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Outline

Simulation optimization: problem setting, practical
motivation, challenges

First-order methods: gradient estimation, (near) unbiasednes,
convergence

Second-order methods: why?, Hessian estimation, (near)
unbiasednes, convergence

Applications: Service systems, transportation
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Motivation
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Application I: Service System
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Table 1: Workers Wi,j

Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2

Table 2: SLA targets γi,j

Customers
Priority Bossy Corp Cool Inc
P1 4h 5h
P2 8h 12h
P3 24h 48h
P4 18h 144h

Aim: Find the optimal number of workers for each shift and of each
skill level

• that minimizes the labor cost and

• satisfies SLA requirements

5



Application II: Transportation

On a good day, the traffic is . . .
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And on a bad day, it can be . . .
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Aim: Maximize traffic flow

Input:
Coarse congestion estimates

Output:
Policy for switching traffic lights

Input: Coarse congestion estimates
Sensor loops at two points along the road

Low Medium High

L1 L2

How to switch traffic lights given L1 and L2?

How to choose L1 and L2 for a given policy and road network? 8
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Application III: Intrusion detection using sensor networks

Sensor Intruder

Aim:
• minimize the energy
consumption of the
sensors, while

• keeping tracking
error to a minimum
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Common application traits

Stochastic:
noisy observations

Model-free:
sample access to objective
* gradients unavailable

High-dimensional:
brute-force search infeasible

Solution:
Simultaneous perturbation

methods
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The framework



Basic optimization problem

Environment Agent

F(θn, ξn)

Observation

Query

θn

Aim: θ∗ = arg min
θ∈Θ

{
f(θ) ≜ E[F(θ, ξ)]

}
,

• f : RN → R is the performance
measure

• f *not* assumed to be convex

• F(θ, ξ) is the sample performance

• ξ is the noise factor that captures
stochastic nature of the problem

• θ is the (vector) parameter of
interest

• Θ ⊆ RN is the feasible region in
which θ takes values.
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Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high
dimensional systems. The challenges with these problems are:

• Too complex to solve analytically.

• Many simplifying assumptions are required.

A good alternative of modeling and analysis is ”Simulation”

θn Simulator f(θn) + ξn

Zero mean

Figure 1: Simulation optimization 12
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Noise controls

Recall: f(θ) = E [F(θ, ξ)].

Two settings for noise:

Controlled noise ξ can be kept fixed between queries to
obtain F(θ1, ξ) and F(θ2, ξ)

Uncontrolled noise F(θ, ξ) can be obtained at any point, but ξ
is not controllable

13
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Challenges in simulation optimization

Deterministic
optimization
problem

• focus is on
search for
better
solutions

• Complete
information
about objective
function f, esp.
gradients

Stochastic optimization problem

• f cannot be obtained directly, but we are
given sample access, i.e.,
f(θ) ≡ Eξ[F(θ, ξ )]

• Each sample F(θ, ξ) is obtained from an
expensive simulation experiment or a
(real) field test

• focus is on both search and evaluation

• Tradeoff between evaluating better vs.
finding more candidate solutions

Challenge: to find θ∗ = arg min
θ∈Θ

f(θ), given only

noisy function evaluations.
14
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Some more applications

Energy Demand management

• Consumer demand, energy
generation are uncertain.

• Objective is to minimize the
difference.

Transportation

• Car-following model

• route choice

• traffic assignment model
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Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Applications (contd)

• Service systems

• banks, restaurants, call centers, amusement parks

• Transportation systems

• airports: air space, runways, baggage, roads, queues

• Manufacturing systems

• Semiconductor fabrication facilities

• Supply chain management

• Communication networks

• Financial systems

• risk management, retirement planning (portfolio opt)

16



Some real-world examples

• Kroger (Edelman 2013 finalist, gradient-based) Kroger Uses
Simulation-Optimization to Improve Pharmacy Inventory
Management

• www.youtube.com/watch?v=BNyDbBy-KYY (start at 0:45)
• https://www.informs.org/About-INFORMS/News-Room/
Press-Releases/Edelman-2013-Announcement

The Franz Edelman Award recognizes outstanding
examples of innovative operations research and
analytics that improves organizations and often
change people’s lives.

• Financial engineering
• Monte Carlo simulation used widely on Wall Street.
• Gradient estimates needed for hedging.
• Hot research area: several research papers continue to be published

17
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First-order methods



Stochastic analog of gradient descent

θn+1 = θn − anGn. (1)

Suppose that

• Gn is an noisy estimate of the gradient ∇f(θn), i.e.,
E(Gn) = ∇f(θn).

• {an} are pre-determined step-sizes satisfying:
∞∑
n=1

an =∞,

∞∑
n=1

a2n <∞

• iterates are stable: sup
n
∥θn∥ <∞.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting K := {θ | ∇f(θ) = 0}, we have

θn → K a.s. as n→∞. 18
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θn+1 = θn − anGn. (2)

How to keep iterates stable?
Project θn onto a compact and convex set Θ← Projected
stochastic approximation

19



θn+1 = θn − anGn. (2)

How to estimate the gradient of f from samples?

