
Scalable Bayesian Factorization Models for Recommender

Systems

A THESIS

submitted by

AVIJIT SAHA

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

JUNE 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Scalable Bayesian Factorization Models for Rec-

ommender Systems, submitted by Avijit Saha, to the Indian Institute of Technology,

Madras, for the award of the degree of Master of Science, is a bonafide record of the

research work done by him under our supervision. The contents of this thesis, in full or

in parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Dr. B Ravindran
Research Guide
Associate Professor
Dept. of CSE
IIT-Madras, 600 036

Place: Chennai

Date: June 08, 2016

ACKNOWLEDGEMENTS

Throughout my stay here, I was fortunate enough to be surrounded by an amazing set of

people. I would like to take this opportunity to extend my gratitude to these people. Firstly,

I would like to thank my advisor Balaraman Ravindran, who provided me the freedom to

explore several areas, and supported me throughout the course. He was more than a teacher

and a collaborator from my day one here, a complete mentor. Often I get amazed looking

at his diverse knowledge in several domains.

I am charmed to have worked with Professors and colleagues at IIT Madras and else-

where, who have been of utmost importance during my education. I would like to thank

Ayan Acharya, with whom I have started working towards the end of my course on multi-

ple Bayesian nonparametric factorization model problems. He is a fantastic collaborator.

He helped me to get a clear understanding on the recent advances in Bayesian statistics. I

would like to thank Ayan Acharya and Joydeep Ghosh for the collaboration which resulted

in an ICDM paper. I would also like to thank Rishabh, who worked with me for a long

time on Bayesian factorization models. I got a lot of support from him. It was a plea-

sure working with Janarthanan and Shubhranshu for the Recsys challenge 2014. I am also

thankful to Nandan Sudarsanam for his time on several discussions on bandit problems. I

am grateful to Mingyuan Zhou, who gave me the opportunity to collaborate with him on

nonparametric dynamic network modeling.

I am largely indebted to my friends without whom I can hardly imagine a single day

in the Institute. First of the lot, I would like to thank Saket, with whom I attended several

courses. He always stood besides me during my tough days. I am thankful to Animesh and

Sai for their support. Also I would like to thank Vishnu, Sudarsan, Aman, Arnab, Ahana,

Shamshu, Abhinoy, Vikas, Pratik, Sarath, Deepak, Chandramohan, Priyesh, and Rajkaran

for all their help. Thanks to Arpita, Aditya, Viswa, Nandini, Sandhya, and all my 2012

MS friends for making my life at IIT Madras cherishable.

i

I owe many thanks to my advisor Balaraman Ravindran for helping me to get grants

for my research. I am grateful to Ericsson India for funding my research.

Finally, I would like to thank my family for being one of my primary source of inspi-

ration, without whom I would not have been able to complete the course. I specially want

to thank my mother Shikha Saha, who has supported me always, and has been my biggest

strength.

ii

To the memory of my father, Dipak Saha.

iii

ABSTRACT

KEYWORDS: Recommender Systems; Collaborative Filtering; Latent Variable

Models; Factorization Models; Matrix Factorization; Factorization

Machine; Probabilistic Modeling; Scalable; Bayesian; Variational

Bayes; Markov Chain Monte Carlo; Nonparametric.

In recent years, Recommender Systems (RSs) have become ubiquitous. Factorization

models are a common approach to solve RSs problems, due to their simplicity, predic-

tion quality and scalability. The idea behind such models is that preferences of a user

are determined by a small number of unobserved latent factors. One of the most well

studied factorization model is matrix factorization using the Frobenius norm as the loss

function. In more challenging prediction scenarios where additional “side-information”

is available and/or features capturing higher order may be needed, new challenges due to

feature engineering needs arise. The side-information may include user specific features

such as age, gender, demographics, and network information and item specific informa-

tion such as product descriptions. While interactions are typically desired in such scenar-

ios, the number of such features grows very quickly. This dilemma is cleverly addressed

by the Factorization Machine (FM), which combines high prediction quality of factor-

ization models with the flexibility of feature engineering. Interestingly, the framework

of FM subsumes many successful factorization models like matrix factorization, SVD++,

TimeSVD++, Pairwise Interaction Tensor Factorization (PITF), and factorized personal-

ized Markov chains (FPMC). Also, due to the availability of large data, several sophisti-

cated probabilistic factorization models have been developed. However, in spite of having

a vast literature on factorization models, several problems exist with different factorization

model algorithms.

In this thesis, we take a probabilistic approach to develop several factorization models.

We adopt a fully Bayesian treatment of these models and develop scalable approximate

iv

inference algorithms for them.

Bayesian Probabilistic Matrix Factorization (BPMF), which is a Markov chain Monte

Carlo (MCMC) based Gibbs sampling inference algorithm for matrix factorization, pro-

vides state-of-the-art performance. BPMF uses multivariate Gaussian prior on latent factor

vector which leads to cubic time complexity with respect to the dimension of latent space.

To avoid this cubic time complexity, we develop the Scalable Bayesian Matrix Factoriza-

tion (SBMF) which considers independent univariate Gaussian prior over latent factors.

SBMF, which is a MCMC based Gibbs sampling inference algorithm for matrix factoriza-

tion, has linear time complexity with respect to the dimension of latent space and linear

space complexity with respect to the number of non-zero observations.

We then develop the Variational Bayesian Factorization Machine (VBFM) which is a

batch scalable variational Bayesian inference algorithm for FM. VBFM converges faster

than the existing state-of-the-art MCMC based inference algorithm for FM while provid-

ing similar performance. Additionally for large scale learning, we develop the Online

Variational Bayesian Factorization Machine (OVBFM) which utilizes stochastic gradient

descent to optimize the lower bound in variational approximation. OVBFM outperforms

existing online algorithms for FM as validated by extensive experiments performed on

numerous large-scale real world data.

