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Introduction



Going to office - bandit style

On every day
1. Pick a route to office
2. Reach office and record
(suffered) delay
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Bandit learning the best route

Delays are stochastic

Aim is to find the route that has the lowest expected delay
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Complacs News Recommendation Platform

• NOAM database: 17 million articles from 2010

• Task: Find the best among 2000 news feeds

• Reward: Relevancy score of the article

• Feature dimension: 80000 (approx)

1Work done as a post-doc a long while ago
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More on relevancy score

Problem: Find the best news feed for Crime stories

Sample scores:

Five dead in Finnish mall shooting Score: 1.93

Holidays provide more opportunities to drink Score: −0.48

Russia raises price of vodka Score: 2.67

Why Obama Care Must Be Defeated Score: 0.43

University closure due to weather Score: −1.06
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Maximizing user clicks on Yahoo! homepage 1

Figure 1: The Featured tab in Yahoo! Today module

1
Yahoo User-Click Log Dataset given under the Webscope program
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Stochastic Multi-Armed Bandits

Two different frameworks

• Regret minimization: handles exploration-exploitation dilemma

• Best arm identification: a pure exploration

• Fixed budget: identify best arm(s) with least probability of
error in a given budget

• Fixed confidence: identify best arm(s) with high probability
with least expected sample complexity
* skipped due to time constraints
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Exploration exploitation dilemma

Exploitation:
Pull an arm that has the lowest estimated mean loss← best
decision using historical information

Exploration:
Pull a (random) arm to estimate its mean loss← a decision to learn
more about the environment

Regret formalizes this dilemma

11



Bandits: Regret minimization

Known # of arms K and horizon n

Unknown Distributions Fi, i = 1, . . . , K,

Means : µ(1), . . . , µ(K)

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . , K}
• observe a sample loss from FIt

Benchmark: µ∗ = min
i=1,...,K

µ(i).

Regret Rn =
K∑
i=1

µ(i)Ti(n)− nµ∗ =
K∑
i=1

Ti(n)∆i,

Ti(n) =
n∑
t=1

I {It = i}, ∆i = µ(i)− µ∗

Goal: Minimize expected regret E (Rn)
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Performance measure

Best arm: µ∗ = min
i=1,...,K

µ(i).

Regret Rn =
K∑
i=1

µ(i)Ti(n)− nµ∗ =
K∑
i=1

Ti(n)∆i

Goal: ensure Rn grows sub-linearly with n

Bandit algorithms ensure sub-linear regret!
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Optimism in the face of uncertainty

LCB

Pull each arm once

For each round t = 1, 2, . . . ,n do
For each arm i = 1, . . . , K do

Compute an estimate µi,Ti(t−1) of µ(i)

LCB index: LCBt(i) = µi,Ti(t−1) − wi,Ti(t−1)

Pull arm It = arg min
i=1,...,K

LCBt(i).

[1] Auer et al. (2002) Finite-time analysis of the multiarmed bandit problem. In: MLJ.
14



A bandit algorithm

Choose arm It Observe Xt,It

Update LCBs

It = arg min
i=1,...,K

LCBt(i) Loss sample from FIt

LCBt(i) provides an index for each arm
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Setting LCBs

• Mean-loss estimate

LCBt(i) = µi,Ti(t−1) − wi,Ti(t−1)

• Confidence width

At each round t, select a tap.
Optimize the quality of n selected beers
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Sub-Gaussian distributions



Assumptions on the tail of the distribution

• Need to put some restrictions on the tail distribution to obtain
exponential concentration

• A common assumption:
(C1) X satisfies an exponential moment bound, i.e.,

There exist β ≥ 1 and γ > 0 such that E
(
exp

(
γ|X|β

))
< ⊤ <∞.

Sub-Gaussian and sub-exponential r.v.s satisfy (C1)

We focus on sub-Gaussian distributions in this tutorial
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Sub-Gaussian distributions

A random variable is X is sub-Gaussian if ∃ σ > 0 s.t. ∀ϵ > 0,

P(X ≥ ϵ) ≤ exp

(
− ϵ2

2σ2

)
Tail dominated by a Gaussian

Or equivalently, E
(
exp

(
γX2
))
≤ 2

γ is a constant multiple of σ

If EX = 0, then sub-Gaussianity is equivalent to
E
[
eλX
]
≤ e

σ2λ2
2 , ∀λ ∈ R.

18



A few well-known concentration inequalities

Let X1, . . . , Xn be i.i.d. samples from the distribution of r.v. X with

mean µ, and µ̂n =
1
n

n∑
i=1

Xi.

When X is σ-sub-Gaussian:

P [|µ̂n − µ| > ϵ] ≤ 2 exp
(
−nϵ

2

2σ2

)

19



Setting LCBs for sub-Gaussian arms

Assume arms’ distributions are σ sub-Gaussian.