θn Simulator f(θn) + ξn

Simultaneous perturbation methods.

Stochastic approximation (SA) alphabet soup

FDSA Finite difference stochastic approximation
SPSA Simultaneous perturbation stochastic

approximation
SFSA Smoothed functional stochastic approximation
RDSA Random direction stochastic approximation

19



In the next few slides . . .

Q1) How to form Gn from function samples so that Gn ≈ ∇f(θn)
Q2) Such a Gn - is it unbiased?
Q3) Does θn+1 = θn − anGn converge to θ∗ with such a Gn?
Q4) If answer is yes to above, what is the convergence rate?

20
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Perfect measurements⇔ No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and
Wolfowitz, 1952):

gi = 1
δ
(f(θ + δei)− f(θ)) , i = 1, . . . ,N .

Assume f ∈ C3

Taylor-series expansion:

f(θ + δei) = f(θ) + δ∇f(θ)ei + δ2 e⊤i ∇
2f(θ)ei + O(δ3).

Accuracy: ∥g−∇f(θ)∥2 = O(δ).

Needs N+ 1 queries. 22
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FDSA with two-sided Differences

Improved estimate:

gi = 1
2δ (f(θ + δei)− f(θ − δei)) , i = 1, . . . ,N.

Taylor-series expansions:

f(θ + δei) = f(θ) + δ∇f(θ)ei + δ2 e⊤i ∇
2f(θ)ei + O(δ3).

f(θ − δei) = f(θ)− δ∇f(θ)ei + δ2 e⊤i ∇
2f(θ)ei + O(δ3).

Accuracy: ∥g−∇f(θ)∥2 = O(δ2).

Needs 2N queries.
23
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FDSA + Two-sided Differences + Noise

Improved estimate:

Gi = 1
2δ
{
f(θ + δei) + ξ+i − (f(θ − δei) + ξ−i )

}
, i = 1, . . . ,N.

Taylor-series expansions:

f(θ + δei) = f(θ) + δ∇f(θ)ei + δ2 e⊤i ∇2f(θ)ei + O(δ3).
f(θ − δei) = f(θ)− δ∇f(θ)ei + δ2 e⊤i ∇2f(θ)ei + O(δ3).

Assumption: E
[
ξ±
]
= 0, E

[
(ξ±)

]
≤ σ2 < +∞.

E
[
Gi
]
= gi. Hence

∥E [G]−∇f(θ)∥2 = O(δ2) .←− bias

Needs 2N queries.
24
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So far: with FDSA, we can get a gradient estimate

Gi = 1
2δ
{
f(θ + δei) + ξ+i − (f(θ − δei) + ξ−i )

}
, i = 1, . . . ,N. with

bias O(δ2)

what is second moment: E
[
∥G∥22

]
=?

Gi = gi +
ξ+i − ξ−i
2δ , hence E

[
G2i
]
= g2i +

2σ2
4δ2 = g2i +

σ2

2δ2 and

E
[
∥G∥22

]
= ∥g∥22 + O

(
N
δ2

)
.

25
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FDSA perturbed dimensions one-at-a-time, leading to 2N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n

Gradient estimate
Gi =

[
y+n − y−n
2δndin

]
. How to choose din, i = 1, . . . ,N?

-1 1

w.p. 12 w.p. 12

Only 2-queries, regardless of N!
E
[
Gi
]
= gi! Hence, ∥E [G]−∇f(θ)∥2 = O(δ2).

26
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“Mother” of all two-point sim-pert estimates

G =
(f(θ + U) + ξ+)− (f(θ − U) + ξ−)

2δ V .

Choose U, V such that E
[
VU⊤

]
= I, E [V] = 0.

One-point estimate!

G =
(f(θ + U) + ξ+)

δ
V .

Choose U, V such that E
[
VU⊤

]
= I, E [V] = 0. Works??

E [G] = E
[
G− f(θ)

δ
V
]
= E

[
(f(θ + U) + ξ+)− f(θ)

δ
V
]
.

27
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(f(θ + U) + ξ+)− f(θ)

δ
V
]
.
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“Mother” of all two-point sim-pert estimates

G =
(f(θ + U) + ξ+)− (f(θ − U) + ξ−)

2δ V .

Choose U, V such that E
[
VU⊤

]
= I, E [V] = 0.

One-point estimate!

G =
(f(θ + U) + ξ+)

δ
V .

Choose U, V such that E
[
VU⊤

]
= I, E [V] = 0. Works??

E [G] = E
[
G− f(θ)

δ
V
]
= E

[
(f(θ + U) + ξ+)− f(θ)

δ
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]
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Family of “Sim-pert” Gradient Estimates

• U ∼ δN (0, I), V = δ−1 U
• Smoothed functional by Katkovnik and Kulchitsky (1972);
• Refined by Polyak and Tsybakov (1990); also studied by
Dippon (2003); Nesterov and Spokoiny (2011).

