Fast gradient descent for drifting least squares regression: Non-asymptotic bounds and application to bandits

Prashanth L A^{\dagger}

Joint work with Nathaniel Korda^{\sharp} and Rémi Munos^{\dagger}

[†]INRIA Lille - Team SequeL [#]MLRG - Oxford University

November 26, 2014

• NOAM database: 17 million articles from 2010

- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (approx)

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (approx)

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (approx)

- NOAM database: 17 million articles from 2010
- Task: Find the best among 2000 news feeds
- Reward: Relevancy score of the article
- Feature dimension: 80000 (approx)

Problem: Find the best news feed for Crime stories

Five dead in Finnish mall shooting	Score: 1.93
	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

Problem: Find the best news feed for Crime stories

Five dead in Finnish mall shooting	Score: 1.93
Holidays provide more opportunities to drink	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

Problem: Find the best news feed for Crime stories

Five dead in Finnish mall shooting	Score: 1.93
Holidays provide more opportunities to drink	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

Problem: Find the best news feed for Crime stories

Five dead in Finnish mall shooting	Score: 1.93
Holidays provide more opportunities to drink	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

Problem: Find the best news feed for Crime stories

Five dead in Finnish mall shooting	Score: 1.93
Holidays provide more opportunities to drink	Score: -0.48
Russia raises price of vodka	Score: 2.67
Why Obama Care Must Be Defeated	Score: 0.43
University closure due to weather	Score: -1.06

Prashanth L A

Prashanth L A

• Mean-reward estimate $UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$

• Confidence width

At each round t, select a tap. Optimize the quality of n selected beers

At each round t, select a tap. Optimize the quality of n selected beers

Mean-reward estimate
UCB(x) = μ(x) + α σ(x)
Confidence width

At each round *t*, select a tap. Optimize the quality of *n* selected beers

$\label{eq:linearity} \mbox{$\stackrel{$\rightarrow$}$ No need to estimate mean-reward of all arms,} \\ \mbox{$estimating θ^* is enough}$

• **Regression** $\hat{\theta}_n = A_n^{-1} b_n$

$$UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$$

• Mahalanobis distance of x from $A_n: \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

Prashanth L A

 $\label{eq:Linearity} \mbox{Displays here} \mbox{No need to estimate mean-reward of all arms,} \\ \mbox{estimating } \theta^* \mbox{ is enough}$

• **Regression**
$$\hat{\theta}_n = A_n^{-1} b_{n_1}$$

$$UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$$

• Mahalanobis distance of x from $A_n: \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

 $\label{eq:Linearity} \mbox{Displays here} \mbox{No need to estimate mean-reward of all arms,} \\ \mbox{estimating } \theta^* \mbox{ is enough}$

• **Regression**
$$\hat{\theta}_n = A_n^{-1} b_{n+1}$$

$$UCB(x) = \hat{\mu}(x) + \alpha \hat{\sigma}(x)$$

• Mahalanobis distance of x from $A_n: \sqrt{x^{\mathsf{T}}A_n^{-1}x}$

Optimize the beer you drink, before you get drunk

Performance measure

Best arm:
$$x^* = \arg\min_{x} \{x^T \theta^*\}.$$

Regret: $R_T = \sum_{i=1}^{T} (x^* - x_i)^T \theta^*$
Goal: ensure R_T grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!

Performance measure

Best arm:
$$x^* = \arg\min_{x} \{x^{\mathsf{T}}\theta^*\}.$$

Regret: $R_T = \sum_{i=1}^{T} (x^* - x_i)^{\mathsf{T}}\theta^*$
Goal: ensure R_T grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!

Complexity of Least Squares Regression

Figure : Typical ML algorithm using Regression

Regression Complexity

- $O(d^2)$ using the Sherman-Morrison lemma or
- $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Problem: Complace News feed platform has high-dimensional features $(d \sim 10^5) \Rightarrow$ solving OLS is computationally costly

Complexity of Least Squares Regression

Figure : Typical ML algorithm using Regression

Regression Complexity

- $O(d^2)$ using the Sherman-Morrison lemma or
- $O(d^{2.807})$ using the Strassen algorithm or $O(d^{2.375})$ the Coppersmith-Winograd algorithm

Problem: Complace News feed platform has high-dimensional features $(d \sim 10^5) \Rightarrow$ solving OLS is computationally costly

