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Motivation

Risk is like fire: If controlled it will help you; if uncontrolled it will rise up
and destroy you.

Theodore Roosevelt

The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair.

Douglas Adams
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Risk-Sensitive Sequential Decision-Making

Risk-neutral Objective:

min
θ∈Θ

Gθ(s0) = E
[ τ−1∑

m=0

g(sm, am) | s0 = s0, θ

]
Total Cost Cost Policy

a criterion that penalizes the variability induced by a given policy

minimize some measure of risk as well as maximizing a usual optimization
criterion
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A brief history of risk measures
Risk measures considered in the literature:

expected exponential utility (Howard & Matheson 1972)

variance-related measures (Sobel 1982; Filar et al. 1989)

percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results:
(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)
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Conditional Value-at-Risk (CVaR)

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α}
CVaRα(X) :=E [X|X ≥ VaRα(X)] .

Unlike VaR, CVaR is a coherent risk measure 1

1
convex, monotone, positive homogeneous and translation equi-variant
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Practical Motivation

Portfolio Re-allocation

Portfolio composed of assets (e.g. stocks)

Stochastic gains for buying/selling assets

Aim find an investment strategy that
achieves a targeted asset allocation Stock 1 Stock 2

Stock 3

Current

Target

A risk-averse investor would prefer a strategy that

1 quickly achieves the target asset allocation;

2 minimizes the worst-case losses incurred
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Our Contributions

define a CVaR-constrained stochastic shortest path problem

derive CVaR estimation procedures using stochastic approximation

propose policy gradient algorithms to optimize CVaR-constrained SSP

establish the asymptotic convergence of the algorithms

adapt our proposed algorithms to incorporate importance sampling (IS)
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CVaR-Constrained SSP
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Stochastic Shortest Path

State. S = {0, 1, . . . , r}

Actions. A(s) = {feasible actions in state s}

Costs. g(s, a) and c(s, a)

used in the objective used in the constraint
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CVaR-Constrained SSP

minimize the total cost:

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0 = s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to (CVaR constraint):

CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0 = s0

]
︸ ︷︷ ︸

Cθ(s0)
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Lagrangian Relaxation

minθ Gθ(s0) s.t. CVaRα(Cθ(s0) ≤ Kα

~w�
maxλ minθ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
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Solving the CVaR-constrained SSP

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and

outer-most stage update the Lagrange multipliers λ using the variance constraint

1
Note: ∇θL

θ,λ
(s0

) = ∇θGθ(s0
) + λ∇θCVaRα(Cθ(s0

)), ∇λL
θ,λ

(s0
) = CVaRα(Cθ(s0

))− Kα

Prashanth L.A. (INRIA) Policy Gradients for CVaR-Constrained MDPs 12 / 26



Solving the CVaR-constrained SSP

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and

outer-most stage update the Lagrange multipliers λ using the variance constraint

1
Note: ∇θL

θ,λ
(s0

) = ∇θGθ(s0
) + λ∇θCVaRα(Cθ(s0

)), ∇λL
θ,λ

(s0
) = CVaRα(Cθ(s0

))− Kα

Prashanth L.A. (INRIA) Policy Gradients for CVaR-Constrained MDPs 12 / 26



Solving the CVaR-constrained SSP

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(Cθ(s0))− Kα

)]
Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and

outer-most stage update the Lagrange multipliers λ using the variance constraint

1
Note: ∇θL

θ,λ
(s0

) = ∇θGθ(s0
) + λ∇θCVaRα(Cθ(s0

)), ∇λL
θ,λ

(s0
) = CVaRα(Cθ(s0

))− Kα

Prashanth L.A. (INRIA) Policy Gradients for CVaR-Constrained MDPs 12 / 26



Solving the CVaR-constrained SSP

Three-Stage Solution:

inner-most stage Simulate the SSP for several episodes and aggregate the costs;

next outer stage Estimate ∇θLθ,λ(s0) using simulated values and update θ along
descent direction1; and
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θn+1 = Γ
(
θn − γn∇θLθ,λ(s0)

)
and λn+1 = Γλ

(
λn + γn∇λLθ,λ(s0)

)
,

1
converge to a (local) saddle point of θ,λ(s0

), i.e., to a tuple (θ
∗
, λ

∗
) that are a local minimum w.r.t. θ and a local

maximum w.r.t. λ ofLθ,λ(s0
)
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θn
Using policy πθn ,

simulate an SSP episode

Simulation

Estimate ∇θGθ(s0)

Policy Gradient

Estimate CVaRα(Cθ(s0))

CVaR Estimation

Estimate
∇θCVaRα(Cθ(s0))

CVaR Gradient

Update θn

Policy Update

θn+1

Figure: Overall flow of our algorithms.