• U ∼ δ Unif(SN), V = Nδ−1 U
• RDSA by Kushner and Clark (1978); Enhanced by Prashanth
et al. (2017)

• Rediscovered by Flaxman et al. (2005)
• Ui ∼ δ Rademacher(±1), V = δ−1 U

• SPSA by Spall (1992).
• Deterministic perturbations by Bhatnagar et al. (2003)
• . . .

Does it matter which of these we select? Not really:
Bias is always O(δ2), while variance is O(1) or O(δ−2) (noise

controlled or not) 28
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What we have learned so far?

For performing gradient descent:

θn+1 = θn − anGn,

we can construct nearly unbiased gradient estimate Gn
using simultaneous perturbation trick

Noise→ Controlled Uncontrolled
Gradient estimate

↓

Bias C1δ2 C1δ2

Variance C2
C2
δ2

This assumed f ∈ C3. Holds also for f convex, smooth.
29



A few answers so far. . .

Q1) How to form Gn from function samples so that
Gn ≈ ∇f(θn)
Use simultaneous perturbation trick

Q2) Such a Gn - is it unbiased?
Almost . . . what we get is an asymptotically
unbiased estimate?

Q3) Does θn+1 = θn − anGn converge to θ∗ with such a
Gn?
??

Q4) If answer is yes to above, what is the convergence
rate?
??
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Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n

RDSA Gradient estimate

Gn =
1

1+ ϵ
dn
[
y+n − y−n
2δn

]
.

Asymmetric Bernoulli distribution for din, i = 1, . . . ,N:

−1 1+ ϵ

w.p. 1+ ϵ

(2+ ϵ)
w.p. 1

(2+ ϵ)
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Assumptions

Smoothness f ∈ C3, i.e., f is three times continuously differentiable

Zero-mean noise E
[
ξ+n − ξ−n

∣∣dn,Fn] = 0, where Fn = σ(θm,m < n).

Need these to establish (asymptotic) unbiasedness of
gradient estimate

Second moment bound E
∣∣ξ±n ∣∣2 ≤ α1, E |f(xn ± δndn)|2 ≤ α2

Step-sizes an, δn → 0 as n→∞,
∑
n
an =∞ and

∑
n

(
an
δn

)2
<∞.

Stable iterates sup
n
∥θn∥ <∞ w.p. 1.
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Step-sizes an, δn → 0 as n→∞,
∑
n
an =∞ and

∑
n

(
an
δn

)2
<∞.

So that the noise effects vanish asymptotically

Stable iterates sup
n
∥θn∥ <∞ w.p. 1.
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Assumptions

Smoothness f ∈ C3, i.e., f is three times continuously differentiable

Zero-mean noise E
[
ξ+n − ξ−n

∣∣dn,Fn] = 0, where Fn = σ(θm,m < n).

Second moment bound E
∣∣ξ±n ∣∣2 ≤ α1, E |f(xn ± δndn)|2 ≤ α2

Step-sizes an, δn → 0 as n→∞,
∑
n
an =∞ and

∑
n

(
an
δn

)2
<∞.

Stable iterates sup
n
∥θn∥ <∞ w.p. 1.

Needed to establish convergence of gradient-descent
scheme. Trick: use projection

34



Ordinary differential equations (ODE) approach for stochastic
approximation

θn+1 = θn − anGn is equivalent to θn+1 = θn − an
(
∇f(xn) + ηn + βn

)
ηn = Gn − E(Gn | Fn)← martingale difference,
βn = E(Gn | Fn)−∇f(xn)← gradient estimation bias = O(δ2n)

Mean ODE θ̇t = −∇f(θt) with limit set K =
{
θ : ∇f(θ)

)
= 0

}
“If” there is no bias and no noise, then it is straightforward(?) to see
that θn converges a.s. to K.

Can we conclude the same with bias and noise elements?

35



θn+1 = θn − an
(
∇f(xn) + ηn + βn

)
ηn = Gn − E(Gn | Fn)← martingale difference βn = E(Gn | Fn)−∇f(xn)←
gradient estimation bias = O(δ2n)

To apply Kushner-Clark lemma we verify a few conditions:

1) “βn → 0 almost surely”← holds since we assume δn → 0 and
βn = O(δ2n)

2) “∀ϵ > 0, lim
n→∞

P
(
sup
m≥n

∥∥∥∥∥
m∑
i=n

aiηi

∥∥∥∥∥ ≥ ϵ

)
︸ ︷︷ ︸

(∗)

= 0.”

(∗) ≤ 1
ϵ2
E

∥∥∥∥∥
∞∑
i=n

aiηi

∥∥∥∥∥
2

=
1
ϵ2

∞∑
i=n

a2iE ∥ηi∥
2 ≤ C

ϵ2
lim
n→∞

∞∑
i=n

a2i
δ2i
→ 0

Thus,

θn → K a.s. as n→∞
36



A few answers so far. . .

