

e
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A brief history of risk measures

Risk measures considered in the literature:

@ expected exponential utility (Howard & Matheson 1972)
@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)
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A brief history of risk measures

Risk measures considered in the literature:

@ expected exponential utility (Howard & Matheson 1972)
@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria
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.
A brief history of risk measures
Risk measures considered in the literature:
@ expected exponential utility (Howard & Matheson 1972)

@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results:

(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011) P
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|
Conditional Value-at-Risk (CVaR)

0.20
1

0.15

VaR, (X) :=inf {¢ | P (X < &) > a}
CVaR, (X) :=E [X|X > VaR,(X)].

Probability
0.10
|

0.05

0.00
\
\

Unlike VaR, CVaR is a coherent risk measure !
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1 . q P
convex, monotone, positive homogeneous and translation equi-variant
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N —
Practical Motivation

Portfolio Re-allocation
Stock 3

Portfolio composed of assets (e.g. stocks)
Stochastic gains for buying/selling assets
Aim find an investment strategy that

achieves a targeted asset allocation Stock 1 Stock 2

-
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Practical Motivation

Portfolio Re-allocation
Stock 3

Portfolio composed of assets (e.g. stocks)
Stochastic gains for buying/selling assets
Aim find an investment strategy that

achieves a targeted asset allocation Stock 1 Stock 2

A risk-averse investor would prefer a strategy that
@ quickly achieves the target asset allocation;

© minimizes the worst-case losses incurred
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Our Contributions

define a CVaR-constrained sfochastic shortest path problem
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Our Contributions

define a CVaR-constrained stochastic shortest path problem
derive CVaR estimation procedures using stochastic approximation
propose policy gradient algorithms to optimize CVaR-constrained SSP

establish the asymptotic convergence of the algorithms
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Our Contributions

define a CVaR-constrained stochastic shortest path problem

derive CVaR estimation procedures using stochastic approximation
propose policy gradient algorithms to optimize CVaR-constrained SSP
establish the asymptotic convergence of the algorithms

adapt our proposed algorithms to incorporate importance sampling (IS)
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]
Stochastic Shortest Path

State. S ={0,1,...,r}
Actions. A(s) = {feasible actions in state s}

Costs. g(s,a) and  c(s,a)
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]
Stochastic Shortest Path

State. S ={0,1,...,r}
Actions. A(s) = {feasible actions in state s}

Costs. g(s,a) and  c(s,a)

used in theobjective used in the €onstraint
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]
CVaR-Constrained SSP

minimize the total cost:

T—1

E Zg(sm,am) {so =0

m=0

G9(s9)
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]
CVaR-Constrained SSP

minimize the total cost:

E

7—1
Zg(sm,am) !so = 50]

m=0

G9(s9)

subject to (CVaR constraint):

T—1
CVaR,, Z c(Smy am) ‘so = SO]
m=0
co(s)
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Lagrangian Relaxation

ming G?(s°) st. CVaR,(C’(s%) < K,

I

max ming [L9*(s%) := GO(s%) + A(CVaR,(C%(s")) — Ka) ]
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|
Solving the CVaR-constrained SSP

INote: 4 £02 (0) = V6?2 (*) + AVHCVRA (P (2)), VAL () = CVaRa (C° (")) — Ka

Prashanth L.A. (INRIA) Policy Gradients for CVaR-Constrained MDPs



|
Solving the CVaR-constrained SSP

mflxnbin [£92(s%) == GO(s°) + A(CVaR,(CP(s°)) — Ko )]

e
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|
Solving the CVaR-constrained SSP

mflxn%in [£92(s%) == GO(s°) + A(CVaR,(CP(s°)) — Ko )]

Three-Stage Solution:
inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate VQEQ”\(SO) using simulated values and update 6 along
descent direction'; and

outer-most stage update the Lagrange multipliers A using the variance constraint

e
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1
Note: Vg L0 (%) = VoGP (") + AVoCVaR4 (¥ (7)),  VAL? (") = cvar, (€2 () — Ko
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Solving the CVaR-constrained SSP

Three-Stage Solution:
inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate VL% (s°) using simulated values and update 6 along
descent direction!; and

outer-most stage update the Lagrange multipliers A using the variance constraint

-
lcc'nverge to a (local) saddle point of 0,2 (so), ie., toatuple (™, \™) that are a local minimum w.r.t. 6 and a local &" LA —

maximum w.r.t. X of £%2 (.vo)
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Solving the CVaR-constrained SSP

Three-Stage Solution:
inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate VL% (s°) using simulated values and update 6 along
descent direction'; and

outer-most stage update the Lagrange multipliers A using the variance constraint

Onp1 =T (0, — mVoLO(%) and  Npyy =Tx (A +mVaLP (),

-~
lcc'nverge to a (local) saddle point of 0,2 (so), ie., toatuple (™, \™) that are a local minimum w.r.t. 6 and a local &" ZiaA—
maximum w.r.t. X of £%2 (.vo)
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Estimate VG (s?)

