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Introduction



Risk criteria

• Conditional Value-at-Risk (Rockafellar, Ursayev 2000)

• Spectral risk measures (Acerbi 2002)

• Cumulative prospect theory (Tversky,Kahnemann 1992)
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Open Question ???

Given i.i.d. samples and an empirical version of the risk measure,
for a distribution with unbounded support

Obtain concentration bounds for each of the three risk measures

Idea: Use finite sample bounds for Wasserstein distance
between empirical and true distributions
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Empirical risk concentration: summary of contributions

Goal: Bound P [|̂rn − r(X)| > ϵ]

r̂n → empirical risk using n i.i.d. samples, r(X) → true risk

Risk measure Bounded support Sub-Gaussian

Conditional Value-at-Risk [Brown et al.], [Gao et al.] Our work

Spectral risk measures Our work Our work

Cumulative prospect theory [Cheng et al. 2018] Our work

Unified approach: For each bound, the estimation error is
related to Wasserstein distance between empirical and true
distributions1
1
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.

Probability Theory and Related Fields, 2015.
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Wasserstein Distance



Wasserstein Distance

The Wasserstein distance between two CDFs F1 and F2 on R is

W1(F1, F2) =
[
inf
∫
R2

|x− y|dF(x, y)
]
,

where the infimum is over all joint distributions having marginals F1 and F2

Related to the Kantorovich mass transference problem

• Ship masses around so that the initial mass distribution F1 changes into F2

• Shipping plan: given by joint distribution F with marginals F1 and F2 such that
the amount of mass shipped from a neighborhood dx of x to the neighborhood
dy of y is proportional to dF(x, y)

• The integral above is then the total transportation distance under the shipping
plan F

• Wasserstein distance between F1 and F2 is the transportation distance under
the optimal shipping plan

5



Wasserstein Distance: Concentration Bounds

X→ r.v. with CDF F, Fn → empirical CDF formed using n i.i.d.
samples. Then2,

P (W1(Fn, F) > ϵ) ≤ B(n, ϵ), for any ϵ > 0,

Exponential moment bound:
If ∃β > 1 and γ > 0 such that E

(
exp

(
γ|X− E(X)|β

))
< ⊤ < ∞, then

B(n, ϵ) = C
(
exp

(
−cnϵ2

)
I {ϵ ≤ 1}+ exp

(
−cnϵβ

)
I {ϵ > 1}

)
Higher moment bound:
If ∃β > 2 such that E

(
|X− E(X)|β

)
< ⊤ < ∞, then, for any η ∈ (0, β),

B(n, ϵ) = C
(
exp

(
−cnϵ2

)
I {ϵ ≤ 1}+ n (nϵ)−(β−η)/p I {ϵ > 1}

)
2
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.

Probability Theory and Related Fields, 2015. 6



Conditional Value-at-Risk



VaR and CVaR are Risk-Sensitive Metrics

• Widely used in financial portfolio optimization, credit risk
assessment and insurance

• Let X be a continuous random variable

• Fix a ‘risk level’ α ∈ (0, 1) (say α = 0.95)

Value at Risk:
vα(X) = F−1X (α)

Conditional Value at Risk:
cα(X) = E [X|X > vα(X)]

= vα(X) +
1

1− α
E [X− vα(X)]+
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Defining CVaR

Value at Risk:
vα(X) = F−1X (α)

Conditional Value at Risk:
cα(X) = E [X|X > vα(X)]

= vα(X) +
1

1− α
E [X− vα(X)]+

For a general r.v. X,

cα(X) = inf
ξ

{
ξ +

1
(1− α)

E (X− ξ)+
}
, where (y)+ = max(y, 0)
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CVaR is a Coherent Risk Metric

• Monotonicity: If X ≤ Y, then c(X) ≤ c(Y)
• Sub-additivity: c(X+ Y) ≤ c(X) + c(Y), i.e., diversification
cannot lead to increased risk.

• Positive Homogeneity: c(λX) = λc(X) for any λ ≥ 0.
• Translation Invariance: For deterministic a > 0,
c(X+ a) = c(X)− a.

Note: VaR is not sub-additive3

3P. Artzner et al. ”Coherent measures of risk.” Mathematical finance 9.3 (1999).
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Examples

1. Exponential Case: Suppose X ∼ Exp(µ)

• vα(X) =
1
µ
ln
(

1
1− α

)
,

• cα(X) = vα(X) +
1
µ
(memoryless!)