Q1) How to form Gn from function samples so that
Gn ≈ ∇f(θn)
Use simultaneous perturbation trick
Q2) Such a Gn - is it unbiased?
Almost . . . what we get is an asymptotically
unbiased estimate
Q3) Does θn+1 = θn − anGn converge to θ∗ with
such a Gn?
Yes!
Q4) If answer is yes to above, what is the
convergence rate?
Asymptotic normality
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Asymptotic normality

nβ/2(xn − x∗)
dist−−→ N (µ,PMPT)

where β = 2/3 and µ,M depend on an, dn and f at θ∗.

Under some conditions, this implies
nβE ∥xn − x∗∥2 → µTµ+ trace(PMPT) as n→∞

asymptotic mean square error (AMSE) is the limit above

38



To achieve a given accuracy, the number of samples needed by

1SPSA (n1SPSA) to that of 1FDSA (n1FDSA) is
n1SPSA
n1FDSA

=
1
N

Bottomline: Simultaneously randomly
perturbing all dimensions is equivalent to
perturbing dimensions one-at-a-time!

39



Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n

RDSA Gradient estimate

Gn =
1

1+ ϵ
dn
[
y+n − y−n
2δn

]
.

Asymmetric Bernoulli
distribution for din, i = 1, . . . ,N:

−1 1+ ϵ

w.p. 1+ ϵ

(2+ ϵ)
w.p. 1

(2+ ϵ)

SPSA Gradient estimate

Gn = d−1n
[
y+n − y−n
2δn

]
.

Symmetric Bernoulli
distribution for din, i = 1, . . . ,N:

−1 1

w.p. 12 w.p. 12
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So, which perturbation choice works best?

The competitors
Samples y±n at xn ± δndn

Algorithm dn Gn

1SPSA Rademacher d−1n
[
y+n − y−n

δn

]
1RDSA-Gaussian Standard Gaussian dn

[
y+n − y−n

δn

]
1RDSA-Unif U[−1, 1] 3dn

[
y+n − y−n
2δn

]
1RDSA-AsymBer Asymmetric Bernoulli 1

1+ ϵ
dn
[
y+n − y−n
2δn

]

41



So, which perturbation choice works best?

Letting (A) and (B) denote problem-dependent quantities, we
have

Fact 1: AMSE1RDSA−Gaussian
AMSE1SPSA

=
9(A) + (B)
(A) + (B)

Fact 2:
AMSE1RDSA−Unif
AMSE1SPSA

=
3.24(A) + (B)
(A) + (B)

Fact 3: With ϵ = 0.01,

AMSE1RDSA−AsymBer
AMSE1SPSA

=
1.00019(A) + (B)

(A) + (B)
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Commercials



For deep-dive into simultaneous perturbation methods

Rigorous treatment of SPSA
and friends
includes both first as well as
second-order schemes

Prerequisities: probability
theory, stochastic
approximation (short
appendices cover the main
results)

42



For a broader view

Chapter 3: Ranking &
Selection aka Best-arm
identification in multi-armed
bandits

Chapter 5: Stochastic Gradient
Estimation

Chapter 6: An Overview of
Stochastic Approximation

Chapter 10: Solving Markov
Decision Processes via
Simulation

43



For a even more broader view

1) Random search

2) Machine (reinforcement)
learning

3) Recursive linear estimation

4) Model selection

5) Stochastic approximation

6) Simulation-based optimization

7) Simulated annealing

8) Markov chain Monte Carlo

9) Genetic and evolutionary
algorithms

10) Optimal experimental design
44



Some more books and other references

1. Spall, J. C. (1998), An Overview of the Simultaneous
Perturbation Method for Efficient Optimization, Johns
Hopkins APL Technical Digest, vol. 19(4), pp. 482–492.

2. Michael Fu (2002) Optimization for Simulation: Theory vs.
Practice (Feature Article), INFORMS Journal on Computing,
Vol.14, No.3, 192-215.

3. Henderson/Nelson (editors) (2006) Handbook of
Operations Research and Management Science:
Simulation Vol.13

• Chapters 17-21: Selecting the Best System, Metamodel-Based Simulation
Optimization, Gradient Estimation, Random Search, Metaheuristics

4. SPSA web site www.jhuapl.edu/SPSA
5. Vivek Borkar (2008), Stochastic approximation: a
dynamical systems viewpoint, Cambridge university press
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Software

1. OptQuest (Arena, Crystal Ball, et al.)
• standalone module, most widely implemented – scatter
search, tabu search, neural networks

2. Simulation Optimization Testbed:
http://simopt.org

3. AutoStat (AutoMod from Autosimulations, Inc.)
• part of a complete statistical output analysis package –
dominates semiconductor industry

• evolutionary (variation of genetic algorithms)
4. SimRunner (ProModel): evolutionary
5. Optimizer (WITNESS): simulated annealing, tabu search
6. Risk Solver (Excel):

www.solver.com/simulation-optimization

46
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Second-order methods



Why second-order methods?
Gradient-descent (GD)
θn+1 = θn − an∇f(θn)

• optimum convergence
speed requires knowledge
of curvature of f

• declines fast initially, but
slows down towards the
end (when near θ∗)

• *not* scale invariant:
change θ → Bθ, GD update
would depend on B

• Efficient update⇔ low
per-iteration cost

Newton methods
θn+1 = θn − an(∇2f(θn))−1∇f(θn)

• optimum speed of convergence
without knowledge of
λmin(∇2f(θ∗)).

