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Abstract

Utility-Based Shortfall Risk (UBSR) is a risk metric that is increasingly popular in financial
applications, owing to certain desirable properties that it enjoys. We consider the problem of
estimating UBSR in a recursive setting, where samples from the underlying loss distribution
are available one-at-a-time. We cast the UBSR estimation problem as a root finding problem,
and propose stochastic approximation-based estimations schemes. We derive non-asymptotic
bounds on the estimation error in the number of samples. We also consider the problem of
UBSR optimization within a parametrized class of random variables. We propose a stochastic
gradient descent based algorithm for UBSR optimization, and derive non-asymptotic bounds on
its convergence.
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1 Introduction

In several financial applications, it is necessary to understand risk sensitivity while maximiz-
ing the returns. Several risk measures have been studied in the literature, e.g., mean-variance,
Value at Risk (VaR), Conditional Value at Risk (CVaR), distorted risk measure, and prospect
theory. In [2], the authors consider four properties as desirable for a risk measure, namely
positive homogeneity, translation invariance, sub-additivity, and monotonicity. They define a risk
measure as being coherent if it possesses the aforementioned properties. In a related development,
in[15], the authors chose to relax the sub-additivity and positive homogeneity requirements of a
coherent risk measure, and instead impose a convexity condition on the underlying risk measure.
Such a relaxation is justified in practical contexts where the risk is a non-linear function of the
underlying random variable (e.g., a financial position).

CVaR is a popular risk measure that come under the umbrella of coherent risk measures. Utility-
based shortfall risk (UBSR) [15] is a risk measure that is closely related to CVaR, and one
that belongs to the class of convex risk measures. UBSR as a risk measure is preferable over
CVaR for two reasons: (i) Unlike CVaR, UBSR is invariant under randomization; and (ii) UBSR
involves a utility function that can be chosen to encode the risk associated with each value the r.v.
X takes, while CVaR is concerned primarily with values of X beyond a certain quantile.

In real-world scenarios, the distribution of the underlying r.v. is seldom available in a closed
form. Instead, one can obtain samples, which are used to estimate the chosen risk measure. Risk
estimation has received a lot of attention in the recent past, cf. [19, 12, 24, 33, 13, 6, 28, 27, 35,
9, 22, 20], with CVaR being the dominant choice for the risk measure.

In this thesis, we focus on recursive estimation of UBSR, in a setting where data arrives in
an online fashion. Stochastic approximation [30, 7] is a procedure that is well-suited for the
purpose of online estimation. In the context of UBSR estimation, our main contribution is the
non-asymptotic analysis of a stochastic approximation-based estimation scheme. We cast the
estimation of UBSR as a stochastic root finding problem, and derive ‘finite-sample’ bounds
for this scheme. Our analysis assumes that the underlying objective satisfies a monotonicity
condition. If the monotonicity parameter is known and is used in setting the step-size, the
algorithm results in an O(1/n) rate of error decay. We also develop another variant that employs
a universal step-size, and results in a O(1/nα) rate, where 0 < α < 1. These non-asymptotic
results are obtained under similar technical assumptions as in [13, 18] — specifically, a finite
second moment condition on the loss distribution. If the loss distribution is sub-Gaussian, we
also obtain a ‘high probability’ result for the concentration of the approximation error.

Moving beyond UBSR estimation, we also consider the problem of optimizing UBSR within a
parameterized class of random variables. The motivation for this problem lies in understanding
the risk sensitivity in a portfolio management application [31, 18]. Specifically, an investor could
choose to distribute his/her capital among different assets, and the decision parameter governing
the capital distribution is to be optimized to decide the best allocation. The utility function that
goes into the definition of UBSR would encode the investor’s risk preference, and the goal is to
find the best decision parameter to minimize risk, as quantified by UBSR.

For the problem of UBSR optimization, we propose a stochastic gradient algorithm, and derive



non-asymptotic bounds on its performance. Stochastic gradient (SG) methods have a long history,
and non-asymptotic analysis of such schemes has garnered a lot of attention over the last decade,
see [8] for a survey.

Unlike in a classic SG setting, the UBSR optimization problem involves biased function mea-
surements, which presents some technical challenges. Specifically, the UBSR estimation scheme
is biased, in the sense that the estimation error does not have zero expectation. This is unlike in
the classical SG settings, where the estimation error is assumed to be zero mean. In our setting,
even though the estimation error is not zero-mean, the error can be reduced by increasing the
batch size used for estimation. For the purpose of gradient estimation, we leverage the UBSR
sensitivity formula derived in [18], and use a natural estimator of this quantity based on i.i.d.
samples. By controlling the batch size, we are able to derive a O(1/n) rate for the SG algorithm
to optimize the UBSR.

Related work. Stochastic approximation has been explored in the context of CVaR estima-
tion in [4, 5]. Recursive estimation of quantiles, variances and medians has been considered
earlier in [11, 10, 17]. UBSR was introduced in [15], and non-recursive estimation schemes
for UBSR were proposed in [18]. A paper closely related to our work from UBSR estimation
viewpoint is [13], which uses a recursive estimation technique. The authors establish asymptotic
convergence of their algorithm, and a ‘central limit theorem’ showing the asymptotic Gaussianity
of the scaled estimation error. In contrast, we establish non-asymptotic, i.e., finite-sample bounds
for the performance of our recursive estimation method, under similar technical assumptions
as [13, 18]. In a recent paper [26], the authors use the estimation scheme from [18] to establish
concentration inequalities for UBSR estimation.

The rest of the thesis is organized as follows: In Section 2, we define the notion of UBSR for
a general random variable, and formulate the estimation as well as optimization problems under
a UBSR objective. In Section 3, we describe the stochastic approximation-based scheme for
estimating the UBSR of a random variable, and present concentration bounds for this estimation
scheme. In Section 4, we present a stochastic gradient algorithm for optimizing the UBSR in a
parameterized class of random variables, and present a non-asymptotic bound that quantifies
the convergence rate of this algorithm. We provide proofs of convergence for all the proposed
algorithms in the supplementary material. Finally, in Section 6, we provide our concluding
remarks.

2 Problem Formulation

Let X be a random variable, and `(·) be a convex utility function. Let λ be a pre-specified
“risk-level” parameter that lies in the interior of the range of `. We first define an acceptance set
as follows:

A := {X ∈ L∞ : E[`(−X)] ≤ λ}, (1)

where L∞ represents the set of bounded random variables, and the expectation is taken w.r.t. the
distribution of the random variable X .

Using the acceptance set, the utility-based shortfall risk (UBSR) SRλ(X) is defined by

SRλ(X) := inf{t ∈ R : t+X ∈ A}. (2)
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For notational convenience, we have made the dependence of UBSR SRλ(X) on the utility
function l implicit. Intuitively, if X represents a financial position, then SRλ(X) denotes the
minimum cash that has to be added to X so that it falls into the acceptable set A.

