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Introduction



- Conditional Value-at-Risk (Rockafellar, Ursayev 2000)
- Spectral risk measures (Acerbi 2002)

- Cumulative prospect theory (Tversky,kahnemann 1992)



Open Question ???
Given i.i.d. samples and an empirical version of the risk measure,
for a distribution with unbounded support

Obtain concentration bounds for each of the three risk measures

Idea: Use finite sample bounds for Wasserstein distance
between empirical and true distributions



Empirical risk concentration: summary of contributions

Goal: Bound P[|F, — r(X)| > €]

Fn — empirical risk using n i.i.d. samples,  r(X) — true risk

Risk measure

‘ Bounded support ‘ Sub-Gaussian
Conditional Value-at-Risk | [Brown et al], [Gao etal] | ~ Our work
Spectral risk measures ‘ Our work ‘ Our work
Cumulative prospect theory | [Chengetal. 2018] |  Our work

Unified approach: For each bound, the estimation error is
related to Wasserstein distance between empirical and true
distributions’

1 . ; . . -
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.
Probability Theory and Related Fields, 2015.




Wasserstein Distance



Wasserstein Distance

The Wasserstein distance between two CDFs F, and F, on R is

Wi(Fy, F) = [mf/ |x — y|dF(x, y)}

where the infimum is over all joint distributions having marginals F; and F,

Related to the Kantorovich mass transference problem

- Ship masses around so that the initial mass distribution F; changes into F,

- Shipping plan: given by joint distribution F with marginals F, and F, such that
the amount of mass shipped from a neighborhood dx of x to the neighborhood
dy of y is proportional to dF(x, y)

- The integral above is then the total transportation distance under the shipping
plan F

- Wasserstein distance between Fy and F, is the transportation distance under
the optimal shipping plan



Wasserstein Distance: Concentration Bounds

X — rv. with CDF F,  F, — empirical CDF formed using n i.i.d.
samples. Then?,

P (W1(Fn, F) > €) < B(n,€), forany e > 0,

Exponential moment bound:
If 38 > 1and v > 0 such that E (exp (v[X — E(X)|?)) < T < oo, then
B(n,e) = C (exp (—cne?) I{e < 1} + exp (—cne?) I {e > 1})

Higher moment bound:
If 38 > 2 such that E (]X — E(X)|’) < T < oo, then, for any n € (0, 8),
B(n,e) =C (exp (—cne?) 1{e <1} +n (ne) P~/ {e > 1})

2 . . . . -
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.
Probability Theory and Related Fields, 2015.
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VaR and CVaR are Risk-Sensitive Metrics

- Widely used in financial portfolio optimization, credit risk
assessment and insurance
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VaR and CVaR are Risk-Sensitive Metrics

- Widely used in financial portfolio optimization, credit risk
assessment and insurance

- Let X be a continuous random variable

- Fix a risk level' a € (0,1) (say o = 0.95)

Value at Risk:
Vo (X) = Fx (@)
Conditional Value at Risk:
Ca(X) = E[X|X > vo(X)]

1

= Vo (X) + mE X —va(X)]"

Probability
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Defining CVaR

Value at Risk:

Va(X) = F'(a)
Conditional Value at Risk:
Ca(X) = E[X|X > vo(X)]

Probability

0.00 005 010 015 0.20
L L L L L

= 0 0) + = E X~ va(X)]*

For a general rv. X,

CalX) = mf{g+(11 -9 } where (y)* = max(y, 0)



CVaR is a Coherent Risk Metric

- Monotonicity: If X <Y, then ¢(X) < ¢(Y)
- Sub-additivity: ¢(X+Y) < ¢(X) +
cannot lead to increased risk.
- Positive Homogeneity: c(AX) = Ac(X) for any A > 0.

c(Y), i.e, diversification

- Translation Invariance: For deterministic a > 0,
c(X+a)=c(X) —a.

3P Artzner et al. "Coherent measures of risk” Mathematical finance 9.3 (1999).



CVaR is a Coherent Risk Metric

- Monotonicity: If X <Y, then ¢(X) < ¢(Y)
- Sub-additivity: ¢(X+Y) < ¢(X) +
cannot lead to increased risk.
- Positive Homogeneity: c(AX) = Ac(X) for any A > 0.

c(Y), i.e, diversification

- Translation Invariance: For deterministic a > 0,
c(X+a)=c(X) —a.

Note: VaR is not sub-additive?

3P Artzner et al. "Coherent measures of risk” Mathematical finance 9.3 (1999).



