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AI that benefits humans

Reinforcement learning (RL) setting with rewards evaluated by humans

World

Agent

Reward

CPT

Cumulative prospect theory (CPT) captures human preferences



CPT-value

For a given r.v. X, CPT-value C(X) is

C(X) :=

∫ +∞

0
w+

(
P
(
u+(X) > z

))
dz︸ ︷︷ ︸

Gains

−
∫ +∞

0
w− (

P
(
u−(X) > z

))
dz︸ ︷︷ ︸

Losses

Utility functions u+,u− : R → R+, u+(x) = 0 when x ≤ 0, u−(x) = 0 when x ≥ 0

Weight functions w+,w− : [0, 1] → [0, 1] with w(0) = 0, w(1) = 1

Connection to expected value:

C(X) =

∫ +∞

0
P (X > z)dz −

∫ +∞

0
P (−X > z)dz

= E
[
(X)+

]
− E

[
(X)−

]
(a)+ = max(a, 0), (a)− = max(−a, 0)
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Utility and weight functions

Utility functions

Losses

u+

−u−

Gains

Utility

For losses, the disutility −u− is convex,
for gains, the utility u+ is concave

Weight function
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Prospect Theory

Amos Tversky Daniel Kahneman

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under

risk” is the second most cited paper in economics during the period, 1975-2000



Our Contributions

C(Xθ) :=

∫ +∞

0
w+

(
P
(

u+(Xθ) > z
))

dz −
∫ +∞

0
w−

(
P
(

u−(Xθ) > z
))

dz

Find θ∗ = arg max
θ∈Θ

C(Xθ)

• CPT-value estimation using empirical distribution functions

• SPSA-based policy gradient algorithm

• sample complexity bounds for estimation + asymptotic
convergence of policy gradient

• traffic signal control application



CPT-value estimation

Problem: Given samples X1, . . . ,Xn of X, estimate

C(X) :=

∫ +∞

0
w+

(
P
(
u+(X) > z

))
dz −

∫ +∞

0
w− (

P
(
u−(X) > z

))
dz

Nice to have: Sample complexity O
(
1/ϵ2) for accuracy ϵ



Empirical distribution function (EDF): Given samples X1, . . . ,Xn of
X,

F̂+
n (x) =

1
n

n∑
i=1

1(u+(Xi)≤x), and F̂−
n (x) = 1

n

n∑
i=1

1(u−(Xi)≤x)

Using EDFs, the CPT-value C(X) is estimated by

Cn =

∫ +∞

0
w+(1 − F̂+

n (x))dx︸ ︷︷ ︸
Part (I)

−
∫ +∞

0
w−(1 − F̂−

n (x))dx︸ ︷︷ ︸
Part (II)

Computing Part (I): Let X[1],X[2], . . . ,X[n] denote the order-statistics

Part (I) =
n∑

i=1
u+(X[i])

(
w+

(
n + 1 − i

n

)
−w+

(
n − i

n

))
,
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(A1). Weights w+,w− are Hölder continuous, i.e.,
|w+(x)− w+(y)| ≤ H|x − y|α, ∀x, y ∈ [0, 1]

(A2). Utilities u+(X) and u−(X) are bounded above by M < ∞

Sample Complexity:

Under (A1) and (A2), for any ϵ, δ > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≤ ϵ
)
> 1 − δ ,∀n ≥ ln

(
1
δ

)
· 4H2M2

ϵ2/α

Special Case: Lipschitz weights (α = 1)

Sample complexity O
(
1/ϵ2) for accuracy ϵ
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CPT-value optimization

Find θ∗ = arg max
θ∈Θ

C(Xθ)

RL application: θ = policy parameter, Xθ = return

Prediction

Control

CPT-value CθParameter θ

Two-Stage Solution:

inner stage Obtain samples
of Xθ and
estimate C(Xθ);

outer stage Update θ using
gradient ascent

∇iC(Xθ) is not given



Update rule: θi
n+1 = Γi

(
θi

n + γn ∇̂iC(Xθn)

)
, i = 1, . . . , d.

Projection operator Step-sizes Gradient estimate

Challenge: estimating ∇iC(Xθ) given only biased estimates of C(Xθ)

Solution: use SPSA [Spall’92]

∇̂iC(Xθ) =
Cθn+δn∆n

n − Cθn−δn∆n
n

2δn∆i
n

∆n is a vector of independent Rademacher r.v.s and δn > 0 vanishes
asymptotically.



x Measurement
Oracle

f(x) + ξ

Zero mean

Simulation optimization

X, ϵ
CPT

Estimator
C(X) + ϵ

Controlled bias

CPT-value optimization

θn

+

−

δn∆n

δn∆n

Cθn+δn∆n
n

Prediction

Cθn−δn∆n
n

Prediction

Update θn

(Gradient as-
cent)

Control

θn+1

mn samples

mn samples

Figure 1: Overall flow of CPT-SPSA

How to choose mn to ignore estimation bias? Ensure 1
mα/2

n δn
→ 0



Application: Traffic signal control

• For any path i = 1, . . . ,M, let Xi
be the delay gain

• calculated with a pre-timed traffic
light controller as reference

• CPT captures the road users’
evaluation of the delay gain Xi

• Goal: Maximize

CPT(X1, . . . ,XM) =
M∑
i=1

µiC(Xi)

µi: proportion of traffic on path i
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(a) AVG-SPSA
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(b) EUT-SPSA
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(c) CPT-SPSA

Figure 2: Histogram of CPT-value of the delay gain: AVG uses plain sample
means (no utility/weights), EUT uses utilities but no weights and CPT uses both.



Conclusions

• Want AI to be beneficial to humans

• CPT - a very popular paradigm for modeling human decisions

• We lay the foundations for using CPT in an RL setting

• Prediction: Sample means (TD) won’t work, but empirical
distributions do!

• Control: No Bellman, but SPSA can be employed

Future directions:

• Crowdsourcing experiment to validate CPT online

• Robustness to unknown utility and weight function parameters
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Thanks! Questions?