Finally, the existing inference algorithm for FM assumes that the data is generated

from a Gaussian distribution which may not be the best assumption for count data such as

integer-valued ratings. Also, to get the best performance, one needs to cross-validate over

the number of latent factors used for modeling the pairwise interaction in FM, a process

that is computationally intensive. To overcome these problems, we develop the Nonpara-

metric Poisson Factorization Machine (NPFM), which models count data using the Poisson

distribution, provides both modeling and computational advantages for sparse data. The

ideal number of latent factors is estimated from the data itself. We also consider a special

case of NPFM, the Parametric Poisson Factorization Machine (PPFM), that considers a

fixed number of latent factors. Both PPFM and NPFM have linear time and space com-

plexity with respect to the number of non-zero observations. Using extensive experiments,

we show that our methods outperform two strong baseline methods by large margins.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iv

ABBREVIATIONS ix

LIST OF TABLES x

LIST OF FIGURES xi

NOTATION xii

1 INTRODUCTION 1

1.1 Contribution of the Thesis . 5

1.2 Outline of the Thesis . 6

2 BACKGROUND 7

2.1 Recommender Systems . 7

2.1.1 Collaborative Filtering . 7

2.1.2 Content-based . 10

2.1.3 Knowledge-based . 10

2.1.4 Hybrid . 10

2.2 Latent Variable Models and Factorization Models 11

2.2.1 Matrix Factorization . 12

2.2.2 Probabilistic Matrix Factorization 14

2.2.3 Bayesian Probabilistic Matrix Factorization 14

2.2.4 Factorization Machine . 16

2.2.5 Learning Factorization Machine 18

2.3 Probabilistic Modeling and Bayesian Inference 20

vi

2.4 Markov Chain Monte Carlo . 21

2.4.1 Gibbs Sampling . 21

2.5 Variational Bayes . 22

2.5.1 Stochastic Variational Inference 24

3 SCALABLE BAYESIAN MATRIX FACTORIZATION 25

3.1 Introduction . 25

3.2 Method . 28

3.2.1 Model . 28

3.2.2 Inference . 29

3.2.3 Time and Space Complexity 30

3.3 Experiments . 30

3.3.1 Datasets . 30

3.3.2 Experimental Setup and Parameter Selection 32

3.3.3 Results . 33

3.4 Summary . 35

4 SCALABLE VARIATIONAL BAYESIAN FACTORIZATION MACHINE 37

4.1 Introduction . 37

4.2 Model . 39

4.3 Approximate Inference . 40

4.3.1 Batch Variational Inference . 40

4.3.2 Stochastic Variational Inference 44

4.4 Experiments . 48

4.4.1 Dataset . 48

4.4.2 Methods of Comparison . 48

4.4.3 Parameter Selection and Experimental Setup 48

4.4.4 Results . 49

4.5 Summary . 51

5 NONPARAMETRIC POISSON FACTORIZATION MACHINE 53

5.1 Introduction . 53

vii

5.2 Background and Related Work . 55

5.2.1 Negative Binomial Distribution 56

5.2.2 Gamma Process . 57

5.2.3 Poisson Factor Analysis . 57

5.3 Nonparametric Poisson Factorization Machine 58

5.3.1 Model . 58

5.3.2 Inference Using Gibbs Sampling 60

5.3.3 Parametric Version . 63

5.3.4 Prediction . 64

5.3.5 Tme and Space Complexity 65

5.4 Experimental Results . 65

5.4.1 Generating Synthetic Data . 65

5.4.2 Simulation . 66

5.4.3 Real World Datasets . 67

5.4.4 Metric . 67

5.4.5 Baseline . 69

5.4.6 Experimental Setup and Parameter Selection 70

5.4.7 Results . 70

5.5 Summary . 72

6 CONCLUSION AND FUTURE WORK 73

ABBREVIATIONS

RSs Recommender Systems

CF Collaborative filtering

SVMs Support Vector Machines

SGD Stochastic gradient descent

MCMC Markov chain Monte Carlo

PMF Probabilistic Matrix Factorization

BPMF Bayesian Probabilistic Matrix Factorization

FM Factorization Machine

PITF Pairwise Interaction Tensor Factorization

FPMC Factorized personalized Markov chains

SBMF Scalable Bayesian Matrix Factorization

VBFM Variational Bayesian Factorization Machine

OVBFM Online Variational Bayesian Factorization Machine

NPFM Nonparametric Poisson Factorization Machine

PPFM Parametric Poisson Factorization Machine

RMSE Root mean square error

NDCG Normalized Discounted Cumulative Gain

IDCG Ideal Discounted Cumulative Gain

ix

LIST OF TABLES

3.1 Time and space complexity comparison between SBMF and BPMF. . . 30

3.2 Description of the datasets for SBMF. 33

3.3 Results comparison between SBMF and BPMF. 34

4.1 Description of the datasets for VBFM and OVBFM. 48

5.1 Description of the datasets for NPFM. 67

x

LIST OF FIGURES

2.1 Feature representation of FM for a song-count dataset with three types of
variables: user, song, and genre. 17

3.1 Graphical model representation of SBMF. 27

3.2 Left, middle, and right columns correspond to the results for K = 50, 100,
and 200 respectively. {a,b,c}, {d,e,f}, and {g,h,i} are results on Movielens
10m, Movielens 20m, and Netflix datasets respectively. 35

4.1 Graphical model representation of VBFM. 40

4.2 Left, middle, and right columns correspond to the results for K = 20, 50,
and 100 respectively. {a,b,c}, {d,e,f}, and {g,h,i} are results on Movielens
1m, Movielens 10m, and Netflix datasets respectively. 50

4.3 Left and right columns show results on KDD music dataset for K = 20
and 50 respectively. 51

5.1 Graphical Model representation of NPFM. 61

5.2 Results of NPFM on Synthetic dataset. 66

5.3 (a), (b), (c), and (d) show Mean Precision, Mean Recall, F-measure, and
Mean NDCG comparison on different datasets for different algorithms re-
spectively. 69

5.4 (a) and (b) show time per iteration comparison for different algorithms on
Movielens 100k & Movielens 1M and Movielens 10M & Netflix datasets
respectively. 71

xi

NOTATION

X Matrix
x Column vector, unless explicitly specified as row vector
ᵀ Transpose
X.j Summed over index i
(i, j) : i < j All (i, j) pairs with i < j
Γ Gamma function
N (·, ·) Gaussian distribution
Gamma(·, ·) Gamma distribution
ΓP(·, ·) Gamma process
NB(·, ·) Negative binomial distribution
CRT(·, ·) Chinese restaurant table
Pois(·, ·) Poisson distribution
p(·|·) Probability distribution
x ∼ Distribution of random variable x
·|− Conditional probability distribution (conditioned on everything except ·)

xii

CHAPTER 1

INTRODUCTION

“Information overload occurs when the amount of input to a system exceeds its processing

capacity. Decision makers have fairly limited cognitive processing capacity. Consequently,

when information overload occurs, it is likely that a reduction in decision quality will

occur” - Speier et al. (1999).