UBSR is a particular example of a convex risk measure [15], which is a generalization of
a coherent risk measure [2]. In particular, a coherent risk measure satisfies sub-additivity and
positive-homogeneity, and these two properties readily imply convexity.

As a risk measure, UBSR is preferable over the popular Value-at-Risk (VaR), owing to the
fact that UBSR is convex. Another closely related risk measure is CVaR (Conditional Value
at Risk), which is a coherent risk measure. UBSR has a few advantages over CVaR, namely
(i) Unlike CVaR, UBSR is invariant under randomization; and (ii) UBSR involves an utility
function that can be chosen to encode the risk associated with each value the r.v. X takes, while
CVaR is concerned with values of X beyond VaR at a pre-specified level α. For a loss r.v. X in
a financial application, it makes sense to associate more risk with larger losses, and this can be
encoded using, for example, an exponential utility function. On the other hand, CVaR considers
all losses beyond a certain threshold equally.

In this paper, we focus on two problems concerning shortfall risk, namely (i) UBSR estima-
tion, and (ii) UBSR optimization within a parametrized family of distributions. We define these
two problems below.

Define the function

g(t) := E[`(−X − t)]− λ. (3)

We make the following assumption on the function g defined above.

(A1). There exists tl, tu s.t. g(tl) > 0 and g(tu) < 0.

Under the above assumption, the problem of UBSR estimation, i.e, estimating SR`,λ(X) of a
r.v. X, can be cast as a root finding problem. Indeed, SR`,λ(X) is the unique root of the function
g, i.e., the solution t∗ that satisfies g(t∗) = 0 coincides with SR`,λ(X). We consider a setting
where the expectation in the definition of g(·) cannot be explicitly evaluated, Instead, we have
access to samples from the distribution of X, and we use a stochastic root-finding scheme for the
UBSR estimation.

Next, we define the the problem of UBSR optimization. Suppose that X belongs to a
parametrized family of distributions {X(θ) : θ ∈ Θ}, where Θ is a compact and convex subset
of R. The SR optimization problem for this prametrized class is given as

Find θ∗ ∈ arg min
θ∈Θ

SRλ(X(θ)). (4)

For the sake of simplicity, we focus on the case of a scalar parameter θ. Extending to a
vector parameter is straightforward. Again, assuming that we have access to samples from the
distribution of X, we use a stochastic gradient descent technique for SR optimization.

3 UBSR estimation

We consider a setting where the expectation in the definition of the function g cannot be
explicitly evaluated. Instead, we assume that have access to samples from the distribution of X
in an online fashion, and the goal is to have a recursive estimation scheme for UBSR.
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Stochastic approximation [7] is a class of algorithms for solving stochastic root-finding
problems. UBSR estimation is a root-finding problem since one has to find a t∗ satisfying
g(t∗) = 0, or E[`(−X − t∗)] = λ. For this problem, [13] proposed a stochastic approximation
scheme, and performed an asymptotic convergence analysis. In this paper, we focus on UBSR
estimation from a non-asymptotic viewpoint.

We propose a method to incrementally estimate UBSR using each additional sample. Specifi-
cally, we use the following update iteration:

tn = Γ(tn−1 + an (ĝ(tn−1))), (5)

where ĝ(t) = `(ξn − tn−1) − λ is an estimate of g(t) using an i.i.d. sequence {ξi} from the
distribution of −X , and Γ is a projection operator defined by Γ(x) = min(max(tl, x), tu). Such
a projection operator has been used in the context of UBSR estimation earlier, cf. [13].

Main results

In addition to (A1), we make the following assumptions for the bounds on UBSR estimation.

(A2). There exists µ1 > 0 such that g′(t) ≤ −µ1, for all t ∈ [tl, tu].

(A3). Let εn = ĝ(tn)− g(tn). Then, there exists a σ > 0 such that E[ε2
n] ≤ σ2 for all n ≥ 1.

Previous works on UBSR estimation, cf. [13, 18], require the utility function to be increasing,
which is equivalent to the assumption (A2) that we make above. Next, (A3) requires that the
underlying noise variance is bounded: a natural assumption in the context of an estimation
problem. A similar assumption appears in [13, 18].

The first result below is a non-asymptotic bound on the estimation error E[(tn − SRλ(X))2]
for a stepsize choice that requires the knowledge of µ1 from (A2).

Theorem 1. Assuming (A1)-(A3) to hold and setting the step size ak = c
k

with 1
2
< µ1c < 1, we

have

E[(tn − SRλ(X))2] ≤ (t0 − SRλ(X))2

n2µ1c
+

σ222µ1cc2

(2µ1c− 1)n
. (6)

Proof. See Appendix B.1.

Remark 1. The first term on the RHS in the bound above concerns the initial error, i.e., the
rate at which the algorithm ‘forgets’ the starting point t1. The second term relates to the noise
variance in UBSR estimation. From the bound above, together with the fact that 1

2
< µ1c,

it is apparent that the initial error is forgotten faster than the error due to the noise. On a
different note, from the bound in (6), it is apparent that E[(tn − SRλ(X))] scales linearly with
the reciprocal of the monotonicity parameter µ1, since cµ1 is a constant.

Remark 2. In [13], the authors establish that n1/2(tn − SRλ(X)) is asymptotically normal,
say N(0, ζ2) for a step-size choice that requires the knowledge of g′(t∗). Under mild regularity
conditions (cf. [16]), the asymptotic normality result implies nE(tn − SRλ(X))2 converges to a
constant that depends on ζ2. The result we derived in Theorem 1 holds for all n, and matches
the O(1/n) bound from the asymptotic normality result of [13].

Next, we present a high probability bound for the SR estimation algorithm in (5), under the
following additional assumptions:
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(A4). The utility function l is Lipschitz with constant L1.

(A5). The r.v. X is ν2-sub-Gaussian, i.e., E
[
exp

(
X2

2ν2

)]
≤ 2.

The sub-Gaussianity condition above is equivalent to the following tail bound [34]:

P (|X| > ε) ≤ 2 exp

(
ε2

2ν2

)
, for any ε > 0.

Theorem 2. Assume (A1)-(A5). Setting the step size ak = c
k

with 1
2
< µ1c < 1 and cL2

1 < µ1.
Then, we have the following bound for any δ ∈ (0, 1):

P

|tn − SRλ(X)| ≤

√
log (1/δ)

C1n
+
E[|t0 − SRλ(X)|]

nµ1c
+

cσ22µ1c√
(2µ1c− 1)n

 ≥ 1− δ, (7)

where C1 = (2µ1c−1)

24µ1c+6c2L2
1ν

2 .

Proof. See Appendix B.2.

The two results presented above required the knowledge of the monotonicity parameter µ1,
which is typically unknown in a risk-sensitive learning setting. We now present a bound on the
UBSR estimation error under a universal stepsize, i.e., one which does not require the knowledge
of µ1. For this requirement, we require the following additional assumption that bounds the rate
of growth of the utility function:

(A6). There exists a B > 0 such that |g′(t)| ≤ B, for all t ∈ [tl, tu].

