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Abstract

The success of autonomous driving is contingent on the development of safe and

efficient motion planning algorithms capable of working in multi-agent environ-

ments under stochasticity and partial observability. Reinforcement Learning (RL)

provides a powerful framework for learning to behave in such environments. The

focus of this thesis is to advance the state-of-the-art in reinforcement learning

based motion planning for autonomous driving. We present MADRaS, an open-

source Multi-Agent DRiving Simulator that is capable of simulating challenging

driving tasks of high variance. We demonstrate how MADRaS can be used as

a curriculum learning platform for training RL agents to drive a wide range of

cars in different road tracks, navigate through traffic in narrow roads and pre-

vent congestion and deadlocks through multi-agent cooperation. In reinforcement

learning, the agent’s objective is specified in terms of a scalar reward function mak-

ing its accurate description crucial for success in achieving the desired behavior.

In order to bypass the need to hand-engineer reward functions, Imitation learning

algorithms like Generative Adversarial Imitation Learning (GAIL) estimate an

expert’s reward function from its demonstrations and then maximize it using RL.

We observe that although GAIL is effective in matching (and often, exceeding)

the expert at mean performance, high-cost trajectories, corresponding to tail-end

events of catastrophic failure, are more likely to be encountered by GAIL agents

than the expert. To address this issue, we develop Risk-Averse Imitation Learning

(RAIL) as an alternative to GAIL in risk-sensitive applications that achieves up

to 89% reduction in tail-risk at benchmark continuous control tasks of OpenAI

Gym. The sample efficiency and convergence time of an RL algorithm heavily

depend on the exploration method used. While human beings use knowledge from

prior experiences at related tasks while exploring a new task, most exploration al-

gorithms for RL use the information only from the current task-environment. We

develop ExTra, a framework for Transfer-guided Exploration in which we leverage

xi



a known optimal policy of a related task for efficient exploration in a new task.

We demonstrate that ExTra is capable of exceeding and complementing the per-

formance of traditional exploration algorithms.

Keywords: Autonomous Driving, Reinforcement Learning, Imitation Learn-

ing, Efficient Exploration
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C H A P T E R 1

Introduction

The evolution of transportation systems has been one of the primary factors that

fueled the growth and prosperity of human civilization. As transportation became

faster, safer and more accessible, the world became a smaller place. Communica-

tion, trade and different kinds of exchange between people flourished and global-

ized cultures emerged. World economy and average quality of life improved. In

our relentless march for the advancement of human civilization, we must identify

the challenges that face the transportation systems of today and develop solutions

for ameliorating them.

The biggest challenge that faces humanity at the current time is climate change.

According to World Health Organization (WHO) [1], the transport sector is the

fastest growing contributor to emissions responsible for climate change. It con-

tributed 23% of global Carbon Dioxide (CO2) emissions in the year 2008 with the

share of road transport alone being 16.5%. While climate change jeopardizes the

future of human civilization [2], burgeoning traffic also poses a constant threat

of fatal injuries. According to a report published by WHO [3], traffic accidents

account for 1.35 million deaths worldwide each year. Additionally, 20− 50 million

people are injured or disabled [4]. More than 90% of these incidents happen in

the low and middle income countries of the world [3]. In 2017, 16 people died and

1



Introduction

53 people suffered injuries every hour due to traffic accidents in India [5]. 94% of

these accidents happen due to avoidable human error [6].

Autonomous driving refers to the task of making a car drive by itself with min-

imum interference from the human user. Autonomous driving technology along

with electric and shared mobility has the potential to cut emissions responsible for

climate change by 50% by the year 2050 [7]. Fully autonomous driving can also

potentially eliminate all chances of accident due to human error, thus bringing

down traffic fatality by over 90% [6]. Traffic congestion is a major contributor

to the loss of productivity and environmental pollution. Multi-agent coordina-

tion between self-driving cars and route optimization provides a viable solution

to traffic congestion [8]. The motivation of this thesis is to develop algorithms

for improving the safety and optimality of self-driving cars and build open-source

software tools for the democratization of technology.

1.1 Autonomous Driving

Autonomous driving has gained unprecedented attention of late due to its promise

of increasing road safety by eliminating accidents due to human error, reducing

traffic congestion, boosting shared mobility and reducing environmental pollu-

tion. Given a route in the form of a sequence of waypoints or markers on the map,

autonomous cars drive by performing perception, planning and action in a loop [9].

In the perception stage, the car scans its environment and localizes itself in

the global map. It identifies static and dynamic obstacles and creates an object

oriented semantic representation of its surroundings. Common static obstacles

are kerbs, signboards and houses. Dynamic obstacles can be other moving cars

in the vicinity of the self-driving car, pedestrians and animals. The final task in

the perception stage is to predict the behaviour and trajectory of each dynamic

obstacle over a number of time steps into the future.

The second stage in the autonomous driving pipeline is trajectory planning. A
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trajectory is a sequence of pose and velocity values that takes the car from one

waypoint to the next. The task of motion planning involves calculation of a set

of collision-free trajectories and selection of the most optimum one that respects

the mechanical constraints of the system.

The third and last step involves vehicular platform implementation of the

planned trajectory. The components of the vehicle that are directly responsi-

ble for its motion must be controlled for executing the planned sequence of poses

and velocities. Engine dynamics, platform stability and passive safety are some of

the issues that must be addressed at this stage.

Although realization of fully autonomous driving seems far flung, some specific

low level tasks pertaining to driving such as adaptive cruise control, lane keep as-

sistance and parking assistance have already been automated at a production scale

in the form of Advanced Driver-Assistance Systems (ADAS) [10, 11]. Safe, opti-

mal and fast motion planning in complex, multi-modal, multi-agent, and partially

observed environments is the foremost technological challenge towards achieving

full autonomy. Achieving these goals tractably using traditional motion planning

algorithms – like Model Predictive Control, RRT, A∗, and Dijkstra – is only possi-

ble under certain simplifying assumptions on the complexity the environment [12].

On the other hand, Machine Learning based approaches including Reinforcement

Learning (RL) [13] and Learning from Demonstration (LfD) [14] are capable of

fast and reactive control under lesser assumptions [15, 16]. However their training

phase is often data-hungry and requires trial and error that entails risk.

In this thesis, we investigate the safety and optimality of reinforcement learning

and related algorithms from a standpoint of autonomous driving. We also develop

an open-source multi-agent driving simulator that is capable of simulating rich

highway and track driving conditions for use in the training and evaluation of

motion-planning agents.
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1.2 Research Challenges

This section summarizes the challenges that are addressed in this thesis.

1.2.1 Developing a Simulator for Multi-agent Trajectory

Planning in Autonomous Driving

Simulators are crucial for Artificial Intelligence (AI) research in autonomous driv-

ing because of their role as a sandbox for the training and evaluation of AI agents.

Popular open-source driving simulators like CARLA [17], Microsoft AirSim [18],

DeepDrive.io [19] and Udacity’s Self Driving Car Simulator [20] focus on the task

of perception. Apart from robust perception, an agent learning to face real world

driving scenarios must learn invariances to road geometries, traffic patterns and

vehicular dynamics during motion planning. These simulators do not offer enough

variability along these dimensions that is necessary to learn the invariances. In

a typical driving scene, multiple entities (cars, buses, bikes, and pedestrians) try

to achieve their objectives of getting from one place to another fast, yet safely

and reliably. A simulator for such an environment should provide an easy way to

create arbitrary traffic configurations. The task of negotiating in traffic is akin to

finding the winning strategy in a multi-agent game. Hence, an autonomous driving

simulator should be able to simulate different varieties of traffic and support mul-

tiple agents learning to drive through cooperation and competition. Among the

aforementioned simulators, AirSim, DeepDrive.io and Udacity provide some preset

driving conditions mostly without traffic. They do not provide any straightfor-

ward way to create custom traffic or train multiple agents. CARLA does provide

an API for independent control of cars that can be used to create traffic and

multi-agent training. However, most of the variability presented by CARLA is in

the perceived inputs and not in the behavioral dynamics of the ego-vehicle or the

traffic agents. Our first challenge is to develop a dedicated multi-agent simulator

for learning to plan in autonomous driving with a focus on learning invariances to

road geometries, traffic patterns and vehicular dynamics.
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1.2.2 Minimizing Tail-Risk of Imitation Learning Agents

Reinforcement Learning (RL) algorithms, along with efficient function approx-

imators like deep neural networks, have achieved human-level (and sometimes,

super-human) performance at many challenging planning tasks like continuous-

control ([21, 22]) and game-playing ([23, 24]). In classical RL, the cost function is

handcrafted based on heuristic assumptions about the goal and the environment.

Not only is this challenging in most real-world applications, it is also prone to

subjective bias [25]. Imitation learning or Learning from Demonstration (LfD)

([26, 27, 28]) addresses this challenge by providing methods of learning policies

through imitation of an expert’s behavior without the need of a handcrafted cost

function. However we observe that, despite matching expert performance on an av-

erage, agents trained with state-of-the-art imitation learning algorithms like Gen-

erative Adversarial Imitation Learning (GAIL) [29] have a tendency to encounter

high-cost trajectories more often than the experts. Since high trajectory-costs

may correspond to events of catastrophic failure, GAIL agents are not reliable in

risk-sensitive applications. Our second challenge is to formulate a direct approach

to minimizing the tail risk of GAIL-learned policies.

1.2.3 Leveraging Prior Knowledge from Related Tasks for

Efficient Exploration

Reinforcement Learning algorithms suffer from high sample complexity when used

to learn complex tasks of high variance [30]. Traditional approaches to sample

efficient exploration in RL only use domain specific knowledge. On the other hand,

while attempting to solve a new task, human beings tend to take actions motivated

by similar situations faced in the past. Our third challenge is to formulate a

mathematical framework for transfer-guided exploration that will allow the use of

prior experiences for improving the sample complexity of RL algorithms.
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1.3 Research Contributions

The main contributions of this thesis can be summarized as follows:

1.3.1 MADRaS: A Multi-Agent Driving Simulator

We develop MADRaS, an open-source M ulti-Agent DRiving S imulator for au-

tonomous driving. MADRaS builds on TORCS, a popular car racing platform

[31], and adds a suite of features like hierarchical control modes, domain ran-

domization, custom traffic, partial observability, stochastic outcomes of actions

and support for multi-agent training. We train reinforcement learning agents to

accomplish challenging tasks like generalizing across a wide range of track geome-

tries and vehicular dynamics, driving under stochasticity and partial observability,

navigating through static and moving obstacles and negotiating with other agents

to pass through a traffic bottleneck. These studies demonstrate the viability of

MADRaS to simulate rich highway and track driving scenarios of high variance

and complexity that are valuable for autonomous driving research.

1.3.2 RAIL: A Risk Averse Imitation Learning Algorithm

We propose RAIL, a Risk Averse I mitation Learning algorithm which incorporates

Conditional Value at Risk (CV aR) optimization [32] within the Generative Ad-

versarial Imitation Learning (GAIL) [29] framework to minimize tail risk and thus

improve the reliability of the learned policies. We report significant improvement

over GAIL at a number of evaluation metrics on five benchmark continuous-control

tasks of OpenAI Gym [33]. Thus the proposed algorithm is a viable step in the di-

rection of learning low-risk policies by imitation learning in complex environments,

especially in risk-sensitive applications like autonomous driving.

1.3.3 ExTra: A Transfer-guided Exploration Algorithm

for Reinforcement Learning

We investigate the fundamental possibility of using transfer to guide exploration

in RL and formulate a novel transfer guided exploration algorithm, ExTra, based
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on the theory of bisimulation based policy transfer in MDPs [34]. We demonstrate

that our method achieves faster convergence compared to traditional exploration

methods that only use local information. Further, ExTra is robust to source task

selection and can complement traditional exploration methods by improving their

rates of convergence. We also provide theoretical guarantees in the form of a

lower bound on the optimal advantage of an action in the target domain in terms

of bisimulation distance from the source environment.

1.4 Thesis Organization

The rest of the thesis is structured as follows.

• Chapter 2 presents the essential mathematical concepts and prior literature

that form the backbone of this thesis.

• Chapter 3 describes the construction of MADRaS and presents six case stud-

ies on its application as a platform for autonomous driving research.

• Chapter 4 presents RAIL and how it improves the tail risk of GAIL-learned

policies.

• Chapter 5 describes ExTra and compares it with traditional exploration

methods.

• Finally, Chapter 6 concludes the thesis with a summary of our contributions

and scope of future work.

1.5 Summary

In this section we presented a brief introduction to the problem of autonomous

driving that is one of the most vibrant areas of research in the current times. We

described the motivation of this thesis and the research challenges that we aim

to address. We also presented the thesis organization and briefly discussed our

contributions.
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C H A P T E R 2

Background

2.1 Introduction

In this chapter, we discuss the theoretical concepts that form the basis of the

research presented in this thesis. Out of the perceive-plan-act pipeline of au-

tonomous driving [9], our focus lies on the task of planning. So, we start with

a brief introduction to the theory of trajectory and motion planning in robotics

[12] in Section 2.2. Traditional planning algorithms depend on the availability of

an accurate model of the world. Decision theoretic planning algorithms, on the

other hand, do not make this assumption and are capable of planning under un-

certainty in real world conditions. One such class of algorithms is Reinforcement

Learning (RL) [13] that has demonstrated remarkable success in the recent years

[21, 22, 23, 24]. We present a brief introduction to the foundations of RL in Sec-

tion 2.3 and discuss the challenges that face their application in the real world.

The task of autonomous driving is a multi-agent planning problem that requires

multiple actors with potentially different objectives to negotiate and arrive at a

solution. In Section 2.4 we introduce the theory of Multi-Agent Reinforcement

Learning [35, 36] that is used to train multiple learning agents to interact with

one another and accomplish their individual as well as collective goals. RL agents
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learn by maximizing a scalar reward function that is usually handcrafted to de-

scribe the intended task. As handcrafting is tedious and prone to human error,

a family of algorithms called Imitation Learning [26, 27, 28] use expert demon-

strations to bypass the reward engineering step of RL. We introduce Imitation

Learning algorithms in Section 2.5. The introduction serves as a primer for Chap-

ter 4 of this thesis where we discuss the reliability of imitation learning algorithms

applied to risk-sensitive tasks like autonomous driving.

2.2 Motion Planning

Robot motion tasks are usually specified in terms of a pair of initial and final

configurations of the robot and a set of constraints that the robot must abide by

while executing the desired motion. Motion planning refers to the task of convert-

ing such high level specifications of tasks into low level descriptions comprising

of translations and rotations of how to accomplish the task optimally [12]. Being

a mechanical system, each robot has certain limitations on the kinds of motion

it can execute in a given state. These contribute a set of differential constraints

to the motion planning problem. Uncertainties in the environment and modeling

errors pose additional challenges. In this section we describe the mathematical

foundation of motion planning under differential constraints. We also discuss how

decision theoretic approaches like machine learning can be used to address the

uncertainties arising in real world conditions.

2.2.1 Configuration Space of a Robot

Robot motion planning problems are usually defined in terms of the configuration

space of a robot. The configuration space is used to denote the set of all possi-

ble positions or configurations that the robot can find itself with respect to the

environment while acting in it. Mathematically, the environment that the robot

operates in is called the “world”, W . Usually, W = R2 or R3. The robot is de-

scribed as a semi-algebraic set A ⊂ W . A could be a rigid body or a collection of

m links – A1,A2, . . .Am. The world may contain an obstacle region represented

by a semi-algebraic set O ⊂ W where the robot is not allowed to tread. The con-
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Figure 2.1: Piano Mover’s Problem defined in the C-space of a robot. The task is
to find a path τ from qI to qG in Cfree. The entire blob represents C = Cfree

⋃
Cobs

.

figuration space or C-space, C, is determined by specifying the set of all possible

transformations that may be applied to the robot. For example, if the robot is a

rigid body and W = R2, a configuration q ∈ C is of the form (x, y, θ) where (x, y)

are the coordinates of the centre of mass and θ is the orientation in the global

coordinate system. Similarly, if W = R3, then q = (x, y, z, h) where (x, y, z) are

the 3D coordinates of the centre of mass and h represents the unit quaternion.

The obstacle space Cobs ⊂ C is defined as the subset of the configuration space

that results in overlap of the robot and the obstacle region.

Cobs = q ∈ C|A(q) ∩ O 6= φ (2.1)

Cfree = C \ Cobs comprises the free space in which the robot is allowed to navigate.
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2.2.2 Motion Planning: The Piano Mover’s Problem

Given an initial configuration qI and goal configuration qG, qI , qG ∈ Cfree, the task

of a motion planning algorithm is to compute a continuous path, τ : [0, 1]→ Cfree
such that τ(0) = qI and τ(1) = qG. If a solution does not exist, the algorithm

should correctly report that too. This simple version of the motion planning

problem is known as the Piano Mover’s Problem.

2.2.3 Differential Constraints

A robot operating in an environment must abide by certain constraints that are

related to the outcomes of its interactions with the environment. These constraints

are included in the differential equation based motion-planning problem definition

and are known as differential constraints. Let X be the state space of a robot.

The state space is usually the same as the configuration space, C. The sub-spaces

of X corresponding to Cobs and Cfree are denoted by Xobs and Xfree respectively.

Let U(x) denote the set of actions that the robot can take in state x ∈ X. Robot

motion in continuous time can be described by the state transition equation as

follows:

ẋ = f(x, u) (2.2)

where, ẋ refers to the robot velocity that results from taking action u ∈ U(x) in

state x. Starting from x(0) at time t = 0, a state trajectory x̃ can be derived from

an action trajectory ũ as:

x(t) = x(0) +

∫ t

0

f(x(t′), u(t′))dt′ (2.3)

Constraints on robot motion are expressed in the form of differential equations.

These equations take the form of:

g(q̈, q̇, q) ./ 0 (2.4)

where q̇ and q̈ represent the first and second order temporal derivatives of the

robot configuration variable q and ./ could be =, <, ≤, >, or ≥. Differential
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constraints are of three broad categories:

• Position constraints: These constraints define Cobs. The robot must not

enter this region of the configuration space during its operation in the envi-

ronment.

• Velocity or Kinematic constraints: These constraints limit the velocities

that the robot may have in a given configuration taking into account the

mechanical limitations of the robot and restrictions in the environment.

• Non-holonomic constraints: These refer to constraints that can not be

integrated over time and are related to the restricted movement abilities of

a given robotic system.

These differential constraints are incorporated into the state transition equation

of the robot using methods like Lagrange Multipliers.

2.2.4 Motion Planning under Differential Constraints

Motion Planning under differential constraints can be formulated as a classical two-

point boundary value problem (BVP) [37]. Let U denote the set of all permissible

action trajectories over an unbounded time interval, T = [0,∞). Let us assume

that U contains at least one action trajectory ũ such that the integrand of Equation

2.3 is integrable over time. Given an initial state xI ∈ X and a goal region

XG ⊂ X, the task of motion planning is to compute an action trajectory ũ : T → U

for which the state trajectory x̃ resulting from Equation 2.3 satisfies:

1. x(0) = xI

2. ∃t > 0 for which u(t) = uT and x(t) ∈ XG.

In some cases, additional constraints such as continuity or smoothness over time,

may be placed on ũ.
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2.2.5 Planning under Uncertainty

In most real world scenarios planning algorithms need to take into consideration

uncertainty in the environment. The uncertainty can be in the form of noisy or par-

tial observations that prevent the robot from knowing its current state accurately.

Also, the transition dynamics of the environment can be stochastic, which means

that the outcome of an action in a given state can be probabilistic. This results

in uncertainty in the robot’s ability to predict future states. In most real world

applications, the transition dynamics are unknown and the robot is required to

model it explicitly or implicitly from the data collected during exploration. These

challenges call for mathematical formulations that consider uncertainty as an inte-

gral part of the planning problem. Decision theoretic planning algorithms become

relevant in this case. In the following section we discuss reinforcement learning

algorithms that fall within this category.

2.3 Reinforcement Learning

In this section we present a brief introduction to Reinforcement Learning (RL).

Reinforcement learning is a computational approach to learning from interaction

[13]. Learning from interaction comprises a major form of learning from an early

age in humans. Even in the absence of an expert supervisor, mere interaction

with the environment provides a host of information regarding cause and effect,

consequences of actions and how to achieve goals. With information on how the

environment responds to actions, it is possible to plan behaviors that produce

desired outcomes or accomplish useful tasks.

In reinforcement learning, the target task or goal is defined in the form of a

scalar reward signal. After each action, an RL agent may receive a reward signal

that signifies how close it is to achieving the target task. These reward signals are

sometimes sparse, delayed and abstract. The agent learns its desired behavior by

maximizing the reward signal through trial and error. RL algorithms, along with

efficient function approximators like deep neural networks, have achieved human-

level or beyond human-level performance at many challenging planning tasks like
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continuous-control [21, 22] and game-playing [23, 24].

Reinforcement learning is different from the two most common forms of ma-

chine learning algorithms, viz. supervised learning and unsupervised learning. In

supervised learning, the agent is given a set of example situations along with the

correct actions that must be chosen in those situations. On the other hand, in

an interactive learning setting like reinforcement learning, the agent must learn

from its own experience. Feedback received in the form of reward signals only

provide direction to the final goal and not examples of correct behavior. The task

of unsupervised learning is to find hidden structures in a collection of unlabelled

data. Reinforcement Learning is different from unsupervised learning because it

aims to achieve a given task by maximizing the reward signal rather than just

looking for meaningful structures in data.

In this thesis, we explore RL algorithms in the context of planning in au-

tonomous driving. In the remaining part of this section, we introduce the mathe-

matical formulation of reinforcement learning and describe some algorithms that

have been studied in the later chapters of this thesis.

2.3.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical construct that is used to

formalize agent-environment interaction in a reinforcement learning scenario [13].

An MDP can be expressed as a 5-tuple: M = 〈S,A, P,R, γ〉. It consists of the

following elements:

• State space: The state space, S denotes the set of all possible states that

the agent can find itself in during its interaction with the environment. A

state s ∈ S comprises of a set of state variables some or all of which may

be observable to the agent. For an agent learning to drive a car, the state

variables may include the current speed of the car, distance from the road

boundaries, static and dynamic obstacles in the vicinity and engine param-

eters.
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• Action space: The action space, A denotes the set of all actions available

to the agent. For a driving agent, the action space can comprise of steering,

acceleration, brake and other control variables.