Prashanth L.A. (INRIA) Policy Gradients for CVaR-Constrained MDPs 14 / 26



Estimating CVaR: A convex optimization problem 2

For any random variable X, let

v(ξ,X) :=ξ +
1

1− α
(X − ξ)+ and

V(ξ) =E [v(ξ,X)]

Then,

VaRα(X) = (arg min V := {ξ ∈ R | V ′(ξ) = 0})

CVaRα(X) = V(VaRα(X))

2
Rockafellar, R.T., Uryasev, S. (2000), “Optimization of conditional value-at-risk”. In:Journal of risk
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Estimating VaRα(Cθ(s0))

Observation: to estimate VaR, one needs to find ξ∗ that satisfies V ′(ξ∗) = 0

ξn−1
Observe a new sample Cn

of Cθ(s0)

SSP simulation

Update ξn

using
∂v
∂ξ

(ξ,Cn)

GD Update

ξn

Step-sizes

ξn = ξn−1 − ζn,1

(
1− 1

1− α
1{Cn≥ξ}

)

Sample gradient
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Estimating CVaRα(Cθ(s0))3

Recall CVaRα(Cθ(s0)) = E
[
v(VaRα(Cθ(s0)),Cθ(s0))

]
To estimate CVaR, one can

Monte-Carlo Average

1
m

m∑
n=1

v(ξn−1,Cn)

Use Stochastic Approximation

ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1,Cn))

3
O. Bardou et al. (2009) “Computing VaR and CVaR using stochastic approximation and adaptive unconstrained

importance sampling.” In: Monte Carlo Methods and Applications
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Likelihood ratios for gradient estimation4

Markov chain. {Xn}

States. 0 recurrent and 1, . . . , r transient

Transition probability matrix. P(θ) := [[pXiXj(θ)]]
r
i,j=0

Performance measure. F(θ) = E[f (X)]

Simulate (using P(θ)) and obtain X := (X0, . . . ,Xτ−1)T

∇θF(θ) = E

[
f (X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]

4
Glynn, P.W. (1987) |“Likelilood ratio gradient estimation: an overview.” In: Winter simulation conference
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Policy gradient for the objective 5

Policy gradient:

∇θGθ(s0) = E
[(

τ−1∑
n=0

g(sn, an)

)
∇ log P(s0, . . . , sτ−1) | s0 = s0

]
,

Likelihood derivative:

∇ log P(s0, . . . , sτ−1) =
τ−1∑
m=0
∇ logπθ(am |sm )

5
Bartlett, P.L., Baxter, J. (2011) “Infinite-horizon policy-gradient estimation.”
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Policy gradient for the CVaR constraint 6

∇θCVaRα(Cθ(s0))

= E
[(

Cθ(s0)− VaRα(Cθ(s0))
)
∇ log P(s0, . . . , sτ−1) | Cθ(s0) ≥ VaRα(Cθ(s0))

]
,

where∇ log P(s0, . . . , sτ ) is the likelihood derivative

6
Tamar, A. et al. (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk.” In: arxiv:1404.3862
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Putting it all together. . .
Input: parameterized policy πθ(·|·), step-sizes {ζn,1, ζn,2, γn}n≥1
For each n = 1, 2, . . . do

Simulate the SSP using πθn−1 and obtain:

Gn :=
τn−1∑
j=0

g(sn,j, an,j),Cn :=
τn−1∑
j=0

c(sn,j, an,j) and zn :=
τn−1∑
j=0
∇ logπθ(sn,j, an,j)

VaR/CVaR estimation:

VaR: ξn = ξn−1 − ζn,1

(
1− 1

1−α 1{Cn≥ξn−1}
)
, CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1,Cn))

Policy Gradient:

Total Cost: Ḡn = Ḡn−1 − ζn,2(Gn − Ḡn), Gradient: ∂Gn = Ḡnzn

CVaR Gradient:

Total Cost: C̃n = C̃n−1 − ζn,2(Cn − C̃n), Gradient: ∂Cn = (C̃n − ξn)zn1{Cn≥ξn}

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(
λn−1 + γn(ψn − Kα)

)
.
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mini-Batches

θn−1
Using policy πθn−1 ,

simulate mn episodes

Simulation

Obtain

{Gn,j,Cn,j, zn,j}mn
j=1

Cost/Likelihood Estimates

Compute CVaRα(Cθ(s0)) and

∇θCVaRα(Cθ(s0)),∇θGθ(s0)

Averaging

θn

Figure: mini-batch idea

VaR: ξn =
1

mn

mn∑
j=1

(
1−

1{Cn,j≥ξn−1}
1− α

)
, CVaR: ψn =

1
mn

mn∑
j=1

v(ξn−1,Cn,j)

Total Cost: Ḡn =
1

mn

mn∑
j=1

Gn,j, Policy Gradient: ∂Gn = Ḡnzn.

Total Cost: C̄n =
1

mn

mn∑
j=1

Cn,j, CVaR Gradient: ∂Cn = (C̃n − ξn)zn1{C̄n≥ξn}.
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Comparison to Previous Work

Borkar V et al. (2010) propose an algorithm for a (finite horizon) CVaR constrained
MDP, under a separability condition.

Tamar et al. (2014) do not consider a risk-constrained SSP and instead optimize
only CVaR.

1
Borkar V (2010) “Risk-constrained Markov decision processes” In: CDC

2
Tamar et al (2014) “Policy Gradients Beyond Expectations: Conditional Value-at-Risk” In: arxiv:1404.3862
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Conclusions

For stochastic shortest path problem, we

defined CVaR as a risk measure

showed how to estimate both CVaR and its gradient

proposed policy gradient algorithms to optimize the CVaR-constrained SSP

established the asymptotic convergence of the algorithms

adapted our algorithms to incorporate importance sampling for CVaR estimation
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Future Work

demonstrate the usefulness of our algorithms in a portfolio optimization
application

obtain finite-time bounds on the quality of solution of the policy gradient
algorithms (esp. mini-batch - useful even for risk-neutral setting)
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What next?
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