Theorem 3. Assume (A1)-(A6). Choose an n0 such that µ1an0 < 1. Then, we have the following
bounds for two different step sizes:

Case I: Set ak = c
k
. Then, for any n ≥ n0,

E[(tn − SRλ(X))2] ≤ C(n0)

(
E[(t0 − SRλ(X))2] + σ2π

2

6

)
1

n2µ1c
+K1(n),

where C(n0) = (1 + c2B2)n0(n0 + 1)2µ1c, and K1(n) =


O (1/n2µ1c) if µ1c < 1/2,

O (log n/n) if µ1c = 1/2, and
O (1/n) if µ1c > 1/2.

Case II: Set ak = c
kα

for some α ∈ (0, 1). Then, for any n ≥ n0,

E[(tn − SRλ(X))2] ≤ C(n0)
(
E[(t0 − SRλ(X))2] + σ2c2n0

)
exp

(
−2µ1cn

1−α

1− α

)
+

2σ2c2(2µ1c)
α

1−α

(1− α)nα
.

Proof. The proof proceeds by dividing the analysis into two parts about n0. For a detailed proof,
see Appendix B.3.

A few remarks are in order.
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Remark 3. For Case I, the estimation error can decay as 1/n if c is chosen such that 2µ1c > 1.
However, if µ1 is not known, such a choice may not be feasible. Indeed, the error can decay
much slower if c is such that 2µ1c is much smaller than 1. For Case II above, the estimation
error decays as 1/nα where α can be chosen arbitrarily close to 1 when deciding the step size,
and this choice does not depend on µ1. However, as α approaches 1, the first term grows in an
unbounded manner. An advantage with the larger stepsize c/kα in Case II is that the initial error
is forgotten exponentially fast, the corresponding rate is 1/nµ1c for the stepsize c/k.

Remark 4. The step size in Case II above is typically used in conjunction with iterate averaging
[25, 32]. We can also use iterate averaging in this setting, but we can show that it does not
improve the error decay rate derived for Case II without employing iterate averaging. From
a practical perspective, outputting the ‘last iterate’ is often preferable over iterate averaging,
especially when the latter does not improve the convergence rate appreciably.

Remark 5. The authors in [13] analyze a iterate-averaged variant of the SR estimation algorithm
(5), while assuming the knowledge of g′(SRλ(X)) for setting the step-size constant c. The rate
they derive under this assumption is O(1/n) asymptotically. In comparison, our analysis is for
a universal step-size, and we obtain a non-asymptotic bound of O(1/nα), for α ∈ (0, 1). In
practice, the knowledge of g′(SRλ(X)) is seldom available, motivating the universal step-size
choice. The rate we derive in this case is comparable to the one obtained in [14] for general
stochastic approximation schemes.

The final result on UBSR estimation is a high probability bound for a universal stepsize
choice.

Theorem 4. Assume (A1)-(A5). Set the step size ak = c
kα

with α ∈ (0, 1), and choose an n0 such
that L2

1an0 < µ1. Then, we have the following bound for any δ ∈ (0, 1), and for any n ≥ n0:

P
(
|tn − SRλ(X)| ≤ C2 exp

(
− µ1cn

1−α

2(1− α)

)
+

C3

nα/2

)
≥ 1− δ, (8)

where C2 = 8L1ν
√

log(1/δ)(1+c2L2
1)n0+1c2)

c2L2
1

+
√
C(n0) (E[(t0 − SRλ(X))2] + σ2c2n0), and

C3 =

(
8L1ν

√
log(1/δ)2(µ1c)

α
1−α c2

(1−α)
+

√
σ22(2µ1c)

α
1−α c2

(1−α)

)
. In the above, µ1, σ

2, L1 and ν are spec-

ified in (A2), (A3), (A4), and (A5), respectively, while the constant C(n0) is as defined in
Theorem 3.

Proof. See Appendix B.4.

In the result above, we have chosen the stepsize to be c/kα as choosing c/k does not guarantee
a O(1/n) rate (see Remark 3).

4 UBSR Optimization

Recall that the UBSR optimization problem:

Find θ∗ ∈ arg min
θ∈Θ

SRλ(X(θ)). (9)
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In this section, we devise a stochastic gradient algorithm that aims to solve the problem (9)
using a gradient descent scheme with the following update iteration:

θn+1 = θn − anh′n(θn), (10)

where an is a step-size parameter that satisfies standard stochastic approximation conditions, and
h′n(θn) is an estimate of dSRλ(θ)

dθ
.

We operate in a risk-sensitive learning framework, i.e., we do not have direct access to
UBSR SRλ(θ) and its derivative dSRλ(θ)

dθ
, for any θ. Instead, we can obtain samples of the

underlying r.v. corresponding to any parameter θ, and use these samples to form the estimate
h′n(·). In the section below, we describe the derivative estimation scheme, and subsequently
present non-asymptotic bounds for the iterate governed by (10).

4.1 Estimation of UBSR derivative

We begin by presenting the expression for the derivative of SRλ(X(θ)) w.r.t. θ, derived in
[18] : Letting ξ = −X ,

dSRλ(θ)

dθ
=
A(θ)

B(θ)
, (11)

where A(θ) , E[l′(ξ(θ)− SRλ(θ)))ξ
′(θ)], and B(θ) , E[l′(ξ(θ)− SRλ(θ))]. The expression

above is derived by first interchanging the differentiation and integration operators in dSRλ(θ)
dθ

,
and then invoking the implicit function theorem. The assumptions justifying these steps are
given below.

We now present a scheme for estimating the UBSR derivative dSRλ(θ)
dθ

, for a given θ. Suppose
we are given samples {ξ1, . . . , ξm} from the distribution of −X(θ) for a given parameter θ.
Using these samples, we form a biased estimator h′m(θ) of UBSR derivative as follows:

h′m(θ) =
Am
Bm

, where Am(θ) =
1

m

m∑
i=1

l′(ξi(θ)− tm(θ))ξ′i(θ), Bm(θ) =
1

m

n∑
i=1

l′(ξi(θ)− tm(θ)),

(12)

and tm(θ) is estimate of SRλ(θ), which is obtained by running (5) for m iterations. Notice that
the estimate defined above is a ratio of estimates for the quantities A(θ) and B(θ), which are
used in the expression (11) for dSRλ(θ)

dθ
. Notice that Am(θ) and Bm(θ) are not unbiased estimates

of A(θ) and B(θ), since the UBSR estimate tm(θ) is biased. Hence, it is apparent that h′m(θ) is
a biased estimate of the UBSR derivative. An interesting question is if the estimate h′m(θ) is
consistent, and we answer this in the affirmative in Lemma 5.

Assumptions. We make the following assumptions for analyzing the consistency property of
the UBSR derivative estimate (12). Recall that ξ = −X .

(A7). supθ∈Θ E(ξ(θ)2) ≤M1.