• faster convergence in final
phase; equivalent to minimizing
a quadratic model of f

• scale invariant:
auto-adjusts to the
scale of θ

• high per-iteration cost← matrix
inversion, more samples for
estimation

47
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Stochastic analog of Newton-Raphson method

• Matrix projection

• Gradient estimate

θn+1 = θn − an Υ (Hn)−1 Gn , (3)

Hn =
(
1− 1

n+ 1

)
Hn−1 +

1
n+ 1 Ĥn , (4)

• Averaging

• Hessian estimate
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Overall flow

θn
Using parameter θn
& perturbations dn

Simulation

Estimate∇f(θn)

Gradient estimation

Estimate∇2f(θn)

Hessian estimation

Update θn

Gradient descent

θn+1

49



What’s up next

Second-order FDSA Fabian (1971) requires O(N2) samples to estimate
Hessian

Simultaneous perturbation in action:

(Spall 2000)1 Second-order SPSA 4 simulations/iteration(2SPSA)

(Prashanth L.A. Second-order RDSA 3 simulations/iterationet al 2016)2 (2RDSA)

1
J. C. Spall (2000), “Adaptive stochastic approximation by the simultaneous perturbation method,” IEEE TAC.
2
Prashanth L. A. et al. (2016) “Adaptive system optimization using random directions stochastic approximation,”

IEEE TAC.
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RDSA gradient estimate

Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n

Gradient estimate

Gn =
1

1+ ϵ
dn
[
y+n − y−n
2δn

]
. (5)

Asymmetric Bernoulli distribution for din, i = 1, . . . ,N:

-1 1+ ϵ

w.p. 1+ ϵ

(2+ ϵ)
w.p. 1

(2+ ϵ)
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2RDSA Hessian estimate

Function measurements
y+n = f( θn + δndn ) + ξ+n , y−n = f( θn − δndn ) + ξ−n , yn = f( θn ) + ξn

Hessian estimate Ĥn

Ĥn = Mn

(
y+n + y−n − 2yn

δ2n

)
= Mn

[(
f(θn + δndn) + f(θn − δndn)− 2f(θn)

δ2n

)
+

(
ξ+n + ξ−n − 2ξn

δ2n

)]
= Mn

(
dTn∇2f(θn)dn + O(δ2n) +

(
ξ+n + ξ−n − 2ξn

δ2n

) )
. (6)

Want to recover
∇2f(θn) from this Zero-mean 52
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How to choose Mn?

Asymmetric Bernoulli Perturbation

Mn =



1
κ

(
(d1n)2− (1+ ϵ)

)
· · · 1

2(1+ ϵ)2
d1ndNn

1
2(1+ ϵ)2

d2nd1n · · · 1
2(1+ ϵ)2

d2ndNn
· · · · · · · · ·

1
2(1+ ϵ)2

dNnd1n · · · 1
κ

(
(dNn)2 − (1+ ϵ)

)


, (7)

where κ = τ

(
1− (1+ ϵ)2

τ

)
and τ = E(din)4 =

(1+ ϵ)(1+ (1+ ϵ)3)

(2+ ϵ)
,

for any i = 1, . . . ,N.
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2SPSA - Hessian estimation - main idea

Suppose Gn(θn ± δndn) are approximations to the gradient of f at
θn ± δndn. Let ∆Gn = Gn(θn + δndn)− Gn(θn − δndn).

Simultaneous perturbation trick suggests

Ĥn =
∆Gn
4δndn

What remains to be specified: Gn

Use Simultaneous perturbation trick again!

Gn(θn ± δndn) = d−1n
y(θn ± δndn + δnd̂n)− y(θn ± δndn)

δn

where d̂n are another independent set of perturbations having same
distribution as dn.
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Convergence analysis

Under regularity conditions that aren’t too far from those for
1SPSA/1RDSA, we have

Bias in Hessian estimate For i, j = 1, . . . ,N,∣∣∣E [ Ĥn(i, j)∣∣∣Fn]−∇2
ijf(θn)

∣∣∣ = O(δ2n). (8)

Strong Convergence of Hessian

θn → θ∗,Hn → ∇2f(θ∗) a.s. as n→∞.

1
Here Ĥn(i, j) and∇2

ijf(·) denote the (i, j)th entry in the Hessian estimate Ĥn and the true Hessian∇2f(·),
respectively.
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2SPSA vs. 2RDSA: An asymptotic mean-square error (AMSE) comparison

Letting (A) and (B) denote problem-dependent quantities and with
ϵ = 0.01 for 2RDSA-AsymBer, we have

AMSE2RDSA−AsymBer
AMSE2SPSA

=
1.00019(A) + (B)

(A) + (B)

However, 2SPSA uses 4 samples/iteration, while 2RDSA-AB uses 3. So,
n̂2RDSA−AsymBer

n̂2SPSA
=
3
4 ×
AMSE2RDSA−AsymBer
AMSE2SPSA

=
3.00057(A) + 3(B)

4(A) + 4(B) < 1

Bottomline: 2RDSA with asymmetric Bernoulli
perturbations is better than 2SPSA on all
problem instances!
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Some questions before diving into applications. . .