LCB index: LCBt(i) = µi,Ti(t−1) − wi,Ti(t−1)

µi,Ti(t−1): sample mean formed using Ti(t− 1) samples from arm i’s
distribution

wi,Ti(t−1) = σ

√
8 log(t)
Ti(t− 1)

20



On the confidence width

Recall: When X is σ-sub-Gaussian:

P [|µ̂n − µ| > ϵ] ≤ 2 exp
(
−nϵ

2

2σ2

)

In high-confidence form,

P

µ ∈
µ̂n − σ

√
2 log( 1δ )

n , µ̂n + σ

√
2 log( 1δ )

n

 ≥ 1− 2δ.

Setting δ = 1
t4 , we obtain

P

[
µi ∈

[
µi,Ti(t−1) − σ

√
8 log t
Ti(t− 1)

, µi,Ti(t−1) +

√
8 log t
Tk(t− 1)

]]
≥ 1− 2

t4

µi,Ti(t−1) : sample mean formed using Ti(t− 1) samples from arm i’s distribution
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How LCB learns to stop regretting..

Gap-dependent regret upper bound
Gap-dependent:

E(Rn) ≤
∑

{i:∆i>0}

32σ2 log n
∆i

+ K
(
1+ π2

3

)
∆i

A regret bound that does not scale inversely with gaps:

E(Rn) ≤
(
32Kσ2 log n+ K∆2

i

(
π2

3 + 1
)) 1

2 √
n.

The bound above matches the minimax lower bound on the
regret up to constant factors
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Bandit learning via simulation

Many practical stochastic optimization settings are difficult to
optimize directly.

• Traffic signal control

• Portfolio optimization

A good alternative of modeling and analysis is ”Simulation”

θn Simulator f(θn) + ξn

Zero mean

Figure 2: Simulation optimization

When using a simulator, there is not cost for exploration (or) any arm
can be pulled with the goal of find the best arm
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Best arm identification with a fixed budget

Known # of arms K and horizon n

Unknown Distributions Fk, k = 1, . . . , K,

Means : µ(1), µ(2), . . . , µ(K)

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . , K}
• observe a sample loss from FIt

Recommendation Arm Jn

Benchmark: k∗ = arg min
k=1,...,K

µ(k).

Goal: Minimize probability of erroneous recommendation
P [Jn ̸= k∗]
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The Successive Rejects Algorithm1

Initial-
ization

A1 = {1, . . . , K},

nk =

⌈
1

log(K)
n− K

K+ 1− k

⌉

Phase 1
Play each arm j ∈ A1, n1 times;
Set A2 = A1 \ argmax

j∈A1
ĉj,n1

Phase 2
Play each arm j ∈ A2,

n2 − n1 times; Eliminate . . .

...
...

Phase
K − 1

Play the remaining two
arms nK−1 − nK−2 times

• One arm played n1 times,
. . ., another played nK−2
times

• Two arms played nK−1
times

• n1 + . . .+ nK−1 + nK−1 ≤ n

• nk increases with k

• Adaptive exploration:
better than uniform (i.e.,
play each arm n/K times)

1Audibert et al., Best Arm Identification in Multi-armed Bandits, COLT 2010
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Probability of error for Successive Rejects

• Suppose the arm distributions are all sub-Gaussian.

• Given a simulation budget n, the probability that the SR
algorithm identifies a suboptimal arm as being optimal can be
bounded as

P [Jn ̸= k∗] ≤ K(K− 1)
2 exp

(
− (n− K)
H2 log(K)

)
,

where
H2 = max

k=1,2,...,K

k
∆2
k
← Hardness measure

Notation: ∆1 = ∆2

Bottomline: SR needs O(H2) samples to identify the best arm w.h.p.

Uniform exploration would require O
(

K
∆2

min

)
samples

26



Risk measures



Motivation

Risk is like fire: If controlled it will help you; if uncontrolled it
will rise up and destroy you.

Theodore Roosevelt

The major difference between a thing that might go wrong and
a thing that cannot possibly go wrong is that when a thing that
cannot possibly go wrong goes wrong it usually turns out to be
impossible to get at or repair.

Douglas Adams
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Money matters..

Portfolio composed of assets
(e.g. stocks)

Stochastic gains for
buying/selling
assets

Aim find an investment
strategy that
maximizes the
expected return

Stock 1 Stock 2

Stock 3

Allocation 1

Allocation 2

A risk-averse investor would prefer a strategy that

1. minimizes the risk(e.g. worst-case loss) of the portfolio, while

2. guaranteeing a minimum return

28
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Poll #1

Choose between

A: a stock that gives 10000INR w.p. 0.001 and nothing otherwise

B: a stock that gives 10INR w.p. 1

Which of the two stocks would you favour?

29



Poll #2

Choose between

C: a stock that loses 10000INR w.p. 0.001 and nothing otherwise

D: a stock that loses 10INR w.p. 1

Which of the two stocks would you favour?
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Poll #1

Choose between

A: a stock that gives 10000INR w.p. 0.001 and nothing otherwise

B: a stock that gives 10INR w.p. 1

Which of the two stocks would you favour?