Information overload has become a major problem in recent years with the advance-

ment of Internet. Social media users and microbloggers receive large volume of informa-

tion, often at a higher rate than they can effectively and efficiently consume. Often, users

face difficulties in finding relevant items due to the sheer volume of information present in

the web, for e.g., finding relevant books from Amazon.com book catalog. Recommender

Systems (RSs) and web search help users to systematically and efficiently access informa-

tion and help to avoid the information overload problem.

In recent years, RSs have become ubiquitous. RSs provide suggestions of items to users

for various decision making processes such as: what song to listen, what book to buy, what

movie to watch, etc. Often RSs are built for personalized recommendation and provide

user specific suggestions. As few examples: Amazon.com employs a RS to personal-

ize the online store for each customer; Netflix provides movie recommendation based on

users’ past rating history, current data-query, and users’ profile information; Twitter uses

personalized tweet recommendation engine to suggest relevant tweets to users.

Collaborative filtering (CF) [Su and Khoshgoftaar, 2009; Lee et al., 2012; Bell and

Koren, 2007] is widely used in RSs and have proven to be very successful. CF takes

multiple user’s preferences into account to recommend items to a user. The fundamental

assumption of CF is that if two user’s preferences are same on some number of items, then

their behavior will be same on the other unseen items. CF [Bell and Koren, 2007] can

be viewed as missing value prediction task where given a user-item matrix of scores with

many missing values, the task is to estimate the missing entries in the matrix based on the

given ones. Memory-based CF algorithms [Su and Khoshgoftaar, 2009] were a common

choice in RSs earlier due to their simplicity and scalability. Neighborhood-based (kNN)

CF algorithms [Su and Khoshgoftaar, 2009; Bell and Koren, 2007] are prevalent memory-

based CF techniques which identify pairs of items that have similar rating behavior or users

with similar rating patterns, to find unknown user-item relationship. However memory-

based methods are unreliable when the data are sparse [Su and Khoshgoftaar, 2009]. In

order to achieve better accuracy and alleviate the short comings of memory-based CF,

model-based CF approaches [Hofmann, 2004; Koren et al., 2009; Salakhutdinov and Mnih,

2007] have been investigated.

Model-based CF fits a parametric model to the training data, which is used later to

predict the unknown user-item ratings. One particular type of model-based CF algo-

rithms is based on latent variable models such as, pLSA [Hofmann, 2004], neural net-

works [Salakhutdinov et al., 2007], Latent Dirichlet Allocation [Blei et al., 2003], and

matrix factorization [Salakhutdinov and Mnih, 2007] which try to uncover hidden features

that explain the ratings. Latent variable models involve supplementing a set of observed

variables with additional latent, or hidden, variables. In probabilistic latent variable model

framework, the distribution over the observed variables is obtained by marginalizing out

the hidden variables from the joint distribution over observed and hidden variables. The

hidden structure of the data can be computed and explored through the posterior which is

defined as the conditional distribution of the latent variables given the observations. This

hidden structure, computed through the posterior distribution, is useful in prediction and

exploratory analysis.

Factorization models [Koren et al., 2009; Koren, 2009; Salakhutdinov and Mnih, 2008;

Xiong et al., 2010] are a class of latent variable models and have received extensive atten-

tion in the RSs community, due to their simplicity, prediction quality, and scalability. These

models represent both users and items using a small number of unobserved latent factors.

Hence, each user/item is associated with a latent factor vector. Elements of a item’s la-

tent factor measure the extent to which the item possesses those factors and elements of

a user’s latent factor measure the extent of interest the user has in items that are high on

the corresponding factors. Throughout the thesis, we will adopt a Bayesian approach to

2

analyze different factorization models.

One of the most well studied factorization model is matrix factorization [Koren et al.,

2009; Salakhutdinov and Mnih, 2007, 2008; Gopalan et al., 2015] using the Frobenius

norm as the loss function. Formally, matrix factorization recovers a low-rank latent struc-

ture of a matrix by approximating it as a product of two low rank matrices. A popular

approach to solve matrix factorization is to minimize the regularized squared error loss.

The optimization problem can be solved using stochastic gradient descent (SGD) [Koren

et al., 2009]. SGD is an online optimization algorithm which obviates the need to store the

entire dataset in memory and hence is often preferred for large scale learning due to mem-

ory and speed considerations [Silva and Carin, 2012]. Though SGD is scalable and enjoys

local convergence guarantee [Sato, 2001], it often overfits the data and requires manual

tuning of the learning rate and the regularization parameters [Salakhutdinov and Mnih,

2007]. On the other hand, Bayesian methods [Salakhutdinov and Mnih, 2008; Beal, 2003;

Tzikas et al., 2008; Hoffman et al., 2013] for matrix factorization automatically tune learn-

ing rate and regularization parameters and are robust to overfitting. Bayesian Probabilistic

Matrix Factorization (BPMF) [Salakhutdinov and Mnih, 2008] directly approximate the

posterior distribution using Markov chain Monte Carlo (MCMC) based Gibbs sampling

inference mechanism and outperform the variational based approximation. BPMF uses

multivariate Gaussian distribution as prior on latent factor vector which leads to cubic time

complexity with respect to the dimension of latent space. Hence, many times it is difficult

to apply BPMF on very large datasets.