1. Exponential Case: Suppose X ~ Exp(u)

1 1
Va(X) = /7 ln (1_0) ;

© Ca(X) = v (X) + 1 (memoryless!)
I
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1. Exponential Case: Suppose X ~ Exp(u)

1 1
Va(X) = /7 ln (1_0) ;

© Ca(X) = v (X) + 1 (memoryless!)
I

2. Gaussian Case: Suppose X ~ N (u, o?)

 ValX) = 1~ 0Q(a)
© Ca(X) = p+ocy(2), Z~ N(0,1)

For these distributions, no separate CVaR estimate is necessary
- estimating . and o would do

10



CVaR estimation: The problem

Problem: Given i.i.d. samples Xi,..., X, from the distribution F of rv.
X, estimate

Ca(X) = EXIX > va(X)]

Nice to have: Sample complexity O (1/€°) for accuracy e

n



Empirical distribution function (EDF): Given samples X;, ..., X, from
distribution F,

. 1 —
Fa(x) = EZH{X" <x},xeR
i=

Using EDF and the order statistics Xy < Xy < ..., X[q), form the
following estimates®:

VaR estimate:

\A/n’a = il’]f{X : fA‘_n(X) > a} = X[[na]]-

Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.
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Empirical distribution function (EDF): Given samples X;, ..., X, from
distribution F,

. 1 —
Fa(x) = EZH{X" <x},xeR
i=

Using EDF and the order statistics Xy < Xy < ..., X[q), form the
following estimates®:

VaR estimate:

\A/n’a = il’]f{X : fA‘_n(X) > a} = X[[na]]-

CVaR estimate:

Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.
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Concentration bounds for CVaR Estimation

- Need to put some restrictions on the tail distribution to obtain
exponential concentration

- Our assumptions:
(C1) X satisfies an exponential moment bound, i.e,,
38>0andy >0st E(exp (X —ul?)) < T < oo, where p = E(X)

or

(C2) X satisfies a higher-moment bound, i.e.,
B>0suchthatE (X — u/?) < T < oo

Sub-Gaussian rv.s satisfy (C1), while sub-exponential rv.s satisfy (C2)

13



A random variable is X is sub-Gaussian if 3o > 0 st.

)

]E[e“] <e 22, VA €R.

Or equivalently, letting Z ~ N(0, ¢?),

PX > ¢ < P[Z> €], Ve > 0. Tail dominated by a Gaussian

14



A random variable is X is sub-Gaussian if 3o > 0 st.
UZ

2
E [e“] <e™,VAeR

Or equivalently, letting Z ~ N(0, ¢?),

P[X > €] < P[Z > €],Ve > 0. «———Tail dominated by a Gaussian

A random variable is X is sub-exponential if 3 ¢cg > 0 s.t.

E [e“] < o0, Y|\ < co.

Or equivalently, 3o,b > 0 st. E[¥] < e=2 VAl € %, or

P[X > €] < cjexp(—cze), Ve > 0. «———Tail dominated by an exponential rv

14



A few well-known concentration inequalities

Let Xq,...,X, bei.i.d. samples from the distribution of rv. X with

. 1¢
mean p, and fi, = p Z;X,-.
=

When X is o-sub-Gaussian:

~ ne?
Pllfn — pl > €] < 2exp 357
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A few well-known concentration inequalities

Let Xq,...,X, bei.i.d. samples from the distribution of rv. X with

. 1¢
mean p, and fi, = p Z;X,-.
=

When X is o-sub-Gaussian:

~ ne?
Pllfn — pl > €] < 2exp 357

When X is (o, b)-sub-exponential:

2

n 2
2 exp (—62) 0<e< %,
P(lfin — pl > € < 20

2exp (72—;) , €> %‘

N

15



A CVaR concentration result using Wasserstein distance:

sub-Gaussian case

When X is o-sub-Gaussian,
P([Cna — Cal > €] < 2Cexp (—cn(1 — a)’e?), for any € > 0,
where C, ¢ are constants that depend on o.

Idea: Use a concentration result® for Wasserstein distance between
EDF and CDF.

Note:
1) The dependence on n, e cannot be improved

2) Our bound allows a bandit application, as C, ¢ depend on ¢
(assumed to be known in bandit settings)

5 . . . L
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.
Probability Theory and Related Fields, 2015.



A CVaR concentration result using Wasserstein distance: sub-

exponential case

When X is sub-exponential, for any e > 0,

Cexp[—cn(1—a)’é’],0<e< 1,
Cnin(1—a)g">,e>1

I

P[lCna — Ca>€]§{

where C, ¢ are universal constants, and » is chosen arbitrarily from (0, 3).
Note:
For e <1, the bound above is satisfactory.