People usually choose A over B
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Poll #2

Choose between

C: a stock that loses 10000INR w.p. 0.001 and nothing otherwise

D: a stock that loses 10INR w.p. 1

Which of the two stocks would you favour?

People usually choose D over C

32



Message

Humans preferences can be explained using distorted probabilities!

People overweight extreme & unlikely events and underweight
average events

33



Risk criteria

• Conditional Value-at-Risk
(Rockafellar, Ursayev 2000)

• Spectral risk measures
(Acerbi 2002)

• Utility-based shortfall risk
(Föllmer and Schied 2001)

• Cumulative prospect theory
(Tversky,Kahnemann 1992)

• Optimized certainty
equivalent (OCE) risk (Ben-Tal
and Teboulle 2007)

• Convex risk measure (Föllmer
and Schied 2001)

• Coherent risk measures
(Artzner1 1999)

• Rank-dependent expected
utility (Quiggin 2012)
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Mean-variance

Mean: µ = E(X)

Variance: σ2 = E(X− µ)2

Mean-Variance: MV(X) = γµ+ σ2

γ → trade-off mean and variance
Border cases: γ = 0 and γ → −∞

35



Conditional Value-at-Risk



VaR and CVaR are Risk-Sensitive Metrics

• Widely used in financial portfolio optimization, credit risk
assessment and insurance

• Let X be a continuous random variable

• Fix a ‘risk level’ α ∈ (0, 1) (say α = 0.95)

Value at Risk:
vα(X) = F−1X (α)

Conditional Value at Risk:
cα(X) = E [X|X > vα(X)]

= vα(X) +
1

1− αE [X− vα(X)]+

36
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Defining CVaR

Value at Risk:
vα(X) = F−1X (α)

Conditional Value at Risk:
cα(X) = E [X|X > vα(X)]

= vα(X) +
1

1− αE [X− vα(X)]+

For a general r.v. X,

cα(X) = inf
ξ

{
ξ +

1
(1− α)E (X− ξ)+

}
, where (y)+ = max(y, 0)
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CVaR is a Coherent Risk Metric

• Monotonicity: If X ≤ Y, then ρ(X) ≤ ρ(Y)
• Sub-additivity: ρ(X+ Y) ≤ ρ(X) + ρ(Y), i.e., diversification
cannot lead to increased risk.

• Positive Homogeneity: ρ(λX) = λρ(X) for any λ ≥ 0.
• Translation Invariance: For deterministic a > 0,
ρ(X+ a) = ρ(X) + a.

Note: VaR is not sub-additive2

2P. Artzner et al. ”Coherent measures of risk.” Mathematical finance 9.3 (1999).
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Examples

1. Exponential Case: Suppose X ∼ Exp(µ)

• vα(X) =
1
µ
ln

(
1

1− α

)
,

• cα(X) = vα(X) +
1
µ
(memoryless!)

2. Gaussian Case: Suppose X ∼ N (µ, σ2)

• vα(X) = µ− σQ−1(α)

• cα(X) = µ+ σcα(Z), Z ∼ N (0, 1)

For these distributions, no separate CVaR estimate is necessary
– estimating µ and σ would do
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Tea/Coffee
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Spectral risk measures



Spectral Risk Measure

• A risk spectrum ϕ : [0, 1]→ [0,∞), defines a risk measure

Mϕ(X) =
∫ 1

0
ϕ(β)F−1(β)dβ

• If ϕ is increasing and integrates to 1, then Mϕ is a coherent
risk measure

• CVaR is a special case:

cα(X) = Mϕ for ϕ = (1− α)−1I {β ≥ α}

• Using risk spectrum, one can assign higher weight to
higher losses. In contrast, CVaR assigns same weight for
all tail losses.
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Cumulative prospect theory



AI that benefits humans

Sequential decision making (RL/bandits) setting with losses
evaluated by humans

World

Agent

Reward

CPT

Cumulative prospect theory (CPT) captures human preferences 42



Going to office - bandit style

On every day
1. Pick a route to office
2. Reach office and record
(suffered) delay

43



Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected
delay

44



Why not distort?

Two-route scenario: Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes,
humans *need not* minimize expected delay

45



Prospect Theory and its refinement (CPT)

Amos Tversky Daniel Kahneman

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the
second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982) 46



CPT-value

For a given r.v. X, CPT-value C(X) is

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz︸ ︷︷ ︸

Gains

−
∫ ∞

0
w− (P (u−(X) > z

))
dz︸ ︷︷ ︸

Losses

Utility functions u+, u− : R → R+ , u+(x) = 0 when x ≤ 0, u−(x) = 0 when x ≥ 0

Weight functions w+,w− : [0, 1] → [0, 1] with w(0) = 0, w(1) = 1

Connection to expected value:

C(X) =
∫ ∞

0
P (X > z)dz−

∫ ∞

0
P (−X > z)dz

= E(X)+ − E(X)−

(a)+ = max(a, 0), (a)− = max(−a, 0)
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Utility and weight functions

Utility functions

Losses

u+

−u−

Gains

Utility

For losses, the disutility −u− is convex,
for gains, the utility u+ is concave

Weight function

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

p0.69

(p0.69 + (1− p)0.69)1/0.69

Probability p

W
ei
gh
tw

(p
)

Overweight low probabilities,
underweight high probabilities
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Risk estimation



Open Question ???