Policy Gradient

Using policy 7g,, o
0 ———» . > Estimate CVaR, (€% (s")) » Update 6, ——» 6,11
simulate an SSP episode
Simulation CVaR Bstimation
Policy Update
Estimate
VCVaR, (C?(s°))
CVaR Gradient

Figure: Overall flow of our algorithms.
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Estimating CVaR: A convex optimization problem 2

For any random variable X, let
1
v(€,X) =€ + m(x — &)+ and

V(€) =E [v(£, X)]

2Rockafellal‘, R.T., Uryasev, S. (2000), “Optimization of conditional value-at-risk”. In:Journal of risk
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Estimating CVaR: A convex optimization problem 2

For any random variable X, let
1
v(€,X) =€ + m(x — &)+ and

V(€) =E [v(£, X)]

Then,

VaR,(X) = (argminV := {£ e R | V/(§) = 0})

CVaR, (X) = V(VaR, (X))

2Rockal‘ellal‘, R.T., Uryasev, S. (2000), “Optimization of conditional value-at-risk”. In:Journal of risk
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|
Estimating VaR, (C%(s°))

Observation: to estimate VaR, one needs to find £* that satisfies V/(£*) = 0
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Estimating VaR, (C%(s°))

Observation: to estimate VaR, one needs to find £* that satisfies V/(£*) = 0

i1 ——

Observe a new sample C,
of C?(s°)

SSP simulation

Update &,

using g—z(g, Cy)

—— &

GD Update

&of'/a(—
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Estimating VaR, (C%(s°))

Observation: to estimate VaR, one needs to find £* that satisfies V/(£*) = 0

Observe a new sample C,

= of C?(s°) using g—z(g, Cy)
SSP simulation GD Update
@ Step-sizes
1
gn = gn—l - gn,l - —
1 -«

Update &,

—— &

1{Cn>£})
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|
Estimating VaR, (C%(s°))

Observation: to estimate VaR, one needs to find £* that satisfies V/(£*) = 0

¢ Observe a new sample C, Up(gate &n
= of C%(s%) using -* (£, C,) o
o€
SSP simulation GD Update
@ Step-sizes /—\
1
=81~ Gu (1-7-la2g

@ Sample gradient \J
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- |
Estimating CVaR,, (C?(s"))?

Recall CVaR,, (C?(s°)) = E [v(VaR4 (C?(s%)), C?(s°))]

To estimate CVaR, one can

304 Bardou et al. (2009) “Computing VaR and CVaR using stochastic approximation and adaptive unconstrained
importance sampling.” In: Monte Carlo Methods and Applications
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Estimating CVaR,, (C?(s"))?

Recall CVaR,, (C?(s°)) = E [v(VaR4 (C?(s%)), C?(s°))]

To estimate CVaR, one can

Monte-Carlo Average

1
% — V(fn—la Cn)

304 Bardou et al. (2009) “Computing VaR and CVaR using stochastic approximation and adaptive unconstrained
importance sampling.” In: Monte Carlo Methods and Applications
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- |
Estimating CVaR,, (C?(s"))?

Recall CVaR,, (C?(s°)) = E [v(VaR4 (C?(s%)), C?(s°))]

To estimate CVaR, ene can

Monte-Carlo Average
Use Stochastic Approximation

1
% V(fn—la Cn) % = ¢n—l - Cn,Z (%—1 - V(fn—h Cn))
n=1

3OA Bardou et al. (2009) “Computing VaR and CVaR using stochastic approximation and adaptive unconstrained
importance sampling.” In: Monte Carlo Methods and Applications
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Likelihood ratios for gradient estimation®

Markov chain. {X,}
States. O recurrent and 1, ..., r transient
Transition probability matrix. P(6) := [[px.x;(0)]]; j—o

Performance measure. F(6) = E[f(X)]

Glynn, P.W. (1987) I“Likelilood ratio gradient estimation: an overview.” In: Winter simulation conference
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|
Likelihood ratios for gradient estimation®

Markov chain. {X,}
States. O recurrent and 1, ..., r transient
Transition probability matrix. P(6) := [[px.x;(0)]]; j—o