2. Gaussian Case: Suppose X ∼ N (µ, σ2)

• vα(X) = µ− σQ−1(α)

• cα(X) = µ+ σcα(Z), Z ∼ N (0, 1)

For these distributions, no separate CVaR estimate is necessary
– estimating µ and σ would do
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CVaR estimation: The problem

Problem: Given i.i.d. samples X1, . . . , Xn from the distribution F of r.v.
X, estimate

cα(X) = E [X|X > vα(X)]

Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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Empirical distribution function (EDF): Given samples X1, . . . , Xn from
distribution F,

F̂n(x) =
1
n

n∑
i=1

I {Xi ≤ x} , x ∈ R

Using EDF and the order statistics X[1] ≤ X[2] ≤ . . . , X[n], form the
following estimates4:

VaR estimate:

v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

CVaR estimate:

ĉn,α = v̂n,α +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)+

4
Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.
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Concentration bounds for CVaR Estimation

• Need to put some restrictions on the tail distribution to obtain
exponential concentration

• Our assumptions:
(C1) X satisfies an exponential moment bound, i.e.,

∃β > 0 and γ > 0 s.t. E
(
exp

(
γ|X− µ|β

))
< ⊤ < ∞, where µ = E(X)

or

(C2) X satisfies a higher-moment bound, i.e.,
β > 0 such that E

(
|X− µ|β

)
< ⊤ < ∞

Sub-Gaussian r.v.s satisfy (C1), while sub-exponential r.v.s satisfy (C2)
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A random variable is X is sub-Gaussian if ∃ σ > 0 s.t.

E
[
eλX
]
≤ e

σ2λ2
2 , ∀λ ∈ R.

Or equivalently, letting Z ∼ N (0, σ2),

P [X > ϵ] ≤ cP [Z > ϵ] , ∀ϵ > 0. Tail dominated by a Gaussian

A random variable is X is sub-exponential if ∃ c0 > 0 s.t.

E
[
eλX
]
< ∞, ∀|λ| < c0.

Or equivalently, ∃σ,b > 0 s.t. E
[
eλX

]
≤ e

σ2λ2
2 , ∀|λ| ∈

1
b
. Or

P [X > ϵ] ≤ c1 exp(−c2ϵ), ∀ϵ > 0. Tail dominated by an exponential r.v
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A few well-known concentration inequalities

Let X1, . . . , Xn be i.i.d. samples from the distribution of r.v. X with

mean µ, and µ̂n =
1
n

n∑
i=1

Xi.

When X is σ-sub-Gaussian:

P [|µ̂n − µ| > ϵ] ≤ 2 exp
(
−nϵ

2

2σ2

)

When X is (σ,b)-sub-exponential:

P [|µ̂n − µ| > ϵ] ≤


2 exp

(
−nϵ

2

2σ2

)
, 0 ≤ ϵ ≤ σ2

b ,

2 exp
(
−nϵ2b

)
, ϵ >

σ2

b .
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A CVaR concentration result using Wasserstein distance:
sub-Gaussian case

When X is σ-sub-Gaussian,

P [|ĉn,α − cα| > ϵ] ≤ 2C exp
(
−cn(1− α)2ϵ2

)
, for any ϵ ≥ 0,

where C, c are constants that depend on σ.

Idea: Use a concentration result5 for Wasserstein distance between
EDF and CDF.

Note:

1) The dependence on n, ϵ cannot be improved

2) Our bound allows a bandit application, as C, c depend on σ

(assumed to be known in bandit settings)

5
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.

Probability Theory and Related Fields, 2015.
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A CVaR concentration result using Wasserstein distance: sub-
exponential case

When X is sub-exponential, for any ϵ ≥ 0,

P [|ĉn,α − cα|>ϵ]≤

{
C exp

[
−cn(1− α)2ϵ2

]
, 0 ≤ ϵ ≤ 1,

C n [n(1− α)ϵ]η−3, ϵ > 1
,

where C, c are universal constants, and η is chosen arbitrarily from (0, β).

Note:

For ϵ ≤ 1, the bound above is satisfactory.

For large ϵ, the second term exhibits polynomial decay, and this is
not an artifact of our analysis. Instead, it relates to the sub-optimal
rate obtained in [Fourner-Guillin, 2015].