Given i.i.d. samples and an empirical version of the risk measure,
for a distribution with unbounded support

Obtain concentration bounds for each of these risk measures

Idea: Use finite sample bounds for Wasserstein distance
between empirical and true distribution
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Empirical risk concentration: summary of contributions

Goal: Bound P [|ρn − ρ(X)| > ϵ]

ρ(X)→ risk measure ρn → estimate of ρ(X) using n i.i.d. samples

Risk measure Bounded support Sub-Gaussian

Conditional Value-at-Risk [Brown, 2007] [Bhat and L.A., 2019]
[Gao et al. 2010] [L.A. et al. 2020]

Spectral risk measure [Bhat and L.A., 2019] [Bhat and L.A., 2019]

Cumulative prospect theory [Cheng et al. 2018] [Bhat and L.A., 2019]
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Wasserstein Distance

The Wasserstein distance between two CDFs F1 and F2 on R is

W1(F1, F2) =
[
inf

∫
R2
|x− y|dF(x, y)

]
,

where the infimum is over all joint distributions having marginals F1 and F2

Related to the Kantorovich mass transference problem

• Ship masses around so that the initial mass distribution F1 changes into F2

• Shipping plan: given by joint distribution F with marginals F1 and F2 such that
the amount of mass shipped from a neighborhood dx of x to the neighborhood
dy of y is proportional to dF(x, y)

• The integral above is then the total transportation distance under the shipping
plan F

• Wasserstein distance between F1 and F2 is the transportation distance under the
optimal shipping plan
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Wasserstein Distance: Alternate Characterization

Suppose X and Y are r.v.s having CDFs F1 and F2, respectively. Then,

sup |E(f(X)− E(f(Y))| = W1(F1, F2)

=

∫ ∞

−∞
|F1(s)− F2(s)|ds =

∫ 1

0
|F−11 (β)− F−12 (β)|dβ,

where the supremum is over all functions f : R → R that are 1-Lipschitz
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Wasserstein Distance: Concentration Bounds

X→ r.v. with CDF F, Fn → empirical CDF formed using n i.i.d.
samples.

Exponential moment bound:
If ∃β > 1 and γ > 0 such that E

(
exp

(
γ|X|β

))
< ⊤ <∞

Sub-Gaussian distributions satisfy this bound.

Empirical CDF concentration bound:3

P (W1(Fn, F) > ϵ) ≤ c1
(
exp

(
−c2nϵ2

)
I {ϵ ≤ 1}+ exp

(
−c3nϵβ

)
I {ϵ > 1}

)
Note: The constants c1, c2, c3 are some unknown functions of β, γ,⊤.
3
N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure.

Probability Theory and Related Fields, 162(3-4):707–738, 2015.
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Wasserstein Distance: Concentration Bounds

X→ r.v. with CDF F, Fn → empirical CDF from n i.i.d. samples.

Recall: A r.v. X is sub-Gaussian with parameter σ > 0 if

P (X ≥ ϵ) ≤ exp

(
−ϵ2

2σ2

)
, and P (X ≤ −ϵ) ≤ exp

(
−ϵ2

2σ2

)
, ∀ϵ > 0 (1)

Empirical CDF concentration bound: 4 For a σ sub-Gaussian r.v. X

P (W1(Fn, F) > ϵ) ≤ exp

(
− n
256σ2e

(
ϵ− 512σ√

n

)2)
,

for any 512σ√
n

< ϵ <
512σ
√
n

+ 16σe.

Note: The constants are explicit in this bound.
4
J. Lei. Convergence and concentration of empirical measures under Wasserstein distance in unbounded

functional spaces. Bernoulli, 26(1):767–798, 2020.
Prashanth L.A. and S.P.Bhat, A Wasserstein distance approach for concentration of empirical risk estimates,
arXiv:1902.10709v4
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CVaR estimation



CVaR estimation: The problem

Problem: Given i.i.d. samples X1, . . . , Xn from the distribution F of r.v.
X, estimate

cα(X) = inf
ξ

{
ξ +

1
(1− α)E (X− ξ)+

}

Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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Empirical distribution function (EDF): Given samples X1, . . . , Xn from
distribution F,

F̂n(x) =
1
n

n∑
i=1

I {Xi ≤ x} , x ∈ R

Using EDF and the order statistics X[1] ≤ X[2] ≤ . . . , X[n], form the
following estimates5:

VaR estimate:

v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

CVaR estimate:

ĉn,α = v̂n,α +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)
+

5
Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.
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ĉn,α = v̂n,α +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)
+

5
Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.