• Transition function: The transition function, P : S × A → S describes

how the state of the environment changes in response to actions taken by

the agent. In stochastic environments, the transition function is probabilistic

and is written as P : S×A×S → [0, 1], where ∀s ∈ S, a ∈ A,
∫
s′
P (s′|s, a) =

1. The transition function definition makes the assumption that given the

current state and action the next state is conditionally independent of all

previous states and actions. This memory-less assumption is known as the

Markovian assumption and this is what contributes the term “Markov” to

the name Markov Decision Process.

• Reward function: The reward function, R : S × A → R characterizes

the goal of the agent. It provides scalar feedback signals to the agent that

indicate its progress towards the goal. The agent learns its desired behavior

by maximizing the cumulative reward function.

• Temporal discount factor: The temporal discount factor, γ is a positive

scalar that is used to provide different levels of importance to the short and

long term outcomes of an agent’s actions.

2.3.2 Policy and Trajectory

In an interactive learning environment, an agent chooses actions according to a

policy. A policy, π : S → A, is a function that maps states to actions. The

goal of RL is to learn a policy that maximizes the cumulative reward accrued by

the agent while acting in the environment. In many situations, especially when

the environment is probabilistic, stochastic policies are used. A stochastic policy,

π : S × A → [0, 1], is defined as a probability distribution over actions, where

∀s ∈ S,
∫
a
π(a|s) = 1.

A trajectory, τ = 〈s0, a0, r0, s1, a1, r1, . . . , st, at, rt, . . . 〉, si ∈ S, ai ∈ A, ri ∈ R,

is a sequence of state, action and reward values, that an agent produces while

16



2.3 Reinforcement Learning

interacting with the environment.

2.3.3 Returns and Episodes

The goal of an RL agent is to maximize the total reward it receives in the long

run. The action chosen at time step t should maximize the sequence of rewards

that follows this action, viz. R(t), R(t+1), R(t+2) . . . The return at time t, Gt is

defined as a function of this sequence of rewards that consolidates them into the

learning objective for time t. Some popular definitions of G(t) are:

• Sum of rewards: G(t) =
∑

t′≥0R(t+ t′).

• Discounted sum of rewards: G(t) =
∑

t′≥0 γ
t′R(t + t′) where 0 ≤ γ ≤ 1

is a discount factor.

While sum of future reward gives equal importance to all the time steps that

follow, the discounted sum provides a way to assign more weightage to the imme-

diate rewards than the ones in distant future. The amount of discounting of future

rewards can be controlled by tuning the value of γ. When γ = 1, the discounted

sum of future rewards becomes a simple sum.

There are some tasks in which experience happens in the form of repeated

interactions that start in one of a set of initial states and terminate in one of a

set of terminal states. Examples of such tasks are plays of a game, trips through

a maze, etc. In such tasks, the agent-environment interactions can be naturally

broken into sub-sequences called episodes. The branch of reinforcement learning

that deals with episodic tasks is known as episodic reinforcement learning and will

be the prime focus of this thesis. The maximum length of an episode is referred

to as the horizon, T . The other class of tasks in which the agent’s interaction

with the environment goes on continually for ever and does not break naturally

into episodes are known as continuing tasks. Although we do not investigate such

tasks in this thesis, the concepts developed can be applied without any major

modification to them as well.
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2.3.4 Exploration-Exploitation Dilemma

When a reinforcement learning agent interacts with the environment with a goal

to maximize its cumulative reward, it has two options regarding how to choose

its actions. The first option is to exploit its best policy till the current time

that is known to give high rewards. The second option is to explore by trying to

take actions different from the one given by the best known policy as there could

potentially be a better strategy capable of producing a higher reward. Barring

some trivial cases, following any one of the two strategies exclusively can never

produce optimal behavior. The agent must explore actions in each state but pro-

gressively favor the ones that appear to be the best. The sample complexity of

an RL algorithm is defined as the total number of interactions that the agent

needs to experience in order to arrive at the final performance. Reduction of

sample complexity is crucial for practical application of RL and a large section of

RL literature is dedicated to the development of sample efficient RL algorithms.

One of the most effective approaches to reducing sample complexity is to formu-

late sample-efficient exploration methods. We study these methods in Chapter

5 and present a novel framework of transfer-guided exploration called “ExTra”,

that leverages an agent’s prior experiences at solving related tasks for guiding

exploration in a new task environment.

2.3.5 Value Functions

The value function of a policy gives an estimate of how useful it is for an agent

to be in a given state or how useful it is to take a certain action in a given state.

Utility is usually quantified in terms of expected return. Almost all reinforcement

learning algorithms involve estimating value functions. There are two major types

of value functions that are widely used in the reinforcement learning literature.

• State Value Function: For any state s ∈ S, the state value function,

V π(s), is defined as the expected return that the agent would get if it starts

18



2.3 Reinforcement Learning

in state s and follows policy π.

V π(s) =Eπ
[
G(t)|st = s

]
(2.5)

=Eat,at+1,···∼π
[
G(t)|st = s

]
Eπ denotes expectation over actions derived from policy π.

• State-Action Value Function: Given a state s ∈ S and action a ∈ A, the

state-action value function, Qπ(s, a) is defined as the expected return that

the agent would get if it takes action a in state s and follows the policy π

thereafter.

Qπ(s, a) =Eπ
[
G(t)|st = s, at = a

]
(2.6)

=Eat+1,at+2,···∼π
[
G(t)|st = s, at = a

]
2.3.6 Bellman Equations

The value functions have interesting recursive properties that are useful in their

estimation from data. These relationships are known as Bellman Equations. For

a discounted sum of rewards definition of gain, we have the following expressions

of the Bellman equation for state and state-action value functions.

2.3.6.1 Bellman Equation for State Value Function

The Bellman equation for the state value function V π can be stated as follows:

V π(s) = Ea∼π(at|s)
[
R(s, a) + γEs′∼P (st+1|s,a) [V π(s′)]

]
(2.7)

Proof:

V π(s) =Eπ
[
G(t)|st = s

]
=Eπ

[
R(t) + γR(t+ 1) + γ2R(t+ 2) + γ3R(t+ 3) + . . . |st = s

]
=Eπ

[
R(t) + γ(R(t+ 1) + γR(t+ 2) + γ2R(t+ 3) + . . . )|st = s

]
=Eπ

[
R(t) + γG(t+ 1)|st = s

]
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=Ea∼π(at|s)
[
R(s, a) + γEs′∼P (st+1|s,a)

[
G(t+ 1)|st+1 = s′

]]
=Ea∼π(at|s)

[
R(s, a) + γEs′∼P (st+1|s,a) [V π(s′)]

]

2.3.6.2 Bellman Equation for State-Action Value Function

The Bellman equation for the state-action value function Qπ is given by:

Qπ(s, a) = R(s, a) + γEs′∼P (st+1|s,a)

[
Ea′∼π(at+1|s′) [Qπ(s′, a′)]

]
(2.8)

Proof:

Qπ(s, a) =Eπ
[
G(t)|st = s, at = a

]
=Eπ

[
R(t) + γR(t+ 1) + γ2R(t+ 2) + γ3R(t+ 3) + . . . |st = s,

at = a]

=R(s, a) + Eπ
[
γ(R(t+ 1) + γR(t+ 2) + γ2R(t+ 3) + . . . )

]
=R(s, a) + Eπ [γG(t+ 1)]

=R(s, a) + γEs′∼P (st+1|s,a)

[
Ea′∼π(at+1|s′)

[
G(t+ 1)|st+1 = s′,

at+1 = a′]]

=R(s, a) + γEs′∼P (st+1|s,a)

[
Ea′∼π(at+1|s′) [Qπ(s′, a′)]

]

2.3.7 Optimal Policy and Value Functions

The goal of reinforcement learning is to find a policy for the agent that fetches

highest expected return starting from any of the initial states. A policy π is defined

to be better than or equivalent to a policy π′ if and only if V π(s) ≥ V π′(s),∀s ∈ S.

In this way, the value function imposes a partial order over policies. There always

exists at least one policy that is better than or equivalent to all other policies.

We call this an optimal policy. We represent all these optimal policies by π∗. All

optimal policies share the same state and state-action value functions. They are

known as the optimal value functions and denoted by V ∗ and Q∗.
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V ∗(s) = max
π

V π(s); ∀s ∈ S (2.9)

Q∗(s, a) = max
π

Qπ(s, a); ∀s ∈ S, a ∈ A (2.10)

The optimal value functions satisfy the Bellman Optimality Equations :

V ∗(s) = max
a

[
R(s, a) + γEs′∼P (s′|s,a)V

∗(s′)
]

(2.11)

Q∗(s, a) = R(s, a) + γEs′∼P (s′|s,a) max
a′

Q∗(s′, a′) (2.12)

The Bellman Optimality Equations are used to derive update rules for estimating

the optimal value functions by dynamic programming.

2.3.8 Policy Evaluation

Given an arbitrary policy π, policy evaluation refers to the task of finding the

value of the policy V π. Estimating V π from the Bellman equation (Equation 2.7)

amounts to solving |S| simultaneous equations when P (s′|s, a) is known. This

could be a tedious process when |S| is large. A more efficient method of estimating

is through an iterative process. Let us consider a sequence of approximate value

functions V π
0 , V

π
1 , V

π
2 , . . . where V π

i : S → R. V π
0 , the initial approximation, is

chosen arbitrarily and each successive approximation is obtained from the previous

one using the Bellman equation as an update rule:

V π
k+1(s) = Ea∼π(s)[R(s, a) + γEs′∼P (s′|s,a)V

π
k (s′)] (2.13)

V π
k = V π is a fixed point for this update rule since Bellman equation gives

equality in this case. If V π exists, the sequence {V π
k }k converges to V π as k →∞.

This algorithm for determining V π iteratively is known as iterative policy evalua-

tion.
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Algorithm 1 Iterative Policy Evaluation

Input: An arbitrary policy π : S → A, A small positive tolerance threshold
parameter θ > 0

Output: Value of the policy V π

1: Initialization:
2: Assign V π(s) ∈ R arbitrarily ∀s ∈ S \ {sterminal} and V π(sterminal) = 0
3: Policy evaluation:
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V π(s)← Ea∼π(s)

[
R(s, a) + γEs′∼P (s′|s,a)V

π(s′)
]

9: ∆← max(∆, |v − V π(s)|)
10: end for
11: until ∆ < θ

2.3.9 Dynamic Programming Methods for Policy Improve-

ment

The primary motivation behind the construction of value functions is to improve

the policy of a reinforcement learning agent. The policy improvement theorem

formalizes the idea. Let π and π′ be a pair of deterministic policies such that,

∀s ∈ S,Qπ(s, π′(s)) ≥ V π(s) (2.14)

Then,

∀s ∈ S, V π′(s) ≥ V π(s) (2.15)

In other words, π′ must be as good as, or better than π, in terms of expected

return. We construct a new greedy policy π′ as:

π′(s) =argmax
a
Qπ(s, a)

=argmax
a

Es′∼P (s′|s,a) [R(s, a) + γV π(s′)]
(2.16)

This greedy policy takes actions that look best in the short term with one step

look-ahead in terms of V π. Note that π′ satisfies the conditions of the policy
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improvement theorem and hence it is at least as good as π in terms of expected

return. This process of improving a given policy by making it greedy with respect

to its own value function is known as policy improvement.

From the definition of π∗, we have:

V π′(s) = max
a

Es′∼P (s′|s,a) [R(s, a) + γV π(s′)] (2.17)

By construction, if π′ is not better than π, π′ must be as good as π, or in other

words, V π′(s) = V π(s), ∀s ∈ S. Hence, we have in this case, from equation 2.17:

V π′(s) = max
a

Es′∼P (s′|s,a)

[
R(s, a) + γV π′(s′)

]
(2.18)

Equation 2.18 is the same as the Bellman optimality equation. This shows that

policy improvement must give us a strictly better policy except when the original

policy is already optimal.

Starting from an initial policy π0 we can apply policy improvement iteratively

and produce a sequence of monotonically improving policies until we arrive at the

optimal policy. This algorithm is known as policy iteration.

A drawback of policy iteration is the fact that it performs a full policy eval-

uation in every iteration which poses huge computational burden. We aim to

truncate the policy evaluation step without losing the convergence guarantees of

policy iteration. Value Iteration is one such method in which only a single step

of policy evaluation is performed after each policy update. The policy evaluation

and policy update steps can be combined into a single update step as follows:

V π
k+1(s) = max

a
[R(s, a) + γEs′∼P (s′|s,a)V

π
k (s′)]; ∀s ∈ S (2.19)

If V ∗ exists, for arbitrary V π
0 , the sequence {V π

k }k converges to V ∗. Value iteration

can also be arrived at by using the Bellman optimality equation as an update rule.

Dynamic programming (DP) based RL algorithms are also called bootstrapping

23



Background

Algorithm 2 Policy Iteration.

1: Initialization:
2: Assign V π(s) ∈ R and π(s) ∈ A arbitrarily ∀s ∈ S
3: Policy evaluation:
4: repeat
5: ∆← 0
6: for each s ∈ S do
7: v ← V (s)
8: V π(s)← Ea∼π(s)

[
R(s, a) + γEs′∼P (s′|s,a)V

π(s′)
]

9: ∆← max(∆, |v − V π(s)|)
10: end for
11: until ∆ < θ . θ > 0 is a small number denoting accuracy of estimation
12: Policy improvement:
13: policy stable← true
14: for each s ∈ S do
15: old action← π(s)
16: π(s)← argmaxa Es′∼P (s′|s,a)[R(s, a) + γV π(s′)]
17: if old action 6= π(s) then
18: policy stable← false
19: end if
20: if policy stable then
21: Stop and return V π ≈ V ∗ and π ≈ π∗

22: else
23: Go to line 3
24: end if
25: end for

methods [13] because they use the current estimate of the value function to cal-

culate the next estimate. A major drawback of DP methods like Policy Iteration

and Value Iteration is their assumption of complete knowledge of the environment.

Calculating the expectations over next states s′ ∼ P (s′|s, a) in Algorithms 2 and

3 require the transition dynamics P to be known. In RL parlance, these methods

are model based. However, in most practical settings, a model of the transition

dynamics is not available. Model-free reinforcement learning methods like Monte

Carlo and Temporal Difference (TD) Learning attempt to address this limitation

by using sample-based estimates of the expectations. We discuss these methods

later in this section.
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Algorithm 3 Value Iteration

Input: A small positive tolerance threshold parameter θ > 0
1: Initialization:
2: Assign V π(s) ∈ R arbitrarily ∀s ∈ S{sterminal and V π(sterminal) = 0
3: repeat
4: ∆← 0
5: for each s ∈ S do
6: v ← V (s)
7: V π(s)← maxa

[
R(s, a) + γEs′∼P (s′|s,a)V

π(s′)
]

8: ∆← max(∆, |v − V π(s)|)
9: end for

10: until ∆ < θ
11: Output a deterministic policy, π ≈ π∗, such that:

π(s) = argmax
a

[
R(s, a) + γEs′∼P (s′|s,a)V

π(s′)
]

2.3.10 Generalized Policy Iteration

Both policy and value iteration algorithms involve the interaction of two processes

happening simultaneously:

• Policy evaluation: Making the value function consistent with the current

policy.

• Policy improvement: Making the policy greedy with respect to the current

value function.

This interaction is known as Generalized Policy Iteration (GPI) [13]. Almost all

reinforcement learning algorithms can be described as a GPI algorithm.

2.3.11 Monte Carlo Methods for Reinforcement Learning

Monte Carlo methods for reinforcement learning use sample average of returns as

model-free estimates of their true expectations [13]. Hence these methods become

useful when a model of the transition dynamics is not available. The value esti-

mate and policy are updated only at the end of each episode when all the returns

have been observed. This is in contrast with Dynamic Programming based RL
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where the updates to the value function are bootstrapped without waiting for the

final outcome.

In the absence of a model, Monte Carlo methods attempt to obtain the optimal

policy by estimating the optimal state-action value function, Q∗. In order to make

sure that every possible state-action pair is visited, we assume that each state-

action pair has a finite probability of being chosen at the start of an episode. This

assumption is known as exploring starts [13]. In Monte Carlo policy iteration, we

perform policy evaluation and policy improvement after each episode. At the end

of an episode, the observed returns are used to update the Q value function for

the state-action pairs visited in the episode (policy evaluation). The updated Q

function is then used to update the policy for the states visited in that episode

(policy improvement). Algorithm 4 presents the pseudo-code of Monte Carlo pol-

icy optimization with exploring starts. A drawback of Monte Carlo methods is

their difficulty in applying to continuing tasks (trajectory length → ∞) as the

updates are computed only after a full trajectory has been rolled out.

Algorithm 4 Monte Carlo with Exploring Starts (first visit) [13]

1: Initialization:
2: Assign π(s) ∈ A arbitrarily, ∀s ∈ S
3: Assign Qπ(s, a) ∈ R arbitrarily, ∀s ∈ S, a ∈ A
4: Assign an empty list to Returns(s, a), ∀s ∈ S, a ∈ A
5: repeat forever:
6: Sample s0, a0 from an initial state-action distribution that gives non-zero

probability to all state-action pairs.
7: Roll out an episode starting with s0, a0 following π:〈

s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT
〉
.

8: G← 0
9: for each step of the episode, t = T − 1, T − 2, . . . , 0 do

10: G← γG+ rt+1

11: if the pair st, at does not appear in 〈s0, a0, s1, a1, . . . , st−1, at−1〉 then
12: Append G to Returns(st, at)
13: Qπ(st, at)← average(Returns(st, at))
14: π(st)← argmaxaQ(st, a)
15: end if
16: end for
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2.3.12 Temporal Difference (TD) Learning

Temporal Difference (TD) Learning algorithms leverage the best of both Dynamic

Programming and Monte Carlo methods and present an approach that incorpo-

rates both bootstrapping and sampling-based estimation [13]. Like Monte Carlo,

TD algorithms are model-free, meaning, they can learn directly from experiences

without access to a model of the environment’s transition dynamics. Unlike Monte

Carlo, TD algorithms do not wait till the end of an episode to update the value

function and the policy. They just wait till the next one or few time steps in order

to make an update. The simplest form of TD learning known as TD(0) waits for

just a single step and has the following update equation:

V (st)← (1− α)V (st) + α(rt+1 + γV (st+1)) (2.20)

α is known as the step-size or the learning rate. The second part of the right

hand side of Equation 2.20 is the bootstrapped target value obtained by one step

look-ahead at time step t. We rewrite this equation as:

V (st)←V (st) + α(rt+1 + γV (st+1)− V (st))) (2.21)

=V (st) + αδt (2.22)

δt = rt+1 + γV (st+1) − V (st) is called the TD error. TD learning algorithms

usually converge faster than Monte Carlo and are also applicable to continuing

tasks. Popular TD algorithms are SARSA (on-policy) and Q-Learning (off-policy)

[13]. Algorithm 5 describes Q-learning. We use this algorithm in Chapter 5 in our

study of efficient exploration methods for RL.

2.4 Multi-Agent Reinforcement Learning

Many real world tasks including autonomous driving involve the interaction of

multiple agents. In a multi-agent environment, the outcome of an agent’s actions

depends upon the actions chosen by the other agents. This poses additional chal-

lenges that require special treatment beyond the scope of traditional single-agent
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Algorithm 5 Q-learning [13]

Input: learning rate α ∈ (0, 1], small ε > 0
1: Initialization:
2: Assign Qπ(s, a) ∈ R arbitrarily ∀s ∈ S \ {sterminal}, a ∈ A; Q(sterminal, ·) = 0
3: repeat for each episode:
4: Get initial state, s ∈ S
5: repeat for each step of the episode
6: Choose action a greedily from Q(s, ·) with probability (1− ε) and ran-

domly with probability ε (ε-greedy)
7: Take action a and observe reward r and next state s′

8: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
9: s← s′

10: until s is a terminal state

reinforcement learning frameworks. In this section we present a brief introduction

to Multi-Agent Reinforcement Learning (MARL) and the associated challenges

[35, 36]. We utilize these concepts in Chapter 3, where we teach simulated self-

driving cars to cooperate and pass through a traffic bottleneck using MARL.

2.4.1 Markov Games

Markov Games (MG) or Stochastic Games [38, 39] are a generalization of Markov

Decision Processes that are popularly used to formalise MARL settings. A Markov

Game comprises of a tuple: 〈S, {αi}ni=1, {Ai}ni=1, P, {Ri}ni=1, γ〉. S denotes the state

space of the environment that is observed by all the agents. {αi}ni=1 denotes a set

of n agents that simultaneously learn to act in the environment. Each agent, αi,

can have a different action space, Ai, and a reward function, Ri, that governs its

objective. Let A := A1×A2× · · · ×An be the joint action space of all the agents.

The environment dynamics function P : S × A× S → [0, 1] gives the probability

of the environment transitioning from state s ∈ S to state s′ ∈ S in response to a

joint action a ∈ A. γ is the temporal discount factor.

The policy learned by agent αi is denoted by πi : S × Ai → [0, 1]. The joint

policy π : S × A → [0, 1] is defined as π(a|s) := ΠN
i=1πi(ai|s), ai ∈ Ai,∀s ∈ S. As

in a multi-agent environment, the outcome of an agent’s action depends upon the
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actions of the other agents, the state value function, Vi : S → R of agent αi is

defined with respect to the joint policy π as follows:

V π
i (s) = E

[∑
t≥0

γtRi(st, ati)

∣∣∣∣ati ∼ πi(·|st), s0 = s

]
(2.23)

When we investigate the individual policy, πi, in the context of the joint policy, π,

we write π = πiπ−i, where π−i denotes the joint policy of all the agents other than

αi. The solution of the Markov Game depends on the choices of all the agents

involved. The most common solution concept is known as Nash Equilibrium (NE)

[40] that characterizes an equilibrium point where none of the agents have any

incentive to deviate. The Nash Equilibrium of a Markov Game is defined as a

joint policy π∗ = π∗1π
∗
2 . . . π

∗
n such that, ∀s ∈ S and i ∈ {1, . . . , n}:

V
π∗i π

∗
−i

i (s) ≥ V
πiπ
∗
−i

i (s), ∀πi (2.24)

π∗i can be interpreted as the best response of agent αi to the the joint policy of

the other agents π∗−i. It can be shown that there always exists at least one NE for

discounted Markov Games [41].