Recent work in [Prashanth et al. 2019] has closed this gap, using a
different proof technique.
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Proof Idea

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) = sup |E(f(X))− E(f(Y))| , where (1)

X and Y are random variables having CDFs F1 and F2, respectively, and
supremum is over all 1-Lipschitz functions f : R → R

The estimation error |ĉn,α − cα| is related to the Wasserstein
distance in (1), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.
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Spectral risk measures



Spectral Risk Measure

• A risk spectrum ϕ : [0, 1] → [0,∞), defines a risk measure

Mϕ(X) =
∫ 1

0
ϕ(β)F−1(β)dβ

• If ϕ is increasing and integrates to 1, then Mϕ is a coherent
risk measure

• CVaR is a special case:

cα(X) = Mϕ for ϕ = (1− α)−1I {β ≥ α}

• Using risk spectrum, one can assign higher weight to
higher losses. In contrast, CVaR assigns same weight for
all tail losses.
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Estimating a Spectral Risk Measure

• Idea: apply Mϕ to the empirical distribution Fn constructed
from n i.i.d. samples of X

mn,ϕ =

∫ 1

0
ϕ(β)F−1n (β)dβ

• If |ϕ(·)| is bounded above by K, then

|Mϕ(X)−mn,ϕ| ≤ KW1(F, Fn)

• Bounds on W1(F, Fn) immediately yield concentration
bounds for the estimator mn,ϕ
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Proof Idea

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) =
∫ 1

0
|F−11 (β)− F−12 (β)|dβ, where (2)

where F−1i (β) = inf{x ∈ R : Fi(x) ≥ β} is the β-quantile under Fi

The estimation error |mn,ϕ −Mϕ(X)| is related to the Wasserstein
distance in (2), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.
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Cumulative prospect theory



AI that benefits humans

Sequential decision making (RL/bandits) setting with rewards
evaluated by humans

World

Agent

Reward

CPT

Cumulative prospect theory (CPT) captures human preferences 22



Going to office - bandit style

On every day
1. Pick a route to office
2. Reach office and record (suffered)
delay

23



Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected
delay
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Why not distort?

Two-route scenario: Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes,
humans *need not* minimize expected delay

25



Prospect Theory and its refinement (CPT)

Amos Tversky Daniel Kahneman

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the
second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982) 26



CPT-value

For a given r.v. X, CPT-value C(X) is

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz︸ ︷︷ ︸

Gains

−
∫ ∞

0
w− (P (u−(X) > z

))
dz︸ ︷︷ ︸

Losses

Utility functions u+, u− : R → R+ , u+(x) = 0 when x ≤ 0, u−(x) = 0 when x ≥ 0

Weight functions w+,w− : [0, 1] → [0, 1] with w(0) = 0, w(1) = 1

Connection to expected value:

C(X) =
∫ ∞

0
P (X > z)dz−

∫ ∞

0
P (−X > z)dz

= E(X)+ − E(X)−

(a)+ = max(a, 0), (a)− = max(−a, 0)
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Utility and weight functions

Utility functions

Losses

u+

−u−

Gains

Utility

For losses, the disutility −u− is convex,
for gains, the utility u+ is concave

Weight function

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

p0.69

(p0.69 + (1− p)0.69)1/0.69

Probability p

W
ei
gh
tw

(p
)

Overweight low probabilities,
underweight high probabilities
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CPT-value estimation

Problem: Given samples X1, . . . , Xn of X, estimate

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz−

∫ ∞

0
w− (P (u−(X) > z

))
dz

Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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Empirical distribution function (EDF): Given samples X1, . . . , Xn of X,

F̂+n (x) =
1
n

n∑
i=1

1(u+(Xi)≤x), and F̂−n (x) =
1
n

n∑
i=1

1(u−(Xi)≤x)

Using EDFs, the CPT-value C(X) is estimated by 6

Cn =
∫ ∞

0
w+(1− F̂+n (x))dx︸ ︷︷ ︸

Part (I)

−
∫ ∞

0
w−(1− F̂−n (x))dx︸ ︷︷ ︸

Part (II)

Computing Part (I): Let X[1], X[2], . . . , X[n] denote the order-statistics

Part (I) =
n∑
i=1

u+(X[i])
(
w+

(
n+ 1− i

n

)
−w+

(
n− i
n

))
,

6Cheng et al. Stochastic optimization in a cumulative prospect theory
framework. IEEE Transactions on Automatic Control, 2018.
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CPT-value concentration: Bounded case