Performance measure. F(6) = E[f(X)]

Simulate (using P(6)) and obtain X := (Xo, ..., X, _1)"

r=Il

Vorx,x,..(0)
VoF(0) =E |f(X i e mmit BN
. ( ) ( >mz:;) pXme-;-l(a)

-
bnzia
Glynn, P.W. (1987) I“Likelilood ratio gradient estimation: an overview.” In: Winter simulation conference
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Policy gradient for the objective °

Policy gradient:

T—1
VoG () = | (X ¢lon ) TogPlon157-0) [ 30—
n=0

Likelihood derivative:

T—1
Vi1og P(s0,---,87—1) = > V1ogmg(am |sm)
m=0

5Barlleu, P.L., Baxter, J. (2011) “Infinite-horizon policy-gradient estimation.”
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Policy gradient for the CVaR constraint °

VoCVaR,, (C?(s?))

=E [(C?(s°) — VaR.(C?(s))) V1og P(so, ..., s7—1) | C?(s°) > VaR,(C?(s"))]

where V log P(so, . . .,s.) is the likelihood derivative

e

&of'/a(—

6Tamar, A. etal. (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk.” In: arxiv:1404.3862
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Putting it all together. . .

Input: parameterized policy g (+|-), step-sizes {Cu 15 Cn2, Y Ju>1
Foreachn =1,2,...do

Simulate the SSP using mg, | and obtain:
Th—1 —1 T—1
Gn:= > 8(njranj),Cn:i= Y c(snj,anj)and z, := > Vlogmg(sn,j,an,)
j=0 j=0 j=0

VaR/CVaR estimation:
VaR: & = &1 = G (1= 25 iee, 1) CVAR: ¥ = ¥t — o2 (a1 — v(&am1,Ca)
Policy Gradient:
Total Cost: G, = Gp—q — Cn2(Gn — G,,), Gradient: 9G, = Gnzn
CVaR Gradient:
Total Cost: Cp = Cp_q — n,2(Cn — C»), Gradient: 8C, = (C, — En)znlyc,>e,1

Policy and Lagrange Multiplier Update:

On = Op—1 — "/n(aGn + )\nfl(acn))v An =T\ ()\,,,1 + "/n("/’n - Ka))- é’_’,
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mini-Batches
0,1 Using policy 75, ,
simulate m, episodes

Obtain

{Guys Cujrznj}jy

VoCVaRa (C?(s°)), VoGO (s°)

Compute CVaRq (C?(s")) and

Averaging

Simulation

Cost/Likelihood Estimates

Figure: mini-batch idea

e l{cn,jzgnfl}

1 my
VaR:ﬁn:—Z(l P

m
n j=1

1

Total Cost: G,
My

Total Cost: Cy,

Prashanth L.A. (INRIA)

my

j=1

1
= — g Cuj, CVaR Gradient: 9C,
m
=1

), CVaR: ’I,Z)n — mi Zv(é'nfh CﬂJ)

n j=1

Z G, Policy Gradient: 0G, = Gyzn.

Policy Gradients for CVaR-Constrained MDPs

= (G — &)ulyg, e,

e
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|
Comparison to Previous Work

Borkar V et al. (2010) propose an algorithm for a (finite horizon) CVaR constrained
MDP, under a separability condition.

Tamar et al. (2014) do not consider a risk-constrained SSP and instead optimize
only CVaR.

lBorkar V (2010) “Risk-constrained Markov decision processes” In: CDC &” Z ’/a(—
2Tamar et al (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk” In: arxiv:1404.3862
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N —
Conclusions

For stochastic shortest path problem, we

@ defined CVaR as a risk measure

@ showed how to estimate both CVaR and its gradient

@ proposed policy gradient algorithms to optimize the CVaR-constrained SSP

@ established the asymptotic convergence of the algorithms

@ adapted our algorithms to incorporate importance sampling for CVaR estimation

e
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Future Work

@ demonstrate the usefulness of our algorithms in a portfolio optimization
application

@ obtain finite-time bounds on the quality of solution of the policy gradient
algorithms (esp. mini-batch - useful even for risk-neutral setting)
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What next?

RISK MANAGEMENT

A, bacall

PEFLUBGE QI yoIeRas [ isndy [euibuo @
WO HI0ISUOOMED) WO 3|qeieny sIybiy

"We advise all of our clients not to hire the most
prilliant managers. Risk varies inversely witi:
knowledge, otherwise there would be many
more very wealthy university professors."
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