2.4.2 Types of Multi-Agent Reinforcement Learning Algo-

rithms

In MARL, multiple agents operate in a common environment. The objectives of

these agents may or may not align with one another. The agents interact with one

another and the environment and update their policies in order to maximize their

individual long term returns. Depending on how the agents’ objectives relate to

one another, MARL algorithms fall under three broad categories:

1. Fully cooperative: In a fully cooperative setting, all the agents have a

common reward function R1 = R2 = · · · = Rn = R. In this special setting,

Markov Games are called Multi-Agent Markov Decision Processes (MMDP).

2. Fully competitive: A fully competitive Markov Game is a zero-sum game,

meaning:
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n∑
i=1

Ri(s, ai) = 0, ∀s ∈ S, ai ∈ Ai (2.25)

In a two-agent fully competitive game, the reward of one agent is exactly

the loss of the other.

3. Mixed: This refers to the general-sum game setting in which there is no

strictly cooperative or competitive relationship among the agents.

2.4.3 Challenges in Multi-Agent Reinforcement Learning

In MARL, each learning agent is allowed to have a different goal. Hence, the

objectives of all the agents do not necessarily align with one another [42]. As a

result, in many cases, finding a good equilibrium point becomes difficult. This

also calls for additional performance criteria beyond reward maximization, such

as, communication efficiency and robustness against adversarial agents. Since

all the learning agents update their policies concurrently, the environment be-

comes non-stationary from the point of view of the individual agents [43]. Due

to the combinatorial nature of MARL, the dimension of the joint action space,

A, increases exponentially with the number of learning agents. This affects the

scalability of MARL algorithms [44]. The agents in a Markov Game often choose

to share their observations and actions. However an agent might want to share

different sets of variables with different agents. Thus the structure of information

sharing among the agents adds a new dimension to the nature and complexity of

the learning problem [45].

2.5 Imitation Learning

In Section 2.3, we discussed Reinforcement Learning (RL), a family of algorithms

that is used to learn complex behaviors in unknown environments through trial

and error by maximizing a reward signal. In the RL paradigm, the reward func-

tion completely defines the task of the agent in the environment. While RL can

in theory learn from sparse rewards that denote success or failure at achieving the
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global objective, oftentimes, learning complex tasks from sparse rewards poses a

huge sample complexity that makes it computationally intractable. In such tasks,

dense reward shaping can help in learning to behave within a reasonable sample

budget [46].

In most reinforcement learning experiments, hand-engineering reward func-

tions is necessary for achieving the required behavior in the agent. Hand engi-

neering is often tedious and introduces subjective bias. Mis-specification of the

reward function often poses detrimental as the agent learns to exploit loopholes

in the reward function definition and accrue a large amount of reward without

executing the desired behavior [25]. Imitation learning or learning from demon-

stration [26, 27, 47, 48, 28, 49] aims to address this issue by learning a behavior

directly from an expert’s demonstrations.

2.5.1 Types of Imitation Learning

An expert demonstration is a sequence of state-action pairs denoting an episode

of the expert’s interaction with the environment. Depending on how the expert

data is used for learning a policy, imitation learning algorithms fall in two broad

categories:

1. Behavioral Cloning

2. Apprenticeship Learning

2.5.1.1 Behavioral Cloning

Behavioral cloning algorithms [50, 51, 52] use supervised learning to directly learn

a policy by fitting to the expert data. The main attraction of Behavioral cloning

algorithms is their simplicity and efficacy in short-term planning problems. How-

ever, it has some major drawbacks. As the expert’s actions are considered to

be “gold standard” for the corresponding states and the agent is penalised for

deviating from the expert’s actions, the trained agent’s performance is always
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upper-bounded by the expert’s performance. If the expert’s behavior is not opti-

mal, there is no way for the agent to exceed the expert’s performance and learn to

behave more optimally. Also, behavioral cloning algorithms suffer from the prob-

lem of compounding error due to covariate shift [53, 54], especially in tasks that

require long-term planning. Supervised learning treats each state-action example

from the expert data as independent and identically distributed (i.i.d.). However,

in a sequential decision making problem, the action at the current time step in-

fluences the observation at the next time step. Hence the i.i.d. assumption fails.

Several methods have been proposed in literature to combat compounding error.

DAGGER [14], SEARN [55], and scheduled sampling [56] are some of them.

2.5.1.2 Apprenticeship Learning

Apprenticeship learning [28] takes an indirect approach to policy learning from

expert demonstration. It uses the expert data to learn the reward function that

the expert maximizes for achieving its behavior. The algorithm alternates between

two steps using a minorization maximization [57] approach. In the first step, the

agent models the expert’s reward function from its demonstration data. This

step is known as Inverse Reinforcement Learning [58, 49, 48]. In the second step,

it performs reinforcement learning by maximizing the estimated reward function

to learn a policy. Apprenticeship learning is often interpreted as Reinforcement

Learning over Inverse Reinforcement Learning (RL ◦ IRL) and is expressed as:

RL ◦ IRL(πE) = argmin
π∈Π

max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)]−H(π) (2.26)

where, πE denotes the expert-policy. c(·, ·) denotes the cost function, the negative

of reward function. Π and C denote the hypothesis classes for policy and cost func-

tions. H(π) denotes entropy of policy π. The term −H(π) provides causal-entropy

regularization [59, 60] which helps in making the policy optimization algorithm

unbiased to factors other than the expected reward.
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2.6 Summary

In this chapter we discussed some theoretical concepts that form the background of

the thesis. We described the mathematical formulation of robot motion planning

under differential constraints and Reinforcement Learning algorithms for planning

under uncertainty. These ideas comprise the central theme of this thesis. We dis-

cussed about the importance of reward shaping for sample-efficient learning of

complex tasks using RL. We also described how imitation learning can be used

to bypass the tedious task of hand-engineering of reward functions by leveraging

expert demonstrations. These discussions form the background of our contribu-

tions in Chapter 4 where we develop RAIL, an algorithm for Risk-Averse Imitation

Learning that minimizes worst case risk for sensitive applications like autonomous

driving. We also discussed the issue of sample complexity of RL algorithms and

how exploration can be made efficient to reduce it. This serves as a primer for

Chapter 5 where we present ExTra, a framework for Transfer-guided Exploration

that uses the optimal policy of a known a task-environment to expedite exploration

in an unknown task environment.
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C H A P T E R 3

MADRaS: Multi-Agent Driving

Simulator

3.1 Introduction

In this chapter we present MADRaS, an open-source Multi-Agent DRiving Sim-

ulator for design and evaluation of motion planning algorithms for autonomous

driving. Machine Learning based approaches to motion planning like Reinforce-

ment Learning (RL) [13] and Learning from Demonstration (LfD) [14] are capable

of learning policies for complex reactive control [15, 16]. However the training

phase of these algorithms is often data-hungry [61, 62] especially for those using

highly expressive and complex models like deep neural networks. RL based meth-

ods also require online interaction with the environment that entails risk [63, 64].

Driving simulators attempt to address these problems by rendering realistic driv-

ing conditions and traffic patterns in which agents can collect training data many

times faster than real time. They also provide a sandbox environment where the

agent can run into catastrophic situations while learning to drive without causing

physical damage in the real world.
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MADRaS provides a framework for constructing a wide variety of highway

and track driving scenarios where multiple driving agents can train using rein-

forcement learning and other machine learning algorithms. Based on the TORCS

platform [31], it uses simplified physics simulation and representative graphics to

reduce the computational overhead for perception and action. Each driving agent

gets a high-level object-oriented representation of the world as observation and

an OpenAI gym interface for independent control. TORCS offers a variety of

cars with different dynamic properties and driving tracks with different geome-

tries and surface properties. MADRaS inherits these functionalities from TORCS

and introduces support for multi-agent training, inter-vehicular communication,

noisy observations, stochastic actions, and custom traffic cars whose behaviors

can be programmed to simulate challenging traffic conditions encountered in the

real world. MADRaS can be used to create driving tasks whose complexities can

be tuned along eight axes in well defined steps. This makes MADRaS particu-

larly suited for curriculum and continual learning. MADRaS is lightweight and

it provides a convenient OpenAI Gym [33] interface for independent control of

each car. Apart from the primitive steering – acceleration – brake control mode of

TORCS, MADRaS also offers a higher level track position – speed control mode

that can potentially be used to achieve better generalization. MADRaS uses a

UDP based server-client model [65] where the simulation engine is the server and

each client is a driving agent. MADRaS uses multiprocessing to run each agent

as a parallel process for efficiency and integrates well with popular reinforcement

learning libraries like Berkeley RLLib [66], RLPyT [67], OpenAI Baselines [68]

and Intel RLCoach [69]. MADRaS is open source1 and aims to contribute to the

democratization of artificial intelligence.

3.2 Related Work

Since the early days of autonomous driving research, simulators have been used

in the development of different parts of the perceive-plan-act pipeline [70]. Most

of these simulators cater to the task of perception. Back in 1989, the creators of

1http://github.com/madras-simulator/MADRaS
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Autonomous Land Vehicle In a Neural Network (ALVINN), Pomerleau et al. [71],

had used a simulator to generate training images for road detection. Thanks to the

recent advances in computer graphics, modern driving simulators and games like

GTA-V [72] can render photo-realistic driving scenes with accurate depiction of

illumination, weather and other physical phenomena. They also simulate real-life

sensors that can be used to collect synthetic data from these scenes to augment

real-world driving datasets. Recent works [73, 74, 75, 76] have demonstrated that

training perception algorithms on these augmented datasets result in better gener-

alization in the real world that is crucial for safe and reliable autonomous driving.

Most notable open-source driving simulators in this category are CARLA [17],

Microsoft AirSim [18], DeepDrive.io [19] and Udacity’s Self Driving Car Simulator

[20]. These simulators can, in principle, be also used for planning. However, an

agent learning to face real world driving scenarios must learn to be invariant to

road geometries, traffic patterns and vehicular dynamics. These simulators do

not offer enough variability along these dimensions that is necessary to learn the

invariances. In a typical driving scene, multiple entities (cars, buses, bikes, and

pedestrians) try to achieve their objectives of getting from one place to another

fast, yet safely and reliably. A simulator for such an environment should provide

an easy way to create arbitrary traffic configurations. The task of negotiating in

traffic is akin to finding the winning strategy in a multi-agent game [77]. Hence,

an autonomous driving simulator should be able to simulate different varieties

of traffic and support multiple agents learning to negotiate and drive through

cooperation and competition. Among the aforementioned simulators, AirSim,

DeepDrive.io and Udacity provide some preset driving conditions mostly without

traffic. They do not provide any straightforward way to create custom traffic or

train multiple agents. CARLA does provide an API for independent control of

cars that can be used for multi-agent training and creating custom traffic cars.

However, most of the variability presented by CARLA is in the perceived inputs

and not in the behavioral dynamics of the ego-vehicle or the traffic agents. This

motivated us to develop a dedicated simulator for learning to plan in autonomous

driving with a focus on learning invariances to road geometries, traffic patterns

and vehicular dynamics in both single and multi-agent learning settings.
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3.3 Background

Before describing the structure and organization of the MADRaS simulator, we

present a brief overview of the TORCS simulator and associated prior works on

which MADRaS has been built. Afterwards, we describe our contributions and

discuss their relevance in the context of planning in autonomous driving.

3.3.1 TORCS Simulator

MADRaS is based on TORCS which stands for The Open Racing Car Simulator

[31]. It is capable of simulating the essential elements of vehicular dynamics such

as mass, rotational inertia, collision, mechanics of suspensions, links and differ-

entials, friction and aerodynamics. Physics simulation is simplified and is carried

out through Euler integration of differential equations at a temporal discretiza-

tion level of 0.002 seconds. The rendering pipeline is lightweight and based on

OpenGL [78] that can be turned off for speed. TORCS offers a large variety of

tracks and cars as free assets that we discuss later in this section. It also provides a

number of programmed robot cars with different levels of performance that can be

used to benchmark the performance of human players and software driving agents.

TORCS was built with the goal of developing Artificial Intelligence for vehicular

control and has been used extensively by the machine learning community ever

since its inception [79, 80, 81, 82, 83].

3.3.2 SCR Server-Client Architecture

The Simulated Car Racing (SCR) Championship [84] is an annual car-racing com-

petition where participants submit controllers for racing in the TORCS environ-

ment. It provides a software patch for TORCS known as scr server [85] that sets

up a UDP based client-server architecture in which the competing cars can operate

independent of one another. The server runs the TORCS simulator. Each client

represents a car that runs as a separate process and communicates with the server

through a dedicated UDP port. The patch also provides a layer of abstraction over

TORCS in which each car has access to an egocentric view of the environment and

38



3.4 MADRaS: Multi-Agent DRiving Simulator

not the entire game state. The server polls actions from the clients and updates

the game-state every 0.02 seconds of simulated time. The official build of TORCS

supports up to 10 SCR clients at a time but with modifications like in [86] the

number of clients can be increased arbitrarily.

3.3.3 GymTORCS Environment

GymTORCS [87] is an OpenAI Gym wrapper for SCR cars built for use in Re-

inforcement Learning experiments. It uses a custom library called Snake Oil to

create a client for communicating with the TORCS server through the scr server

interface. Snake Oil also provides plug-ins for automatic-transmission, traction

control and throttle control which can be used to provide different control modes

to the driving agent. GymTORCS is popular in the reinforcement learning com-

munity for experiments on driving tasks [86, 88, 89, 90]. MADRaS builds on

GymTORCS by increasing its stability and ease of use and adding features like

multi-agent training and custom traffic cars.

3.4 MADRaS: Multi-Agent DRiving Simulator

Having described TORCS and associated prior works that form the foundation of

MADRaS, we now present our contributions. As GymTORCS is pre-dominantly

designed for single-agent training, the environment is inherently structured as

a single-agent Markov Decision Process. This restricts its use for multi-agent

training. MADRaS is GymTORCS restructured as a Markov Game (discussed

in Section 2.4.1) with some added functionalities. A Markov Game (MG) is a

generalization of Markov Decision Process that is used to capture the interplay of

multiple agents in a common environment [38, 35, 91, 36, 92]. An MG is a tuple

〈S,N ,A, P,R〉. N = {αi}ni=1 denotes a set of n agents that simultaneously learn

to act in the environment. A = {Ai}ni=1 and R = {Ri}ni=1 where Ai and Ri denote

the action space and reward function for the agent αi. Figure 3.1 describes the

architecture of MADRaS. MADRaS Environment consists of a MADRaS World
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Figure 3.1: Architecture of the MADRaS simulation environment. Each double
headed arrow indicates one UDP communication channel between the TORCS
server and one of the clients (traffic or MADRaS agents). The server listens to the
ith client through a dedicated port denoted by pi in the figure. MADRaS assigns
these ports in order, first to the traffic agents and then to the learning agents.
The Markov Game terms are also marked in their respective places of definition
in the figure.

Table 3.1: Comparison of Gym TORCS [87] with MADRaS

Feature Gym TORCS MADRaS
scr-server architecture X X
observation noise × X
stochastic outcomes of actions × X
parallel rollout support × X
multi-agent training × X
inter-vehicular communication × X
custom traffic cars × X
domain randomization × X
centralized configuration × X
modular reward and done functions × X
hierarchical action space × X
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and a given number of MADRaS Agents ({αi}i). MADRaS World consists of a

TORCS server and a given number of traffic agents each of which executes an in-

dependently configured behavior. The state space (S) and the transition dynamics

(P ) of the MG are defined by the MADRaS World. Each MADRaS Agent (αi) is

an SCR Client with a modified Snake Oil interface that has its own action space

(Ai) and reward function (Ri) which are independent of the action spaces and re-

ward functions of the other agents. Unlike GymTORCS, MADRaS Agents can not

reset the TORCS server. This allows for multiple agents to complete their episodes

independently. MADRaS environment resets its MADRaS World and in turn its

TORCS server when all the agents have terminated their episodes. MADRaS also

provides a number of ways to configure the initial state of the environment for

the task at hand. The initial distance from the start line and position with re-

spect to the track edges can be specified individually for both the learning cars as

well as the traffic agents. Thus MADRaS harnesses the full potential of the SCR

server-client architecture and enables multi-agent training. In the remaining part

of this section, we present detailed descriptions of the salient features of MADRaS.

3.4.1 Traffic Agents in MADRaS

MADRaS introduces support for adding non-learning traffic agents in the envi-

ronment that execute a pre-defined behaviour. These are different from the robot

cars that come bundled with TORCS for benchmarking racing agents. MADRaS

provides a base class that can be used as template to create traffic cars with inter-

esting behavioral patterns and some sample traffic classes as free assets (see Table

3.2). The base class also comes equipped with methods for avoiding collision and

going out-of-track. Each traffic agent runs as a parallel process independent of

the learning agent and has an SCR client that talks to the TORCS server through

a dedicated port. MADRaS takes care of the configuration and assignment of a

requisite number of server ports for connecting all the learning and traffic agents

properly at the beginning of each episode. The number and behavior of traffic

agents can be varied between episodes.
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Table 3.2: Sample traffic agents in MADRaS

Name Behaviour
ConstVelTrafficAgent Drives at a given speed at a given lane po-

sition.
SinusoidalSpeedAgent Varies the speed sinusoidally while driving

at a given lane position.
RandomLaneSwitchAgent Agent switches lanes randomly while driv-

ing.
DriveAndParkAgent Agent drives to a given distance and track-

position and parks itself.
ParkedAgent Agent remains parked at a given distance

and track-position throughout.
RandomStoppingAgent Agent halts randomly while driving.

Figure 3.2: Schematic diagrams of road tracks in TORCS

3.4.2 Driving Tracks in MADRaS

One of the major advantages of TORCS as the platform of choice for building

MADRaS is the availability of a large number of tracks with different geometric

(see Figure 3.2) and surface properties. At the time of writing this thesis, TORCS

offers 9 oval, 21 road, and 8 dirt tracks. MADRaS inherits these free assets from

the TORCS project. A limitation of GymTORCS is that a track has to be chosen

at the beginning of a training experiment and it remains fixed throughout. This

often causes the agent to memorize the track resulting in poor generalization.

42



3.4 MADRaS: Multi-Agent DRiving Simulator

MADRaS ameliorates this by introducing an option to select a track at the be-

ginning of each episode. Thus the agent can be exposed to multiple tracks during

training.

3.4.3 Car Models Available in MADRaS

TORCS provides 42 car models with a wide range of dynamic properties. However,

GymTORCS only supports a single default car type named car1-trb1. MADRaS

is capable of changing cars at the beginning of each training episode. Thus it makes

it possible to train an agent to drive cars with drastically different dynamic prop-

erties. Also, the learning and traffic agents can be assigned different car types for

visual distinction.

3.4.4 Modular Configuration of MADRaS

As Reinforcement Learning (RL) is one of the most powerful and actively re-

searched approaches for robot motion planning, MADRaS has some features tailor-

made for that purpose. The exercise of tuning an RL algorithm for a given task

usually involves tweaking the reward function and episode termination (“done”)

criteria. It is important to keep accurate track of these parameters across exper-

iments to be able to arrive at the optimal training configuration. GymTORCS

has particularly poor configurability as it requires the user to make changes in the

Python source code which are difficult to keep track of. On the other hand, the

structure of MADRaS focuses on ease of use and encourages custom modifications.

All the configuration variables are specified in the envs/data/madras config.yml

file. The ‘yaml’ (or ‘yml’) format provides a powerful yet convenient way of spec-

ifying most data types and basic data structures like lists and dictionaries. A

copy of this configuration file can be saved in the training directory for effortless

tracking across experiments.

The madras config.yml file has three sections:
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1. Server configuration: In this section contains the global configurations

of the MADRaS environment. Since MADRaS can randomly vary the driv-

ing tracks, model of car for the learning agents, and the number of traffic

cars between episodes, these terms are specified as lists and ranges. The

maximum number of cars in the environment (including learning and traffic

agents) can be specified as max cars and the minimum number of traffic

cars by min traffic cars. The number of learning agents (Nl) is specified

in the “agent configuration” section.

Nl + min traffic cars ≤ max cars

The list of car models to choose for the learning agent can be specified in

learning car. The list of tracks to choose for each episode can be specified

in track names. If randomize env = True the car model, track and the

number of traffic agents is chosen randomly for each episode.

2. Agent configuration: The agents section, contains the configurations of

the learning agents. The target speed, pid settings for the low level con-

troller if pid assist is True, configuration of the observation space (accord-

ing to the modes in utils/observation handler.py), reward function (to

be parsed by utils/reward handler.py) and done function (to be parsed

by utils/done handler.py) can be specified individually for each agent in

this section.

3. Traffic configuration: The traffic section can be used to specify the

details of the traffic agents in the environment. If Nt traffic agents need

to be chosen in a given episode, their configurations will be set to the first

Nt elements from the list of agents in this section. These configurations

are parsed by traffic/traffic.py. The target speed, target lane pos,

collision avoidance properties and pid settings of the traffic cars can be

specified here. If the traffic agents need to be parked in certain locations

(specified in terms of their distance from the start line and track position)

of the track before the start of each episode, that can also be specified in

this section.
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Please refer to Tables 3.3, 3.4 and 3.5 for some of the commonly used configu-

ration variables.

The reward and done functions are usually composed of multiple parts that

try to capture events like arrival at the goal state, crashes and damages. Modu-

larity of these definitions in code is essential for fast iteration. MADRaS provides

MadrasReward and MadrasDone base classes as templates for defining the compo-

nents of the reward and done functions. Specifying a reward or done function in

MADRaS is as simple as listing the names of their components in the configuration

file. Each MADRaS Agent comes with a reward handler and a done handler

that organize the listed components and set up the corresponding functions. This

modular architecture makes it easy to define new reward and done functions and

plug them in and out of experiments easily.

3.4.5 Observation Space of MADRaS Agents

The Snake Oil client interface provides a parser for the state information returned

by the TORCS server. These state variables include odometry, range data, ob-

stacle detection, engine statistics and metadata regarding the position of the ego

vehicle relative to the other cars on the road. Such a high-level representation of

the world is common in practical self-driving pipelines [93] as it helps in decoupling

the perception and planning modules allowing them to be improved independently

and also reduces the sample complexity of learning-based planning algorithms [63].

Raw visual input in the form of a stream of images is also available. For a full list

of state variables please refer to the Simulated Car Race Championship paper [85].