57



A CVaR concentration result: sub-Gaussian case

When X is σ-sub-Gaussian,

P
[∣∣∣Ĉn,α − Cα∣∣∣ > ϵ

]
≤ exp

(
− n
256σ2e

(
ϵ(1− α)− 512σ√

n

)2)
.

for any 512σ√
n

< ϵ(1− α) <
512σ
√
n

+ 16σe.

Idea: Use a concentration result6 for Wasserstein distance between
EDF and CDF.

Note:

1) The dependence on n, ϵ cannot be improved

2) This bound allows a bandit application

6
J. Lei. Convergence and concentration of empirical measures under Wasserstein distance in un- bounded

functional spaces. Bernoulli, 26(1):767–798, 2020.
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Proof Idea

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) = sup |E(f(X))− E(f(Y))| , where (2)

X and Y are random variables having CDFs F1 and F2, respectively, and
supremum is over all 1-Lipschitz functions f : R→ R

The estimation error
∣∣∣Ĉn,α − Cα∣∣∣ is related to the Wasserstein

distance in (2), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bound is invoked.
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Spectral risk measure estimation



Estimating a Spectral Risk Measure

• Idea: apply Mϕ to the empirical distribution Fn constructed
from n i.i.d. samples of X

mn,ϕ =

∫ 1

0
ϕ(β)F−1n (β)dβ

• If |ϕ(·)| is bounded above by K, then

|Mϕ(X)−mn,ϕ| ≤ KW1(F, Fn)

• Bounds on W1(F, Fn) immediately yield concentration
bounds for the estimator mn,ϕ
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Proof Idea

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) =
∫ 1

0
|F−11 (β)− F−12 (β)|dβ, where (3)

where F−1i (β) = inf{x ∈ R : Fi(x) ≥ β} is the β-quantile under Fi

The estimation error |mn,ϕ −Mϕ(X)| is related to the Wasserstein
distance in (3), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.
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Unification: (T1) risk measures



Hölder continuous Risk Measure7

A risk measure ρ(·) is Hölder continuous if ∃ κ ∈ (0, 1] and L > 0 s.t.
for any two distributions F,G,

|ρ(F)− ρ(G)| ≤ L (W1(F,G))κ .

where the infimum is over all joint distributions having marginals F1 and F2

Several popular risk measures are Hölder continuous

• CVaR κ = 1, L = 1
1− α

• Spectral risk measure κ = 1, L = K

• Utility-based shortfall risk κ = 1, for L, see the paper

Cumulative prospect theory is outside this class of risk measures
7P.L.A. and S.P. Bhat, “A Wasserstein distance approach for concentration of empirical
risk estimates”,2022

62



Estimating a Hölder continuous Risk Measure

Using EDF from an n-sample, form

ρn = ρ(Fn).

For CVaR, spectral risk measure and utility-based shortfall risk,
ρn coincides with classic estimators.
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A concentration bound for Hölder continuous risk measures

|ρ(F)− ρ(G)| ≤ L (W1(F,G))κ .

When X is sub-Gaussian with σ > 0,

P [|ρn − ρ(X)| > ϵ] ≤ exp

(
− n
256σ2e

(( ϵ
L

) 1
κ − 512σ√

n

)2)
,

for any 512σ√
n
<
( ϵ
L

) 1
κ

<
512σ√
n

+ 16σ
√
e

Concentration bounds for CVaR, spectral risk measure and
utility-based shortfall risk are corollaries to the result above.
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CPT-value estimation



CPT-value estimation

Problem: Given samples X1, . . . , Xn of X, estimate

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz−

∫ ∞

0
w− (P (u−(X) > z

))
dz

Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ
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Empirical distribution function (EDF): Given samples X1, . . . , Xn of X,

F̂+n (x) =
1
n

n∑
i=1

1(u+(Xi)≤x), and F̂−n (x) =
1
n

n∑
i=1

1(u−(Xi)≤x)

Using EDFs, the CPT-value C(X) is estimated by 8

Cn =
∫ ∞

0
w+(1− F̂+n (x))dx︸ ︷︷ ︸

Part (I)

−
∫ ∞

0
w−(1− F̂−n (x))dx︸ ︷︷ ︸

Part (II)

Computing Part (I): Let X[1], X[2], . . . , X[n] denote the order-statistics

Part (I) =
n∑
i=1

u+(X[i])
(
w+

(
n+ 1− i

n

)
−w+

(
n− i
n

))
,

8Cheng et al. Stochastic optimization in a cumulative prospect theory
framework. IEEE Transactions on Automatic Control, 2018.
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CPT-value concentration: Bounded case

(A1). Weights w+,w− are Hölder continuous, i.e.,
|w+(x)− w+(y)| ≤ L|x− y|α, ∀x, y ∈ [0, 1]

(A2). X ∈ [0,B1] a.s.