Q1) Can I solve constrainted optimization problems using
simultaneous perturbation methods?

Yes! See service systems application next

Q2) So far, the focus has been on continuous optimization
problems. Can SPSA/its friends be used for discrete
parameter optimization?

Yes! See (again) service systems application next

Q3) Analysis showed convergence to local optima. Is global
convergence achievable?

Yes. See (Maryak and Chin, 2008)

Q4) Instead of full inverted Hessian, can we
subsample/use a sparse representation and still
approximate Hessian inverse well?

?? 57
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Service Systems

An organization composed of the resources that support, and the
processes that drive service interactions so that the outcomes meet
customer expectations Examples: call centers, BPOs, data-center
management

Challenges:

• Each customer has unique environments, expectations (SLAs)

• Randomness in service times, arrivals of service requests

• Not all service workers can support many customers / types of
work

• Continuous change in scope of work, number/skills of workers

How do we staff such SS?
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Application I: Service System
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Table 3: Workers Wi,j

Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2

Table 4: SLA targets γi,j

Customers
Priority Bossy Corp Cool Inc
P1 4h 5h
P2 8h 12h
P3 24h 48h
P4 18h 144h

Aim: Find the optimal number of workers for each shift and of each
skill level

• that minimizes the labor cost

• subject to SLA constraints
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Labor Cost Optimization

The problem we are looking at
Find the optimal number of workers for each shift and of each
skill level

• that minimizes the average labor cost; and
• satisfies service level agreement (SLA) constraints

how do we solve it?
Simulation optimization!

Challenges

• discrete worker parameter
• SLA constraints
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Notation: Shifts A, Skills B, Customers C, Priorities P

State:
Xn = (N1(n), . . . ,N|B|(n)︸ ︷︷ ︸

complexity queue lengths

, u1,1(n), ........, u|A|,|B|(n)︸ ︷︷ ︸
worker utilizations

, γ′
1,1(n), ........, γ′

|C|,|P|(n)︸ ︷︷ ︸
SLAs attained

, q(n)),

Single-stage cost:

c(Xn) =

1− |A|∑
i=1

|B|∑
j=1

αi,j × ui,j(n)

 +

 |C|∑
i=1

|P|∑
j=1

∣∣∣γ′
i,j(n)− γi,j

∣∣∣


under-utilization of workers

over/under-achievement of SLAs

Constraints:
gi,j(Xn) = γi,j − γ′

i,j(n) ≤ 0,∀i, j (SLA attainments)

h(Xn) = 1− q(n) ≤ 0, (Queue Stability)
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Constrained Optimization Problem

Parameter θ = (W1,1, ........,W|A|,|B|︸ ︷︷ ︸
number of workers

)T

Average Cost J(θ) △= lim
n→∞

1
n

n−1∑
m=0

E[c(Xm)]

subject to

SLA constraints Gi,j(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

E[gi,j(Xm)] ≤ 0,

Queue Stability H(θ) △= lim
n→∞

1
n

n−1∑
m=0

E[h(Xm)] ≤ 0

θ∗ cannot be found by traditional methods - not a closed form
formula!
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Lagrange Theory and a Three-Stage Solution

max
λ
min
θ
L(θ, λ) △

= J(θ) +
|C|∑
i=1

|P|∑
j=1

λi,jGi,j(θ) + λfH(θ)

Three-Stage Solution:

inner-most stage simulate the SS for several time steps

intermediate stage estimate ∇θL(θ, λ) using simulation results and
then update θ along descent direction

outer-most stage update the Lagrange multipliers λ in the ascent
direction using the constraint sample
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SASOC Algorithm

Multi-timescale stochastic approximation SASOC runs all three
loops simultaneously with varying step-sizes

SPSA for estimating ∇L(θ, λ) using simulation results

Lagrange theory SASOC does gradient descent on the primal using
SPSA and dual-ascent on the Lagrange multipliers

Generalized projection All SASOC algorithms involve a certain
generalized smooth projection operator that helps
imitate a continuous parameter system
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Update rule

Wi(n+ 1) =Γ̄i

[
Wi(n) + b(n)

(
L̄(nK)− L̄′(nK)

δ∆i(n)

)]
, ∀i = 1, 2, . . . ,N

where for m = 0, 1, . . . , K− 1,

L̄(nK+m+ 1) =L̄(nK+m) + d(n)(l(XnK+m, λ(nK))− L̄(nK+m)),

L̄′(nK+m+ 1) =L̄′(nK+m) + d(n)(l(X̂nK+m, λ(nK))− L̄′(nK+m)),

λi,j(n+ 1) =
(
λi,j(n) + a(n)gi,j(Xn)

)+
, ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P|,

λf(n+ 1) =
(
λf(n) + a(n)h(Xn)

)+
.

