Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control

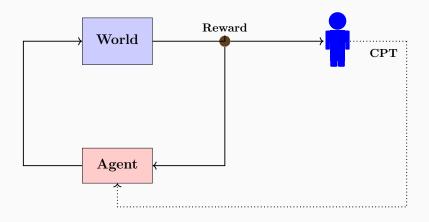
Prashanth L.A.

Joint work with Cheng Jie, Michael Fu, Steve Marcus and Csaba Szepesvári

University of Maryland, College Park

AI that benefits humans

Reinforcement learning (RL) setting with rewards evaluated by humans



Cumulative prospect theory (CPT) captures human preferences

CPT-value

For a given r.v. X, CPT-value $\mathbb{C}(X)$ is

$$\mathbb{C}(X) := \underbrace{\int_{0}^{+\infty} w^{+} \left(\mathbb{P}\left(u^{+}(X) > z \right) \right) dz}_{Gains} - \underbrace{\int_{0}^{+\infty} w^{-} \left(\mathbb{P}\left(u^{-}(X) > z \right) \right) dz}_{Losses}$$

Utility functions $u^+, u^- : \mathbb{R} \to \mathbb{R}_+, u^+(x) = 0$ when $x \le 0, u^-(x) = 0$ when $x \ge 0$

Weight functions $w^+, w^- : [0, 1] \rightarrow [0, 1]$ with w(0) = 0, w(1) = 1

CPT-value

For a given r.v. X, CPT-value $\mathbb{C}(X)$ is

$$\mathbb{C}(X) := \underbrace{\int_{0}^{+\infty} w^{+} \left(\mathbb{P}\left(u^{+}(X) > z \right) \right) dz}_{Gains} - \underbrace{\int_{0}^{+\infty} w^{-} \left(\mathbb{P}\left(u^{-}(X) > z \right) \right) dz}_{Losses}$$

Utility functions $u^+, u^-: \mathbb{R} \to \mathbb{R}_+, \, u^+(x) = 0$ when $x \leq 0, \, u^-(x) = 0$ when $x \geq 0$

Weight functions $w^+, w^- : [0, 1] \rightarrow [0, 1]$ with w(0) = 0, w(1) = 1

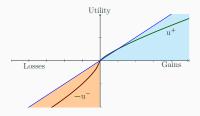
Connection to expected value:

$$\begin{split} \mathbb{C}(X) &= \int_{0}^{+\infty} \mathbb{P}\left(X > z\right) dz - \int_{0}^{+\infty} \mathbb{P}\left(-X > z\right) dz \\ &= \mathbb{E}\left[(X)^{+}\right] - \mathbb{E}\left[(X)^{-}\right] \end{split}$$

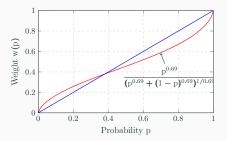
 $(a)^+ = \max(a, 0), (a)^- = \max(-a, 0)$

Utility and weight functions

Utility functions



Weight function



For losses, the disutility $-u^-$ is convex, for gains, the utility u^+ is concave Overweight low probabilities, underweight high probabilities

Prospect Theory

Amos Tversky

Daniel Kahneman

Kahneman & Tversky (1979) "Prospect Theory: An analysis of decision under risk" is the second most cited paper in economics during the period, 1975-2000

$$\mathbb{C}(X^{\theta}) := \int_0^{+\infty} w^+ \left(\mathbb{P}\left(u^+(X^{\theta}) > z \right) \right) \mathrm{d}z - \int_0^{+\infty} w^- \left(\mathbb{P}\left(u^-(X^{\theta}) > z \right) \right) \mathrm{d}z$$

Find
$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{C}(X^{\theta})$$

- CPT-value estimation using empirical distribution functions
- SPSA-based policy gradient algorithm
- sample complexity bounds for estimation + asymptotic convergence of policy gradient
- traffic signal control application

Problem: Given samples X_1, \ldots, X_n of X, estimate

$$\mathbb{C}(X):=\int_0^{+\infty}w^+\left(\mathbb{P}\left(u^+(X)>z\right)\right)\mathrm{d} z-\int_0^{+\infty}w^-\left(\mathbb{P}\left(u^-(X)>z\right)\right)\mathrm{d} z$$

Nice to have: Sample complexity $O\left(1/\epsilon^2\right)$ for accuracy ϵ

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^+(X_i) \leq x)}, \quad \mathrm{and} \quad \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^-(X_i) \leq x)}$$

Using EDFs, the CPT-value $\mathbb{C}(X)$ is estimated by

$$\overline{\mathbb{C}}_n = \underbrace{\int_0^{+\infty} w^+ (1 - \hat{F}_n^+(x)) dx}_{\text{Part (I)}} - \underbrace{\int_0^{+\infty} w^- (1 - \hat{F}_n^-(x)) dx}_{\text{Part (II)}}$$

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^+(X_i) \leq x)}, \quad \mathrm{and} \quad \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^-(X_i) \leq x)}$$

Using EDFs, the CPT-value $\mathbb{C}(X)$ is estimated by

$$\overline{\mathbb{C}}_n = \underbrace{\int_0^{+\infty} w^+ (1 - \hat{F}_n^+(x)) dx}_{\text{Part (I)}} - \underbrace{\int_0^{+\infty} w^- (1 - \hat{F}_n^-(x)) dx}_{\text{Part (II)}}$$