For large ¢, the second term exhibits polynomial decay, and this is
not an artifact of our analysis. Instead, it relates to the sub-optimal
rate obtained in [Fourner-Guillin, 2015].

Recent work in [Prashanth et al. 2019] has closed this gap, using a
different proof technique.



Proof Idea

We use the following alternative characterization of the Wasserstein
distance

Wi (Fr, F2) = sup |E(f(X)) — E(f(Y))| , where (1)

X and Y are random variables having CDFs F; and F,, respectively, and
supremum is over all 1-Lipschitz functions f: R — R

The estimation error |, , — C, | is related to the Wasserstein
distance in (1), with EDF F, as F; and the true distribution F as F,, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.



Spectral risk measures




Spectral Risk Measure

- Arisk spectrum ¢ : [0,1] — [0, o), defines a risk measure
1
M) = [ o(E)F(6)a5
0

- If ¢ is increasing and integrates to 1, then M, is a coherent
risk measure
- CVaR is a special case:

Ca(X) =My for ¢ = (1 — ) "T{B > a}

- Using risk spectrum, one can assign higher weight to
higher losses. In contrast, CVaR assigns same weight for
all tail losses.

19



Estimating a Spectral Risk Measure

- Idea: apply My to the empirical distribution F, constructed
from n i.i.d. samples of X

1
Moo = /O S(B)F7(8)dB

- If |¢(+)| is bounded above by K, then
Mg (X) — M| < KWA(F, Fn)

- Bounds on Ws(F, F,) immediately yield concentration
bounds for the estimator my 4

20



Proof Idea

We use the following alternative characterization of the Wasserstein
distance

:
VV1(F1,F2):/O IF7Y(B) — Fy'(B)|dB3, where (2)
where F'(8) = inf{x € R : F(x) > 8} is the -quantile under F;

The estimation error |m, , — M, (X)| is related to the Wasserstein
distance in (2), with EDF F, as F, and the true distribution F as F,, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.

21



Cumulative prospect theory




Al that benefits humans

Sequential decision making (RL/bandits) setting with rewards
evaluated by humans

Reward

»  World ® ;IIICPT

Cumulative prospect theory (CPT) captures human preferences 22



Going to office - bandit style

On every day
1. Pick a route to office FAI
2. Reach office and record (suffered) 75

delay i

23



Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected
delay

2%



Why not distort?

Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

*need not* expected delay

25



Prospect Theory and its refinement (CPT)

Amos Tversky Daniel Kahneman

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the
second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982) 26



CPT-value

For a given rv. X, CPT-value C(X) is

C(X) = /OOO wt (P (ut(X) > 2)) dz—/oOO w (P (u=(X) >2)) dz

Gains Losses

Utility functions ut,u™ : R — Ry, u™(x) = 0when x < 0, u™ (x) = O when x > 0

Weight functions w, w™ : [0,1] — [0,1] with w(0) = 0, w(1) = 1

27



CPT-value

For a given rv. X, CPT-value C(X) is

C(X) = /OOO wt (P (ut(X) > 2)) dz—/oOO w (P (u=(X) >2)) dz

Gains Losses

Utility functions ut,u™ : R — Ry, u™(x) = 0when x < 0, u™ (x) = O when x > 0

Weight functions w, w™ : [0,1] — [0,1] with w(0) = 0, w(1) = 1
Connection to expected value:

C(X) :/ ]P’(X>z)dzf/ P(—X>2Zz)dz
0 0
=EX)" —E(X)~
(a)t = max(a,0), (a)~ = max(—a, 0)

27



Utility and weight functions

. . Weight function
Utility functions

1

Utility
0.8 - a
ut =

s 06 a

2 A
. D o4f p0-69 |
Losses 2108 = (P%69 + (1 — p)0-69)1/06
0.2+ il

—u- O L L L L

0 0.2 0.4 0.6 0.8 1

Probability p

For losses, the disutility —u™ is convex, —
for gains, the utility u™ is concave Overweight low probabilities,
underweight high probabilities

28



CPT-value estimation

Problem: Given samples X;, ..., X, of X, estimate

C(X) := /OOO wt (P (ut(X) > 2)) dz— /OOO w™ (P(u=(X)>2))dz

Nice to have: Sample complexity O (1/€°) for accuracy e

29



Empirical distribution function (EDF): Given samples X, ..., X, of X,

ﬁn+ 21 Ut (X)<x) > and F (X 21(“ (X)<x)

Using EDFs, the CPT-value C(X) is estimated by °

Co = /oo wH(1 — B (x))dx — /oo w=(1 = = ())dx

Part (1) Part (1)