Concentration bound:

Under (A1) and (A2), for any ϵ > 0, we have

P
(∣∣Cn − C(X)∣∣ > ϵ

)
≤ c1 exp

(
−2n

[
ϵ

LB1

] 2
α

)

Lipschitz weights (α = 1): Sample complexity O
(
1/ϵ2

)
for

accuracy ϵ

General α < 1 case: Sample complexity O
(
1/ϵ2/α

)
for accu-

racy ϵ
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CPT-value concentration: Sub-Gaussian case

Truncated estimator: 9

C̃n =

∫ τn

0
w+(1− F̂+n (z))dz−

∫ τn

0
w−(1− F̂−n (z))dz, where τn = Θ(

√
log n)

Assume: Weights w+,w− are Hölder continuous; u+, u− are differentiable, and their
derivatives are bounded above and below by K+ > 0 and k+ > 0, and K− and k− > 0,
respectively, in absolute value.

Concentration bound:

For any 512σ√
n

<

(
ϵ− c3(n)
c4(n)

) 1
α

<
512σ
√
n

+ 16σ
√
e,

P
(∣∣∣C̃n − C(X)∣∣∣ > ϵ

)
≤ exp

− n
256σ2e

((
ϵ− c3(n)
c4(n)

) 1
α

− 512σ√
n

)2
9
P.L.A. and S.P.Bhat, A Wasserstein distance approach for concentration of empirical risk estimates.

arXiv:1902.10709v4, 2022.
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Proof Idea: Bounded case

We use the following alternative characterization of the Wasserstein
distance

W1(F1, F2) =
∫ ∞

−∞
|F1(s)− F2(s)|ds, where (4)

The estimation error
∣∣Cn − C(X)∣∣ is related to the Wasserstein

distance in (4), with EDF Fn as F1 and the true distribution F as F2, and

Wasserstein distance concentration bounds from [Fournier and
Guillin. 2015] are invoked.
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Open Question ???

Given i.i.d. samples and an empirical version of a risk measure,
for a sub-Gaussian distribution

Obtain concentration bounds for the given risk measure

Idea: Use a direct approach that is risk measure specific
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Mean-variance estimation

Samples: {Xt}nt=1

Sample mean: µ̂n

Sample variance: σ̂2

Mean-Variance: M̂Vn = γµ̂n + σ̂2n
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A concentration bound for mean-variance

When X is sub-Gaussian with σ > 0,

P
[
|M̂Vn −MV| > ϵ

]
≤ 2 exp

[
− nϵ2
8γ2σ2

]
+ 2 exp

(
− n16 min

[
ϵ2

2σ4 ,
ϵ

σ2

])
,

Proof uses sub-Gaussian and sub-exponential concentration bounds,
cf. Wainwright’s book.

72



VaR Concentration 10

Assumption (A1): X is a continuous r.v. with a CDF F that satisfies a
condition of sufficient growth around the VaR vα: There exists
constants δ, η > 0 such that

min (F (vα + δ)− F (vα) , F (vα)− F (vα − δ)) ≥ ηδ.

VaR concentration

For any ϵ ∈ (0, δ) P [|v̂n,α − vα| ≥ ϵ] ≤ 2 exp
(
−2nη2ϵ2

)
Proof uses DKW inequality; no tail assumptions required.

10Concentration bounds for empirical conditional value-at-risk: The unbounded case;
R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; Operations Research Letters, 2019
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CVaR concentration bound: sub-Gaussian case

Recall

v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

ĉn,α = v̂n,α +
1

n(1− α)

n∑
i=1

(Xi − v̂n,α)+

Theorem (CVaR concentration for sub-Gaussian)
Assume (A1). Suppose that Xi, i = 1, . . . ,n are σ-sub-Gaussian.
Then, for any ϵ ∈ (0, δ), we have

P [|ĉn,α − cα| > ϵ] ≤ 6 exp [−nψ1(ϵ)] ,

where ψ1(ϵ) =
ϵ2(1− α)2min

(
η2, 1

)
8max (σ2, 8) .
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CVaR concentration bound: sub-Gaussian case

Recall

v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].
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(
η2, 1

)
8max (σ2, 8) .
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Risk-aware bandits:
Regret minimization



Risk-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions Pi, i = 1, . . . , K,

Risk measure : ρ(1), . . . , ρ(K)

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . , K}
• observe a sample loss from PIt

Benchmark: ρ∗ = min
i=1,...,K

ρ(i).

Regret Rn =
K∑
i=1

ρ(i)Ti(n)− nρ∗ =
K∑
i=1

Ti(n)∆i,

Goal: Minimize expected regret E (Rn)
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Optimizing risk with confidence1

Risk-LCB

Pull each arm once

For each round t = 1, 2, . . . ,n do
For each arm i = 1, . . . , K do

Compute an estimate ρi,Ti(t−1) of ρ(i)

LCB index: LCBt(i) = ρi,Ti(t−1) − wi,Ti(t−1)

Pull arm It = arg min
i=1,...,K

LCBt(i).