Fast GD for Regression

Solution: Use fast (online) gradient descent (GD)

- Efficient with complexity of only O(d) (Well-known)
- High probability bounds with explicit constants can be derived (not fully known)

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs regression in each iteration

Fast GD: provides good approximation to regression (with low computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors **Proved!** Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast GD] on two news feed platforms

Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs regression in each iteration

Fast GD: provides good approximation to regression (with low computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors **Proved!** Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast GD] on two news feed platforms

Outline

2 Non-strongly convex bandits

News recommendation application

fast GD

Step-sizes

$$\theta_n = \theta_{n-1} + \gamma_n \left(y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n} \right) x_{i_n}$$

Sample gradient

fast GD

• Sample gradient

fast GD

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

(A1) $\sup_{n} \|x_{n}\|_{2} \leq 1.$ (A2) $|\xi_{n}| \leq 1, \forall n.$ (A3) $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_{i}x_{i}^{\mathsf{T}}\right) \geq \mu.$ **Bounded** features

Bounded noise

Strongly convex co-variance matrix (for each *n*)!

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

Setting: $y_n = x_n^{\mathsf{T}} \theta^* + \xi_n$, where ξ_n is i.i.d. zero-mean

Why deriving error bounds is difficult?

$$\begin{aligned} \theta_n - \hat{\theta}_n &= \theta_n - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_n \\ &= \theta_{n-1} - \hat{\theta}_{n-1} + \hat{\theta}_{n-1} - \hat{\theta}_n + \gamma_n (y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} \\ &= \underbrace{\Pi_n(\theta_0 - \theta^*)}_{\text{Initial Error}} + \underbrace{\sum_{k=1}^n \gamma_k \Pi_n \Pi_k^{-1} \Delta \tilde{M}_k}_{\text{Sampling Error}} - \underbrace{\sum_{k=1}^n \Pi_n \Pi_k^{-1} (\hat{\theta}_k - \hat{\theta}_{k-1})}_{\text{Drift Error}}, \end{aligned}$$

Present in earlier SGD works and can be handled easily Consequence of changing target Hard to control!

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$$
, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A
Fast gradient descent, with application to bandits
Why deriving error bounds is difficult?

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}$$
, $\Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A Fast gradient descent, with application to bandits

Why deriving error bounds is difficult?

Note:
$$\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}}, \Pi_n := \prod_{k=1}^n (I - \gamma_k \bar{A}_k)$$
, and $\Delta \tilde{M}_k$ is a martingale difference.
Prashanth L A Fast gradient descent, with application to bandits

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1})\right)$$
$$\implies \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n\right).$$

Thus, drift is controlled by the convergence of $\hat{\theta}_n$ to θ^* **Key: confidence ball result**¹

Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1}) \right)$$
$$\Longrightarrow \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n \right).$$

Thus, drift is controlled by the convergence of $\hat{\theta}_n$ to θ^* **Key: confidence ball result**¹

¹Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Handling Drift Error

Note
$$F_n(\theta) := \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$
 and $\bar{A}_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Also, $\mathbb{E}[y_n \mid x_n] = x_n^T \theta^*$.

To control the drift error, we observe that

$$\left(\nabla F_n(\hat{\theta}_n) = 0 = \nabla F_{n-1}(\hat{\theta}_{n-1}) \right)$$
$$\Longrightarrow \left(\hat{\theta}_{n-1} - \hat{\theta}_n = \xi_n A_{n-1}^{-1} x_n - (x_n^{\mathsf{T}}(\hat{\theta}_n - \theta^*)) A_{n-1}^{-1} x_n \right).$$

Thus, drift is controlled by the convergence of $\hat{\theta}_n$ to θ^* **Key: confidence ball result**¹

¹Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) "Stochastic Linear Optimization under Bandit Feedback." In: COLT

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

$$P\left(\left\|\theta_{n}-\hat{\theta}_{n}\right\|_{2} \leq \sqrt{\frac{K_{\mu,c}}{n}\log\frac{1}{\delta}+\frac{h_{1}(n)}{\sqrt{n}}}\right) \geq 1-\delta$$

Optimal rate $O\left(n^{-1/2}\right)$
Bound in expectation
$$\mathbb{E}\left\|\theta_{n}-\hat{\theta}_{n}\right\|_{2} \leq \frac{\left\|\theta_{0}-\hat{\theta}_{n}\right\|_{2}}{n^{\mu c}}+\frac{h_{2}(n)}{\sqrt{n}}.$$

Initial error

• Sampling error

 $K_{\mu,c}$ is a constant depending on μ and c and $h_1(n)$, $h_2(n)$ hide log factors.