The observation vector of a MADRaS agent is composed of a selection of these

normalized state variables. For modularity and ease of configuration, MADRaS

provides an observation handler class that can toggle between different sets of

observed variables. The observations can optionally be made noisy to simulate a

partially observed driving scenario.
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Table 3.3: Some TORCS Server configuration parameters of MADRaS

Parameters Description Possible Values
torcs server port For setting the port of communica-

tion with the TORCS Server.
Z+

max cars Max number of vehicles to be
spawned.

Z+

min traffic cars Min number of traffic cars to be
spawned.

Z+

track names List of tracks on which the simula-
tion will run.

List of track
names

track limits Restrict the agent to remain within
a given range of track pos values.

(R,R)

distance to start Starting distance of the cars from
the start line.

Z+

torcs server config dir The location of the TORCS server
racing config directory.

Path string

scr server config dir The location of available cars config
directory

Path string

traffic car The type of car to be used for traffic car name
learning car List of car models for using as the

learning agent.
List of car
names

randomize env Flag for setting randomization on.
(Cycles through the selected cars
and tracks in a random fashion)

boolean

add noise to actions Flag for adding a small Gaussian
Noise to the actions before sending
to the TORCS server.

boolean

action noise std Specifies the standard deviation of
the Gaussian for the noise addition.

[0, 1]

noisy observations Toggles the TORCS flag for en-
abling noisy observations.

boolean

visualise Flag for setting the display on and
off.

boolean

no of visualisations To visualize multiple training in-
stances

Z+

max steps Maximum steps that the environ-
ment will take before resetting.

Z+
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Table 3.4: Some agent configuration parameters of MADRaS

Parameters Description Possible Values
vision Flag for activating visual input in-

stead of the usual sensor based one.
boolean

throttle Flag for activating throttle control
on and off.

boolean

gear change Flag for activating gear control on
and off.

boolean

client max steps Maximum steps that the client is
available to take.

Z+ ∪ {−1}

target speed Target speed setting of the agent
car.

Z+

state dim Dimension of the Observation
Space.

Z+

normalize actions Toggle to turn on action normaliza-
tion.

boolean

pid assist Toggle to turn on T-S control mode. boolean
pid settings[accel pid] Kp, Ki, Kd for throttle PID. List of floats
pid settings[accel pid] Kp, Ki, Kd for steering PID. List of floats
accel scale Acceleration Scaling. R+

steer scale Steering Scaling. R+

pid latency Number time-steps the control
command sticks to the server.

Z+

observations[mode] Name of the Observation Class. string
observations[multi flag]
(multi mode only)

Toggle for turning on communica-
tion for the agent-i,

boolean

observations[buff size] Specifies the buffer size of action. Z+

observation[normalize] Toggle to tun on observation nor-
malization.

boolean

obs min Minimum values for certain obser-
vation attributes.

dict

obs max Maximum values for certain obser-
vation attributes.

dict

rewards[name, scale] List of the Reward classes and a
scaling factor of the rewards.

list of names
and dict

dones Done conditions currently in use. list of dones
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Table 3.5: Common traffic configuration parameters of MADRaS

Parameters Description Possible Values
Name Traffic Agent Type, string
target speed Traffic Agent Speed. R+

initial distance Initial distance range from start line. 2-Tuple (Float)
initial trackpos Initial track-position range. 2-Tuple (Float)
track len Length of the Current Track. R+

pid settings[accel pid] Kp, Ki, Kd values for acceleration. List of Floats
pid settings[steer pid] Kp, Ki, Kd values for steering. List of Floats
accel scale Acceleration scaling. R+

steer scale Steering scaling. R+

collision time window
Describes the collision region
for the traffic agent

R+

3.4.6 Action Spaces of MADRaS Agents

The Snake Oil library allows GymTORCS agents to control cars via steering,

acceleration and brake commands. MADRaS inherits this primitive control mode

and also adds a hierarchical track-position – speed control mode. In track-position

– speed control mode, a MADRaS agent produces its desired position with respect

to the left and right edges of the track and its desired speed. A PID controller

takes these non-primitive actions (desires) as inputs and calculates a sequence of

steering, acceleration and brake commands in feedback mode over a number of

time steps denoted by PID latency. The PID latency controls the relative time

scales of the higher and lower level action spaces. The track-position – speed action

space is inspired by Shalev et al. [15], where the authors note that training an RL

agent to generate high-level desires while relegating the low-level implementation

of the desires to an analytical controller like PID significantly reduces real world

risk and increases the explainability of the agent’s behavior. High level actions

have also been reported to show better generalizability across vehicular platforms

[9]. The following is the expression of a PID controller for control variable u.

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(3.1)

Kp, Ki and Kd are the constants for the proportional, integral and derivative terms
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respectively. In our implementation of the PID controller, the error function (eTP )

for track-position PID controller is defined as a function of the track-position (TP )

and the angle (θ) that the car’s heading makes with the center line. The output

of this controller is the steer-angle of the vehicle for the current time-step (t) that

would bring the car closer to the desired track-position (TPdesired).

eTP (t) = θ(t− 1)− (TP (t− 1)− TPdesired) ∗ scale (3.2)

The error function for the Speed PID controller (eV ) is a function of the forward

velocity (V ). The output of the controller is the value of acceleration and braking

that would bring the speed closer to the target speed of the vehicle (Vtarget).

eV (t) = (V (t− 1)− Vtarget) ∗ scale (3.3)

Figure 3.3 and 3.4 show the responses of the PID controller over the the range of

speeds used in our experiments with the high level track-position – speed action

space. The track used was the “f-speedway” oval track and PID latency was

set to 5. For testing the controller response we change the input signal (posi-

tion/velocity) every 100 steps and monitor the output. We use the “f-speedway”

oval track for this study. For velocity control (Figure 3.3) we change the signal in

incremental steps of 10 km/hour from 0 km/hour to 100 km/hour and back to 0

km/hour keeping the track-position input fixed at 0.0, the center of the track. For

position control we increment the signal in steps of 0.4 starting from 0.4 (default

initial track-position) towards the extreme left (up to 0.8) and then towards the

extreme right (up to −0.8). We observe that the controller responds faithfully

within the range of speeds and track positions used in our experiments.

All actions are normalized between −1 and 1 for ease of optimization of neu-

ral network policies. The outcomes of the agent’s actions can optionally be made

stochastic. MADRaS implements this stochasticity by adding zero-mean Gaussian

noise to actions before sending them to the TORCS server.
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Figure 3.3: This plot demonstrates the velocity control accuracy and stability of
the PID controller used in our experiments with the track-position – speed control
mode and PID latency was set to 5. The track used was the “f-speedway” oval
track and the lane-position command was fixed at 0.0 which refers to the center
of the track.
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Figure 3.4: Position control accuracy at different velocities of the PID controller
used in our experiments with track-position – speed control mode.
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3.4.7 Initial State Distribution

The initial state of an episode in MADRaS can be configured in terms of the set

of parameters listed below. The madras config.yml file has the randomize env

flag that can be enabled to randomly assign values for these parameters at the

start of each episode.

• Vehicle Model: The model of the car assigned to the learning agent(s) can be

specified using the learning car field. This can also be randomly selected

from a categorical distribution over a list of car models when randomize env

= True.

• Number of Traffic Cars: The number of traffic cars can be specified using

the min traffic cars field. When randomize env = True the number of

traffic cars is assigned randomly between min traffic cars and (max cars

- (number of learning agents)).

• Track Position of Traffic Cars: Some traffic cars can be assigned a cer-

tain track position to stick to. For ParkedAgent, it can be specified as the

parking lane pos while for ConstVelTrafficAgent, SinusoidalSpeedAgent

and RandomStoppingAgent it can be specified using the target lane pos

field. If randomize env = True the track position is sampled randomly from

a continuous uniform distribution between specified high and low limits for

these parameters.

• Parking Distance of Traffic Agents from the Start line: The distance from

start of ParkedAgent traffic agents can be set using the parking dist from-

start parameter. When randomize env = True it is sampled uniformly

from a fixed range specified by high and low values for the same parameter.
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Table 3.6: Observed variables in TORCS with their ranges and descriptions [85].

Name Range (unit) Description

angle [−π,+π] (rad) Angle between the directions of the car and

the track axis

curLapTime [0,+∞) (s) Duration of the current lap

damage [0,+∞) (point) Amount of damage that has happened to

the car, the higher the more

distFromStart [0,+∞) (m) Distance of the car from the start line along

the track line

distRaced [0,+∞) (m) Total distance covered by the car since the

start of the race

focus [0, 200] (m) Vector of 5 sensor values that record the

distance of the track edges from the car

within a range of 200m and an angular

span of [−900, 900].

fuel [0,+∞) (l) Fuel level

gear {−1, 0, 1, . . . , 6} Current gear: −1 is reverse, 0 is neutral,

remaining 6 gears for forward motion

lastLapTime [0,+∞) (s) Time taken to complete the last lap

opponents [0, 200] (m) Vector of 36 opponent-sensor values. Each

sensor covers a span of 10 degrees within

a range of 200 m and returns the dis-

tance of the closest opponent in the cov-

ered area. The sensors are placed −1800

to 1800 at 100 intervals and together mon-

itor the complete 3600 surrounding of the

car.

racePos {1, 2, . . . , N} Position in the race with respect to the

other cars.

rpm [0,+∞) (rpm) Number of rotation per minute of the car

engine.
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speedX (−∞,+∞) (km/h) Speed of the car along the longitudinal axis

of the car.

speedY (−∞,+∞) (km/h) Speed of the car along the transverse axis

of the car.

speedZ (−∞,+∞) (km/h) Speed of the car along the Z axis of the

car.

track [0, 200] (m) Vector of 19 range finder sensors that re-

turn the distance between the car and the

track edge within a horizon of 200m. The

sensors are placed at the following angles:

-45, -19, -12, -7, -4, -2.5, -1.7, -1, -0.5, 0,

0.5, 1, 1.7, 2.5, 4, 7, 12, 19, 45

trackPos (−∞,+∞) The distance between the car and the track

axis, normalized with respect to the track

width such that it is 0 when the car is on

the axis, −1 when on the right edge and

+1 when on the left edge.

wheelSpinVel [0,+∞) Vector of 4 sensors denoting the rotation

speed of the wheels.

z [−∞,+∞] Distance of the car’s center of mass from

the surface of the track along z-axis

3.4.8 Inter-vehicular Communication in MADRaS

The most salient feature of MADRaS is its support for multi-agent training. The

success of multi-agent learning is contingent on the ability of the agents to com-

municate among themselves and plan actions taking into account the states and

actions of the other agents [94]. MADRaS provides a highly flexible framework

for inter-vehicular communication through a communication buffer and an agent

mapping function. The agent mapping function allows the user to specify a list of

variables that the ith agent wants to observe from the jth agent. The communica-

tion buffer records these shared variables from the step t − 1 and makes them a
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part of the agents’ observation vectors at step t.

3.4.9 Curriculum Design for Driving Agents in MADRaS

MADRaS has been designed with a goal to provide a playground for reinforcement

learning agents to learn to drive any car on any track in any kind of traffic within

the TORCS environment. In order to construct a driving problem of high variance,

MADRaS can present an agent with a different car to drive in a different track

with a different number of traffic cars of different behaviors chosen randomly or

in a given order in every training episode. MADRaS can also present additional

stochasticity by making the outcome of an action probabilistic. Training deep

neural network policies in high variance environments poses a highly non-convex

problem that is difficult to optimize. Curriculum learning [95] has been shown

to be effective in reducing the sample complexity in such problems. Curriculum

learning involves training the agent on a sequence of tasks of increasing complexity.

MADRaS is designed with curriculum learning in mind. The complexity of the

driving task in MADRaS can be systematically increased in well defined steps

along the following eight dimensions:

1. Number of learning agents.

2. Number of cars to be presented to the agent to drive.

3. Number of tracks to be presented to the agent to drive.

4. Number of traffic agents.

5. Level of obstructive behavior from the traffic agents.

6. Target speed of the learning agent(s).

7. Degree of stochasticity to action-outcomes.

8. Presence of noise in observations.

In the following section we present a set of experiments to highlight the key features

of MADRaS.
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3.5 Case Studies

In this section, we present six experimental studies to demonstrate the capabil-

ities of MADRaS to simulate complex driving task-environments for single and

multi-agent reinforcement learning. Visual descriptions of the outcomes of some

of these studies are available in this video 2.

3.5.1 General Settings

We demonstrate how MADRaS can be used to create a wide variety of driving

tasks that can be addressed by RL. We use the Proximal Policy Optimization

(PPO) algorithm [96] for RL in all our experiments. PPO is a trust-region based

local policy optimization algorithm that has been shown to be very effective in

learning policies for continuous control tasks [97]. All the performance statistics

presented in this section are estimated over at least 100 episodes. All experiments

with the track-position – speed action space have a PID latency of 5 time steps.

The reward functions of the RL agents are defined as weighted sums of reward (r)

and penalty (p) components with weights wr and wp, respectively:

agent reward =
∑

r∈rewards

wrr −
∑

p∈penalties

wpp (3.4)

Some general purpose reward and penalty components that are used in all the

experiments are as follows:

Progress Reward: Progress Reward rewards the agent for making a finite

progress at every time step. We calculate progress relative to a target speed.

We reward the agent proportional to its speed until it reaches the target speed.

If the speed goes beyond the target speed, we do not give the agent any extra re-

ward. This way we prevent the agent from maximizing its cumulative rewards by

running fast and crashing rather than finishing the race. Let d(t) be the distance

(in meters) covered by the agent in the tth time step and starget denote the target

2Accompanying video: https://youtu.be/io5mP0HUytY
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speed in meters per step. Progress reward is given by:

progress reward(t) = min

(
1,

d(t)

starget

)
(3.5)

Average Speed Reward: Average Speed Reward rewards the agent for main-

taining a high average speed only if it manages to complete a full lap of the track.

Suppose the average speed of the agent for a lap is savg. Average Speed Reward

is calculated as:

average reward =
savg
starget

(3.6)

The Average Speed Reward is also scaled (but not capped) relative to the target

speed starget of the agent.

Angular Acceleration Penalty: This penalty is meant to discourage the agent

from making frequent unnecessary side-wise movements while running down a

track. We calculate a numerical approximation of angular acceleration from the

the past 3 recorded values of the angle between the car’s direction and the direction

of the track axis. We scale the penalty with respect to a reference αreference.

Let at−2, at−1, at be three consecutive angles of the agent. We calculate Angular

Acceleration Penalty as:

angular accleration penalty(t) =
|at + at−2 − 2at−1|

αreference
(3.7)

We set αreference to 2.0 in all our experiments.

Turn Backward Penalty: A fixed penalty of −1 if the car turns backwards.

Collision Penalty: A fixed penalty of −1 if the car collides with obstacles or

other cars and incurs a damage.

Apart from these we also use task specific rewards that we define separately in

each experiment.

57



MADRaS: Multi-Agent Driving Simulator

Table 3.7: Parameters of the PID controller used in our experiments

Kp Ki Kd

acceleration PID 10.5 0.05 2.8
steering PID 5.1 0.001 0.000001

We terminate an episode if one of the following events happen:

• car turns backwards,

• car goes out of track,

• car collides with an obstacle,

• agent fails to complete its task within the maximum allowable duration of

an episode,

• agent successfully completes the task at hand.

Unless otherwise stated, we set the learning rate to 5× 10−5. The policy and

value functions are modelled using fully connected neural networks with 2 hidden

layers and 256 tanh–units in each layer. We use the PPO implementation of RLLib

[66] for all our experiments for its stability and support for multi-agent training.

The PID parameters used for track-position – speed control are given in Table

3.7. Although ideally these parameters must be tuned for each car and for each

speed range, we use the same set of parameters (originally tuned for medium-low

speeds of car1-trb1) everywhere to check if it is possible to teach RL agents to

be robust to imperfections in the low level controller.

3.5.2 Case Study 1: Generalization Across Tracks with

Higher Level Actions

In our first case study, we compare two RL agents, one having the high-level

track-position – speed (T-S) control mode and the other having the low-level steer

– acceleration – brake (S-A-B) control mode, on their ability to generalize across
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Table 3.8: RL training criteria for Case Studies 1-3. Please refer to [85] for details
on the observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 5.0

Observed variables angle, track, trackPos, speedX, speedY,
speedZ

Done criteria One Lap Completed, Time Out, Collision,
Turn Backward, Out of Track

multiple driving tracks in MADRaS. We train the agents to drive car1-stock1 in

the Alpine-1 track and evaluate them on the other road tracks. Table 3.8 lists

the observed variables and the components of the reward and done functions. We

set the maximum duration of an episode at 15000 time steps and the target speed

at 100 km/hour. We evaluate the agents in terms of the average fraction of lap

covered in an episode, average speed and successful lap completion rate.

Table 3.9 presents the results of this experiment. We see that the agent with

high-level track-position – speed (T-S) control generalizes significantly better than

the one with low-level steer – acceleration – brake (S-A-B) control as given by

higher average scores. The low-level S-A-B control mode gives the agent tighter

control of the car that can be exploited to perform maneuvers very specific to the

training track in order to navigate the twists and turns while maintaining a high

average speed (see the accompanying video). This results in the agent overfitting

to the training track and it fails to make any significant progress in some of the

test tracks. Implementing a desired track-position and speed may require different

sequences of low-level actions in different tracks. Relegating the low-level control

to a PID controller gives the T-S agent better generalization to track-geometries

than the S-A-B agent.
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Table 3.9: Generalization of an agent trained on Alpine-1 to other road tracks
(Experiment 1). S-A-B (Steering - Acceleration - Brake) and T-S (Track position
- Speed) denote the control mode used. (Case Study 1).

Average
fraction
of lap
covered

Average
Speed

Lap com-
pletion
rate

S-A-B T-S S-A-B T-S S-A-B T-S

alpine-1 0.75 0.73 91.89 83.32 0.68 0.58

T
e
st

T
ra

ck
s

aalborg 0.001 0.11 0.10 59.39 0.0 0.0
alpine-2 0.38 0.31 89.95 72.64 0.04 0.0

brondehach 0.001 0.72 0.1 81.01 0.0 0.3
g-track-1 0.001 0.98 0.06 79.42 0.0 0.91
g-track-2 0.002 0.97 0.11 75.99 0.0 0.95
g-track-3 0.001 0.84 0.09 79.90 0.0 0.44
corkscrew 0.0008 0.64 0.06 81.39 0.0 0.0

e-road 0.001 0.94 0.11 85.63 0.0 0.88
e-track-2 0.07 0.39 8.38 75.21 0.0 0.0
e-track-3 0.31 0.68 25.88 77.96 0.03 0.57
e-track-4 0.0005 0.95 0.08 78.41 0.0 0.85
e-track-6 0.0009 0.83 0.09 80.65 0.0 0.58

forza 0.001 0.79 0.08 71.63 0.0 0.70
ole-road-1 0.29 0.40 101.22 78.06 0.0 0.11

ruudskogen 0.97 0.97 100.87 81.15 0.95 0.93
street-1 0.03 0.87 1.76 74.67 0.0 0.67
wheel-1 0.0009 0.95 0.09 78.08 0.0 0.76
wheel-2 0.36 0.81 81.69 81.51 0.0 0.64
spring 0.14 0.29 104.76 82.55 0.0 0.0

Average Scores (Test) 0.14 0.71 27.12 77.64 0.04 0.49
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3.5.3 Case Study 2: Generalization Across Vehicular Dy-

namics Through Random Car Selection

In our second case study, we leverage the ability of MADRaS to change the agent’s

car at the beginning of each episode to train a driving policy that generalizes to

multiple cars with significantly different vehicular dynamics. Table 3.10 gives some

physical parameters of the cars used in this experiment that characterize their han-

dling and dynamics. Heavier cars with a low centre of gravity e.g. car1-stock1,

car3-trb1 and car1-stock2 are more stable and handle better with less body-

roll around tight corners. The variation of torque with the RPM (Rotations Per

Minute) of a car’s engine plays a crucial role in deciding its dynamics. The torque

produced by an engine decides how fast the car can accelerate. Torque is usually a

strong function of engine RPM. While running at a given RPM, a car can acceler-

ate faster if its engine can produce higher torque at that RPM. Figure 3.5 gives the

torque-RPM curves for the cars used in this experiment. These torque-RPM plots

are generated from the engine-characteristics that were provided by the authors

of TORCS in the form of a set of (RPM, torque) tuples in the “Engine” sec-

tion of the data/cars/models/<car name>/<car name>.xml files in the TORCS

code-base [31]. The cars fall in two broad categories in terms of the overall shape

of this curve. Cars with a “∪”-shaped curve e.g. buggy, baja-bug and 155-DTM

have high torque at low (< 1000) and high (> 10000) RPM and significantly lower

values in the middle. The other category of cars e.g. car1-stock1, car3-trb1

and car1-stock2 have a “hat” (∩)-shaped curve with low torque at low and high

RPM and high values in the middle. When the agent needs high torque to ac-

celerate from a standstill, speed up or climb uphill, it needs to take the engine

RPM to the high-torque zone with a suitable sequence of accelerator inputs. The

high-torque zones of the aforementioned categories of cars are roughly opposite to

one another. This makes it challenging for a driving agent to generalize to both

kinds of cars.

We choose the Alpine-1 track for this experiment. The Alpine-1 track is one

of the hardest road tracks of MADRaS with sharp left and right turns and a few

stretches of slippery road. We set the maximum duration of an episode to 20000
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Table 3.10: Some physical properties of the cars used in Case Study 2 that play
an important role in determining their vehicular dynamics. “RWD” and “4WD”
stand for “Rear Wheel Drive” and “Four Wheel Drive”, respectively.

Car Name Drive Type Mass (Kg) Height of CG (m)
car1-stock1 RWD 1550.0 0.3
car1-stock2 RWD 1550.0 0.3
155-DTM 4WD 1100.0 0.2
car3-trb1 RWD 1150.0 0.2
kc-2000gt RWD 1200.0 0.25
buggy RWD 650.0 0.45
baja-bug RWD 600.0 0.35

Table 3.11: Generalization of PPO policies across vehicles with different dynamics
(Case Study 2). “random” refers to the setting in which the agent is presented
with both car1-stock1 and buggy, each with a probability of 0.5 during training.