In more challenging prediction scenarios where additional “side-information” is avail-

able and/or features capturing higher order may be needed, new challenges due to feature

engineering needs arise. The side-information may include user specific features such as

age, gender, demographics, and network information and item specific information such

as product descriptions. While interactions are typically desired in such scenarios, the

number of such features grows very quickly. This dilemma is cleverly addressed by the

Factorization Machine (FM) [Rendle, 2010], which combines high prediction quality of

factorization models with the flexibility of feature engineering. FM represents data as

real-valued features as in standard machine learning approaches, such as Support Vec-

3

tor Machines (SVMs), and uses interactions between each pair of variables as well but

constrained to a low-dimensional latent space. By restricting the latent space, the num-

ber of parameters needed is kept manageable. Interestingly, the framework of FM sub-

sumes many successful factorization models like matrix factorization [Koren et al., 2009],

SVD++ [Koren, 2008], TimeSVD++ [Koren, 2009], Pairwise Interaction Tensor Factor-

ization (PITF) [Rendle and Schmidt-Thieme, 2010], and factorized personalized Markov

chains (FPMC) [Rendle et al., 2011a]. Other advantages of FM include – 1) FM allows

parameter estimation with extremely sparse data where SVMs fail; 2) FM has linear com-

plexity, can be optimized in the primal and, unlike SVMs, does not rely on support vectors;

and 3) FM is a general predictor that can work with any real valued feature vector, while

several state-of-the-art factorization models work only on very restricted input data.

FM is usually learned using stochastic gradient descent (SGD) [Rendle, 2010]. FM that

uses SGD for learning is conveniently addressed as SGD-FM in this thesis. As mentioned

above, though SGD is scalable and enjoys local convergence guarantees, it often overfits

the data and needs manual tuning of learning rate and the regularization parameters. Al-

ternative methods to solve FM include Bayesian Factorization Machine [C. Freudenthaler,

2011] which provides state-of-the-art performance using MCMC based Gibbs sampling as

the inference mechanism and avoids expensive manual tuning of the learning rate and regu-

larization parameters (this framework is addressed as MCMC-FM). However, MCMC-FM

is a batch learning method and is less straight forward to scale to datasets as large as the

KDD music dataset [Dror et al., 2012]. Also, it is difficult to preset the values of burn-in

and collection iterations and gauge the convergence of the MCMC inference framework, a

known problem with sampling based techniques.

Also, MCMC-FM assumes that the observations are generated from a Gaussian distri-

bution which, obviously, is not a good fit for count data. Additionally, for both SGD-FM

and MCMC-FM, one needs to solve an expensive model selection problem to identify the

optimal number of latent factors. Alternative models for count data have recently emerged

that use discrete distributions, provide better interpretability and scale only with the num-

ber of non-zero elements [Gopalan et al., 2014b; Zhou and Carin, 2015; Zhou et al., 2012;

Acharya et al., 2015].

4

In this thesis, we take a probabilistic approach to develop different factorization models

and build scalable approximate posterior inference algorithms for them. These factoriza-

tion models discover hidden structure from the data using the posterior distribution of

hidden variables given the observations which is used for prediction purpose.

1.1 Contribution of the Thesis

The contributions of the thesis are as follows:

• Scalable Bayesian Matrix Factorization (SBMF): SBMF considers independent uni-
variate Gaussian prior over latent factors as opposed to multivariate Guassian prior
in BPMF. We also incorporate bias terms in the model which are missing in baseline
BPMF model. Similar to BPMF, SBMF is a MCMC based Gibbs sampling inference
algorithm for matrix factorization. SBMF has linear time complexity with respect to
the dimension of latent space and linear space complexity with respect to the number
of non-zero observations. We show extensive experiments on three large-scale real
world datasets to validate that the SBMF takes less time than the baseline method
BPMF and incurs small performance loss.

• Variational Bayesian Factorization Machine (VBFM): VBFM is a batch variational
Bayesian inference algorithm for FM. VBFM converges faster than MCMC-FM and
performs as good as MCMC-FM asymptotically. The convergence is also easy to
track when the objective associated with the variational approximation in VBFM
stops changing significantly.

• Online Variational Bayesian Factorization Machine (OVBFM): OVBFM uses SGD
for maximizing the lower bound obtained from the variational approximation and
performs much better than the existing online algorithm of FM that uses SGD. As
considering single data instance increases the variance of the algorithm, we consider
a mini-batch version of OVBFM.

Extensive experiments on four real world movie review datasets validate the superi-
ority of both VBFM and OVBFM.

• Nonparametric Poisson Factorization Machine (NPFM): NPFM models count data
using the Poisson distribution which provides both modeling and computational ad-
vantages for sparse data. The specific advantages of NPFM include:

– NPFM provides a more interpretable model with a better fit for count dataset.

– NPFM is a nonparametric approach and avoids the costly model selection pro-
cedure by automatically finding the number of latent factors suitable for mod-
eling the pairwise interaction matrix in FM.

– NPFM takes advantages of the Poisson distribution [Gopalan et al., 2015] and
considers only sampling over the non-zero entries. On the other hand, exist-
ing FM methods, which assume a Gaussian distribution, must iterate over both

5

positive and negative samples in the implicit setting. Such iteration is expen-
sive for large datasets and often needs to be solved using a costly positive and
negative data sampling approach. NPFM can take advantage of natural sparsity
of the data which existing inference technique of FM fails to exploit.

We also consider a special case of NPFM, the Parametric Poisson Factorization Ma-
chine (PPFM), that considers a fixed number of latent factors. Both PPFM and
NPFM have linear time and space complexity with respect to the number of non-
zero observations. Extensive experiments on four different movie review datasets
show that our methods outperform two strong baseline methods by large margins.

1.2 Outline of the Thesis

Rest of this thesis is organized as follows:

• Chapter 2 reviews the necessary background work.

• Chapter 3 describes the model and experimental evaluation of SBMF.

• Chapter 4 describes the VBFM and OVBFM and shows their empirical validation.