In the above, l(X, λ) = c(X) +
|C|∑
i=1

|P|∑
j=1

λi,jgi,j(X) + λfh(X).
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Work arrival patterns over a week for five real-life SS supporting
IBM’s customers

SS1 and SS2

SS3, SS4 and SS5
69



SS1 SS2 SS3 SS4 SS5
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OptQuest SASOC-SPSA

• SASOC is compared against OptQuest – a state-of-the-art optimization package
– on five real-life SS via AnyLogic Simulation Toolkit

• SASOC is an order of magnitude faster than OptQuest and finds better solutions
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Dilbert on AI

72



AI that benefits humans

Sequential decision making (RL/bandits) setting with rewards
evaluated by humans

World

Agent

Reward

CPT

Cumulative prospect theory (CPT) captures human preferences 73



Going to office

On every day
1. Pick a route to office
2. Reach office and record
(suffered) delay

74



Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected
delay
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Plans based on average assumptions are wrong on average. – Sam L. Savage

Two-route scenario: Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes,
humans *need not* minimize expected delay
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Prospect Theory and its refinement (CPT)

Amos Tversky Daniel Kahneman

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the
second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982) 77



CPT-value

For a given r.v. X, CPT-value C(X) is

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz︸ ︷︷ ︸

Gains

−
∫ ∞

0
w− (P (u−(X) > z

))
dz︸ ︷︷ ︸

Losses

Utility functions u+, u− : R→ R+ , u+(x) = 0 when x ≤ 0, u−(x) = 0 when x ≥ 0

Weight functions w+,w− : [0, 1]→ [0, 1] with w(0) = 0, w(1) = 1

Connection to expected value:

C(X) =
∫ ∞

0
P (X > z)dz−

∫ ∞

0
P (−X > z)dz

= E
[
(X)+

]
− E

[
(X)−

]
(a)+ = max(a, 0), (a)− = max(−a, 0)
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Utility and weight functions

Utility functions

Losses

u+

−u−

Gains

Utility

For losses, the disutility −u− is convex,
for gains, the utility u+ is concave

Weight function
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Probability p
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Overweight low probabilities,
underweight high probabilities
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CPT-value estimation

Problem: Given samples X1, . . . , Xn of X, estimate

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz−

∫ ∞

0
w− (P (u−(X) > z

))
dz

Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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Empirical distribution function (EDF): Given samples X1, . . . , Xn of X,

F̂+n (x) =
1
n

n∑
i=1

1(u+(Xi)≤x), and F̂−n (x) =
1
n

n∑
i=1

1(u−(Xi)≤x)

Using EDFs, the CPT-value C(X) is estimated by

Cn =

∫ ∞

0
w+(1− F̂+n (x))dx︸ ︷︷ ︸

Part (I)

−
∫ ∞

0
w−(1− F̂−n (x))dx︸ ︷︷ ︸

Part (II)

Computing Part (I): Let X[1], X[2], . . . , X[n] denote the order-statistics

Part (I) =
n∑
i=1

u+(X[i])
(
w+

(
n+ 1− i

n

)
−w+

(
n− i
n

))
,
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(A1). Weights w+,w− are Hölder continuous, i.e.,
|w+(x)− w+(y)| ≤ H|x− y|α, ∀x, y ∈ [0, 1]

(A2). Utilities u+(X) and u−(X) are bounded above by M <∞

Sample Complexity:

Under (A1) and (A2), for any ϵ, δ > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≤ ϵ
)
> 1− δ ,∀n ≥ ln

(
1
δ

)
· 4H

2M2

ϵ2/α

Special Case: Lipschitz weights (α = 1)

Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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CPT-value optimization

Find θ∗ = arg max
θ∈Θ

C(Xθ)

RL application: θ = policy parameter, Xθ = return

Prediction

Control

CPT-value CθParameter θ

Two-Stage Solution:

inner stage Obtain samples
of Xθ and
estimate C(Xθ);

outer stage Update θ using
gradient ascent

∇iC(Xθ) is not given
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Update rule: θin+1 = Γi

(
θin + γn ∇̂iC(Xθn)

)
, i = 1, . . . ,d.

Projection operator Step-sizes Gradient estimate

Challenge: estimating ∇iC(Xθ) given only biased estimates of C(Xθ)

Solution: use SPSA [Spall’92]

∇̂iC(Xθ) =
Cθn+δn∆n
n − Cθn−δn∆n

n
2δn∆i

n

Cθn±δn∆n
n are estimates of CPT-value for policies θn ± δn∆n .