[1] Auer et al. (2002) Finite-time analysis of the multiarmed bandit problem. In: MLJ.
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Confidencewidth for Hölder riskmeasures+ sub-Gaussian arms

LCB index: LCBt(i) = ρi,Ti(t−1) − wi,Ti(t−1)

ρi,Ti(t−1): Formed by applying ρ to the EDF formed using Ti(t− 1)
samples from arm i’s distribution

wi,Ti(t−1) = Lκ
[(

4 log(t)
Ti(t− 1)

) 1
2

+

(
32σ2

Ti(t− 1)

) 1
2
]κ

77



How I learn to stop regretting..

Upper bound for κ = 1
Gap-dependent:

E(Rn) ≤
∑

{i:∆i>0}

(
√
4 log n+ 32σ2)2 4 L2

∆i
+ K

(
1+ π2

3

)
∆i

Worst-case bound:

E(Rn) ≤
(
K(
√
4 log(n) + 32σ2)24L2 + K∆2

i

(
π2

3 + 1
)) 1

2 √
n.

The bound above matches the regular UCB upper bound (for
optimizing expected value) up to constant factors
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Confidence width for CPT risk measure + sub-Gaussian arms

Recall

C(X) :=
∫ ∞

0
w+
(
P
(
u+(X) > z

))
dz−

∫ ∞

0
w− (P (u−(X) > z

))
dz

Assume w± are Hölder with exponent α < 1.
LCB index: LCBt(i) = ρi,Ti(t−1) − wi,Ti(t−1)

ρi,Ti(t−1): Truncated CPT estimator

wi,Ti(t−1) =
[
Lmax

{
K+
k+ ,

K−
k−

}
log Ti(t− 1)

]α [( 4 log t
Ti(t− 1)

) 1
2

+

(
32σ2

Ti(t− 1)

) 1
2
]α

+
(K++K−)L
cαTi(t− 1)α
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Regret bound for CPT objective

Upper bound

Gap-dependent:

E(Rn) ≤
∑

{i:∆i>0}

C1 log n

∆
2
α−1
i

+ K
(
1+ π2

3

)
∆i

Worst-case bound:

E(Rn) ≤ C2 (K log(n))
α
2 n

2−α
2 .

For α < 1, the bound above is worse than usual UCB upper
bound of O(

√
n)

A lower bound in [Gopalan et al. 2017] shows that the depen-
dence on n and gaps ∆i cannot be improved in a minimax
sense.
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Thompson Sampling for Risk-Regret Minimization

• Riou & Honda (ALT ’20): impactful paper showing
asymptotic optimality of TS for expected regret, under
(multinomial and) bounded distributions

• Baudry, Gautron, Kaufmann, Maillard (ICML ’21): TS is
optimal for CVaR regret and bounded distributions

• Zhu & Tan (ICML ’20): TS for mean-variance under
Gaussian losses.
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Multinomial TS (Riou & Honda ’20)

For multinomial distributions over {0, 1
M
,
2
M
, . . . , 1}

Input Horizon n, number of arms K and multinomial support size M.
Initialize αmk = 1, k ∈ [K],m ∈ {0, 1, . . . ,M}

• Sample from
Dirichlet
distribution

• Arm index

• Action and loss at
time t

• Posterior update of
Dirichlet
parameters

For t = 1, 2, . . . , n do

For k = 1 to K
- Sample Lk ∼ Dir(αk0, . . . , αkM)

I(t) = arg min
k∈[K]

(0, 1
M
,
2
M
, . . . , 1)⊺Lk

Play arm I(t)

Observe loss m
M
.

Update parameter αI(t)m = α
I(t)
m + 1
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, . . . , 1)⊺Lk

Play arm I(t)

Observe loss m
M
.

Update parameter αI(t)m = α
I(t)
m + 1
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Non-parametric TS (Riou & Honda ’20)

Assume: arms’ distributions support in [0, 1]

Input Horizon n, number of arms K.
Initialize Xk = 1,Nk = 1 for each k ∈ [K]

• Sample from
Dirichlet
distribution of
dimension Nk

• Arm index

• Action and loss at
time t

• Update of loss
vector Xk and
number of pulls Nk

For t = 1, 2, . . . , n do

For k = 1 to K
- Sample pk ∼ Dir(1Nk )

I(t) = arg max
k∈[K]

X⊺kpk

Play arm I(t)

Observe loss rI(t)t .