• Chapter 5 presents the NPFM which can theoretically deal with infinite number of
latent factors and evaluation of NPFM on both synthetic and real world dataset. It
also analyses a special case of NPFM, the PPFM, that considers a fixed number of
latent factors.

• Chapter 6 concludes and explains possible directions for future works.

6

CHAPTER 2

BACKGROUND

In this chapter, we explain various background works which will be helpful to understand

the thesis. We start by discussing Recommender Systems (RSs), followed by latent vari-

able models and factorization models. Then we describe a generic probabilistic framework,

and using this framework we explain some of the existing Bayesian approximate inference

techniques which will be used throughout the thesis.

2.1 Recommender Systems

Recommender Systems (RSs) are software tools and techniques which provide suggestions

of appropriate items to users on various decision making processes such as: what song to

listen, what book to buy, what movie to watch, etc. But, the appropriate set of items are

relative to the individuals. Hence, RSs are often built for personalized recommendation

and provide user specific suggestions.

Broadly the RS algorithms can be classified into three categories: 1) collaborative

filtering (CF); 2) content-based; and 3) knowledge-based. Combination of these algorithms

leads to hybrid algorithms. We provide a brief description of these different types of RS

algorithms in this section.

2.1.1 Collaborative Filtering

Collaborative filtering (CF) [Su and Khoshgoftaar, 2009; Lee et al., 2012; Bell and Koren,

2007] is a popular and successful approach to RSs which considers multiple users’ prefer-

ences into account to recommend items to a user. The fundamental assumption behind CF

is that if two users’ preferences are same on some number of items, then their behavior will

be same on other unseen items. In a typical CF scenario, there is a set of users {1, 2, ..., I}
and a set of items {1, 2, ..., J}, and each user i has provided preferences/ratings to some

number items. This data can be represented as a matrix R ∈ RI×J , where rij is the pref-

erence/rating by the ith user to the j th item. The task of the CF algorithm is to recommend

unseen items to users. So CF problems can be viewed as missing value estimation task:

estimate the missing values of the matrix R. CF algorithms are generally classified into

two categories: memory-based; and model-based.

Memory-based

Memory-based CF algorithms are lazy learners. Neighborhood-based (kNN) CF algo-

rithms [Su and Khoshgoftaar, 2009; Bell and Koren, 2007] are most common form of

memory-based CF techniques. Earlier, kNN algorithms were mostly user-based approach [Bell

and Koren, 2007]. User-based approach estimates the unknown rating of an item for a user

based on the ratings of similar users to that item. Formally, to estimate the rating rij , we

consider a set of users N(i, j), whose rating behavior are similar to user i, and have rated

item j. Here similarity is defined in terms of how two user’s preference behavior match to

each other. Then, the estimation of rating rij is calculated as follows:

r̂ij = r̄i +

∑
i′∈N(i,j)

(ri′j − r̄i′)wii′∑
i′∈N(i,j)

|wii′ |
, (2.1)

where r̄i and r̄i′ are the average ratings score of user i and user i′ respectively, and wii′ is

the similarity score between user i and user i′ . The similarity measure plays an important

role, as they are both used to select the members of N(i, j) and as well as in Eq. (2.1).

Common choices of the similarity measures are Pearson correlation coefficient and cosine

similarity. For the user-based algorithm, the Pearson correlation between user i and user i′

is calculated as follows:

wii′ =

∑
j∈J ′

(rij − r̄i)(ri′j − r̄i′)√∑
j∈J ′

(rij − r̄i)2
√∑

j∈J ′
(ri′j − r̄i′)2

, (2.2)

8

where J ′ is the set of items rated by both user i and user i′ .

An alternative to user-based approach is item-based approach [Bell and Koren, 2007].

In this method, to predict an unknown rating rij , we identify a set of items N(j, i) that has

rating behavior similar to item j, and user i has rated all the items in the set N(j, i). Then

the prediction is done as follows:

r̂ij =

∑
j′∈N(j,i)

rij′wjj′∑
j′∈N(j,i)

|wjj′ |
, (2.3)

where wjj′ is the similarity score between item j and item j
′ . The similarity score wjj′ for

item-based approach can be calculated using the Pearson correlation coefficient as follows:

wjj′ =

∑
i∈I′

(rij − r̄j)(rij′ − r̄j′)√∑
i∈I′

(rij − r̄j)2
√∑

i∈I′
(rij′ − r̄j′)2

, (2.4)

where I ′ is the set of users who have rated both item j and j ′ , and r̄j and r̄j′ are the average

rating of item j and j ′ respectively.

Model-based

Though memory-based CF algorithms scale to large data, they are unreliable when the

data are sparse [Su and Khoshgoftaar, 2009]. In order to achieve better accuracy and al-

leviate the short comings of memory-based CF, model-based CF algorithms [Koren et al.,

2009] have been investigated. Model-based CF fits a parametric model to the training data,

which later is used to predict the unknown user-item ratings. Model-based methods include

cluster-based CF [Connor and Herlocker, 2001; Xue et al., 2005] and Bayesian classi-

fiers [Miyahara and Pazzani, 2000]. One widely used and successful type of model-based

CF algorithms are based on latent variable models such as, pLSA [Hofmann, 2004], neural

networks [Salakhutdinov et al., 2007], Latent Dirichlet Allocation [Blei et al., 2003], and

matrix factorization [Salakhutdinov and Mnih, 2007], which try to uncover hidden features

that explain the ratings. Latent variable models involve supplementing a set of observed

variables with additional latent, or hidden, variables. In probabilistic latent variable model

9

framework, the distribution over the observed variables is obtained by marginalizing out

the hidden variables from the joint distribution over observed and hidden variables. The

hidden structure of the data can be computed and explored through the posterior which

is defined as the conditional distribution of the latent variables given the observations.

Factorization models are a widely used model-based CF algorithms which fall under la-

tent variable modeling. We will provide detailed discussion on latent variable models and

factorization models in Section 2.2.

2.1.2 Content-based

Besides CF, content-based methods [Su and Khoshgoftaar, 2009] are another important

class of RS algorithms. Content-based methods make recommendations by analyzing

domain knowledge of users and/or items. Typically, content-based methods first extract

features of users and/or items and then apply a classification based algorithm to provide

recommendations. Unlike CF, content-based methods are limited to the feature informa-

tion.