(A8). (A1) and (A2) hold for every θ ∈ Θ.

(A9). The partial derivatives ∂l(ξ(θ − t(θ))))/∂θ, ∂l(ξ(θ) − t(θ))/∂t exist, and there exists
β1, β2 > 0 such that

E
[
(l′(ξ(θ)− SRλ(θ))ξ

′(θ))2
]
≤ β1 <∞, and E

[
(l′(ξ(θ)− SRλ(θ)))

2
]
≤ β2 <∞,∀θ ∈ Θ.

7



(A10). The utility function l(·) satisfies

|l′(ξ(θ)− t)| ≤ L1, |l′′(ξ(θ)− t)| ≤ L2, for all (θ, t) ∈ Θ× [tl, tu].

(A11). The loss function l(·) is twice differentiable, and for any θ ∈ Θ, l′(ξ(θ)− SRλ(θ)) > η.

(A12). supθ∈Θ |ξ′(θ)| ≤M2, and ξ′ is L3-Lipschitz for all θ ∈ Θ.

We now discuss the motivation behind the assumptions listed above. First, a higher moment
bound is usually necessary for ensuring asymptotic consistency of a sample-based estimate, and
the bounded second moment requirement in (A7) encompasses a large class of unbounded r.v.s,
while ensuring an O( 1√

m
) bound on the estimation error of h′m(·) even in the non-asymptotic

regime, i.e., for all m ≥ 1. Assumption (A8) ensures that the scheme in (5) can be invoked
to form the UBSR estimate tm in the derivative estimate (12). The second moment bounds in
Assumption (A9) are necessary for obtaining a convergence rate result for the estimator (12), and
a similar assumption has been made in [18] in the context of an asymptotic normality result. The
Lipschitz conditions in (A10) are necessary for the interchange of expectation and differentiation
operators in arriving at the expression (11) for UBSR derivative, see also [18]. From the condition
in (A11) and the definition of Bm, it is apparent that Bm(θ) > η. Finally, the conditions in
(A11) and(A12) in conjunction with (A10) ensure that the function l′(ξ(θ)− SRλ(θ)))ξ

′(θ) is
Lipschitz, and this in turn enables the derivation of a convergence rate result for the estimate 12.

We now present a rate result for the UBSR derivative estimate (12).

Lemma 5. Assume (A7)–(A12). Then, for all m ≥ 1, the UBSR derivative estimator (12)
satisfies

E

∣∣∣∣h′m(θ)− dSRλ(θ)

dθ

∣∣∣∣ ≤ C4√
m
, and E

(
h′m(θ)− dSRλ(θ)

dθ

)2

≤ C5,

where C4 =
√
β2(L1L3+M2L2)ςM1+

√
β1L2ςM1

µ1η
, and C5 = 2β2(θ)β1+2β1(θ)β2

µ2η2
. Here the constants

β1, β2, L1, L2, L3,M1,M2 are as specified in assumptions (A7)–(A12) above.

Proof. The proof uses a connection between empirical and true mean of a r.v. to the 1-Wasserstein
distance between empirical and true distribution functions. Specifically, for a given t ∈ [tl, tu],
define

fm(t) =
1

m

m∑
i=1

l′ (ξi(θ)− t) , and f(t) = E[l′(ξ(θ)− t].

Let F denote the cumulative distribution function of ξ, and Fn denote the empirical distribution
function, i.e., Fn(x) = 1

m

∑m
i=1 I {ξ − t ≤ x}, for all x ∈ R . Then, we have

fm(t) =

∫
l′dFm, and f(t) =

∫
l′dF.

Using the fact that l′ is L2 Lipschitz from (A10), we obtain

|fm(t)− f(t)| ≤ L2W1(Fn, F ), (13)

where W1(F1, F2) = sup |E(f(X)− E(f(Y ))|, where the sup is over 1-Lipschitz functions.
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Applying Theorem 3.1 of [21] with p = 1, q = 2, d = 1 there and using (A7), we obtain

EW1(Fn, F ) ≤ ςM1√
m
, leading to E |fm(t)− f(t)| ≤ L2ςM1√

m
.

In the above, ς is a universal constant.
Along similar lines, we can infer

E
∣∣∣f̃m(t)− f̃(t)

∣∣∣ ≤ (L1L3 +M2L2)ςM1√
m

, (14)

where f̃m(t) = 1
m

∑m
i=1 l

′ (ξi(θ)− t) ξ′(θ), and f̃(t) = E[l′(ξ(θ)− t)ξ′(θ)].

E

∣∣∣∣h′m(θ)− dSRλ(θ)

dθ

∣∣∣∣ = E

∣∣∣∣Am(θ)

Bm(θ)
− A(θ)

B(θ)

∣∣∣∣
≤ |B(θ)|E[|Am(θ)− A(θ)|] + |A(θ)|E[|Bm(θ)−B(θ)|]

µ1η

≤
|B(θ)| supt∈[tl,tu] E|f̃(tm)− f̃(t)|] + |A(θ)| supt∈[tl,tu] E[|f(tm)− f(t)|]

µ1η

≤
√
β2(L1L3 +M2L2)ςM1 +

√
β1L2ςM1

µ1η
√
m

,

where the final inequality used (A9), (A10), (A7) and (A12). This proves the first claim. For a
proof of the second claim, the reader is referred to Appendix C.1.

Under assumptions similar to those listed above, the authors in [18] establish an asymptotic
consistency as well as normality results. In contrast, we establish a result in the non-asymptotic
regime, with a O( 1√

m
) that matches the aforementioned asymptotic rate.

4.2 Non-asymptotic bounds for UBSR optimization

In addition to the assumptions used for analyzing the convergence rate of UBSR derivative
estimate (12), we require the following assumption for the non-asymptotic analysis of the
stochastic gradient algorithm (10) for UBSR optimization:

(A13). For any θ ∈ Θ, the function h(θ) = SRλ(θ) satisfies h′′(θ) > µ2, for some µ2 > 0.

The assumption above implies that the UBSR objective SRλ(θ) is a strongly convex function.
Using the results from Lemma 5 in conjunction with (A13), we present a bound on the error

E[‖θn − θ∗‖2] in the optimization parameter in the theorem below.

Theorem 6. Assume (A7)-(A13). Let θ∗ denote the minimum of SRλ(·). Set ak = c/k in (10),
with µ2c >

1
2
. Let mn denote the batch size used for computing the estimate (12) corresponding

to the parameter θn. Then, for all n ≥ 1, we have

E[‖θn − θ∗‖2] ≤ 3‖θ0 − θ∗‖2

n2µ2c
+
C6

n
+
C7

mn

, (15)

where C6 = 3C522µ2cc2

(2µ2c−1)
, and C7 =

3C2
4c

224µ2c

(µ2c)2
, with C4 and C5 as defined in Lemma 5.

9



Proof. See Appendix C.2.