Avg. Fraction of Track Covered Avg. Speed (km/h)
Training Car car1-stock1 buggy random car1-stock1 buggy random

T
e
st

C
a
r
s 155-DTM 0.37 0.01 0.37 104.22 2.14 99.78

car3-trb1 0.002 0.003 0.62 0.12 0.25 58.95
kc-2000gt 0.77 0.003 0.30 80.44 0.24 22.02
car1-stock2 0.001 0.003 0.54 0.09 0.23 50.23
baja-bug 0.35 0.04 0.55 59.45 38.40 54.91

Average Scores 0.30 0.01 0.48 48.86 8.25 57.18

time steps and the target speed to 100 km/hour. We evaluate the agent in terms

of average fraction of the lap covered per episode and average speed.

First, we train two PPO agents to drive car1-stock1 and buggy using the

S-A-B control mode. We evaluate them on five test cars of different dynamic

properties. Table 3.11 presents the results. We see that an agent trained on a

car of one torque-RPM category has difficulty generalizing to the cars of the other

category. In our next step, with a view to aiding in generalization through domain

randomization, we leverage the ability of MADRaS to randomly switch cars be-

tween episodes and present car1-stock1 and buggy to the same agent with equal

probability. We observe that this training strategy brings significant improvement

both in terms of average fraction of lap covered in an episode and average speed.
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Figure 3.5: Variation of torque with engine RPM of cars in Case Study 2. (a)
Torque-vs-RPM of the cars that we present our agent to drive during training
with equal probability. (b) Torque-vs-RPM of the cars that we test our agent on.
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3.5.4 Case Study 3: Curriculum Learning for Driving in

Spring Track

In our third case study, we present an experiment to demonstrate how the ability

of MADRaS to control the complexity of a driving task in well defined steps can

be used to design curricula for an RL agent to accomplish complex tasks in a

sample efficient way. We attempt to train a PPO agent to drive car1-stock1 on

Spring track using the primitive S-A-B action space. With a length of 22.1 km,

Spring is the longest track in TORCS. It has the largest number of turns with

different grades of sharpness, both in the left and right directions. It also has

ramps and declines. The surface texture varies from place to place. These make it

the toughest road track to drive in TORCS. We set the target speed to 100 Km/hr

and maximum episode length to 40000 steps. Figure 3.6 and Table 3.12 show the

results of this study. We see that training from scratch on Spring fails to complete

one lap of the track even after 2500 iterations. When we use a curriculum of first

training on Alpine-1 or Corkscrew tracks followed by fine-tuning on Spring the

agent learns to complete the entire lap with high success rates and average speed.

In our curriculum learning experiments, we pick the policy that gives the highest

mean trajectory reward in the first phase of training (obtained after 701 iterations

in Alpine-1 and 561 iterations in Corkscrew) and use it to initialize the policy in

the second phase. The total number of training iterations and the total number

of training samples for the curriculum learning strategies (considering both the

pre-training and fine-tuning stages) are kept equal to that of training from scratch

for fairness of comparison. For fine-tuning, we choose a learning rate of 1× 10−6

for the Alpine-1 policy and 5× 10−7 for the Corkscrew policy. We evaluate the

agents in terms of the average fraction of lap covered in an episode, average speed

and successful lap completion rate.

3.5.5 Case Study 4: Learning Under Partial Observability

and Stochastic Outcomes of Actions

In this case study, we compare the performances of PPO agents trained to drive

car1-stock1 around the Corkscrew track with and without observation noise
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Figure 3.6: Variation of episode reward over iterations of PPO for learning from
scratch on Spring compared with first learning on simpler tracks – Alpine-1 and
Corkscrew – and then fine-tuning on Spring (Case Study 3).

Table 3.12: Curriculum learning results for driving in Spring track (Case Study
3).

Fraction
of lap
covered

Average Speed
(km/hr)

Lap com-
pletion rate
(%)

Training from scratch 0.18 101.9 0.0
Pre-training in Alpine-1 0.57 103.5 27.0
Pre-training in Corkscrew 0.54 100.6 45.8

under different levels of stochasticity of the outcome of actions. The training was

performed with the primitive S-A-B action space. Observed variables, episode

termination criteria and evaluation metrics are the same as in Case Study 1. The

reward function is the same as in the Experiments 1-3 (see Table 3.8) with the

weightage for angular acceleration penalty increased to 8. As described in Section

3.4.6, stochastic outcomes of actions is implemented by adding zero mean Gaussian

noise to the actions. Figure 3.7 shows the learning curves. All these agents are

tested in the same track Corkscrew in the presence of both observation noise

and 0.5 standard deviation action noise. Table 3.13 compares the performance
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statistics. We observe that the agents trained in the presence of both observation

and action noise perform better than the others. This demonstrates the ability of

MADRaS to serve as a platform for evaluating the resilience of learning agents to

observation noise and environmental stochasticity.

Figure 3.7: Learning to drive with under partial observability and stochastic out-
comes of actions in Corkscrew track (Case Study 4).

3.5.6 Case Study 5: Learning to Drive in Traffic

In this case study, we use the ability of MADRaS to generate custom traffic to

train an agent to navigate through a narrow road without colliding with any traf-

fic car – moving or parked. Figure 3.8 shows a schematic diagram of the training

environment. We choose the Aalborg track for this study since it is one of the

narrowest tracks of TORCS and further reduce its width to half resulting in an

effective track width of 5m.

The traffic agents used in this study are DriveAndParkAgents (see Table 3.2).

MADRaS positions the traffic cars ahead of the learning car at the start of the

race. When an episode begins, the DriveAndParkAgents start driving at their

given target speeds (50) km/hr towards their given parking locations (specified
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Table 3.13: Learning to drive in the corkscrew track with and without observation
noise and different levels of stochasticity in the outcome of actions and evaluation
with observation noise and 0.5 std action noise (Case Study 4).

Avg. Fraction of
Lap Covered

Avg. Speed
(km/hr)

No noise 0.38 52.54
Observation noise 0.19 30.78
Stochastic actions
(noise std 0.1)

0.12 29.99

Stochastic actions
(noise std 0.5)

0.64 48.67

Observation noise
and Stochastic ac-
tions (noise std
0.1)

0.63 48.85

Observation noise
and Stochastic ac-
tions (noise std
0.5)

0.68 46.91

Figure 3.8: Schematic diagram of the environment design for Case Study 5. The
task of the learning agent is to overtake all the traffic cars without colliding with
any of them or going off track.
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Table 3.14: RL training criteria for Case Study 5. Please refer to [85] for details
on the observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 1.0
Overtake Reward 5.0
Rank 1 Reward 100.0

Observed variables angle, track, trackPos, speedX, speedY,
speedZ, opponents

Done criteria Rank 1, Time Out, Collision, Turn Back-
ward, Out of Track

in terms of distance from the start of the race and track position) using PID

controllers. This way, the learning agent sees moving cars in the beginning and

parked cars towards the end of each episode. This forces it to learn to avoid col-

lision with both static and moving obstacles. We set the parking locations of the

traffic cars on alternate sides of the road so that the the agent must learn to turn

both left and right to overtake all the traffic cars. We maintain a gap of at least

10m between consecutive parking locations along the length of the road to make

sure that the learning car has enough space to maneuver between the traffic cars.

To create variance in the environment, we randomly vary each parking location

within an area of 5m along the track length and 0.25m along the track width.

We also switch the number of traffic cars between 4 and 5 with equal probability.

Changing the number of traffic cars also makes sure that the learning agent gets

initialized in the left and right halves of the track with equal probability. We use

the T-S action space and set the target speed of the learning agent to 50 km/h.

Table 3.14 gives the training criteria for this experiment.

The agent gets an Overtake Reward every time it overtakes a traffic agent and

Rank 1 Reward at the end of the episode if it manages to overtake all the traffic

agents. The agent is evaluated in terms of the fraction of times it overtakes all
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Table 3.15: Results of a single PPO agent learning to drive in traffic by RL.
The agent was trained to drive in the presence of 4 or 5 traffic cars with equal
probability (Case Study 5).

Number of traffic agents
3 4 5 6 7 8 9

Successful task
completion rate

99.5% 98.1% 95.5% 96% 95.5% 95.7% 92.8%

Table 3.16: Dimensions of cars used in Case Study 6.

Car Model Length (m) Width (m)
Traffic Car car1-trb1 4.52 1.94
PPO Agent-1 car3-trb1 4.55 1.95
PPO Agent-2 car5-trb1 4.67 1.94

the traffic cars successfully.

Table 3.15 presents the results of this case study. We observe that the agent

learns to generalize to both fewer and more traffic agents than it encountered dur-

ing training and navigate its way through them collision-free with a high success

rate.

3.5.7 Case Study 6: Avoiding Traffic Obstruction Through

Multi-agent Cooperation

One of the biggest aspirations of autonomous driving is the avoidance of traffic

congestion through cooperation. In this case study, we utilize the multi-agent

training ability of MADRaS and its framework for inter-vehicular communication

to solve a simplified version of this task by multi-agent reinforcement learning.

Table 3.17: Curriculum for multi-agent RL in Case Study 6.

Iterations of training Parking Distance (m) Gap Width (m)
1–240 30–40 2.76–4.06

240–300 30–35 2.76–3.46
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Figure 3.9: Schematic diagram of the multi-agent task of Case Study 6. The task
for the two learning agents is to coordinate with each other and pass through the
gap between the parked traffic cars without making any collision. The top row
shows an example of undesirable behavior in which both the agents attempt to
pass through the bottleneck at the same time and result in a collision. The bottom
row gives a feasible solution to the problem in which one of the agents stops or
slows down to wait for the other agent to pass through the gap. Only after the
gap is clear does it attempt to pass through – thus avoiding collision with any of
the other cars.
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Table 3.18: RL training criteria for Case Study 6. peerActions refers to the actions
of the other learning agent from the previous time step. Please refer to [85] for
details on the other observed variables.

Reward function

Reward Function Component Weightage
Progress Reward 1.0
Average Speed Reward 1.0
Collision Penalty 10.0
Turn Backward Penalty 10.0
Angular Acceleration Penalty 5.0

Observed variables angle, track, trackPos, opponents, speedX,
speedY, speedZ, peerActions

Done criteria Race Over, Time Out, Collision, Turn
Backward, Out of Track

The training environment consists of two PPO agents and two traffic agents on

the Corkscrew track. The PPO agents communicate their actions to each other

at every step. We park the traffic agents next to each other with a small gap in

between that is sufficient only for one car to pass through. The task of the PPO

agents is to pass through the gap one by one without colliding with each other or

with any traffic agent (see Figure 3.9). Thus the agents must learn a collaborative

strategy in which the agent trying to pass through the gap first should be given

enough time to pass through completely by the other agent before it makes its

own attempt.

Table 3.16 gives the cars assigned to the learning and traffic agents and their

dimensions. Both the PPO agents have T-S action space. Table 3.17 describes

the curriculum used for the training. We randomly vary the parking distance

of each traffic car and the gap between them at the start of each episode for

improved generalization. Table 3.18 gives the details of the observed variables,

reward functions and done criteria. The agents must learn the following distinct

skills to be able to accomplish this task.

• Running forward without going off track.

• Not colliding with each other.
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• Not colliding with any of the parked cars.

• Learning to collaborate and pass through the bottleneck one by one.

We jointly evaluate the agents in terms of the rate of successful passage of both the

agents through the traffic bottleneck. Figure 3.10 shows the individual and joint

learning curves respectively during training. The final evaluation is done over 100

episodes of stochastically parked agents and the PPO agents demonstrate a joint

task completion rate of 83.3%.
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(a) Agent-1 Training Curves

(b) Agent-2 Training Curves

(c) Joint learning Curves

Figure 3.10: Learning curves for multi-agent training in Case Study 6. The cross
symbol denotes transition point in the agent’s curriculum where the first task ends
and the second task begins.
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3.6 Summary

In this chapter we present MADRaS, an open-source Multi-Agent Driving Simu-

lator for autonomous driving. MADRaS builds on TORCS, a popular car racing

platform, and adds a suite of features like hierarchical control modes, domain ran-

domization, custom traffic, partial observability, stochastic outcomes of actions

and support for multi-agent training. We present six case studies in which we

train reinforcement learning agents to accomplish challenging tasks like generaliz-

ing across a wide range of track geometries and vehicular dynamics, driving under

stochasticity and partial observability, navigating through static and moving ob-

stacles and negotiating with other agents to pass through a traffic bottleneck.

These studies demonstrate the viability of MADRaS to simulate rich highway

and track driving scenarios of high variance and complexity that are valuable for

autonomous driving research.
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C H A P T E R 4

RAIL: Risk Averse Imitation

Learning

4.1 Introduction

In Reinforcement learning (RL) [13], the goal is communicated to the agent

through a scalar reward function. The negative of the reward function is of-

ten referred to as cost function. The agent learns a policy that minimizes the

expected cost. In classical RL, the cost function is handcrafted based on heuristic

assumptions about the goal and the environment. This is challenging in most

real-world applications and also prone to subjective bias [25]. Imitation learning

or Learning from Demonstration (LfD) [26, 27, 47, 48, 28, 49] addresses this chal-

lenge by providing methods of learning policies through imitation of an expert’s

behavior without the need of a handcrafted cost function. In this chapter, we

study the reliability of imitation learning algorithms that learn from a fixed set of

expert-demonstrated trajectories.

We focus our investigation on Generative Adversarial Imitation Learning (GAIL)

[29]. GAIL is a state-of-the-art algorithm for learning policies from a fixed set

of expert-trajectories. We evaluate in terms of the expert’s cost function and
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observe that the distribution of trajectory-costs is often more heavy-tailed for

GAIL agents than the expert at a number of benchmark continuous-control tasks.

This translates to the fact that, high-cost trajectories, corresponding to tail-end

events of catastrophic failure, are more likely to be encountered by GAIL agents

than the expert. This makes the reliability of GAIL agents questionable in risk-

sensitive applications like autonomous driving. In this chapter, we aim to make

GAIL agents aware of possibly catastrophic tail-end events by minimizing tail-risk

within the GAIL framework. We quantify tail-risk by the Conditional-Value-at-

Risk (CV aR) [32] and develop the Risk-Averse Imitation Learning (RAIL) algo-

rithm. We demonstrate that the policies learned with RAIL show lower tail-risk

than GAIL at five benchmark continuous control tasks of OpenAI Gym [33].

4.2 Background

In this section we describe the mathematical background of Generative Adversarial

Imitation Learning (GAIL) [29] and Conditional Value at Risk (CV aR) [32] that

form the basis of the theory developed in this chapter. Please refer to Section 2.5

for an introduction to Imitation Learning.

4.2.1 Generative Adversarial Imitation Learning (GAIL)

Generative Adversarial Imitation Learning (GAIL) [29] is an Apprenticeship Learn-

ing algorithm. Apprenticeship learning algorithms [28] first learn a model of the

expert’s reward function using Inverse Reinforcement Learning (IRL) [58, 49, 48].

This model of the expert’s reward is then maximized using Reinforcement Learn-

ing (RL) to obtain the output policy. Mathematically, this can be described as:

RL ◦ IRL(πE) = argmin
π∈Π

max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)]−H(π) (4.1)

where, πE denotes the expert-policy and c(·, ·) denotes the cost function. Π and C
denote the hypothesis classes for policy and cost functions. H(π) denotes entropy

of policy π. The term −H(π) provides causal-entropy regularization [59, 60] which
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helps in making the policy optimization algorithm unbiased to factors other than

the expected reward. Ho and Ermon [29] showed that the entropy-regularized

Apprenticeship Learning problem formulation in equation 4.1 can be represented

as in the following form:

RL ◦ IRLψ(πE) = argmin
π∈Π

−H(π) + ψ∗(ρπ − ρπE) (4.2)

where ψ : S × A → R ∪ {∞} denotes a closed, proper convex regularizer on the

cost function and ρπ : S × A → R denotes the occupancy measure for policy π

defined in equation 4.3.

ρπ(s, a) = π(a|s)
∞∑
t=0

γtP (st = s|π) (4.3)

The authors also proposed a regularizer, ψGA(c), that scales well in large environ-

ments as well as matches the expert’s occupancy measure closely:

ψGA(c) ,

EπE [g(c(s, a))] , if c < 0

+∞, otherwise
(4.4)

where g(·) is defined as follows:

g(x) =

−x− log(1− ex), if x < 0

+∞, otherwise
(4.5)

For this choice of ψ = ψGA, ψ∗(ρπ − ρπE) is given by:

ψ∗(ρπ − ρπE) = max
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))] (4.6)

The maximum in equation 4.6 ranges over discriminative binary classifiers of the

form D : S ×A → (0, 1). Substituting equation 4.6 in 4.2, we get:

argmin
π∈Π

max
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))]−H(π) (4.7)
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Equation 4.7 is the objective of the Generative Adversarial Imitation Learning

(GAIL) algorithm. Here, the agent’s policy, π, acts as a generator of state-action

pairs. D is a discriminative binary classifier of the form D : S×A → (0, 1), known

as discriminator, which given a state-action pair (s, a), predicts the likelihood of

it being generated by the generator.

The optimization of this objective function starts a two-player adversarial game

between the generator and the discriminator. Figure 4.1 describes the set-up. The

generator tries to generate state-action pairs that closely match the expert. The

discriminator tries to correctly classify incoming state-action pairs as whether they

are from the expert or the agent. The generator tries to improve its predictions

and fool the discriminator into thinking that its actions came from the expert.

The discriminator, on the contrary, keeps improving its classification accuracy

at distinguishing real expert actions from the fake ones being produced by the

generator. As both the players get better at their performances, the generator’s

actions gradually become indistinguishable from those of the expert in any given

state. Eventually, at convergence, the discriminator’s classification accuracy drops

to that of a coin-toss (0.5) and the solution is said to have arrived at its Nash equi-

librium.

The generator and the discriminator are assigned parameterized models πθ and

Dw respectively. The training algorithm alternates between a gradient ascent step

with respect to the discriminator parameters, w, and a policy-gradient descent

step with respect to the generator parameters, θ. The authors demonstrate that

GAIL agents with neural network function approximators are capable of imitating

complex behaviors in large, high-dimensional environments.

4.2.2 Conditional-Value-at-Risk (CV aR)

Conditional Value at Risk (CV aR) [32] is a measure of tail-risk popularly used

in the portfolio-risk optimization literature. Tail risk is a form of portfolio risk

that arises when the possibility that an investment moving more than three stan-

dard deviations away from the mean is greater than what is shown by a normal
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Figure 4.1: Schematic diagram of the two-player adversarial game set-up of Gen-
erative Adversarial Imitation Learning (GAIL) [29]

distribution [98]. Tail risk corresponds to events that have a small probability of

occurring. When the distribution of market returns is heavy-tailed, tail risk is

high because there is a probability, which may be small, that an investment will

move beyond three standard deviations. Conditional-Value-at-Risk (CV aR) is the

most conservative measure of tail risk [99] and unlike other measures like Variance

and Value at Risk (V aR), it can be applied when the distribution of returns is not

normal. Let Z be a random variable and let α ∈ [0, 1] denote a probability value.

The Value-at-Risk of Z with respect to confidence level α, denoted by V aRα(Z),

is defined as the minimum value z ∈ R such that with probability α, Z will not

exceed z.

V aRα(Z) = min(z | P (Z ≤ z) ≥ α) (4.8)

The Conditional Value at Risk, CV aRα(Z), is defined as the conditional expecta-

tion of losses above V aRα(Z):

CV aRα(Z) = E [Z | Z ≥ V aRα(Z)] = min
ν∈R

Hα(Z, ν) (4.9)
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where Hα(Z, ν) is given by:

Hα(Z, ν) , {ν +
1

1− α
E
[
(Z − ν)+

]
}; (x)+ = max(x, 0) (4.10)

We use CV aR to quantify tail-risk of GAIL-learned policies in this work.

4.2.3 Risk-Awareness in Imitation Learning

Risk sensitivity is integral to human learning ([100, 101]). Risk-sensitive decision-

making problems, in the context of MDPs, have been investigated in various

fields, e.g., in finance ([102]), operations research ([103, 104]), machine learning

([105, 106]) and robotics ([15, 107, 108, 109]). Garcia et al. [110] give a compre-

hensive overview of different risk-sensitive RL algorithms. They fall in two broad

categories. The first category includes methods that constrain the agent to safe

states during exploration while the second modifies the optimality criterion of the

agent to embed a term for minimizing risk. Studies on risk-minimization are rather

scarce in the imitation learning literature. Majumdar et al. [111] take inspiration

from studies like [112, 113, 114] on modeling risk in human decision-making and

conservatively approximate the expert’s risk preferences by finding an outer ap-

proximation of the risk envelope. Much of the literature on imitation learning has

been developed with average-case performance at the center, overlooking tail-end

events. In this work, we aim to take an inclusive and direct approach to minimiz-

ing tail-risk of GAIL-learned policies at test time irrespective of the expert’s risk

preferences.

4.3 Tail-Risk of GAIL Agents

In order to evaluate the reliability of GAIL-learned policies, we study the his-

tograms of trajectory-costs for the GAIL agents and experts at some benchmark

continuous control tasks of OpenAI Gym (see Table 4.1). The expert’s cost func-

tion is used to calculate these trajectory-costs. Figure 4.2 presents the histograms.
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Figure 4.2: Histograms of the costs of 250 trajectories generated by different agents
for four continuous-control tasks from OpenAI Gym - HalfCheetah-v1, Hopper-v1,
Humanoid-v1 and Walker-v1. The inset diagrams show zoomed-in views of the
tails of these distributions (the region beyond 2σ of the mean). We observe that
the GAIL agents produce heavy tails, heavier than the expert in most cases, and
hence, they have high tail-risk.
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Algorithm 6 Risk-Averse Imitation learning (RAIL)

Input: Expert trajectories ξE ∼ πE, hyper-parameters α and β, λCV aR
Output: Optimized learner’s policy π

1: Initialization: θ ← θ0, w ← w0, ν ← ν0, λ← λCV aR, i← 0
2: repeat
3: Sample trajectories ξi ∼ πθi
4: Estimate Ĥα(Rπ(ξ|c(D)), ν) = ν + 1

1−αEξi [(R
π(ξ|c(D))− ν)+]

5: Gradient ascent on discriminator parameters using:
∇wiJ = Êξi [∇wi log(D(s, a))] + ÊξE [∇wi log(1−D(s, a))]

+λCV aR∇wiĤα(Rπ(ξ|c(D)), ν)

6: KL-constrained natural gradient descent step (TRPO) on policy parame-
ters using:

∇θiJ = Ê(s,a)∼ξi [∇θilog(πθ(a|s)Q(s, a)]−∇θiH(πθ)

+λCV aR∇θiĤα(Rπ(ξ|c(D)), ν)

where Q(s̄, ā) = E(s,a)∼ξi [log(Dwi+1
(s, a))|s0 = s̄, a0 = ā]

7: Gradient descent on CVaR parameters:
∇νiJ = ∇νiĤα(Rπ(ξ|c(D)), ν)

8: i← i+ 1
9: until i == max iter =0

The tails of these histograms correspond to the occurrences of high-cost trajecto-

ries. We observe that the distribution of trajectory-costs for GAIL-learned poli-

cies are more heavy-tailed than the expert’s. Since high trajectory-costs may

correspond to events of catastrophic failure, GAIL agents are not reliable in risk-

sensitive applications like autonomous driving where a single instance of bad per-

formance can cost lives. We aim to explicitly minimize CV aR within the frame-

work of GAIL such that the learned policies are more reliable and still preserve

the average performance of GAIL.