2.1.3 Knowledge-based

Knowledge-based methods [Burke, 2000] use knowledge about users and context, and ap-

ply knowledge based techniques to provide recommendation. In knowledge-based meth-

ods, users are an integral part of the knowledge discovery process. It uses a knowledge

base and develop this base using the user feedback. Knowledge-based methods are par-

ticularly helpful when the user wants to give explicit feedback to the system and available

user-item interaction data is very less.

2.1.4 Hybrid

There are pros and cons with each type of recommendation algorithms. CF algorithms

need a large amount of rating data to provide any useful suggestions. Until there is a large

number of users whose habits are known, the system cannot be useful for most users. Also

10

until a sufficient number of rated items has been collected, the system cannot be useful for

a particular user. This problem is known as cold start problem. Similar to CF, content-

based methods also suffer from the cold start problem. However, CF and content-based

methods are scalable and useful for large datasets. On the other hand, knowledge-based

methods avoid cold start problem through user feedback, but suffer from the the prob-

lem of costly knowledge base creation process, and hence, less scalable. Hybrid recom-

mender [Burke, 2002] systems combine two or more recommendation techniques to gain

better performance with fewer of the drawbacks of any individual one. Most commonly,

CF is combined with some other techniques. Weighted is a hybridization technique which

predicts the score of an item using weighted combination of the prediction from differ-

ent recommender algorithms. Another approach is switching between different algorithms

using some criterion.

2.2 Latent Variable Models and Factorization Models

A powerful approach to probabilistic modeling involves describing a set of observed vari-

ables using a set of latent/hidden variables which is known as latent variable modeling.

Latent variable models are widely used in several domains such as machine learning,

statistics, data mining. Latent variable models uncover hidden structure which explains

the data. In latent variable models, each observation is associated with a/(a set of) latent

variable/variables, therefore, the number of latent variables grows with the size of the data,

whereas the number of parameters in a model is usually fixed irrespective of the data size

(if latent variables are not part of the parameter set). Latent variable models consider a

joint distribution over the hidden and observed variables. Often we seek to find the pos-

terior distribution over the hidden variables given the observed variables. Latent Dirichlet

Allocation [Blei et al., 2003] is a well-known example of a latent variable model.

One of the widely used latent variable models in the RSs community are factorization

models, due to their simplicity, prediction quality and scalability. The idea behind such

models is that preferences of a user are determined by a small number of unobserved

latent factors. Matrix factorization [Koren et al., 2009; Salakhutdinov and Mnih, 2007,

11

2008; Gopalan et al., 2015] is the simplest and most well studied factorization model

and has been applied in solving numerous problems related to analysis of dyadic data,

such as in RSs [Koren et al., 2009], topic modeling [Arora et al., 2012], and network

analysis [Zhou, 2015]. Affinity data between two entities are known as dyadic data. An

example of a dyadic data is movie recommendation, where pair of entities involved are

user and movie and the affinity response is the rating provided by a user to a movie. Tensor

factorization [Xiong et al., 2010; Ho et al., 2014; Chi and Kolda, 2012] is an extension of

matrix factorization where the data is represented as three dimensional array, signifying

interactions of three different variables.

Many specialized factorization models have further been proposed to deal with non-

categorical variables. For example, SVD++ [Koren, 2008] uses neighborhood of a user

for analysis of movie rating data, TimeSVD++ [Koren, 2009] and Bayesian Probabilistic

Tensor Factorization (BPTF) [Xiong et al., 2010] discretize time which is a continuous

variable, and factorizing personalized Markov chains (FPMC) [Rendle et al., 2011a] con-

siders the purchase history of users to recommend items. Numerous learning techniques

have also been proposed for factorization models which include stochastic gradient de-

scent (SGD) [Koren et al., 2009], alternating least squares [Zhou et al., 2008], variational

Bayes [Lim and Teh, 2007; Kim and Choi, 2014; Silva and Carin, 2012], and Markov chain

Monte Carlo (MCMC) based inference [Salakhutdinov and Mnih, 2008].

In this section, we explain some of the important factorization models which will be

used throughout the thesis.

2.2.1 Matrix Factorization

Formally, matrix factorization recovers a low-rank latent structure of a matrix by approx-

imating it as a product of two low-rank matrices. For delineation, consider a user-movie

matrixR ∈ RI×J where rij cell represents the rating provided to movie j by user i. Matrix

factorization decomposes the Matrix R into two low-rank matrices U = [u1,u2, ...,uI]
T

∈ RI×K and V = [v1,v2, ...,vJ]T ∈ RJ×K , where ui and vj are the K dimensional latent

12

factor vectors associated with user i and item j, such that:

R ∼ UV ᵀ. (2.5)

This matrix factorization model is closely related to singular value decomposition, a

well-established technique for identifying latent semantic factors in information retrieval.

But applying singular value decomposition with incomplete matrix is undefined and which

is often the case in CF. Also addressing only the relatively few known ratings creates over-

fitting issue. Earlier methods used imputation to fill the missing entries of the matrix,

making the matrix dense. However, these methods are not scalable. Hence recent meth-

ods [Koren et al., 2009; Salakhutdinov and Mnih, 2007] model only the observed ratings

while avoiding overfitting through regularization. Typically, the latent factors are learned

by minimizing a regularized squared error loss function, which is defined as:

∑
(i,j)∈Ω

(rij − uᵀ
i vj)

2 + λ
(
||U ||2F + ||V ||2F

)
, (2.6)

where Ω is the set of all the observed ratings, λ is the regularization parameter and ||X||2F
is the Frobenius norm ofX .

Learning

The optimization problem in Eq. (2.6) can be solved using stochastic gradient descent

(SGD) [Koren et al., 2009]. In SGD, for each given rating rij , the update equation of user

and item latent factor vectors can be written as follows:

ui ← ui + η
(
2
(
rij − uTi vj

)
vj − 2λui

)
, (2.7)

vj ← vj + η
(
2
(
rij − uTi vj

)
ui − 2λvj

)
, (2.8)

where η is the learning rate.