The first term in (15) represents the initial error, and it is forgotten at a rate faster than O(1/n)
since µ2c > 1/2. The overall rate for the algorithm would depend on the choice of the batch size
mn, and it is apparent that the error E[‖θn − θ∗‖2] does not vanish with a constant batch size.
As in the case of Theorem 1, we observe that the error E[‖θn − θ∗‖] has an inverse dependence
on the strong convexity parameter µ2.

We now present a straightforward corollary of the result in Theorem 6 with an increasing
batch size that ensures the error in the parameter vanishes asymptotically.

Corollary 1. Under conditions of Theorem 6, with mn = nρ for some ρ ∈ (0, 1], we have

E[‖θn − θ∗‖2] ≤ 3‖θ0 − θ∗‖2

n2µ2c
+
C6

n
+
C7

nρ
= O

(
1

nρ

)
,

A few remarks are in order.

Remark 6. From the result in the corollary above, it is easy to see that the optimal choice of
batch size ismn = Θ(n), and this in turn ensures anO

(
1
n

)
rate of convergence for the stochastic

gradient algorithm 10. With a biased derivative estimation scheme in a slightly different context,
the authors in [3] show that an increasing batch size is necessary for the error of gradient
descent type algorithm to vanish. Finally, the O(1/n) bound in Theorem 6, which is for a setting
where gradient estimates are biased, matches the minimax complexity result for strongly convex
optimization with a stochastic first order oracle, cf. [1].

Remark 7. In the result above, we have bounded the error E[‖θn − θ∗‖2] in the optimiza-
tion parameter. Using (A13) and mn = Θ(n), we can also bound the optimization error
E[SRλ(θn)]− SRλ(θ

∗)] using Corollary 1 as follows:

E[SRλ(θn)]− SRλ(θ
∗) ≤ 1

µ2

E[‖θn − θ∗‖2] = O

(
1

n

)
.

Remark 8. To understand the deviation from the non-asymptotic analysis of a regular stochastic
gradient algorithm (cf. [23]), we provide a brief sketch of the proof of Theorem 6. Letting

Mk =
1∫
0

[h′′(mθk + (1−m)θ∗)]dm, and zn = θn − θ∗, we have

zn+1 = zn(1− anMn)− anεn, where εn = h′m(θn)− h′(θn)).

Unlike the setting of [23], the noise in derivative estimate εn is biased, i.e., E[εn] 6= 0. Now,
unrolling the recursion above and taking expectations, we obtain

E[‖zn+1‖2] ≤ 3E[‖z1‖2]
n∏
k=1

(1− akMk)
2 + 3E[

n∑
k=1

[akεk

n∏
j=k+1

(1− ajMj)]
2

≤ 3E[‖z1‖2]n−2µ2c + 3
n∑
k=1

c2

k2
E[ε2

k](
n∏

j=k+1

(1− ajMj))
2

︸ ︷︷ ︸
I

+ 3
n∑
k 6=l

akalE[|εl|]E[|εk|]
n∏

j=k+1

(1− ajMj)
n∏

i=l+1

(1− aiMi)︸ ︷︷ ︸
II

,

10



where we used strong convexity to bound the first term above. Term (II) is extra when compared
to the analysis in the unbiased case. The rest of proof uses the bounds obtained in Lemma 5 to
bound terms (I) and (II) above.

Figure 1: Loss Functions for VaR and SR

5 Experiments

Using simulations, the result in the above mentioned theorems for the bounds on estimation
errors can be visually demonstrated. Loss function is chosen to be a piecewise polynomial
function l(x) = η−1([x]+)η, η > 1, since it follows the assumptions made regarding the loss
function for a bounded domain. Modelling X as a gaussian random variable with µ = 0, σ2 = 1,
for an acceptable risk level of λ = 0.4 and η = 2, we obtain the following trend for the squared
estimation error:

Step size ak = 1/k and t0 = 0.02 Step size ak = 0.1/kα and t0 = 0.02

Figure 2: Squared estimation error for t∗

11



Observations :
Case I[ak = c/k]: For high or low values of c [e.g. c = 10 and c = 0.02 ], the algorithm does
not converge. This follows from the assumption 0.5 < µ1c < 1 made for Theorem (1). Figure 2
shows a decreasing trend depicting the convergence of the propose algorithm and supporting
Theorem 1.

Case II [ak = c/kα]: Unlike case I, this case works for any value of c. A lower value of
c = 0.1 is chosen in order to have comparable graphs with same iterations, because case II has
larger step sizes for the same value of c when compared to case I. Although Figure 2 shows that
lower value of alpha leads to faster converges, this is simply a consequence of having larger step
sizes for a simple model.

6 Concluding Remarks

We considered the problem of estimating Utility Based Shortfall Risk (UBSR) in an online
setting, when samples from the underlying loss distribution are available one sample at a time.
We cast the UBSR estimation problem as a stochastic approximation based root finding scheme.
We derived non-asymptotic convergence guarantees for different step sizes, under a mild tech-
nical condition of a finite second moment. We also derived ‘high probability’ bounds for the
concentration of the estimation error, when the loss distribution is sub-Gaussian.

Finally we considered the UBSR optimization problem, when the loss distribution belongs
to a parametrized family. We proposed a stochastic gradient descent scheme, and derived non-
asymptotic convergence guarantees under finite second moments. We faced the challenge of
working with biased gradient estimates, which we addressed using batching. More broadly, the
techniques developed in this work are applicable in a variety of settings, to characterize the finite
sample performance of stochastic approximation and SGD algorithms.

As future work, it would be interesting to explore UBSR optimization in a risk-sensitive rein-
forcement learning setting. An orthogonal direction of future research is to extend the UBSR
optimization algorithm to a vector parameter context, using a gradient estimation scheme based
on finite differences, and the simultaneous perturbation method.

12



A Appendix

B Proofs for SR estimation

B.1 Proof of Theorem 1

Proof. Move to tn and t0 Starting with the definition of the variable zn+1 and form of tn+1

assumed in (A1),

zn = tn − t∗

zn = T (tn−1 + an (g(tn−1) + εn−1))− T (t∗)

zn = T (tn−1 + an (g(tn−1) + εn−1))− t∗. (16)

For any k ≥ 1, define

Jk =

1∫
0

g′(mtk + (1−m)t∗)dy. (17)

Using (A2), we obtain Jn ≤ −µ1. Using Jn we can express g(tn) as,

g(tn) =

1∫
0

g′(mtn + (1−m)t∗)dy(tn − t∗) = Jnzn.

Squaring on both sides of (16), and using the fact that projection is non-expansive, we obtain

z2
n ≤ [zn−1 + an(g(tn−1) + εn−1)]2

≤ [zn−1 + an(Jn−1zn−1 + εn−1)]2

≤ [zn−1(1 + anJn−1) + anεn−1]2

≤ z2
n−1(1 + anJn−1)2 + a2

nε
2
n−1 + 2zn−1(1 + anJn−1)anεn−1

Taking expectation E[zn+1|Fn], where Fn is the sigma field generated by tk, k ≤ n, and using
E[εn] = 0, we obtain

E[z2
n] ≤ (1 + anJn−1)2E[z2

n−1] + a2
nE[ε2

n−1] + 2 ∗ zn−1(1 + anJn−1)anE[εn−1]

≤ (1 + anJn−1)2E[z2
n−1] + a2

nE[ε2
n−1].