(A1). Weights w+,w− are Hölder continuous, i.e.,
|w+(x)− w+(y)| ≤ L|x− y|α, ∀x, y ∈ [0, 1]

(A2). Utilities u+(X) and u−(X) are bounded above by M < ∞

Concentration bound:

Under (A1) and (A2), for any ϵ > 0, we have

P
(∣∣Cn − C(X)

∣∣ > ϵ
)
≤ 2C exp

(
− cnϵ2/α
(2LM)2/α

)

Lipschitz weights (α = 1): Sample complexity O
(
1/ϵ2

)
for

accuracy ϵ

General α < 1 case: Sample complexity O
(
1/ϵ2/α

)
for

accuracy ϵ
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CPT-value concentration: Sub-Gaussian case

Truncated estimator:

C̃n =
∫ τn

0
w+(1− F̂+n (z))dz−

∫ τn

0
w−(1− F̂−n (z))dz, where

τn = σ
(√

logn+
√
log logn

)
(A1). Weights w+,w− are Hölder continuous

(A2). Utilities u+(X) and u−(X) are sub-Gaussian with parameter σ

Concentration bound:

For any ϵ > 8Lσ2

αnα/2 , and for n s.t. σ
√
log log n > max

(
E(u+(X)),E(u−(X))

)
+ 1,

P
(∣∣∣C̃n − C(X)

∣∣∣ > ϵ
)
≤ 2C exp

−cn
(
ϵ− 8Lσ2

αnα/2

L
√
logn

) 2
α


32



Proof Idea: Bounded case

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) =
∫ ∞

−∞
|F1(s)− F2(s)|ds, where (3)

The estimation error
∣∣Cn − C(X)

∣∣ is related to the Wasserstein
distance in (3), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.
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CVaR bandits



CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions Pi, i = 1, . . . , K,

CVaR-values (at fixed risk level α) : Cα(1), . . . , Cα(K)

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . , K}
• observe a sample loss from PIt

Benchmark: C∗ = min
i=1,...,K

Cα(i).

Regret Rn =
K∑
i=1

Cα(i)Ti(n)− nC∗ =
K∑
i=1

Ti(n)∆i,

Goal: Minimize expected regret E (Rn)
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Optimizing CVaR using confidence bounds1

CVaR-LCB

Pull each arm once

For each round t = 1, 2, . . . ,n do
For each arm i = 1, . . . , K do

Compute an estimate ci,Ti(t−1) of CVaR value Cα(i)

LCB index: LCBt(i) = ci,Ti(t−1) −
2

1− α

√
log (Ct)
c Ti(t− 1)

Pull arm It = arg min
i=1,...,K

LCBt(i).

[1] Auer et al. (2002) Finite-time analysis of the multiarmed bandit problem. In: MLJ. 35



How I learn to stop regretting..

Upper bound

Gap-dependent: E(Rn) ≤
∑

{i:∆i>0}

16 log(Cn)
(1− α)2∆i

+ K
(
1+ π2

3

)
∆i

Worst-case bound: E(Rn) ≤
8

(1− α)

√
Kn log(Cn) +

(
π2

3 + 1
)∑

i

∆i

The bound above matches the regular UCB upper bound
(for optimizing expected value) up to constant factors

36



References

Sanjay P. Bhat and Prashanth L.A. (2019),
Concentration of risk measures: A Wasserstein distance approach,
33rd Conference on Neural Information Processing Systems (NeurIPS).

Prashanth L.A., Krishna Jagannathan and Ravi Kumar Kolla, (2019),
Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed
distributions,
arXiv preprint arxiv:1901.00997.

C. Acerbi (2002),
Spectral measures of risk: A coherent representation of subjective risk aversion,
Journal of Banking and Finance.

A. Tversky and D. Kahneman (1992)
Advances in prospect theory: Cumulative representation of uncertainty,
Journal of Risk and Uncertainty.

Y. Wang and F. Gao (2010)
Deviation inequalities for an estimator of the conditional value-at-risk,
Operations Research Letters.

D. B. Brown (2007)
Large deviations bounds for estimating conditional value-at-risk,
Operations Research Letters.

37



Thank you
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