Update NI(t) = NI(t) + 1, XI(t) =
(

XI(t)
rI(t)t

)
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Regret Optimality of TS (Riou & Honda ’20)

Non-parametric TS achieves the optimal regret bound for bounded
loss distributions:

E(Rn) ≤
∑

{i:∆i>0}

∆i log n
Kinf(Fi, µ∗)

+ o(log n)

• Kinf(Fi, µ∗) = inf
G:E[G]>µ1

KL(Fi||G) denotes a ‘disambiguation

difficulty’

• Exactly matches the lower bound for regret (Burnetas &
Katehakis ’96)

• TS regret proofs typically follow pre-convergence and
post-convergence analysis for the conjugate (Beta, Dirichlet etc.)
parameters

• For non-parametric TS, ‘convergence’ is of the empirical
distribution of the loss, in the sense of the Lévy distance
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TS for minimizing CVaR regret (Baudry et. al. 2021)

For bounded distributions over [0,B]
Input Horizon n, number of arms K, bound B.
Initialize t = 1, Xk = B,Nk = 1 for each k ∈ [K]

• Sample uniformly
over prob. simplex
of dimension Nk

• Arm index

• Action and loss at
time t

• Update of loss
vector Xk and
number of pulls Nk

For t = 2, . . . , n do

For k = 1 to K
- Sample pk ∼ Unif(SimpNk )

I(t) = arg max
k∈[K]

Cα(Xk, pk)

Play arm I(t)

Observe loss rI(t)t .

Update NI(t) = NI(t) + 1, XI(t) =
(

XI(t)
rI(t)t

)
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CVaR Regret Optimality of TS (Baudry et.al. ’21)

Non-parametric TS achieves the optimal regret bound for bounded
loss distributions:

E(Rn) ≤
∑

{i:∆α
i >0}

∆α
i log n

Kα
inf(Fi, cα1 )

+ o(log n)

• Kαinf(Fi, cα1 ) = inf
G:CVaRα(G)>cα1

KL(Fi||G), and ∆α
i are the CVaR gaps

• Exactly matches the lower bound for CVaR regret
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TS algorithm for mean-variance learning

For Gaussian arms N (µi, σ
2
i )

Input Horizon n, number of arms K.
Initialize µ̂i,0 = 0 Ti,0 = 0, αi,0 = 1/2, βi,0 = 1/2, for each i ∈ [K]

• Precision sample
from Gamma, mean
sample from
Gaussian

• Arm index

• Action and loss at
time t

• Posterior Update

For t = 1, 2, . . . , n do

For i = 1 to K
Sample τi(t) from Gamma(αi,t−1, βi,t−1)

Sample θi(t) from N (µ̂i,t−1, 1/(Ti,t−1 + 1))

I(t) = arg min
i∈[K]

{ρθi(t) + 1/τi(t)}

Play arm I(t)

Observe loss Xi(t),t
(µ̂i(t),t, Ti(t),t, αi(t),t, βi(t),t) =

Update(µ̂i(t),t−1, Ti(t),t−1, αi(t),t−1, βi(t),t−1, Xi(t),t)
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Risk-aware bandits:
Best arm identification



Fixed Budget, Risk- Aware BAI

Aim: Identify risk-optimal arm with least probability of error in a
given budget n

• L.A. et.al. (ICML 2020): CVaR concentration for sG, sE,
heavy-tailed cases, CVaR-SR algorithm for least CVaR arm

• Kagrecha et.al (NeurIPS 2019): Distribution oblivious setting,
truncated version of SR to minimize a convex combination
ξµi + (1− ξ)ciα

• Zhang & Ong (ICML 2021): Quantile-SAR to identify m-best arms
with highest VaRα
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Distribution oblivious, risk-aware BAI 11

Known # of arms K and horizon n

Unknown Distributions Fi, i = 1, . . . , K,

Risk measure : ξµ(i) + (1− ξ)Cα(i) for a given ξ

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . , K}
• observe a sample loss from FIt

Recommendation Arm Jn

Benchmark: k∗ = arg min
k=1,...,K

ξµ(k) + (1− ξ)Cα(k).

Goal: Minimize probability of erroneous recommendation pe = P [Jn ̸= k∗]

11A. Kagrecha, J. Nair, K. Jagannathan (NeurIPS ’19)
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Distribution oblivious, risk-aware BAI 12

• Distribution oblivious: Nothing is known about the arm
distributions

• Could be heavy tailed:
E[Xpi ] < B for some p > 1, but B,p not known!

• Identify arm with the least ξµi + (1− ξ)Ciα,
• Here ξ decides the tradeoff between desire of average
reward and risk appetite

12A. Kagrecha, J. Nair, K. Jagannathan (NeurIPS ’19)
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Distribution oblivious, risk-aware BAI

• Key challenge: empirical estimators for mean and CVaR
lead to poor performance

• Key idea: work with projected samples
X(b)i = min(max(−b, Xi),b) to form mean and CVaR
estimates

• Algorithm: Use SR or Uniform Exploration with projected
samples, with b = nq for q ∈ (0, 1)

• Guarantee: pe = O(exp(−γn1−q)) for n > Kn∗(q)
• A smaller q implies better asymptotic decay, but finite
sample performance could be poorer

• Lower bound (Kagrecha et.al., IEEE Trans. Info. Th. 2022):
no consistent estimator can obtain exponential decay of
pe
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Fixed Confidence, Risk- Aware BAI

Identify best arm(s) with high probability 1− δ with least expected
sample complexity

• Szorenyi et.al. ’15, David & Shimkin ’16: PAC best-arm
identification for VaRα

• David et.al ’18: find arm with best mean reward, subject to VaRα
risk constraint
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