13

2.2.2 Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) [Salakhutdinov and Mnih, 2007] provides a prob-

abilistic interpretation of matrix factorization. In PMF, factor variables are assumed to be

marginally independent whereas rating variables given the factor variables are assumed

to be conditionally independent. PMF considers the conditional distribution of the rating

variables (the likelihood term) as:

p(R|U ,V , τ) =
∏

(i,j)∈Ω

N (rij|uᵀ
i vj, τ

−1), (2.9)

where τ is the precision parameter. Zero-mean spherical Gaussian priors are placed on

user and movie latent factor vectors as follows:

U ∼
I∏
i=1

N (ui|0, λ−1
u I), (2.10)

V ∼
J∏
j=1

N (vj|0, λ−1
v I), (2.11)

where λu and λv are hyperparameters and I is the identity matrix.

The main drawback of this model is that inferring the posterior distribution over the la-

tent factors, given the ratings, is intractable. PMF handles this intractability by providing a

maximum a posteriori estimation of the model parameters by maximizing the log-posterior

over the model parameters, which is equivalent to minimizing Eq. (2.6). So learning PMF

model with fixed hyperparameters is equivalent to minimizing Eq. (2.6) which can be done

using SGD.

2.2.3 Bayesian Probabilistic Matrix Factorization

Though PMF can be learned using SGD, it suffers from the problem of manual tuning of

learning rate and the regularization parameters, and it often overfits the data. One way to

solve the problem of manual tuning of regularization parameters is to introduce priors on

the hyperparameters and maximize the log-posterior of the model over both parameters

14

and hyperparameters. Though this method allows automatic model parameter selection,

it is not theoretically sound [Salakhutdinov and Mnih, 2008]. So, fully Bayesian Proba-

bilistic Matrix Factorization (BPMF) [Salakhutdinov and Mnih, 2008] has been developed

which is robust to the overfitting and avoids model selection problem. BPMF considers

the likelihood function as in Eq. (2.9) similar to PMF. The prior over user and item latent

factor vectors are assumed as:

U ∼
I∏
i=1

N (ui|µu,Λ−1
u), (2.12)

V ∼
J∏
j=1

N (vj|µv,Λ−1
v), (2.13)

where µu,Λu,µv, and Λv are hyperparameters. As Gaussian-Wishart is the conjugate

prior of a multivariate Gaussian distribution with unknown mean and precision matrix,

Gaussian-Wishart priors are placed on hyperparameters as:

µu,Λu ∼ N (µu|µ0, (β0Λu)
−1)W (Λu|W0, ν0), (2.14)

µv,Λv ∼ N (µv|µ0, (β0Λv)
−1)W (Λv|W0, ν0), (2.15)

where µ0, β0,W0, and ν0 are hyperprior parameters.

Note that a complete conditional is the conditional distribution of a variable given the

observations and all other variables in the model, and a conditionally conjugate model

is one where each complete conditional has a close distributional form [Hoffman et al.,

2013]. As the BPMF model is conditionally conjugate, learning is done using a closed

form Gibbs sampling inference mechanism [Salakhutdinov and Mnih, 2008]. Prediction

for a rating rij is done as follows:

r̂ij =
1

C

C∑
c=1

(uci)
ᵀvcj , (2.16)

where uci and vcj are the cth drawn samples for the ith user and the j th item latent factor vec-

tors respectively and C is the number of drawn samples from the Gibbs sampling process.

We will describe Gibbs sampling in more detail in Section 2.4.

15

2.2.4 Factorization Machine

Factorization Machine (FM) combines the advantages of feature based methods like Sup-

port Vector Machines (SVMs) with factorization models. Popular feature based methods

like SVMs can be learnt using standard tools like LIBSVM [Chang and Lin, 2011] and

SVM-Light [Joachims, 2002]. But feature based methods encounter problems when fac-

ing high-dimensional but sparse dyadic data where factorization models have been more

successful. An FM learns a function f : RD → T which is a mapping from a real valued

feature vector x ∈ RD to a target domain T . The training data for FM consists of N tu-

ples of the form (xn, yn)Nn=1, where xn is the feature representation (row vector) and yn is

the associated response variable for the nth training instance respectively. We will denote

y = (y1, y2, ..., yn) andX = (xᵀ
1,x

ᵀ
2, ...,x

ᵀ
n)ᵀ.

Example

Consider a song-count dataset where the response variable is the number of times a user

has listened to a particular song, which has an associated genre. Let us denote user, song,

and genre by u, s, and g respectively. If the training data is composed of the set of points

{(u1, s1, g1, 10), (u1, s3, g2, 33), (u2, s2, g3, 19), (u3, s1, g1, 21)}, then Figure 2.1 shows the

corresponding feature representation of FM where the ith column indicates the data cor-

responding to the ith variable and the nth row represents the nth training instance. Given

the feature representation of Figure 2.1, the model equation for FM for the nth training

instance is:

ŷn = w0 +
D∑
i=1

xniwi +
D∑
i=1

D∑
j=i+1

xnixnjv
ᵀ
i vj, (2.17)

where w0 is the global bias, wi is the bias associated with the ith variable, and vi is the

latent factor vector of dimension K associated with the ith variable. vᵀi vj models the inter-

action between the ith and j th features. The objective is to estimate the parameters w0 ∈ R,

w ∈ RD, and V ∈ RD×K . Instead of using a parameter wi,j ∈ R for each interaction,

FM models the pairwise interaction by factorizing it. Since for any positive definite matrix

W , there exists a matrix V such that W = V V T provided K is sufficiently large, FM

can express any interaction matrixW . This is a remarkably smart way to express pairwise

16

User Song Genre

1 0 0 …. 1 0 0 …. 1 0 0 ….

1 0 0 …. 0 0 1 …. 0 1 0 ….

0 1 0 …. 0 1 0 …. 0 0 1 ….

0 0 1 …. 1 0 0 …. 1 0 0 ….

x1

x2

x3

x4

10

33

19

21

u1 u2 u3 …. s1 s2 s3 …. g1 g2 g3 ….