Using (A1) and (A2), we obtain

E[z2
n] ≤ (1 + anJn−1)2E[z2

n−1] + a2
nσ

2

≤ E[z2
0 ]

n∏
k=1

(1 + akJk−1)2 + σ2

n∑
k=1

[a2
k

n∏
j=k+1

(1 + ajJj−1)2]. (18)

Using 0.5 < µ1c < 1, we have (1 + akJk)
2 ≤ (1− µ1c)

2 ≤ e−2µ1c. Hence, we have

E[z2
n] ≤ E[z2

0 ]
n∏
k=1

(1− akµ1)2 + σ2

n∑
k=1

[a2
k

n∏
j=k+1

(1− ajµ1)2]

13



≤ E[z2
0 ]e
−2µ1

n∑
k=1

ak
+ σ2

n∑
k=1

[a2
ke
−2µ1

n∑
j=k+1

ak
]

≤ E[z2
0 ]e−2µ1c log(n) + σ2

n∑
k=1

[a2
ke
−2µ1c log( n

k+1
)]

≤ E[z2
0 ]

n2µ1c
+ σ2

n∑
k=1

a2
k(

n

k + 1
)−2µ1c

≤ E[z2
0 ]

n2µ1c
+ σ2n−2µ1c

n∑
k=1

c2

k2
(k + 1)2µ1c

≤ E[z2
0 ]

n2µ1c
+ σ2(

2

n
)2µ1c

n∑
k=1

c2k2µ1c−2 (19)

≤ E[z2
0 ]

n2µ1c
+ σ224µ1c

c2

(2µ1c− 1)

1

n

We have used the following inequality to upper bound the sum in (19):

1

n2µ1c

n∑
k=1

k2µ1c−2 ≤
n+1∫
0

k2µ1c−2dk ≤ (n+ 1)2µ1c−1

n2µ1c(2µ1c− 1)
≤ 22µ1c

(2µ1c− 1)

1

n
. (20)

Thus,

E[z2
n] ≤ E[z2

0 ]

n2µ1c
+ σ224µ1c

c2

(2µ1c− 1)

1

n
.

Hence proved.

B.2 Proof of Theorem 2

Proof. Move to tn and t0 The centered form of the iterate zn = tn − t∗, can be written as :

|zn| − E[|zn|] =
n∑
k=1

gk − gk−1 =
n∑
k=1

Dk

where gk = E[|zk||Fk], Dk = gk − gk−1 and Fk = σ(t1, . . . , tk).
Let tij(t) denote the iterate at time instant j, given that ti = t. Using this notation, we have

E[|tij+1(t)− tij+1(t′)|2] ≤ E[|tij(t)− tij(t′) + aj(ĝ(tij+1(t))− ĝ(tij(t
′))|2]

≤ E[|tij(t)− tij(t′)|2] + 2ajE[tij+1(t)− tij+1(t′)]E[ĝ(tij+1(t))− ĝ(tij(t
′))] + a2

JE[|ĝ(tij+1(t))− ĝ(tij(t
′))|2]

≤ (1− 2µ1aj + a2
jL

2
1)E[|tij(t)− tij(t′)|2].

On unrolling the expression we obtain

E[|tin(t)− tin(t′)|2] ≤ |t− t′|2
n∏
j=1

(1− 2µ1aj + a2
jL

2
1)
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Using the above inequality, we have

E[|tn − t∗||ti = t]− E[|tn − t∗||ti = t′] ≤ E[|tin(t)− tin(t′)|]

≤ |t− t′|(
n−1∏
j=1

(1− 2µ1aj + a2
jL

2
1))1/2

≤ ai|ĝ − ĝ′|(
n−1∏
j=1

(1− 2µ1aj + a2
jL

2
1))1/2

≤ Li|ĝ − ĝ′|

where Li = ai(
∏n−1

j=i (1− 2µ1aj + a2
jL

2
1))1/2, t = ti−1 + aiĝ, and t′ = ti−1 + aiĝ

′,

P(|zn| − E[|zn|] > ε) = P (
n∑
k=1

Dk > ε)

≤ exp(−λε)(E[exp(λ
n∑
k=1

Dk)])

≤ exp(−λε)E[exp(λ
n−1∑
k=1

Dk)]E[exp(λDn)|Fn−1]. (21)

It can be shown that an L-Lipschitz function f of a ν2-sub-Gaussian r.v Z is 4L2ν2-sub-Gaussian,
i.e.,

E[exp(λ(f(Z))] ≤ exp
(
2λ2L2ν2

)
.

Using (A5), and the fact that l is L1 Lipschitz, we have ĝ is 4L2
1ν

2-sub-Gaussian. Next, Dn is a
Ln-Lipschitz function of ĝ, implying Dn is 16L2

nL
2
1ν

2-sub-Gaussian. Using the bound above in
(21), we obtain

E[exp(λDn)|Fn−1] ≤ exp
(
8λ2L2

nL
2
1ν

2
)
.

Plugging this bound into (21), followed by an optimization over λ, we obtain

P(|zn| − E[|zn|] > ε) ≤ exp(−λε) exp(8λ2L2
1ν

2

n∑
k=1

L2
k) ≤ exp

− ε2

64L2
1ν

2
n∑
k=1

L2
k

 . (22)

Computing
n∑
k=1

L2
k gives the rate for the high probability bound. Substituting ak = c/k and using

0 < µ1c < 1/2, we obtain

n∑
k=1

L2
k =

n∑
k=1

a2
k(
n−1∏
j=k

(1− 2µ1aj + a2
jL

2
1))

≤
n∑
k=1

a2
k

n∏
j=k

(1− aj(2µ1 − ajL2
1))
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≤
n∑
k=1

a2
k exp(−µ1

n∑
j=k

aj)

≤
n∑
k=1

a2
k exp

(
−µ1c log

(
n

k + 1

))
≤

n∑
k=1

c2

k2

(
k + 1

n

)µ1c
≤ 24µ1cc2

(2µ1c− 1)

1

n
.

Using the bound on
n∑
k=1

L2
k in (22), we obtain

P(|zn| − E[|zn|] > ε) ≤ exp
(
−c̃nε2

)
, (23)

where c̃ = (2µ1c−1)

24µ1c+6c2L2
1ν

2 . Using the bound on E[|zn| from Theorem 1 in (33), we have

P

(
|zn| − E|zn| ≤

√
log (1/δ)

c̃n
+
E[|t1 − t∗|]

nµ1c
+

cσ22µ1c√
(2µ1c− 1)

√
n

)
≥ 1− δ, (24)

B.3 Proof of Theorem 3

Proof. Move to tn and t0 The passage leading up to (18) holds for any choice of stepsize, and
does not require 0.5 < µ1c < 1. Using (18) as the starting point, we have

E[z2
n] ≤ E[z2

0 ]
n∏
k=1

(1− ak|Jk−1|)2 + σ2

n∑
k=1

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2]. (25)

We split the analysis into two regimes: k < n0 and k ≥ n0. Using(A6), we have |Jk| < B. We
shall now simplify (25) under two different stepsize choices.