By iterate-averaging, the dependency of c on μ can be removed.

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

 ${}^{1}K_{\mu,c}$ is a constant depending on μ and c and $h_{1}(n), h_{2}(n)$ hide log factors.

² By iterate-averaging, the dependency of c on μ can be removed.

Error bound

With $\gamma_n = c/(4(c+n))$ and $\mu c/4 \in (2/3, 1)$ we have:

High prob. bound For any $\delta > 0$,

 ${}^{1}K_{\mu,c}$ is a constant depending on μ and c and $h_{1}(n), h_{2}(n)$ hide log factors.

² By iterate-averaging, the dependency of c on μ can be removed.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

- Pull each of the *d* basis arms once —
- Using losses, compute OLS
- Use OLS estimate to compute a greedy decision
- Pull the greedy arm *m* times

For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase

Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

Choose arm x m times consecutively.

¹P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

• Using losses, compute OLS For each cycle $m = 1, 2, \ldots$ do

Exploration Phase

For i = 1 to d- Choose arm b_i - Observe $y_i(m)$.

• Use OLS estimate to compute a greedy decision

• Pull the greedy arm *m* times

$$\hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^\mathsf{T} \right)^{-1} \sum_{i=1}^{m} \sum_{j=1}^{d} b_i y_j(i).$$

Exploitation Phase

Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$

Choose arm x m times consecutively.

¹P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d . For each cycle $m = 1, 2, \dots$ do **Exploration Phase** Pull each of the *d* basis For i = 1 to d arms once _____ - Choose arm b; - Observe $y_i(m)$. Using losses, compute OLS _____ $\rightarrow \hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^{\mathsf{T}} \right)^{-1} \sum_{i=1}^{m} \sum_{i=1}^{d} b_i y_j(i).$ Use OLS estimate to compute a greedy **Exploitation Phase** decision — Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$ • Pull the greedy arm m Choose arm x m times consecutively.

¹P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d . For each cycle $m = 1, 2, \dots$ do **Exploration Phase** Pull each of the *d* basis For i = 1 to d arms once _____ - Choose arm b; - Observe $y_i(m)$. Using losses, compute $\rightarrow \hat{\theta}_{md} = \frac{1}{m} \left(\sum_{i=1}^{d} b_i b_i^{\mathsf{T}} \right)^{-1} \sum_{i=1}^{m} \sum_{i=1}^{d} b_i y_j(i).$ OLS _____ Use OLS estimate to compute a greedy **Exploitation Phase** decision — Find $x = \underset{x \in D}{\arg\min\{\hat{\theta}_{md}^{\mathsf{T}}x\}}$ • Pull the greedy arm m times _____ Choose arm x m times consecutively.

¹P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

- For each cycle m = 1, 2, ... doPull each of the d basis
arms onceExploration PhaseUsing losses, update fast
GD iterateFor i = 1 to d
- Choose arm b_i
- Observe $y_i(m)$.Use fast GD iterate to
compute a greedy
decisionUpdate fast GD iterate θ_{md} Find $x = \arg\min_{x \in D} \{\theta_{md}^T x\}$
 - Choose arm x m times consecutively.

• Pull the greedy arm *m*

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

• Pull the greedy arm *m* times

Choose arm x m times consecutively.

Input A basis $\{b_1, \ldots, b_d\} \in D$ for \mathbb{R}^d .

Regret bound for PEGE+fast GD

(Strongly Convex Arms): (A3) The function $G: \theta \to \underset{x \in \mathcal{D}}{\arg\min\{\theta^{\mathsf{T}}x\}}$ is *J*-Lipschitz.

Theorem

Under (A1)-(A3), regret
$$R_T := \sum_{i=1}^T x_i^{\mathsf{T}} \theta^* - \min_{x \in \mathcal{D}} x^{\mathsf{T}} \theta^*$$
 satisfies
 $R_T \leq CK_1(n)^2 d^{-1} (\|\theta^*\|_2 + \|\theta^*\|_2^{-1}) \sqrt{T}$

The bound is worse than that for PEGE by only a factor of $O(\log^4(n))^{1/2}$

Outline

News recommendation application

Fast linUCB

Fast linUCB

Fast linUCB

Problem: In many settings, λ_{\min}

$$\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \ge \mu$$
 may not hold.