Computing Part (I): Let $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ denote the order-statistics

$$\operatorname{Part} (I) = \sum_{i=1}^{n} u^{+}(X_{[i]}) \left(w^{+} \left(\frac{n+1-i}{n} \right) - w^{+} \left(\frac{n-i}{n} \right) \right),$$

(A1). Weights
$$w^+, w^-$$
 are Hölder continuous, i.e.,
 $|w^+(x) - w^+(y)| \le H|x - y|^{\alpha}, \forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Sample Complexity:

Under (A1) and (A2), for any $\epsilon, \delta > 0$, we have

$$\mathbb{P}\left(\left|\overline{\mathbb{C}}_{n} - \mathbb{C}(X)\right| \leq \epsilon\right) > 1 - \delta \ , \forall n \geq \ln\left(\frac{1}{\delta}\right) \cdot \frac{4H^{2}M^{2}}{\epsilon^{2/\alpha}}$$

(A1). Weights
$$w^+, w^-$$
 are Hölder continuous, i.e.,
 $|w^+(x) - w^+(y)| \le H|x - y|^{\alpha}, \forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Sample Complexity:

Under (A1) and (A2), for any $\epsilon, \delta > 0$, we have

$$\mathbb{P}\left(\left|\overline{\mathbb{C}}_{n} - \mathbb{C}(X)\right| \leq \epsilon\right) > 1 - \delta \ , \forall n \geq \ln\left(\frac{1}{\delta}\right) \cdot \frac{4H^{2}M^{2}}{\epsilon^{2/\alpha}}$$

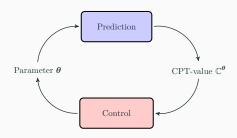
Special Case: Lipschitz weights ($\alpha = 1$)

Sample complexity $O(1/\epsilon^2)$ for accuracy ϵ

CPT-value optimization

Find
$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{C}(X^{\theta})$$

RL application: $\theta = \text{policy parameter}, X^{\theta} = \text{return}$



Two-Stage Solution:

inner stage Obtain samples of X^{θ} and estimate $\mathbb{C}(X^{\theta})$;

outer stage Update θ using gradient ascent

 $\nabla_{i}\mathbb{C}(X^{\theta})$ is not given

Update rule:
$$\theta_{n+1}^{i} = \prod_{i} \left(\theta_{n}^{i} + \gamma_{n} \widehat{\nabla}_{i} \mathbb{C}(X^{\theta_{n}}) \right), \quad i = 1, ..., d.$$

Projection operator Step-sizes Gradient estimate

Challenge: estimating $\nabla_i \mathbb{C}(X^{\theta})$ given only biased estimates of $\mathbb{C}(X^{\theta})$

Solution: use SPSA [Spall'92]

$$\widehat{\nabla}_{i}\mathbb{C}(X^{\theta}) = \frac{\overline{\mathbb{C}}_{n}^{\theta_{n}+\delta_{n}\Delta_{n}} - \overline{\mathbb{C}}_{n}^{\theta_{n}-\delta_{n}\Delta_{n}}}{2\delta_{n}\Delta_{n}^{i}}$$

 Δ_n is a vector of independent Rademacher r.v.s and $\delta_n > 0$ vanishes asymptotically.

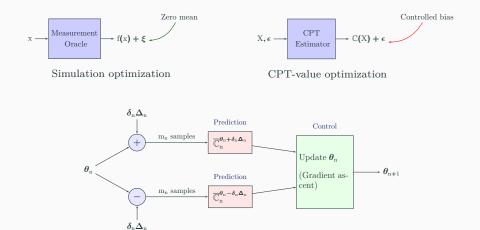
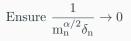
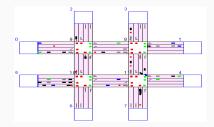


Figure 1: Overall flow of CPT-SPSA

How to choose m_n to ignore estimation bias?



Application: Traffic signal control



- For any path $i=1,\ldots,\mathcal{M},$ let X_i be the delay gain
 - calculated with a pre-timed traffic light controller as reference
- CPT captures the road users' evaluation of the delay gain $\rm X_i$
 - Goal: Maximize $CPT(X_1, ..., X_M) = \sum_{i=1}^M \mu^i \mathbb{C}(X_i)$

 $\mu^{\rm i} {:}$ proportion of traffic on path i

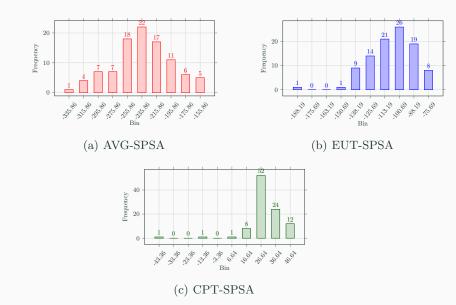


Figure 2: Histogram of CPT-value of the delay gain: AVG uses plain sample means (no utility/weights), EUT uses utilities but no weights and CPT uses both.

Conclusions

- Want AI to be beneficial to humans
- CPT a very popular paradigm for modeling human decisions

Conclusions

- Want AI to be beneficial to humans
- CPT a very popular paradigm for modeling human decisions
- We lay the foundations for using CPT in an RL setting
 - Prediction: Sample means (TD) won't work, but empirical distributions do!
 - Control: No Bellman, but SPSA can be employed

Future directions:

- Crowdsourcing experiment to validate CPT online
- Robustness to unknown utility and weight function parameters

Thanks! Questions?