Case I: ak = c
k

n∏
k=1

(1− ak|Jk−1|)2 =

n0∏
k=1

(1 + a2
k|Jk−1|2 − 2akJk−1)

n∏
k=n0+1

(1− ak|Jk−1|)2

≤ (1 + c2B2)n0e
−2µ1

n∑
n0+1

ak

≤ (1 + c2B2)n0e
−2µ1c log( n

k0+1
)

≤ (1 + c2B2)n0(
n0 + 1

n
)2µ1c

≤ C(n0)
1

n2µ1c

Where C(n0) = (1 + c2B2)n0(n0 + 1)2µ1c

For the second term in the general expression, we have to divide the summation about n0 to
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obtain
n∑
k=1

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2] =

n0−1∑
k=1

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2] +
n∑

k=n0

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2]

≤ (1 + c2B2)n0(
n0 + 1

n
)2µ1c

n0−1∑
k=1

a2
k +

n∑
k=n0

a2
k(
k + 1

n
)2µ1c

≤ (1 + c2B2)n0(n0 + 1)2µ1c
π2

6

1

n2µ1c
+

c2

n2µ1c

n∑
k=n0

c2

k2
(k + 1)2µ1c

(26)

After observing that
n∑
k=1

a2
k =

n∑
k=1

c2

k2
< c2 π2

6
to obtain (26), We now compute (26) for different

cases of µ1c values to compute the rates,
Case a: µ1c > 1/2

Using the bound in (20),
n∑

k=n0

c2

k2
(k+1
n

)2µ1c ≤ 24µ1cc2

(2µ1c−1)
1
n

and substituting in the general equation

we have,

E[z2
n] ≤ C(n0)

(
E[z2

0 ] + σ2π
2

6

)
1

n2µ1c
+

σ2c224µ1c

(2µ1c− 1)

1

n
(27)

Case b: µ1c = 1/2

For this condition the sum reduces to
n∑

k=n0

c2

k2
(k+1
n

)2µ1c ≤ 2
n

n∑
k=n0

c2

k
≤ 2c2 log(n+1)

n
and substituting

in the general equation we have,

E[z2
n] ≤ C(n0)

(
E[z2

0 ] + σ2π
2

6

)
1

n2µ1c
+ 2σ2c2 log(n+ 1)

n
(28)

Case c: µ1c < 1/2

The sum in (26) reduces to 1
n2µ1c

n∑
k=n0

c2

k2
(k + 1)2µ1c ≤ 22µ1c

n2µ1c

n∑
k=n0

c2

k(1+2(1/2−µ1c)) ≤
22µ1c+1c2

(1−2µ1c)n2µ1c
,

the sum is bounded and substituting in the general equation we have,

E[z2
n] ≤ C(n0)

(
E[z2

0 ] + σ2π
2

6

)
1

n2µ1c
+ σ2 22µ1c+1c2

(1− 2µ1c)

1

n2µ1c
. (29)

We now turn to analyzing the case when the stepsize ak is larger than c/k.

Case II: ak = c
kα

for α ∈ (0, 1) First, we bound a factor in the first term of (25) as follows:

n∏
k=1

(1− ak|Jk−1|)2 =

n0∏
k=1

(1 + a2
k|Jk−1|2 − 2akJk)

n∏
k=n0+1

(1− ak|Jk−1|)2

≤ (1 + c2B2)n0e
−2µ1

n∑
n0+1

ak

≤ (1 + c2B2)n0 exp(−2µ1c(n
1−α − n1−α

0 )

1− α
)

≤ (1 + c2B2)n0 exp(
2µ1cn

1−α
0

1− α
) exp(−2µ1cn

1−α

1− α
)
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≤ C(n0) exp(−2µ1cn
1−α

1− α
), (30)

where C(n0) = (1 + c2B2)n0 exp(
2µ1cn

1−α
0

1−α ).
We now bound the second term in (25) by splitting the term around n0 as follows:

n∑
k=1

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2]

=

n0−1∑
k=1

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2] +
n∑

k=n0

[a2
k

n∏
j=k+1

(1− aj|Jj−1|)2]

≤ C(n0) exp(−2µ1cn
1−α

1− α
)

n0−1∑
k=1

a2
k +

n∑
k=n0

a2
k exp(−2µ1c(n

1−α − k1−α)

1− α
)

≤ C(n0)c2n0 exp(−2µ1cn
1−α

1− α
) + c2 exp(−2µ1cn

1−α

1− α
)

n∑
k=n0

k−2α exp(
2µ1ck

1−α

1− α
)

≤ C(n0)c2n0 exp(−2µ1cn
1−α

1− α
) +

2(2µ1c)
α

1−α c2

1− α
1

nα
. (31)

The sum c2 exp(−2µ1cn1−α

1−α )
n∑

k=n0

k−2α exp(2µ1ck1−α

1−α ) is bounded using the proof in [29] eqn. (79),

which uses Jensen’s inequality and convexity of the function f(x) = x−2α exp(x1−α).
Substituting the bounds in (30) and (31) in (25), we obtain

E[z2
n] ≤ C(n0)

(
E[z2

0 ] + σ2c2n0

)
exp(−2µ1cn

1−α

1− α
) +

σ22(2µ1c)
α

1−α c2

(1− α)nα
. (32)

Hence proved.

B.4 Proof of Theorem 4

Proof. Move to tn and t0 Recall that n0 is chosen such that for all n ≥ n0, we have c
nα
L2

1 < µ1.

n0−1∑
k=1

L2
k =

n0−1∑
k=1

a2
k(
n−1∏
j=k

(1− 2µ1aj + a2
jL

2
1))

=

n0−1∑
k=1

a2
k(

n0−1∏
j=k

(1− 2µ1aj + a2
jL

2
1))(

n∏
j=n0

(1− 2µ1aj + a2
jL

2
1))

≤ (1 + c2L2
1)n0

n0−1∑
k=1

a2
k(1 + c2L2

1)−k
n∏

j=n0

(1− aj(2µ1 − ajL2
1))

≤ (1 + c2L2
1)n0

n0−1∑
k=1

a2
k exp(−µ1

n∑
j=n0

aj)

≤ (1 + c2L2
1)n0 exp

(
−µ1c(n

1−α − n1−α
0 )

1− α

) n0−1∑
k=1

a2
k(1 + c2L2

1)−k

18



≤ (1 + c2L2
1)n0+1c2

c2L2
1

exp

(
−µ1c(n

1−α − n1−α
0 )