4.4 Risk-Averse Imitation Learning

In this section we develop the mathematical formulation of the proposed Risk-

Averse Imitation Learning (RAIL) algorithm. We consider stochastic policies

π : S × A → [0, 1]. π(a|s) gives a probability distribution over actions, a ∈ A
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in a given state, s ∈ S. Let ξ = (s0, a0, s1, . . . , sLξ) denote a trajectory of length

Lξ, obtained by following a policy π. We define expectation of a function f(·, ·)
defined on S ×A with respect to a policy π as follows:

Eπ[f(s, a)] , Eξ∼π

Lξ−1∑
t=0

γtf(st, at)

 (4.11)

We define the trajectory-cost variable Rπ(ξ|c(D)), in the context of GAIL as:

Rπ(ξ|c(D)) =

Lξ−1∑
t=0

γtc(D(st, at)) (4.12)

where c(·) is an order-preserving function. As the output of the discriminator,

D, denotes the likelihood of the input action not coming from the expert, c(D)

quantifies the badness of the action. Since the expert’s cost function is unknown

to the learning agent, we use c(D) to estimate trajectory-cost.

We define an optimization problem that finds a policy that minimizes the maxi-

mum tail-risk under the entire class of cost functions C of which c(D) is a member.

min
π

max
c

CV aRα(Rπ(ξ|c(D))) = min
π,ν

max
c

Hα(Rπ(ξ|c(D)), ν) (4.13)

Integrating this with the GAIL objective of equation 4.7, we have:

min
π,ν

max
D∈(0,1)S×A

J = min
π,ν

max
D∈(0,1)S×A

−H(π)+Eπ[log(D(s, a))]+EπE [log(1−D(s, a))]

+ λCV aR Hα(Rπ(ξ|c(D)), ν) (4.14)

Note that as c(·) is order-preserving, the maximization with respect to c in equa-

tion 4.13 is equivalent to maximization with respect to D in equation 4.14. λCV aR

is a constant that controls the amount of weightage given to CV aR optimization

relative to the original GAIL objective. Equation 4.14 comprises the objective

function of the proposed Risk-Averse Imitation Learning (RAIL) algorithm. Al-

gorithm 6 gives the pseudo-code. We use Adam algorithm [115] for gradient ascent
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in the discriminator and Trust Region Policy Optimization (TRPO) [22] for policy

gradient descent in the generator. The CV aR term α is trained by batch gradient

descent [116].

4.5 Calculating Gradients of CVaR

In this section we derive expressions of gradients of the CVaR term in equation

4.13 with respect to π, D, and ν. Let us denote Hα(Rπ(ξ|c(D)), ν) by LCV aR.

Our derivations are inspired by those shown by Chow et al. [117].

Gradient of LCV aR w.r.t. D:

∇D LCV aR = ∇D
[
ν +

1

1− α
Eξ∼π

[
(Rπ(ξ|c(D))− ν)+

]]
=

1

1− α
Eξ∼π [∇D Rπ(ξ|c(D))1(Rπ(ξ|c(D)) ≥ ν)]

(4.15)

where 1(·) denotes the indicator function.

Now,

∇D Rπ(ξ|c(D)) = ∇c Rπ(ξ|c(D)) ∇D c(D)

(4.16)

We have:

∇c Rπ(ξ|c(D)) = ∇c

Lξ−1∑
t=0

γtc(st, at)

=

Lξ−1∑
t=0

γt
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=
1− γLξ
1− γ

(4.17)

Substituting equation 4.17 in 4.16 and then 4.16 in 4.15, we have the following:

∇D LCV aR =
1

1− α
Eξ∼π

[
1− γLξ
1− γ

1(Rπ(ξ|c(D)) ≥ ν)∇D c(D)

]
(4.18)

Gradient of LCV aR w.r.t. π:

∇π LCV aR = ∇π Hα(Rπ(ξ|c(D)), ν)

= ∇π

[
ν +

1

1− α
Eξ∼π

[
(Rπ(ξ|c(D))− ν)+

]]
=

1

1− α
∇π Eξ∼π

[
(Rπ(ξ|c(D))− ν)+

]
=

1

1− α
Eξ∼π

[
(∇π logP (ξ|π))(Rπ(ξ|c(D))− ν)+

]
(4.19)

Gradient of LCV aR w.r.t. ν:

∇ν LCV aR = ∇ν

[
ν +

1

1− α
Eξ∼π

[
(Rπ(ξ|c(D))− ν)+

]]
= 1 +

1

1− α
Eξ∼π

[
∇ν (Rπ(ξ|c(D))− ν)+

]
= 1− 1

1− α
Eξ∼π [1(Rπ(ξ|c(D)) ≥ ν)]

(4.20)

4.6 Experiments

We compare the tail-risk of policies learned by GAIL and RAIL for 5 continuous

control tasks listed in Table 4.1. All these environments, were simulated using

MuJoCo Physics Simulator [118]. Each of these environments come packed with a

85



RAIL: Risk Averse Imitation Learning

“true” reward function in OpenAI Gym [119]. Ho and Ermon [29] trained neural

network policies using Trust Region Policy Optimization (TRPO) [22] on these

reward functions to achieve state-of-the-art performance and made the pre-trained

models publicly available for all these environments as a part of their repository

[120]. They used these policies to generate the expert trajectories in their work

on GAIL [29]. We also use the same policies to generate expert trajectories in our

experiments. Table 4.1 gives the number of expert trajectories sampled for each

environment. These numbers correspond to the best results reported in Ho and

Ermon [29].

Again, following Ho and Ermon [29], we model the generator (policy), dis-

criminator and value function (used for advantage estimation [121] for the genera-

tor) with multi-layer perceptrons of the following architecture: observationDim -

fc 100 - tanh - fc 100 - tanh - outDim. fc 100 means fully connected layer

with 100 nodes. tanh is the hyperbolic tangent activation function of the hidden

layers. observationDim stands for the dimensionality of the observed feature

space. The output dimension, outDim, is equal to 1 for the discriminator and

value function networks. As we have a stochatic policy, we predict the mean and

standard deviation of the Gaussian distribution from which the action must be

sampled. Hence, outDim is equal to the twice of the dimensionality of the action

space for the policy network. For example, in the case of Humanoid-v1 environ-

ment, observationDim = 376 and outDim = 34 in the policy network. The value

of the CV aR coefficient λCV aR is set as given by Table 4.1. All the hyperparam-

eters corresponding to the GAIL component of the algorithm are set identical to

those used in Ho and Ermon [29] and [120] for all the experiments. The value of α

in the CV aRα term is set to 0.9 and its lone parameter, ν, is trained by gradient

descent with learning rate 0.01.

4.6.1 Evaluation Metrics

In this section we define the metrics used to evaluate the efficacy of RAIL at re-

ducing the tail risk of GAIL learned policies. Given an agent A’s policy πA we roll

out N trajectories T = {ξi}Ni=1 from it and estimate V aRα and CV aRα as defined
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Table 4.1: Hyperparameters for RAIL experiments. Number of training iterations
and expert trajectories are same as those used by Ho and Ermon [29]

Task
No. of training

iterations
No. of expert
trajectories

λCV aR

Reacher-v1 200 18 0.25
HalfCheetah-v1 500 25 0.5
Hopper-v1 500 25 0.5
Walker-v1 500 25 0.25
Humanoid-v1 1500 240 0.75

in section 4.2.2. V aRα denotes the value under which the trajectory-cost remains

with probability α and CV aRα gives the conditional expected value of cost above

V aRα. Intuitively, CV aRα gives the average value of cost of the worst cases that

have a total probability no more than (1− α). The lower the value of both these

metrics, the lower is the tail risk.

In order to compare tail risk of an agent with respect to the expert, E, we define

percentage relative-V aRα as follows:

V aRα(A|E) = 100× V aRα(E)− V aRα(A)

|V aRα(E)|
% (4.21)

Similarly, we define percentage relative-CV aRα as follows:

CV aRα(A|E) = 100× CV aRα(E)− CV aRα(A)

|CV aRα(E)|
% (4.22)

The higher these numbers, the lesser is the tail-risk of agent A. We define Gain

in Reliability (GR) as the difference in percentage relative tail-risk between RAIL

and GAIL agents.

GR-V aR = V aRα(RAIL|E)− V aRα(GAIL|E) (4.23)

GR-CV aR = CV aRα(RAIL|E)− CV aRα(GAIL|E) (4.24)
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Figure 4.3: Convergence of mean trajectory-cost during training of GAIL vs.
RAIL. The faded curves corresponds to the original value of mean which varies
highly between successive iterations. The data is smoothened with a moving av-
erage filter of window size 21 to demonstrate the prevalent behavior and plotted
with solid curves. The light curves show the actual variation of the data.

Figure 4.4: Histogram of costs of 250 trajectories generated by a GAIL-learned
policy for Reacher-v1. The distribution shows no heavy tail.
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Table 4.2: Comparison of expert, vanilla GAIL (GAIL), and RAIL in terms of
the tail-end risk metrics - V aR0.9 and CV aR0.9. All the scores are calculated on
samples of 50 trajectories. With smaller values of V aR and CV aR, our method
outperforms GAIL in all the 5 continuous control tasks and also outperforms the
expert in many cases.

Environment
Dimensionality VaR CVaR

Observation Action Expert GAIL Ours Expert GAIL Ours
Reacher-v1 11 2 5.88 9.55 7.28 6.34 13.25 9.41
Hopper-v1 11 3 -3754.71 -1758.19 -3745.90 -2674.65 -1347.60 -3727.94
HalfCheetah-v1 17 6 -3431.59 -2688.34 -3150.31 -3356.67 -2220.64 -2945.76
Walker-v1 17 6 -5402.52 -5314.05 -5404.00 -2310.54 -3359.29 -3939.99
Humanoid-v1 376 17 -9839.79 -2641.14 -9252.29 -4591.43 -1298.80 -4640.42

Table 4.3: Values of percentage relative tail-risk measures and gains in reliability
on using RAIL over GAIL for different continuous control tasks.

Environment
V aR0.9(A|E)(%)

GR-VaR (%)
CV aR0.9(A|E) (%)

GR-CVaR (%)
GAIL RAIL GAIL RAIL

Reacher-v1 -62.41 -23.81 38.61 -108.99 -48.42 60.57
Hopper-v1 -53.17 -0.23 52.94 -49.62 39.38 89.00
HalfCheetah-v1 -21.66 -8.20 13.46 -33.84 -12.24 21.60
Walker-v1 -1.64 0.03 1.66 45.39 70.52 25.13
Humanoid-v1 -73.16 -5.97 67.19 -71.71 1.07 72.78

4.6.2 Results and Discussion

In this section we present and discuss the results of comparison between GAIL

and RAIL. The expert’s performance is used as a benchmark. Tables 4.2 and 4.3

present the values of our evaluation metrics for different continuous-control tasks.

We set α = 0.9 for V aRα and CV aRα and estimate all metrics with N = 50

sampled trajectories (following the example of Ho and Ermon [29]). The following

are some interesting observations that we make:

• RAIL obtains superior performance than GAIL at both tail-risk measures –

V aR0.9 and CV aR0.9, across a wide range of continuous-control tasks. This

shows that RAIL is a superior choice than GAIL for imitation learning in

risk-sensitive applications.

• The applicability of RAIL is not limited to environments in which the dis-

tribution of trajectory-cost is heavy-tailed for GAIL. Rockafellar and Urya-

89



RAIL: Risk Averse Imitation Learning

sev [32] showed that if the distribution of the risk variable Z be normal,

CV aRα(Z) = µZ + a(α)σZ , where a(α) is a constant for a given α, µZ and

σZ are the mean and standard deviation of Z. Thus, in the absence of a

heavy tail, minimization of CV aRα of the trajectory cost aids in learning

better policies by contributing to the minimization of the mean and stan-

dard deviation of trajectory cost. The results on Reacher-v1 corroborate

our claims. Although the histogram does not show a heavy tail (Figure

4.4), the mean converges fine (Figure 4.3) and tail-risk scores are improved

(Table 4.2) which in this case indicates the distribution of trajectory-costs

is more condensed around the mean than GAIL. Thus we can use RAIL

instead of GAIL, no matter whether the distribution of trajectory rewards

is heavy-tailed for GAIL or not.

• Figure 4.3 shows the variation of mean trajectory cost over training iterations

for GAIL and RAIL. We observe that RAIL converges at least as fast as

GAIL, at all the continuous-control tasks in discussion.

• The success of RAIL in learning a viable policy for Humanoid-v1 suggests

that RAIL is scalable to large environments. Scalability is one of the salient

features of GAIL. RAIL preserves the scalability of GAIL while showing

lower tail-risk.

4.7 Summary

This chapter presents the RAIL algorithm which incorporates CV aR optimiza-

tion within the original GAIL algorithm to minimize tail risk and thus improve

reliability of learned policies. We report significant improvement over GAIL at a

number of evaluation metrics on five continuous-control tasks. Thus the proposed

algorithm is a viable step in the direction of learning low-risk policies by imita-

tion learning in complex environments, especially in risk-sensitive applications like

autonomous driving.
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C H A P T E R 5

ExTra: Transfer-guided

Exploration

5.1 Introduction

Reinforcement Learning (RL) provides a powerful set of tools for training agents

to plan in highly complex task-environments. An RL agent learns by trial and

error using reward signals that are indicative of progress or accomplishment of the

target task [13]. The agent uses two policies to act in the environment during the

learning phase. The policy that the agent learns to exploit for solving the target

task is known as the target policy. The agent also has a behavioral policy that

it uses for exploration in order to find better solutions for the target policy. The

sample efficiency and convergence time of an RL algorithm depends heavily on

the exploration method used by the behavioral policy [122].

While attempting to solve a new task human beings tend to take actions mo-

tivated by similar situations faced in the past. These actions often happen to

be good starting points even if the prior experiences are not in the exact same

task-environment. In this chapter we present a novel approach for transfer-guided

exploration in reinforcement learning that is inspired by the human tendency
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to leverage experiences from similar encounters in the past while navigating a

new task. Given an optimal policy in a related task-environment, we show that

its bisimulation distance from the current task-environment gives a lower bound

on the optimal advantage of state-action pairs in the current task-environment.

Transfer-guided Exploration (ExTra) samples actions from a Softmax distribution

over these lower bounds. In this way, actions with potentially higher optimum

advantage are sampled more frequently. In our experiments on gridworld environ-

ments, we demonstrate that given access to an optimal policy in a related task-

environment, ExTra can outperform popular domain-specific exploration strate-

gies like epsilon greedy, Model-Based Interval Estimation – Exploration Bonus

(MBIE-EB), Pursuit and Boltzmann at the rate of convergence. We further show

that ExTra is robust to choices of source task and shows a graceful degradation of

performance as the dissimilarity of the source task increases. We also demonstrate

that ExTra, when used alongside traditional exploration algorithms, improves their

rate of convergence. Thus it is capable of complementing the efficacy of traditional

exploration methods.

5.2 Related Work

A large body of research in reinforcement learning has been dedicated to the

formulation of sample-efficient algorithms. Some of the notable developments in-

clude count based exploration [123], curiosity driven exploration [124], optimism

in the face of uncertainty [125], Thompson sampling or posterior sampling and

bootstrapped methods [126], parameter space exploration [127] and intrinsic mo-

tivation [128]. However these methods are based on heuristics specific to the

current environment and do not use any prior experiences of the agent in other

environments.

Leveraging prior experiences for improving the efficiency of exploration has

been studied in the past. This includes learning action priors from one or more

source tasks to identify useful actions or affordances for the target task [129],

policy and value function initialization [130], policy reuse [131], policy transfer

through reward shaping [132] and transfer of samples [133]. Recent works in
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the Meta Reinforcement Learning community have approached this problem from

the perspectives of representation learning [134] and introduction of structured

stochasticity via a learned latent space [135]. However most of these methods are

limited to using source tasks that share the same state and action spaces as the

target task. We are interested in the more general setting of cross-domain transfer

where the source environment can have different state and action spaces. Cross-

domain transfer in RL has been studied by [136] and [137] who propose methods

involving transfer of rules and adaptation of the source policy respectively. We

take a different approach in our paper that is based on the theory of bisimulation

based policy transfer [34, 138].

5.3 Background

In this section we present a brief introduction to the essential theoretical concepts

used in this chapter.

5.3.1 Exploration in Reinforcement Learning

A reinforcement learning agent learns through trial and error in the environment.

At any step of decision making, the agent either “exploits” the best policy it

has learned or “explores” other actions in search of a better strategy. Balanc-

ing exploration and exploitation is a key challenge in RL and a large body of

literature has been dedicated to the formulation of strategies that address this

dilemma. Exploration strategies can be widely classified into two categories: di-

rected and undirected [139]. While directed exploration methods utilize explo-

ration specific knowledge collected online, undirected exploration methods are

driven almost purely by randomness with the occasional usage of estimates of

utility of a state-action pair [139, 122]. Popular undirected exploration algorithms

include random walk [140], ε-greedy [141, 13] and softmax or Boltzmann explo-

ration [142, 143]. On the other hand, some notable directed exploration methods

are count-based [144, 145], error-based [146, 147], and recency based [144]. In the

rest of this section, we briefly describe the exploration algorithms that are used

as baselines in the current work. For a detailed review of exploration algorithms
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in RL, please refer to [122].

ε-greedy:

In epsilon-greedy exploration, the agent explores by choosing random actions with

probability ε and follows the learned policy greedily the rest of the time.

Model Based Interval Estimation - Exploration Bonus (MBIE-EB):

MBIE-EB [148] is a count-based exploration algorithm that supplies the agent

with count-based reward bonuses for favouring exploration of less visited states

and actions. The reward bonus is calculated as:

rbonus(s, a) =
β√
n(s, a)

(5.1)

where n(s, a) is the number of times the agent chose the state action pair (s, a).

Pursuit:

Pursuit [13] is an undirected exploration algorithm for Multi-Arm Bandits, adapted

for MDP by Tijsma et al. [122]. In Pursuit, the agent follows a stochastic policy

π(s, a). After the update step, t, if a∗t+1 = argmaxaQt+1(st, a), Pursuit updates

πt+1(st, a) as follows:

πt+1(st, a) =

πt(st, a) + β[1− πt(st, a)], if a = a∗t+1

πt(st, a) + β[0− πt(st, a)], if a 6= a∗t+1

(5.2)

where β is a hyperparameter.

Boltzmann exploration:

Boltzmann or Softmax exploration [13] is another undirected exploration algo-

rithm in which the probabilities of the different actions are assigned by a Boltz-

mann distribution over the state-action value function Qt(st, a).

π(st, a) =
eQt(st,a)/T∑m
i=1 e

Qt(st,ai)/T
(5.3)
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5.3.2 Transfer in Reinforcement Learning

Transfer learning aims to achieve generalization of skills across tasks by using

knowledge gained in one task to accelerate learning of a different task. In rein-

forcement learning, the transferred knowledge can be high level, such as, rules or

advice, sub-task definitions, shaping reward, or low level, such as, task features,

experience instances, task models, policies, value functions and distribution priors.

Most transfer algorithms for RL make certain assumptions about the relationship

between the source and target MDPs. Taylor et al. [138] gives a comprehensive

overview. In this work, we study the general case of transfer of knowledge between

MDPs with discrete state and action spaces and make no assumptions about their

structures or relationships. We use the bisimulation transfer framework of Castro

et al. [34] as it provides a principled method of transfer for the general setting

and a way to estimate the relative goodness of actions under the transferred model

[149, 150].

5.3.3 Bisimulation Metric

Bisimulation, first introduced for MDP by Givan et al. [151], is a relation that

draws equivalence between states of an MDP that have the same long-term be-

havior. The following is the definition of the bisimulation relation:

Definition 1. Bisimulation relation [151]:

For an MDP,M = 〈S,A, P,R, γ〉, a relation E ⊂ S×S is a bisimulation relation

if, for s1, s2 ∈ S, whenever s1Es2, the following conditions hold:

∀a ∈ A, R(s1, a) = R(s2, a)

∀a ∈ A,∀C ∈ S/E,
∑
s′∈C

P (s1, a)(s′) =
∑
s′∈C

P (s2, a)(s′)

S/E is the set of equivalence classes induced by E in S.

The theory of bisimulation is equivalent to the theory of MDP homomorphism

[152, 153] that studies equivalence relations based on reward structure and tran-
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sition dynamics. Ferns et al. [149] proposed bisimulation metric as a quantitative

analogue of the bisimulation relation that can be used as a notion of distance

between states of an MDP.

Definition 2. Bisimulation metric [149]:

For an MDP, M = 〈S,A, P,R, γ〉, let M be the set of all semi-metrics on S × S.

∀s, s′ ∈ S, the bisimulation metric is given by:

d(s, s′) = max
a∈A

cR |R(s, a)−R(s′, a)|+ cT dP (P (s, a), P (s′, a))

Where, dP is some probability metric and cR and cT are two positive 1-bounded

constants. Under this metric, two states are bisimilar if their bisimulation distance

is zero. The higher the distance, the more dissimilar the states are. In order to

measure the bisimulation distance between state-action pairs of different MDPs,

Taylor et al. [150] introduced the lax bisimulation metric. Considering two MDPs,

M1 = 〈S1, A1, P1, R1, γ1〉 and M2 = 〈S2, A2, P2, R2, γ2〉 the lax bisimulation met-

ric is defined as follows.