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{\|\theta\|^2}$$

`

GD update:

$$\theta_n = \theta_{n-1} + \gamma_n ((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$$

Problem: In many settings, $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \geq \mu$ may not hold.

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{\lambda_n \|\theta\|^2}$$

$$\theta_n = \theta_{n-1} + \gamma_n ((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$$

Problem: In many settings, $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \geq \mu$ may not hold.

Solution: Adaptively regularize with λ_n

$$\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{\lambda_n \|\theta\|^2}$$

$$\theta_n = \theta_{n-1} + \gamma_n ((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$$

Problem: In many settings, $\lambda_{\min}\left(\frac{1}{n}\sum_{i=1}^{n-1}x_ix_i^{\mathsf{T}}\right) \geq \mu$ may not hold. Solution: Adaptively regularize with λ_n $\tilde{\theta}_n := \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^n (y_i - \theta^{\mathsf{T}} x_i)^2 + \frac{\lambda_n \|\theta\|^2}{\lambda_n \|\theta\|^2}$ Pick *i_n* uniformly Update θ_n $\rightarrow \theta_{n+1}$ θ_n in $\{1, ..., n\}$ using (x_{i_n}, y_{i_n}) Random Sampling **GD** Update

GD update:

$$\theta_n = \theta_{n-1} + \gamma_n((y_{i_n} - \theta_{n-1}^{\mathsf{T}} x_{i_n}) x_{i_n} - \lambda_n \theta_{n-1})$$

Need
$$\sum_{k=1}^{n} \gamma_k \lambda_k \to \infty$$
 to bound the initial error

Set
$$\gamma_n = O(n^{-\alpha})$$
 (forcing $\lambda_n = \Omega(n^{-(1-\alpha)})$)

Bad news: This choice when plugged into (1) results in only a constant error bound!

Note:
$$\tilde{\Pi}_n := \prod_{k=1}^n (I - \gamma_k(\bar{A}_k + \lambda_k I))$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

Set
$$\gamma_n = O(n^{-\alpha})$$
 (forcing $\lambda_n = \Omega(n^{-(1-\alpha)})$)

Bad news: This choice when plugged into (1) results in only a constant error bound!

Note:
$$\tilde{\Pi}_n := \prod_{k=1}^n (I - \gamma_k(\bar{A}_k + \lambda_k I))$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

Set
$$\gamma_n = O(n^{-\alpha})$$
 (forcing $\lambda_n = \Omega(n^{-(1-\alpha)})$)

Bad news: This choice when plugged into (1) results in only a constant error bound!

Note:
$$\tilde{\Pi}_n := \prod_{k=1}^n (I - \gamma_k(\bar{A}_k + \lambda_k I))$$
 and $\tilde{\theta}_{n-1} - \tilde{\theta}_n = \Omega(n^{-1})$, whenever $\alpha \in (0, 1)$

Prashanth L A

e:
$$\Pi_n := \prod_{k=1} (I - \gamma_k (A_k + \lambda_k I)) \text{ and } \theta_{n-1} - \theta_n = \Omega(n^{-1}), \text{ whenever } \alpha \in (0, 1)$$

Prashanth L A

Outline

News recommendation application

Dilbert's boss on news recommendation (and ML)

Preliminary Results on Complacs News Feed Platform

Experiments on Yahoo! Dataset ¹

Figure : The Featured tab in Yahoo! Today module

¹Yahoo User-Click Log Dataset given under the Webscope program (2011)

Tracking Error

Tracking error: SGD

Tracking error: SAG²

¹Johnson, R., and Zhang, T. (2013) "Accelerating stochastic gradient descent using predictive variance reduction". In: NIPS

² Roux, N. L., Schmidt, M. and Bach, F. (2012) "A stochastic gradient method with an exponential convergence rate for finite training sets." arXiv preprint arXiv:1202.6258.

Runtime Performance on two days of the Yahoo! dataset

References I

Nathaniel Korda, Prashanth L.A. and Rémi Munos,

Fast gradient descent for least squares regression: Non-asymptotic bounds and application to bandits.

AAAI, 2015.
Dilbert's boss (again) on big data!