1− α

)
Computing the second part of the complete summation:

n∑
k=n0

L2
k =

n∑
k=n0

a2
k(
n−1∏
j=k

(1− 2µ1aj + a2
jL

2
1))

≤
n∑

k=n0

a2
k

n∏
j=k

(1− aj(2µ1 − ajL2
1))

≤
n∑

k=n0

a2
k exp(−µ1

n∑
j=k

aj)

≤
n∑

k=n0

a2
k exp

(
−µ1c(n

1−α − k1−α)

1− α

)

≤ exp

(
−µ1cn

1−α

1− α

) n∑
k=n0

c2

k2α
exp

(
µ1ck

1−α

1− α

)

≤ 2(µ1c)
α

1−α c2

1− α
1

nα

Using the two summations we obtain the final summation given by,
n∑
k=1

L2
k =

n0−1∑
k=1

L2
k +

n∑
k=n0

L2
k

≤ (1 + c2L2
1)n0+1c2

c2L2
1

exp

(
−µ1c(n

1−α − n1−α
0 )

1− α

)
+

2(µ1c)
α

1−α c2

1− α
1

nα

Using the bound on
n∑
k=1

L2
k in (22), we obtain

P(|zn| − E[|zn|] > ε) ≤ exp
(
−c̃nε2

)
, (33)

where c̃ = (1−α)

2(µ1c)
α

1−α c2
. Using the bound on E[|zn| from Theorem 1 in (33), we have

P
(
|tn − t∗| ≤ C2 exp(− µ1cn

1−α

2(1− α)
) + C3

1

nα/2

)
≥ 1− δ, (34)

where C2 and C3 are as defined in the theorem statement. Hence proved.

C Proofs for SR optimization

C.1 Proof of Lemma 5

Proof. We prove the second claim in the statement of the lemma, i.e., E
(
h′m(θ)− dSRλ(θ)

dθ

)2

≤
C5. Notice that

E[|h′m(θ)− dSRλ(θ)

dθ
|2] = E[|Am(θ)

Bm(θ)
− A(θ)

B(θ)
|2]

19



= E[|B(θ)Am(θ)− A(θ)B(θ) + A(θ)B(θ)− A(θ)Bm(θ)

Bm(θ)B
|2]

= E[|B(θ)(Am(θ)− A(θ))− A(θ)(Bm(θ)−B(θ))

Bm(θ)B
|2]

≤ 2B2(θ)E[|Am(θ)− A(θ)|2] + 2A2(θ)E[|Bm(θ)−B(θ)|2]

µ2
1η

2

≤ 2B2(θ)E[A2
m(θ)] + 2A2(θ)E[Bm(θ)2]

µ2
1η

2

≤ 2β2β1 + 2β1β2

µ2η2
= C5,

where the final inequality used (A9).

C.2 Proof of Theorem 6

Proof. Move to zn and z0 Iteration over the variable θ are given by,

θn = θn−1 − anh′m(θn−1)

= θn−1 − an (h′(θn−1) + εn−1)

where εn−1 = h′m(θn−1)− h′(θn−1)). Thus,

θn − θ∗ = θn−1 − θ∗ − an (h′(θn−1) + εn−1)

zn = zn−1 − an (h′(θn−1) + εn−1)

Let Mk =
1∫
0

[h′′(mθk + (1−m)θ∗)]dm . Letting zn = θn − θ∗, we have

h′(θn) =

1∫
0

[h′′(mθk + (1−m)θ∗)]dm(θn − θ∗) = Mnzn, and

zn = zn−1(1− anMn−1)− anεn−1

Unrolling the equation above, we obtain

zn = z0

n∏
k=1

(1− akMk−1)−
n∑
k=1

[akεk−1

n∏
j=k+1

(1− ajMj−1)]

E[‖zn‖2] ≤ 3E[‖z0‖2]
n∏
k=1

(1− akMk−1)2 + 3E[
n∑
k=1

[akεk−1

n∏
j=k+1

(1− ajMj−1)]2

≤ 3E[‖z0‖2]
n∏
k=1

(1− akMk−1)2 + 3E[(
n∑
k=1

[akεk−1

n∏
j=k+1

(1− ajMj−1))2]

≤ 3E[‖z0‖2](P1:n)2 + 3E[(
n∑
k=1

akεk−1Pk+1:n)2]
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≤ 3E[‖z0‖2]n−2µ2c + 3E[(
n∑
l=1

n∑
k=1

[akalεl−1εk−1Pk+1:nPl+1:n)]

≤ 3E[‖z0‖2]n−2µ2c + 3E[
n∑
k=1

a2
kε

2
k−1(Pk+1:n)2 +

n∑
k 6=l

akalεl−1εk−1Pk+1:nPl+1:n]

≤ 3E[‖z0‖2]n−2µ2c + 3
n∑
k=1

c2

k2
E[ε2

k−1](Pk+1:n)2

︸ ︷︷ ︸
I

+3
n∑
k 6=l

akalE[|εl−1|]E[|εk−1|]Pk+1:nPl+1:n︸ ︷︷ ︸
II

where Pi:j =
j∏
k=i

(1− akMk−1)2

Solving each expression separately using lemma 5, we obtain Fix the hard-coded refs here

I =
n∑
k=1

c2

k2
E[ε2

k−1](Pk+1:n)2

≤ C5

n∑
k=1

c2

k2
(
k + 1

n
)2µ2c

≤ C522µ2cc2

(2µ2c− 1)

1

n

II =
n∑
k 6=l

akalE[|εl−1|]E[|εk−1|]Pk+1:nPl+1:n

≤
(
C4√
m

)2 n∑
k 6=l

akalPk+1:nPl+1:n

≤ C2
4

m

∑
k>l

c2

kl

n∏
j=k+1

(1− ajMj−1)
n∏

j=l+1

(1− ajMj−1)

≤ C2
4

m

∑
k>l

c2

kl

n∏
j=k+1

(1− ajMj−1)
n∏

j=l+1

(1− ajMj−1)

≤ C2
4

m

n∑
l=1

n∑
k=l+1

c2

kl
(
l + 1

n
)µ2c(

k + 1

n
)µ2c

≤ C2
4

m

n∑
l=1

c2

l
(
l + 1

n
)µ2c

n∑
k=l+1

1

k
(
k + 1

n
)µ2c

≤ C2
4

m

22µ2c

n2µ2c

n∑
l=1

c2lµ2c−1

n∑
k=l+1

kµ2c−1

≤ C2
4

m

22µ2c

n2µ2c

n∑
l=1

c2lµ2c−1 (n+ 1)µ2c − (l + 1)µ2c

µ2c

≤ C2
4

m

23µ2c

µ2c

c2

nµ2c

n∑
l=1

lµ2c−1

≤ C2
4c

2

m

23µ2c

µ2c

1

nµ2c
(n+ 1)µ2c

µ2c
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≤ C2
4c

2

m

24µ2c

(µ2c)2
.
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