Definition 3. Lax Bisimulation metric [150, 34]:

Let M be the set of all semi-metrics on S1×A1×S2×A2. ∀s1 ∈ S1, a1 ∈ A1, s2 ∈
S2, a2 ∈ A2, d ∈M , F : M →M is defined as:

F (d)(s1, a1, s2, a2) = cR|R1(s1, a1)−R2(s2, a2)|+ cTTK(d′)(P1(s1, a1), P2(s2, a2))

Where

d′(s1, s2) = max(max
a1∈A1

min
a2∈A2

d((s1, a1), (s2, a2)), min
a1∈A1

max
a2∈A2

d((s1, a1), (s2, a2)))

and TK(d′)(P1(s1, a1), P2(s2, a2)) is the Kantorovich distance [154] between the

transition probability distributions. cR, cT ∈ R are tunable hyperparameters repre-

senting relative weightages for the reward and Kantorovich components. F has a

least-fixed point dL and dL is called the Lax Bisimulation metric between M1 and

M2. d′L(s1, s2) is the state lax bisimulation distance.
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Lax bisimulation metric forms the basis of our transfer-guided exploration algo-

rithm presented in this chapter.

5.3.4 Bisimulation Based Policy Transfer

The lax bisimulation metric gives a measure of similarity between state-action

pairs of two different task-environments, based on their long-term behavior. Castro

et al. [34] propose a method of policy transfer between MDPs that is based on the

bisimulation metric. Let M1 = 〈S1, A1, P1, R1, γ1〉 be a source MDP with known

optimal policy π∗1. LetM2 = 〈S2, A2, P2, R2, γ2〉 be the target MDP. The first step

of the algorithm finds the matching state in the source environment, smatch(s2),

for every target state s2 ∈ S2 as follows:

smatch(s2) = argmin
s∈S1

d′L(s, s2) (5.4)

In the next step it determines the transferred action aT2 for each target state s2 as

the target action that minimizes the lax bisimulation distance with the matching

source state smatch(s2) and its optimal action π∗1(smatch(s2)).

aT2 = arg min
a∈A2

dL((smatch(s2), π∗1(smatch(s2))), (s2, a)) (5.5)

Algorithm 7 gives the pseudo-code. As only optimal actions are transferred from

the source environment, Castro et al. [34] suggest to calculate lax bisimulation

distance only for the optimal source actions in the interest of faster computation.

They define a simplified notation for the lax bisimulation distance as follows:

d≈(s1, (s2, a2)) = dL((s1, π
∗
1(s1)), (s2, a2)) (5.6)

The state lax bisimulation distance d′≈(s1, s2) becomes:

d′≈(s1, s2) = max
a∈A2

d≈(s1, (s2, a)) (5.7)

The authors derive a lower bound on the optimum value of the lax bisimulation

transferred actions in terms of the optimum value of source states and bisimulation

distance (Corollary 1).
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Algorithm 7 Lax Bisimulation Transfer (Algorithm 1 of [34]).

1: for All s1 ∈ S1, a1 ∈ A1, s2 ∈ S2, a2 ∈ A2 do
2: Compute dL((s1, a1)(s2, a2))
3: end for
4: for All s2 ∈ S2 do
5: smatch ← argmins∈S1 d

′
L(s, s2)

6: aT2 ← argmina∈A2 dL((smatch, π
∗
1(smatch)), (s2, a))

7: πL(s2)← aT2
8: end for
9: return πL

Corollary 1. (Corollary 11 from [34]): ∀s1 ∈ S1, ∀s2 ∈ S2,

Q∗2(s2, a
T
2 ) ≥ V ∗1 (s1)− d′≈(s1, s2)

This lower bound is interesting because incorporates the behavioral similarity of

the source and target states as well as the value of the source state. The authors

improve the lax bisimulation transfer algorithm (Algorithm 7) by using this lower

bound for state-matching. For each target state s2 ∈ S2, the matching source

state is determined by maximizing this lower bound:

smatch(s2) = argmax
s∈S1

V ∗1 (s)− d′≈(s, s2) (5.8)

We present the modified algorithm in Algorithm 8. LB in line 6 stands for

“lower bound”. As the state bisimulation metric is calculated by maximizing

the distance between the source and target states (Equation 5.7) the authors call

this bisimulation transfer “pessimistic”. The authors note that this pessimism

in the definition of bisimulation metric may lead to a poor transfer. They ex-

plain it using the following example situation. Suppose ∃s ∈ S1 and a ∈ A2 for

which d≈(s, (s2, a)) → 0. However, there exists a target action b ∈ A2 for which

d≈(s, (s2, b)) is large. This would cause d′≈(s1, s2) to be large. As a result, s might

not be chosen as smatch although it could have very well qualified as the best choice.

In order to overcome this inherent pessimism of bisimulation, the authors propose

an optimistic definition of the state lax bisimulation metric as follows:
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d′≈(s1, s2) = min
a2∈A2

d≈(s1, (s2, a2)) (5.9)

Using this definition in Algorithm 8 we have the optimistic bisimulation policy

transfer algorithm. Although this lacks the theoretical guarantees of pessimistic

transfer, the authors note that it yields superior transfer quality in practice.

Algorithm 8 Bisimulation based policy transfer [34].

1: for All s1 ∈ S1, s2 ∈ S2, a2 ∈ A2 do
2: Compute d≈(s1, (s2, a2))
3: end for
4: for All s2 ∈ S2 do
5: for All s1 ∈ S1 do
6: LB(s1, s2)← V ∗1 (s1)− d′≈(s1, s2)
7: end for
8: smatch ← argmaxs1∈S1 LB(s1, s2)
9: aT2 ← argmina2∈A2 d≈(smatch, (s2, a2))

10: end for

5.4 Proposed Work

In this section we present Transfer-guided Exploration (ExTra) as a novel directed

exploration method for reinforcement learning that is based on the bisimulation

transfer framework of Castro et al. [34]. The motivation is to use transferred

knowledge from the optimal policy in a source domain to accelerate RL in a tar-

get domain – especially during the initial stage, when the domain-specific statistics

used by traditional directed exploration methods are yet to be consistently esti-

mated. We first present some results which relate bisimulation distance to the

optimal advantage of an action in a target state.

Lemma 1. ∀s1 ∈ S1, ∀s2 ∈ S2, ∀a2 ∈ A2, |V ∗1 (s1)−Q∗2(s2, a2)| ≤ d≈(s1, (s2, a2)).
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Figure 5.1: Some gridworld environments used in our experiments on ExTra.

Proof:

|V ∗1 (s1)−Q∗2(s2, a2)| = |Q∗1(s1, π
∗
1(s1))−Q∗2(s2, a2)|

≤ |R1(s1, π
∗
1(s1))−R2(s2, a2)|

+ γTK(d≈)(P1(s1, π
∗
1(s1)), P2(s2, a2))

by similar argument as for Lemma 4 in [34]

= d≈(s1, (s2, a2)).

Corollary 2. ∀s1 ∈ S1,∀s2 ∈ S2, |V ∗1 (s1)− V ∗2 (s2)| ≤ d≈(s1, (s2, π
∗
2(s2))).

The goal of reinforcement learning is to get the agent to take optimal actions and

the goal of efficient exploration is to achieve that fast. Hence, efficient exploration

algorithms should be able to weigh the actions available in a given state on the

basis of their potential optimality. In an MDP,M = 〈S,A, P,R, γ〉, the advantage

of an action a ∈ A in a state s ∈ S with respect to a policy π is defined as

Aπ(s, a) = Qπ(s, a) − V π(s). It quantifies the relative superiority of action a
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compared to the expectation under the policy over next actions. The optimal

policy maximizes the optimal Q function: π∗(s) = arg maxaQ
∗(s, a). Substituting

the expression of Q in terms of advantage, we have: π∗(s) = arg maxaA
∗(s, a) +

V ∗(s) = arg maxaA
∗(s, a). Hence the optimal policy also maximizes the optimal

advantage function. Given a source MDP, we derive a lower bound on the optimal

advantage of available actions in a target state in terms of the lax-bisimulation

distance function and use it as a measure of potential optimality.

Theorem 1. Given MDPs,M1 = 〈S1, A1, P1, R1, γ1〉 andM2 = 〈S2, A2, P2, R2, γ2〉
and bisimulation metric d≈ : S1 × S2 × A2 → R we have ∀s2 ∈ S2,∀a2 ∈ A2

A∗2(s2, a2) ≥ −d≈(smatch, (s2, a2))− β(s2)

Where A∗2(s2, a2) is the optimum advantage function inM2, smatch ∈ argmaxs1∈S1

V ∗1 (s1)− d′≈(s1, s2) and β(s2) = d≈(smatch, (s2, π
∗
2(s2))).

Proof:

Since, V ∗2 (s2) = argmaxa2∈A2 Q
∗
2(s2, a2) =⇒ V ∗2 (s2)−Q∗2(s2, a2) ≥ 0.

We have:

V ∗2 (s2)−Q∗2(s2, a2) = |V ∗2 (s2)−Q∗2(s2, a2)|

= |(V ∗2 (s2)− V ∗1 (smatch))+

(V ∗1 (smatch)−Q∗2(s2, a2))|

≤ |V ∗2 (s2)− V ∗1 (smatch)|+

|V ∗1 (smatch)−Q∗2(s2, a2)|

≤ d≈(smatch, (s2, π
∗
2(s2))) + d≈(smatch, (s2, a2))

(from Lemma 1 and Corollary 2)

= β(s2) + d≈(smatch, (s2, a2))

∴ A∗2(s2, a2) = Q∗2(s2, a2)− V ∗2 (s2) ≥ −d≈(smatch, (s2, a2))− β(s2)

Theorem 1 gives a lower bound on the optimal advantage of an action in a tar-

get state in terms of the bisimulation distance to a source MDP. As explained
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in Section 5.3.4, Castro et al. [34] assign matching source state smatch to target

state-action pair (s2, a2) following a minimum performance criterion in the form of

a lower bound on Q∗2(s2, a2) (Equation 5.8). We choose to use smatch in Theorem

1 to make sure that this minimum performance criterion is satisfied. While other

bounds are possible for choices of s1 ∈ S1, s1 6= smatch, they might not be usable,

since they do not guarantee the performance bounds identified by Castro et al.

[34].

Corollary 3. The bisimulation transfer algorithm of Castro et al. [34] maxi-

mizes a lower bound on the optimum advantage function A∗2(s2, a2) of the target

environment.

Proof:

In bisimulation transfer, the transferred action aT2 for target state s2 is given by:

aT2 = arg min
a2∈A2

d≈(smatch, (s2, a2))

= arg max
a2∈A2

−d≈(smatch, (s2, a2))− β(s2)

Since, β(s2) is independent of a2.

Note that Theorem 1 and Corollaries 2 and 3 hold for both optimistic (Equation

5.9) and pessimistic (Equation 5.7) definitions of the lax bisimulation metric [34].

Definition 4. Bisimulation Advantage: Given MDPs,M1 = 〈S1, A1, P1, R1, γ1〉
and M2 = 〈S2, A2, P2, R2, γ2〉 and bisimulation metric d≈ : S1 × S2 × A2 → R we

define the bisimulation advantage of an action a2 ∈ A2 in a state s2 ∈ S2 as:

A≈(s2, a2) = max
smatch∈Smatch

−d≈(smatch, (s2, a2))− β(s2)

Where, Smatch = argmaxs1∈S1 V
∗

1 (s1)−d′≈(s1, s2) is the set of matching states in

M1 for state-action pair (s2, a2) inM2. We look to define a probability distribution
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over target actions that assigns higher probability to actions having higher bisim-

ulation advantages. As, in general, the solution to argmina2 d≈(smatch, (s2, a2)) is

non-unique, under bisimulation, multiple actions in the target environment could

potentially map to the optimal action in the source environment. Among all poli-

cies that pick at least one of the actions that map to the optimal action under

the bisimulation, by the principle of maximum entropy [155] , we choose one that

assigns equal probability to all those actions. Softmax distribution satisfies this

property. Hence we define the behavioral policy in Transfer-guided Exploration

(ExTra) as a Softmax distribution over bisimulation advantages.

πExTra(a2|s2,M1, π
∗
1) =

eA≈(s2,a2)∑
b∈A2

eA≈(s2,b)
(5.10)

In transfer-guided exploration (ExTra), the agent samples actions from πExTra(·|s2,

M1, π
∗
1). Since the optimal policy in the target MDP, π∗2, is not known during

learning, β(s2) can not be known exactly. Since β(s2)(≥ 0) is the same for all

actions in a given state s2, replacing β(s2) with a real positive number preserves

the order of probability values assigned to different actions by πExTra. If transfer

is successful, πExTra would assign higher probabilities to the optimal actions and

thus help the agent to quickly arrive at the optimal policy. However, in the event

of an unsuccessful transfer, πExTra may be biased away from the optimal actions.

This may cause the agent to remain stuck with the wrong actions for long periods

of time. In order to help the agent recover from the effect of unsuccessful transfer,

we set β = αn, where α ∈ R+ is a tunable hyperparameter and n is the current

step number. As n grows, πExTra(·|s2,M1, π
∗
1) tends to a uniform distribution over

actions, thus annealing the influence of transferred knowledge on exploration with

time. This does not hurt the agent’s learning in states where the transfer was

successful because the agent happens to have explored the optimal actions early

on in training in those states. Note that changing β does not affect the rate of

exploration; instead, it merely changes the shape of the probability distribution

from which the agent samples actions during exploration. Algorithm 9 gives an

example use case of ExTra as an alternative to random exploration in ε-greedy Q-

learning. Algorithms 10, 11 and 12 give more ways of using ExTra in conjunction

with other traditional exploration methods.
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Algorithm 9 ε-greedy Q-learning with Transfer-guided Exploration (ExTra)

1: Given: d≈(s1, (s2, a2)), ∀s1 ∈ S1, s2 ∈ S2, a2 ∈ A2

2: for All s2 ∈ S2 do
3: for All s1 ∈ S1 do
4: LB(s1, s2)← V ∗1 (s1)− d′≈(s1, s2)
5: end for
6: smatch ← argmaxs1∈S1 LB(s1, s2)
7: end for
8: step = 0
9: while step < MAXSTEPS do

10: with probability ε
11: a2 ∼ πExTra(·|s2,M1, π

∗
1)

12: with probability 1− ε
13: a2 ← argmaxbQ2(s2, b)
14: r = take step(a2)
15: update Q(Q2(s2, a2), r)
16: step = step + 1
17: end while

Algorithm 10 MBIE-EB Q-learning interleaved with Transfer-guided Explo-
ration.

1: step = 0

2: while step < MAXSTEPS do

3: with probability ε

4: a2 ∼ πExTra(·|s2,M1, π
∗
1)

5: with probability 1− ε
6: a2 ← argmaxb′ Q2(s2, a

′
2)

7: r = take step(a2) + β√
n(s2,a2)

8: update Q(Q2(s2, a2), r)

9: step = step + 1

10: end while
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Algorithm 11 Pursuit Q-learning interleaved with Transfer-guided Exploration

1: step = 0

2: πpursuit = Uniform(A2)

3: while step < MAXSTEPS do

4: with probability ε

5: a2 ∼ πExTra(·|s2,M1, π
∗
1)

6: with probability 1− ε
7: a← argmaxa′2 Q2(s2, a

′
2)

8: update πpursuit(a)

9: a2 ← Sample(πpursuit)

10: r = take step(a2)

11: update Q(Q2(s2, a2), r)

12: step = step + 1

13: end while

Algorithm 12 Softmax Q-learning interleaved with Transfer-guided Exploration

1: step = 0

2: while step < MAXSTEPS do

3: with probability ε

4: a2 ∼ πExTra(·|s2,M1, π
∗
1)

5: with probability 1− ε
6: a2 ∼ softmax(Q2(s2, ·))
7: r = take step(a2)

8: update Q(Q2(s2, a2), r)

9: step = step + 1

10: end while

5.5 Experimental Results

In this section we present an empirical analysis of the performance of ExTra. We

aim to address the following questions:

1. How does ExTra compare against traditional exploration methods?
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2. How sensitive is ExTra to the choice of source task?

3. Can ExTra enhance the performance of other exploration algorithms that

only use local information?

4. How does ExTra compare against Bisimulation Transfer?

We use the optimistic definition of the bisimulation metric in all our experiments

as Castro et al. [34] note that it gives superior transfer results than the pessimistic

definition.

5.5.1 Evaluation Measures

Our goal is to improve the rate of convergence of RL with the help of external

knowledge transferred from a different task. The rate of convergence of an RL

algorithm can be judged from a plot of Mean Average Reward (MAR) obtained

by the agent over steps of training. Mean Average Reward is defined as follows:

Definition 5. Mean Average Reward: The average reward of a trajectory τ

obtained by following a policy π is the average of all the rewards received by the

agent in the trajectory. Mean Average Reward (MAR) of π is the mean of average

reward for multiple trajectories rolled out from the policy. A sample-average based

estimate of the mean average reward of a policy π can be calculated as follows:

MAR(π) =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

R(sit, a
i
t)

Where N is the number of trajectories rolled out using policy π and Ti is the

length of the ith trajectory. The value of N should be large enough for a consistent

estimate of MAR.

The Area under the MAR Curve (AuC-MAR) is an objective measure of rate

of convergence when the highest MAR values achieved asymptotically by all the

candidate algorithms are the same [138]. A higher AuC-MAR implies higher rate

of convergence. We use AuC-MAR for comparing the rates of convergence of

RL algorithms using ExTra with the baseline methods. For the convenience of
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comparison, we report AuC-MAR as a percentage of AuC for the optimal pol-

icy (whose MAR is represented as a straight horizontal line through the steps of

training but not shown in the plots to avoid clutter).

For measuring the relative improvement of the rate of convergence achieved by

ExTra, we use Transfer Ratio, denoted by TR, defined as follows:

TR =
AuC-MAR with ExTra− AuC-MAR without ExTra

AuC-MAR without ExTra
(5.11)

5.5.2 Experimental Design, Results and Discussion

We use stochastic grid-world environments of different levels of complexity (Fig-

ures 5.1 and 5.3) for analysing the viability of ExTra. All of these environments

have the common task of avoiding obstacles and reaching a goal. After being

initialised with uniform probability from any of the grid-cells, the agent gets a re-

ward of +1 on reaching the goal, −1 for stepping into a “fire-pit” and 0 elsewhere.

The agent has four primitive actions: up, down, left and right. When one of the

actions is chosen, the agent moves in the desired direction with 0.9 probability,

and with 0.1 probability it moves uniformly in one of the other three directions

or stays in the same place. If the agent bumps into a wall, it does not move and

remains in the same state.

We choose Q-learning with four traditional exploration algorithms viz. ε-

greedy uniform random exploration, MBIE-EB [148], Pursuit [13] and Softmax

[13] as baselines for comparison. For ExTra, we train the optimal policy for the

source domain using value iteration and calculate the optimistic bisimulation dis-

tance d≈(s1, (s2, a2)), ∀s1 ∈ S1, s2 ∈ S2, a2 ∈ A2, tuning cR and cT for maximum

transfer accuracy. We use the PyEMD library by [156] to calculate earth mover

distance for the estimation of TK(d) [157, 158, 159]. Our code is available open-

source on GitHub1. The results reported for each baseline are obtained after

rigorous tuning of their respective hyperparameters for the target domain. We

1https://github.com/madan96/ExTra
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report all MAR and AuC-MAR numbers as their mean ± standard deviation cal-

culated over 10 different experiments with different random seeds. We tabulate

the hyperparameter values in Tables 5.1 and 5.2.

Table 5.1: Hyperparameters for Optimistic Bisimulation Transfer

Transfer Parameters FourLargeRooms SixLargeRooms NineLargeRooms
cR 0.1 0.2 0.1
cT 0.9 0.9 0.9

Fixed-Point Iter. Threshold 0.01 0.01 0.01

Table 5.2: Hyperparameters used for comparing ExTra with traditional explo-
ration algorithms (Section 5.5.2.1).

ε-greedy
Q Learning Rate 0.2
ε 0.5

Softmax
Q Learning Rate 0.2
τ 8.1

MBIE-EB
Q Learning Rate 0.2
cb-β 0.005
ε 0.2

Pursuit
Q Learning Rate 0.2
β 0.007

ExTra
Q Learning Rate 0.5
ε 0.2
α 1e-6

5.5.2.1 Comparison of ExTra with Traditional Exploration Methods

In our first set of experiments, we show that given an optimal policy for a related

task-environment, ExTra can obtain faster convergence than traditional explo-

ration methods that only use local information. We choose the FourLargeRooms,

SixLargeRooms, and NineLargeRooms environments shown in Figure 5.1 as bench-

marks. We train Q-learning agents with ε-greedy, MBIE-EB, Pursuit and Soft-

max explorations in these environments as baselines. For ExTra, we choose

FourSmallRooms in Figure 5.1 as the source environment. We train an ε-greedy Q-

learning agent (ε = 0.2) that uses ExTra instead of uniform random for exploration
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Table 5.3: Percentage AuC-MAR of ε-greedy Q-learning with ExTra versus tradi-
tional exploration methods (Section 5.5.2.1).

Target Environment
AuC-MAR(%)

ε-greedy MBIE-EB Pursuit Softmax ExTra
FourLargeRooms 61.08± 3.37 63.91± 1.62 73.96± 2.59 77.64± 1.70 82.79± 1.68
SixLargeRooms 45.81± 3.07 54.36± 2.69 63.44± 1.44 61.46± 1.31 72.52± 1.28
NineLargeRooms 43.20± 2.45 45.87± 5.00 61.52± 2.08 53.66± 2.01 64.81± 1.11

(a) FourSmallRooms → FourLargeRooms (b) FourSmallRooms → SixLargeRooms

(c) FourSmallRooms → NineLargeRooms

Figure 5.2: Comparison of ExTra with traditional exploration methods: variation
of MAR with steps of training for different source→ target pairs of environments
(Section 5.5.2.1).

(Algorithm 6) on each of the three target environments. Figure 5.2 shows the vari-

ation of MAR over steps of training for the baseline as well as our ExTra agents.