®Cheng et al. Stochastic optimization in a cumulative prospect theory
framework. |EEE Transactions on Automatic Control, 2018.
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Empirical distribution function (EDF): Given samples X, ..., X, of X,

ﬁn+ 21 Ut (X)<x) > and F (X 21(“ (X)<x)

Using EDFs, the CPT-value C(X) is estimated by °

Co = /oo wH(1 — B (x))dx — /oo w=(1 = = ())dx

Part (1) Part (1)

Computing Part (1): Let Xprj, Xpzp, - - - , X[n) denote the order-statistics

Part (1) = En: ut (Xgn) (W+ <n+n1_l) - (nﬂ_l)> ’

=1

®Cheng et al. Stochastic optimization in a cumulative prospect theory
framework. |EEE Transactions on Automatic Control, 2018.
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CPT-value concentration: Bounded case

(A1). Weights w™, w™ are Holder continuous, i.e,
Wt (x) —wh(y)| < Lx—y|* Vx,y € [0,1]

(A2). Utilities u™(X) and u~(X) are bounded above by M <

Concentration bound:

Under (A1) and (A2), for any € > 0, we have

— ch ?/04
P (|Ch — C(X)| > €) < 2Cexp (—W)
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CPT-value concentration: Bounded case

(A1). Weights w™, w™ are Holder continuous, i.e,
Wt (x) —wh(y)| < Lx—y|* Vx,y € [0,1]

(A2). Utilities u™(X) and u~(X) are bounded above by M <

Concentration bound:

Under (A1) and (A2), for any € > 0, we have

— ch ?/04
P (|Ch — C(X)| > €) < 2Cexp (—W)

Lipschitz weights (o = 1): Sample complexity O (1/¢’) for
accuracy e

General o < 1 case: Sample complexity O <1 ¢ ) for
accuracy e 31



CPT-value concentration: Sub-Gaussian case

Truncated estimator:

Cp = / : wt(1—Fh(z))dz 7/ : w~(1—F;(2))dz, where
0 0
=0 <\/logn + \/loglogn)

(A1). Weights wt, w™ are Holder continuous

(A2). Utilities u™(X) and u™ (X) are sub-Gaussian with parameter o

Concentration bound:

8Lo?
Forany e > ﬁ and for n st o+/loglogn > max (E(u™ (X)), E(u™ (X)) +1,
o «@

P

_ 8lo? \ @
@ —C(X)‘ > 6) < 2Cexp | —cn (6()m/2)

Ly/logn

32



Proof Idea: Bounded case

We use the following alternative characterization of the Wasserstein
distance

oo

\/\/1(['_17 Fz) = / |F1(S) — F2(5)|d5, where (3)

— 00

The estimation error |C, — C(X)| is related to the Wasserstein
distance in (3), with EDF F, as Fy and the true distribution F as F,, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.

33



CVaR bandits




CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions P;,i =1,...,K,
CVaR-values (at fixed risk level o) : Co(1), ..., Ca(K)

Interaction In eachroundt=1,...,n
- pullarm I € {1,...,K}
- observe a sample loss from P,

Benchmark: C, = m|n C”()

Regret R, = Zc ) — nC, _ZT

34



CVaR-aware bandits: Model

Known # of arms K and horizon n
Unknown Distributions P;,i =1,...,K,
CVaR-values (at fixed risk level o) : Co(1), ..., Ca(K)

Interaction In eachroundt=1,...,n

- pullarm I € {1,...,K}
- observe a sample loss from P,

Benchmark: C, = m|n C”()

Regret Rn_ZC ) — nC, _ZT

Goal: Minimize expected regret E (Ry)
34



Optimizing CVaR using confidence bounds'

CvaR-LCB

Pull each arm once

Foreachroundt=1,2,...,ndo

Foreacharmi=1,...,Kdo

Compute an estimate ¢; r,;—1) of CVaR value C(/)

2 log (Ct)
T1—a CT,'(tfll)

LCB index: LCBt(i) = C/'.,T,v(t—1) —

Pull arm It = argmin LCB:(/).
i=T,.,K

[1] Auer et al. (2002) Finite-time analysis of the multiarmed bandit problem. In: MLJ. 35



How | learn to stop regretting..

Upper bound
16 log(Cn) G
= : E(R,) < ——— - K14+ = | A
Gap-dependent (R) < {[.AZ;O} TRy + + 3 i

Worst-case bound:  E(Rp) <

ﬁ Knlog(Cn) + <7;2 + 1> >4,

i

The bound above matches the reqular UCB upper bound
(for optimizing expected value) up to constant factors

36
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Thank you
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