∆n is a vector of independent Rademacher r.v.s and δn > 0 vanishes asymptotically.
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Zero mean

Simulation optimization

X, ϵ CPT
Estimator C(X) + ϵ

Controlled bias

CPT-value optimization

θn

+

−

δn∆n

δn∆n

Cθn+δn∆n
n

Prediction

Cθn−δn∆n
n

Prediction

Update θn

(Gradient as-
cent)

Control

θn+1

mn samples

mn samples

Figure 2: Overall flow of CPT-SPSA

How to choose mn to ignore estimation bias? Ensure 1
mα/2
n δn

→ 0
85



θn

+

−

δn∆n

δn∆n

Cθn+δn∆n
n

Prediction

Cθn−δn∆n
n

Prediction

Update θn

(Gradient as-
cent)

Control

θn+1

mn samples

mn samples

Figure 2: Overall flow of CPT-SPSA

How to choose mn to ignore estimation bias? Ensure 1
mα/2
n δn

→ 0

85



Application: Traffic signal control

• For any path i = 1, . . . ,M and policy θ,
let

• Xθi be the delay r.v.
• Bi be the reference delay, calculated
with a pre-timed traffic light
controller

• µi be the proportion of traffic on
path i

• CPT captures the road users’ evaluation
of the delay

Goal: max
θ∈Θ

CPT(Xθ1 , . . . , XθM) =
M∑
i=1

µθ
i C(Bi − X

θ
i )
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that minimizes overall expected delay and CPT-SPSA that maximizes CPT-value of
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Conclusions

Simultaneous perturbation methods can make a difference!

• Simulation: problem cannot be solved via closed-form
expressions. System too complex.

• Optimization: hand-tuning too difficult, classic gradient-based
approaches are *not* directly applicable

• Simultaneous perturbation methods: widely applicable, easy to
implement, handles noisy samples, efficient in
high-dimensions!

• Gradient/Hessian Estimation via simultaneous perturbation
trick

• Theoretical guarantees: nearly unbiased gradient/Hessian
estimates, proven convergence to local optima

• Applications: from queueing networks to transportation to
finance. 88
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Bonus Application:
Risk-Sensitive Reinforcement Learning
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Risk-Sensitive Sequential Decision-Making

Optimal policy

π∗ = arg max
π

{
Vπ(x0) = E

[ ∞∑
n=0

γn r(xn, π(xn)) | x0 = x0, π

]}
Value function Reward Policy

• a criterion that penalizes the variability induced by a given
policy

• minimize some measure of risk as well as maximizing a usual
optimization criterion 95



Risk-Sensitive Sequential Decision-Making

Objective: to optimize a risk-sensitive criterion such as

• expected exponential utility (Howard & Matheson 1972)

• variance-related measures (Sobel 1982; Filar et al. 1989)

• percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results:
(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)
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Discounted Reward MDPs

A class of parameterized stochastic policies
{
π(·|x; θ), x ∈ X , θ ∈ Θ ⊆ ℜκ1

}

Return: Dθ(x) =
∞∑
n=0

γnr(xn, an) | x0 = x, θ

Mean of Return: Vθ(x) = E
[
Dθ(x)

]
Variance of Return: Λθ(x) = E

[
Dθ(x)2

]
− Vθ(x)2 = Uθ(x)− Vθ(x)2

Optimization Problem

max
θ

Vθ(x0) s.t. Λθ(x0) ≤ α~w�
max
λ

min
θ

L(θ, λ) △
= −Vθ(x0) + λ

(
Λθ(x0)− α

)
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θn
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Figure 4: Solving the risk-sensitive MDP
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Why Estimating the Gradient is Challenging?

The Gradient ∇θL(θ, λ)

(1− γ)∇θVθ(x0) =
∑
x,a

dθγ(x,a|x0) ∇θ logπ(a|x; θ) Qθ(x,a)

(1− γ2)∇θUθ(x0) =
∑
x,a

d̃θγ(x,a|x0) ∇θ logπ(a|x; θ) Wθ(x,a)

+ 2γ
∑
x,a,x′

d̃θγ(x,a|x0) P(x′|x,a) r(x,a) ∇θVθ(x′)

dθγ(x, a|x0) and d̃θγ(x, a|x0) are γ and γ2 discounted visiting state
distributions of the Markov chain under policy θ
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Why Simultaneous Perturbation?

Challenge: estimating ∇θL(θ, λ)

• two different sampling distributions (dθγ and d̃θγ) used for
∇Vθ(x0) and ∇Uθ(x0)

• ∇Vθ(x′) appears in the second sum of ∇Uθ(x0) equation

Solution: use SPSA (Spall 1992)

∇iVθn(x0) ≈ Vθn+βn∆n(x0)− Vθn(x0)
βn∆

(i)
n

, i = 1, . . . , κ1

∆n = (∆
(1)
n , . . . ,∆

(κ1)
n )T is a vector of independent Rademacher random variables

and

βn are perturbation constants that vanish asymptotically
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Traffic Control Application

Traffic Signal Control MDP:

State. xn = (q1(n), · · · ,qN(n)︸ ︷︷ ︸
queue lengths

, t1(n), · · · , tN(n)︸ ︷︷ ︸
elapsed times

)

Actions. an = {feasible sign configurations in state sn}

Cost. r(xn, an) = −
[
ξ1×

(∑
i∈Ip

(
qi(n) + ti(n)

))
+ξ2×

(∑
i/∈Ip

(
qi(n) + ti(n)

)) ]

Aim: find a risk-sensitive control strategy that
minimizes the total delay experienced by road users,

while also reducing the variations
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Simulation Results
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