Table 5.3 shows AuC-MAR values. We observe that our ExTra agent consistently

achieves faster convergence in all the three environments. This corroborates our

claim that ExTra can achieve faster convergence and hence superior sample effi-

ciency if we have access to the optimal policy in a related task-environment.
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5.5.2.2 Sensitivity of ExTra to the Choice of Source Task

In this experiment we study the sensitivity of ExTra to the selection of source

task. In our first study we consider transfer between tasks that share the same

state-action space and reward structure but differ in goal positions. We construct

6 tasks in the SixLargeRooms environment in which the ith task has its goal at

the center of the ith room (see Figure 5.3). We use tasks 1 through 5 as source

Figure 5.3: Goal locations in the six tasks used to study the sensitivity of ExTra
to the choice of source task (Section 5.5.2.2).

and task 6 as target. In our second study, we compare transfer from source tasks

that differ in state space (FourSmallRooms), action space (3Actions), reward

structure (Firepit, NoGoal, NegativeHallways), goal distribution (Two Goals)

and transition dynamics (Gravity). 3Actions, NoGoal and Gravity are variants

of the FourLargeRooms environment with just three allowed actions (left, right,

down), no goal at all and an added probability of 0.1 to slide downwards, respec-

tively. The rest of the environments are as depicted in Figure 5.1. The target

task-environment is FourLargeRooms. We report AuC-MAR values obtained by

ε-greedy Q-learning with ExTra (Algorithm 6) for each of these source tasks in

Tables 5.4 and 5.5.

We make the following observations:

• In our first study (Table 5.4), each of our ExTra agents fetch higher AuC-

MAR values than any of the baseline methods thus demonstrating the effi-

cacy of ExTra. Also there is a rough trend of the AuC-MAR values decreas-
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Table 5.4: Variation of percentage AuC-MAR of ε-greedy Q-learning with ExTra
exploration for different source task goal positions in SixLargeRooms environment
(Section 5.5.2.2).

AuC-MAR(%)

Baselines

ε-greedy 52.92± 3.83
MBIE-EB 34.80± 3.98

Pursuit 69.05± 2.84
Softmax 64.85± 3.29

Source task #

1 73.70± 2.21
2 75.73± 2.08
3 78.54± 2.78
4 74.59± 2.81
5 81.94± 1.70

ing with increasing distance of goal in the source task. This demonstrates

graceful degradation of performance.

• In our second study, ExTra beats both ε−greedy and MBIE-EB for even

the worst case choice of source task – NegativeHallways (compare Table

5.5 with Row 1 of Table 5.3). This is possible because ExTra is able to

leverage knowledge about the transition dynamics of the source MDP (that

are identical to the target MDP) even when the reward structures and goal

distributions are drastically different. It also reflects the robustness of ExTra

to the choice of source task.

• We note that in Table 5.5 the reward structure of the source environment

has a more profound effect on the performance of ExTra than transition

dynamics or goal distribution. This observation serves as a guide for choosing

source environments for bisimulation transfer.

• Higher AuC-MAR for FourSmallRooms than 3Actions suggests that source

MDPs with the same action space as the target are more favourable for

ExTra even if the state spaces are different.

111



ExTra: Transfer-guided Exploration

Table 5.5: Variation of percentage AuC-MAR of ε-greedy Q-learning with ExTra
exploration for different choices of source task and FourLargeRooms as target
(Section 5.5.2.2).

Source Task Difference AuC-MAR(%)

TwoGoals Goal distribution 77.83± 1.54
Firepit Reward structure 75.54± 1.59
NoGoal Reward structure 75.59± 1.81

NegativeHallways
Reward structure
and Goal distribution

73.36± 1.62

3Actions Action space 77.60± 1.78
Gravity Transition dynamics 77.78± 1.56
FourSmallRooms State space 82.79± 1.68

Table 5.6: Comparison of percentage AuC-MAR scores of traditional exploration
methods with and without ExTra (Section 5.5.2.3).

AuC-MAR(%)
TR(%)

vanilla with ExTra
ε-greedy 61.91± 1.30 76.10± 1.44 23.41
MBIE-EB 70.55± 1.30 74.87± 1.68 6.11
Pursuit 72.80± 2.02 76.87± 1.16 5.59
Softmax 69.51± 1.60 72.59± 1.14 4.43

5.5.2.3 Enhancing the Performance of Traditional Exploration Algo-

rithms Using ExTra

With a view to test if ExTra has a complementary effect when used with tra-

ditional exploration algorithms, we formulate ε-greedy versions of each of our

baseline algorithms (ε = 0.5). The agent samples actions from πExTra with prob-

ability ε (ε = 0.5) and follows the main algorithm rest of the time (Algorithms

10, 11 and 12). We choose SixLargeRooms as our benchmark environment and

FourSmallRooms (Figure 5.1) as source environment for ExTra. Table 5.6 and Fig-

ure 5.4 present the results of these experiments. We see that ExTra can provide

improved rate of convergence of the traditional methods and hence can indeed be

used as a complementary exploration method.
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(a) ε-greedy (b) MBIE-EB

(c) Pursuit (d) Softmax

Figure 5.4: Complementary effect of using ExTra: improved rate of convergence of
traditional exploration algorithms when used in conjunction with ExTra (Section
5.5.2.3).

(a) FourLargeRooms (b) Taxi-v2

Figure 5.5: Comparison of rate of convergence between ε−greedy Q-learning with
ExTra and the bisimulation policy transfer algorithm of [34] (Section 5.5.2.4).
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Figure 5.6: Modified Taxi-v2 environment of OpenAI Gym used in our study on
comparing ExTra with Bisimulation Policy Transfer (Section 5.5.2.4)

5.5.2.4 Comparison of ExTra with Bisimulation Transfer

In this experiment, we compare the efficacy of ExTra with Bisimulation Policy

Transfer [34] for different levels of similarity of the source and target environ-

ments. We choose FourSmallRooms as source environment. As targets, we choose

FourLargeRooms and a modified version of the Taxi-v2 environment of OpenAI

Gym [33] with 54 states (see Figure 5.6). The modified Taxi-v2 environment has

3 rows, 3 columns and 2 drop locations at the top-left and bottom-right corners.

The action space of this environment remains same as the original version, where

the agent can choose actions from South, North, West, East, Pickup and Drop.

We compare the rates of convergence of ε−greedy Q-learning with ExTra and the

bisimulation transfer algorithm of Castro et al. [34] that initializes the Q-matrix

with the Q-value of the transferred policy.

Figure 5.5 presents the results of the experiments. We see that when the

source and target tasks are similar (FourSmallRooms and FourLargeRooms) and

bisimulation policy transfer is successful, Q-learning gets an initial jumpstart while

ExTra catches up. When the source and target tasks are drastically different

(FourSmallRooms and Taxi-v2), the bisimulation distances are large and πExTra

tends to a uniform distribution over target actions. As a result, ExTra falls back
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to vanilla ε−greedy Q-learning with uniform sampling. On the other hand, Q-

learning initialized with bisimulation transfer has to first recover from the effect of

negative transfer using ε−greedy uniform exploration before it can start learning.

In this case, it does not get any jumpstart and also converges slower than ExTra

which does not need to correct for the damage done by negative transfer and

proceeds as vanilla ε−greedy Q-learning. We observe that, while bisimulation

transfer can be both effective and fatal depending on how the source and target

tasks are related, ExTra does not negatively affect the learning process even when

the source and target task-environments are drastically different.

5.6 Summary

In this chapter we investigated the fundamental possibility of using transfer to

guide exploration in RL and formulate a novel transfer guided exploration algo-

rithm, ExTra, based on the theory of bisimulation based policy transfer in MDPs.

We demonstrated that our method achieves faster convergence compared to tra-

ditional exploration methods that only use local information. We also showed

that ExTra is robust to source task selection and can complement traditional ex-

ploration methods by improving their rates of convergence. We also provided

theoretical guarantees in the form of a lower bound on the optimal advantage of

an action in the target domain in terms of bisimulation distance from the source

environment. With access to scalable methods of calculating the bisimulation dis-

tance [160], the framework of ExTra and its guarantees can potentially be used

in autonomous driving for transfer of knowledge gained in simulation to the real

world.
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C H A P T E R 6

Conclusion

6.1 Summary of Contributions

The dissertation aims at improving the safety and sample complexity of reinforce-

ment learning algorithms for use in autonomous driving. The first contribution

is MADRaS, an open-source Multi-Agent Driving Simulator capable of creating

driving tasks of high variance. It offers a wide variety of traffic conditions, noisy

observations, stochastic actions, inter-vehicular communication and multi-agent

training. We present six case studies to demonstrate the features of MADRaS:

• Generalization across tracks with higher level actions

• Generalization across vehicular dynamics through random car selection

• Curriculum learning for driving in Spring track of MADRaS

• Learning under partial observability and stochastic outcomes of actions

• Learning to drive in traffic

• Avoiding traffic obstruction through multi-agent cooperation.
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The second contribution of this thesis is RAIL, a Risk-Averse Imitation Learn-

ing algorithm that aims to increase the reliability of Imitation Learning for risk-

sensitive applications like autonomous driving. RAIL is based on Generative Ad-

versarial Imitation Learning (GAIL), a state-of-the-art imitation learning algo-

rithm. We show that RAIL is a superior choice than GAIL for imitation learning

in risk-sensitive applications. We also demonstrate the following:

• The applicability of RAIL is not limited to environments in which the dis-

tribution of trajectory-cost is heavy-tailed for GAIL.

• RAIL converges at least as fast as GAIL.

• RAIL preserves the scalability of GAIL while showing lower tail-risk.

The third contribution of this thesis is ExTra, a framework for Transfer-guided

Exploration, that uses prior knowledge from related tasks to guide exploration in

a new task-environment. ExTra is based on the theory of transfer learning using

bisimulation metrics [34]. Efficient exploration is crucial for success of reinforce-

ment learning in real-world environments of high-variance such as those faced in

autonomous driving. We evaluate the viability of ExTra through empirical anal-

ysis of its performance on stochastic grid-world environments and arrive at the

following conclusions:

1. Given the optimal policy in a related task-environment (even if the MDP is

different) ExTra can achieve faster convergence and hence superior sample

efficiency than domain-specific exploration algorithms like ε-greedy, MBIE-

EB [148], Pursuit [13] and Softmax [13].

2. ExTra is able to leverage knowledge about the transition dynamics of the

source MDP even when the reward structures and goal distributions are

different. ExTra is more sensitive to the reward structure of the source MDP

than transition dynamics or goal distribution. Also, source MDPs with the

same action space as the target are more preferable even if the state spaces

are different.
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3. ExTra achieves gains in performance of traditional exploration algorithms

like ε-greedy, MBIE-EB [148], Pursuit [13] and Softmax [13] when used

in conjunction. This proves its viability as a complementary exploration

method for accelerating the rate of convergence of traditional RL algorithms.

4. We observe that bisimulation transfer [34] can be both effective and detri-

mental depending on how the source and target tasks are related. Unlike

bisimulation transfer, ExTra does not affect the learning process negatively

even when the source and target environments are drastically different. Since

bisimulation distances are larger for dissimilar environments, πExTra tends

to a uniform distribution over target actions. As a result, ExTra falls back

to vanilla ε−greedy Q-learning with uniform sampling.

The computational complexity involved in the estimation of the bisimulation dis-

tance function is a major hindrance to the application of bisimulation based trans-

fer algorithms in large environments and continuous state-action spaces. Scalable

methods of computing the bisimulation metric between large task-environments

in the absence of complete knowledge about their reward functions and transition

dynamics is a topic of active research [160]. When such methods become available,

the framework of ExTra and its guarantees can potentially be used in autonomous

driving for transfer of knowledge gained in simulation to the real world.

6.2 Future Scopes

The work presented in this thesis can serve as a starting point for the following

lines of research:

• Development of multi-agent driving simulators for planning in urban envi-

ronments.

• Development of scalable methods for provably safe reinforcement learning.

• Development of scalable algorithms for bisimulation-based transfer of poli-

cies between complex environments.

119



Conclusion

The primary goal of autonomous driving is to make life safer on this planet.

However, achieving this goal is not just a technological challenge. Making fully

autonomous driving mainstream would require a complete overhaul of our existing

transport infrastructures [161]. This poses an immense socio-economic challenge

that may take several decades to achieve. However, autonomous sensing and

decision making technologies can be incorporated into existing Advanced Driver-

Assistance Systems (ADAS) right away and can be made affordable and ubiqui-

tous. This can save millions of lives without having to hand over full control to

the robots.
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[147] S. B. Thrun and K. Möller, “Active exploration in dynamic environments,” in Advances
in Neural Information Processing Systems, 1992, pp. 531–538.

129



[148] A. L. Strehl and M. L. Littman, “A theoretical analysis of model-based interval estima-
tion,” in Proceedings of the 22nd International Conference on Machine learning. ACM,
2005, pp. 856–863.

[149] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite markov decision processes,” in
Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press,
2004, pp. 162–169.

[150] J. Taylor, D. Precup, and P. Panagaden, “Bounding performance loss in approximate
mdp homomorphisms,” in Advances in Neural Information Processing Systems, 2009, pp.
1649–1656.

[151] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model minimization in markov
decision processes,” Artificial Intelligence, vol. 147, no. 1-2, pp. 163–223, 2003.

[152] B. Ravindran and A. G. Barto, “Model minimization in hierarchical reinforcement learn-
ing,” in International Symposium on Abstraction, Reformulation, and Approximation.
Springer, 2002, pp. 196–211.

[153] B. Ravindran, “Smdp homomorphisms: An algebraic approach to abstraction in semi
markov decision processes,” Ph.D. dissertation, 2003.

[154] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” International
statistical review, vol. 70, no. 3, pp. 419–435, 2002.

[155] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[156] W. Mayner, “Fast emd for python: a wrapper for pele and werman’s c++ implementation
of the earth mover’s distance metric,” https://github.com/wmayner/pyemd, 2018.

[157] O. Pele and M. Werman, “A linear time histogram metric for improved sift matching,” in
Computer Vision–ECCV 2008. Springer, October 2008, pp. 495–508.

[158] A. Andoni, P. Indyk, and R. Krauthgamer, “Earth mover distance over high-dimensional
spaces.” in SODA, vol. 8, 2008, pp. 343–352.

[159] O. Pele and M. Werman, “Fast and robust earth mover’s distances,” in 2009 IEEE 12th
International Conference on Computer Vision. IEEE, September 2009, pp. 460–467.

[160] P. S. Castro, “Scalable methods for computing state similarity in deterministic markov
decision processes,” arXiv preprint arXiv:1911.09291, 2019.

[161] T. Duvall, E. Hannon, J. Katseff, B. Safran, and T. Wal-
lace, “A new look at autonomous-vehicle infrastructure,” 2019. [Online].
Available: https://www.mckinsey.com/industries/capital-projects-and-infrastructure/
our-insights/a-new-look-at-autonomous-vehicle-infrastructure

130

https://github.com/wmayner/pyemd
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/a-new-look-at-autonomous-vehicle-infrastructure
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/a-new-look-at-autonomous-vehicle-infrastructure


Publications by the Author

Journals

• Anirban Santara, Kaustubh Mani, Pranoot Hatwar, Ankit Singh, Ankur

Garg, Kirti Padia, Pabitra Mitra, (2017). “BASSNet: Band-Adaptive Spectral-

Spatial Feature Learning Neural Network for Hyperspectral Image Classifi-

cation”. In: IEEE Transactions on Geoscience and Remote Sensing 55.9,

pp.5293–5301.

Conferences

• Anirban Santara, Rishabh Madan, Pabitra Mitra, Balaraman Ravindran.

“ExTra: Transfer-guided Exploration”. Proceedings of the 19th Interna-

tional Conference on Autonomous Agents and MultiAgent Systems. 2020.

• Anirban Santara, Abhishek Naik, Balaraman Ravindran, Dipankar Das,

Dheevatsa Mudigere, Sasikanth Avancha, Bharat Kaul. “RAIL: Risk-Averse

Imitation Learning”. Proceedings of the 17th International Conference on

Autonomous Agents and MultiAgent Systems. 2018.

• Debapriya Maji, Anirban Santara, Sambuddha Ghosh, Debdoot Sheet, Pabi-

tra Mitra. “Deep neural network and random forest hybrid architecture for

learning to detect retinal vessels in fundus images”. In: Engineering in

Medicine and Biology Society (EMBC), 2015, 37th Annual International

Conference of the IEEE. pp.3029–3032.

131



Submitted Papers

• Anirban Santara, Sohan Rudra, Sree Aditya Buridi, Meha Kaushik, Ab-

hishek Naik, Bharat Kaul, Balaraman Ravindran. “MADRaS: Multi-Agent

Driving Simulator”, communicated to Journal of Artificial Intelligence Re-

search, 2020

• Anirban Santara, Jayeeta Datta, Sourav Sarkar, Ankur Garg, Kirti Padia,

Pabitra Mitra,(2019). “PUNCH: Positive UNlabelled Classification based

information retrieval in Hyperspectral images.”,

arXiv:1904.04547

132



Author’s Biography

Anirban Santara is a Google India PhD Fellow at the Department of Computer

Science and Engineering, Indian Institute of Technology (IIT) Kharagpur. He

graduated from the Department of Electronics and Electrical Communications

Engineering, IIT Kharagpur in 2015.

Research Interests

Reinforcement Learning, Robotics, Deep Learning & Applications, AI Safety.

Education

• Doctor of Philosophy (PhD), Computer Science and Engineering

Indian Institute of Technology Kharagpur, India

Dissertation title: Reinforcement Learning for Safe and Efficient Planning

in Autonomous Driving

Year: 2015–2020

• Bachelor of Technology (B-Tech), in Electronics and Electrical Com-

munication Engineering

Year: 2011-2015

Indian Institute of Technology Kharagpur, India

CGPA: 9.30/10

133



Awards & Honours

• Heidelberg Laureate Forum: One of 200 students selected for participa-

tion in the 6th Heidelberg Laureate Forum (2018).

• Indian Ambassador to Russia: Represented the AI community of India

at the XIX World Festival of Youth and Students in Sochi (2017)

• Google India Ph.D. Fellowship: from Google, for leadership in Machine

Learning research (2016)

• Rajendra Nath Das MCM Award: From IIT Kharagpur, for outstand-

ing academic performance (2014)

• Batch of ’85 Scholarship: From IIT Kharagpur, for outstanding academic

performance (2013)

Research Experience

• Google India Ph.D. Fellow

Duration: Indian Institute of Technology, Kharagpur, India

Duration: July 2015 – Ongoing

Dissertation Topic: Reinforcement Learning for Safe and Efficient Plan-

ning in Autonomous Driving

Advisors: Prof. Pabitra Mitra, Prof. Balaraman Ravindran

Sponsor: Google India

• Google Brain

Internship 1 Duration: Jul 2019–November 2019

Position: Research Intern

Internship 2 Duration: Nov 2018–Mar 2019

Position: Software Engineering Intern

Location: Mountain View, CA, USA

– Developed a pipeline for data efficient learning of high-dimensional

long-horizon continuous control tasks that involve a hierarchy of goals

at different time scales.

134



– The pipeline comprises unsupervised learning of human motion prim-

itives, supervised learning of fine grained motor control and reinforce-

ment learning of a high-level policy.

– The pipeline achieves superior sample efficiency and human-like motion

than any single learning paradigm.

• Graduate Research Intern for Autonomous Driving

Location: Parallel Computing Lab – Intel Labs, Bangalore, India

Duration: Jan 2017–Dec 2017

– Developed RAIL, a framework for risk-averse imitation learning in

autonomous agents deployed in risk-sensitive applications: https://

intel.ly/2lDyQ34

– Achieved upto 89 percent improvement in Conditional Value-at-Risk (a

measure of tail-risk) over the previous state-of-the-art algorithm with

RAIL at benchmark continuous control tasks

– Developed MADRaS, the world’s first open-source fully-customizable

Multi-Agent DRiving Simulator: https://github.com/madras-simulator

• Research Consultant for Deep Learning

Location: Indian Institute of Technology, Kharagpur, India

Duration: 2015–2016

– Developed a novel Deep Neural Network architecture, BASS-Net (https:

//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7938656), and

information retrieval framework, PUNCH (https://arxiv.org/abs/

1904.04547) for land-cover classification in hyper-spectral images (HSI)

for Indian Space Research Organization (ISRO).

– Designed a state-of-the-art Deep Neural Network ensemble for reti-

nal vessel segmentation (https://ieeexplore.ieee.org/abstract/

document/7319030/, https://arxiv.org/abs/1603.04833) in Dia-

betic Retinopathy diagnosis in collaboration with Apollo Gleneagles

Hospitals.

135

https://intel.ly/2lDyQ34
https://intel.ly/2lDyQ34
https://github.com/madras-simulator
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7938656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7938656
https://arxiv.org/abs/1904.04547
https://arxiv.org/abs/1904.04547
https://ieeexplore.ieee.org/abstract/document/7319030/
https://ieeexplore.ieee.org/abstract/document/7319030/
https://arxiv.org/abs/1603.04833


• Undergraduate Researcher in Deep Learning

Location: Indian Institute of Technology, Kharagpur, India

Duration: 2013–2015

– Optimization of Deep Learning algorithms on multi-core CPUs.

– Deep learning for Diabetic Retinopathy screening

• Project Trainee

Location: Texas Instruments, Bangalore, India

Duration: 2014

– Adaptive Grayscale Level Adjustment in DLP Based 3D Scanning Sys-

tem for Improved Reconstruction of Object Shape.

VOLUNTEERING

• Program Chair at up.AI Summit 2018 at IIT Kharagpur

Year: 2018–2019

– Ideated and Organized IIT Kharagpur’s first Artificial Intelligence Sum-

mit.

– Event witnessed record turnover of 1000+ students and got covered by

national media: http://bit.ly/2OlBVTg, http://bit.ly/2ukVNfN,

http://bit.ly/2HNfuow

• Intel Student Ambassador for AI at Intel AI Academy

Year: 2018–Ongoing

– Wrote blogs, delivered blitz talks and tutorials on Deep Learning theory

and implementation on Intel hardware and software platforms online

and at several Intel AI Academy events around the globe.

– Blog on MADRaS: A Multi Agent DRiving Simulator: https://intel.

ly/2KvB4MX.

– Intel AI Acedemy Spotlight Video: https://intel.ly/2lDyQ34.

136

http://bit.ly/2OlBVTg
http://bit.ly/2ukVNfN
http://bit.ly/2HNfuow
https://intel.ly/2KvB4MX
https://intel.ly/2KvB4MX
https://intel.ly/2lDyQ34


• Guard Commander as part of 1 Bengal EME COY NCC at IIT

Kharagpur

Year: 2011–2012

– Managed weekly drills and assigned duties of 300 cadets from the Elec-

trical and Mechanical Engineering (EME) branch of the Indian Army

– Received NCC-B certificate
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