 Feature x Target y

y1

y2

y3

y4

Figure 2.1: Feature representation of FM for a song-count dataset with three types of vari-
ables: user, song, and genre. An example of four data instances are shown.
Row 1 shows a data instance where user u1 listens to song s1 of genre g1 10
times.

interaction in big sparse datasets. In fact, many of the existing CF algorithms aim to do the

same, but with the specific goal of user-item recommendation and thus fail to recognize

the underlying mathematical basis that FM successfully discovers.

Interestingly, the framework of FM subsumes many successful factorization models

like matrix factorization [Koren et al., 2009], SVD++ [Koren, 2008], TimeSVD++ [Ko-

ren, 2009], Pairwise Interaction Tensor Factorization (PITF) [Rendle and Schmidt-Thieme,

2010], and factorized personalized Markov chains (FPMC) [Rendle et al., 2011a], and has

also been used for context aware recommendation [Rendle et al., 2011b]. Other advan-

tages of FM include – 1) FM allows parameter estimation with extremely sparse data where

SVMs fail; 2) FM has linear complexity, can be optimized in the primal and, unlike SVMs,

does not rely on support vectors; and 3) FM is a general predictor that can work with any

real valued feature vector, while several state-of-the-art factorization models work only on

very restricted input data.

17

2.2.5 Learning Factorization Machine

Three learning methods have been proposed for Factorization Machine (FM): 1) stochastic

gradient descent (SGD) [Rendle, 2010], 2) alternating least squares (ALS) [Rendle et al.,

2011b], and 3) Markov chain Monte Carlo (MCMC) [C. Freudenthaler, 2011] inference.

Here, we will briefly describe SGD and MCMC learning for FM.

Optimization Task

Optimization function for FM with L2 regularization can be written as follows:

∑
(xn,yn)∈Ω

l(ŷn, y) +
∑
θ∈θ

λθθ
2, (2.18)

where Ω is the training set, θ = {w0,w,V }, λθ is the regularization parameter, and l is

the loss function. For binary observations, the loss function is assumed to be a sigmoid

and for other cases, it is assumed to be a square loss.

Probabilistic Interpretation

Both loss and regularization can be motivated from a probabilistic point of view. For least

squares loss, the target y follows a Gaussian distribution.

yn ∼ N (ŷn, α
−1), (2.19)

where α is the precision parameter. For binary classification, y follows a Bernoulli distri-

bution.

yn ∼ Bernoulli(b(ŷn)), (2.20)

where b is a link function. L2 regularization corresponds to Gaussian prior on the model

parameters.

θ ∼ N (µθ, σ
−1
θ), (2.21)

where µθ and σθ are hyperparameters.

18

Stochastic Gradient Descent

One of the more popular learning algorithms for FM is based on stochastic gradient descent

(SGD). FM that uses SGD for learning is conveniently addressed as SGD-FM. Algorithm

1 describes the SGD-FM algorithm. SGD-FM requires costly search over the parameter

space to find the best values for the learning rate and the regularization parameters. To

mitigate such expensive tuning of parameters, learning algorithm based on ALS have also

been proposed to automatically select the learning rate.

Algorithm 1 Stochastic Gradient Descent for Factorization Machine (SGD-FM)
Require: Training data Ω, regularization parameters λ, learning rate η, initialization σ.
Ensure: w0 ← 0,w ← (0, ..., 0), vik ∼ N (0, σ−1).

1: repeat
2: for (xn, yn) ∈ Ω do
3: w0 ← w0 − η

(
∂
∂w0

l(ŷn, yn) + 2λ0w0

)
4: for i = 1 to D ∧ xni 6= 0 do
5: wi ← wi − η

(
∂
∂wi

l(ŷn, yn) + 2λiwi

)
6: for k = 1 to K do
7: vik ← vik − η

(
∂

∂vik
l(ŷn, yn) + 2λikvik

)
8: end for
9: end for

10: end for
11: until convergence

Markov Chain Monte Carlo

As an alternative, Markov chain Monte Carlo (MCMC) based Gibbs sampling inference

has been proposed for FM. FM that uses MCMC for learning is conveniently addressed as

MCMC-FM. MCMC-FM is a generative approach. In MCMC-FM, tuning of parameters

is less of a concern, yet it produces state-of-the-art performance for several applications.

MCMC-FM considers the conditional distribution of the rating variables (the likelihood

term) as:

p(y|X,θ, α) =
∏

(xn,yn)∈Ω

N (yn|ŷn, α−1) (2.22)

19

MCMC-FM assumes priors on the model parameters as follows:

w0 ∼ N (w0|µ0, σ
−1
0), (2.23)

wi ∼ N (wi|µi, σ−1
i), (2.24)

vik ∼ N (vik|µik, σ−1
ik), (2.25)

α ∼ Gamma(α|α0, β0). (2.26)

On each pair of hyperparameters (µi, σi) and (µik, σik) ∀i, k a Gaussian distribution is

placed on µ and a gamma distribution is placed on σ as follows:

µi ∼ N (µi|µ0, (ν0σi)
−1), (2.27)

σi ∼ Gamma(σi|α
′

0, β
′

0), (2.28)

µik ∼ N (µik|µ0, (ν0σik)
−1), (2.29)

σik ∼ Gamma(σik|α
′

0, β
′

0), (2.30)

where µ0, ν0, α
′
0, and β ′0 are hyperprior parameters.

MCMC-FM is a closed form Gibbs sampling inference algorithm for the above model.

Please refer to [C. Freudenthaler, 2011] for more detailed analysis on MCMC-FM infer-

ence equations.

2.3 Probabilistic Modeling and Bayesian Inference

Here we will explain a general probabilistic framework, by which we will describe some

of the existing approximate inference techniques. AssumeX = (x1,x2, ...,xN) ∈ RD×N

are the observations and θ is the set of unknown parameters for the model that generates

X . For example, assuming X is generated by a Gaussian distribution, θ would be the

mean and the variance of that Gaussian distribution. One of the most popular approaches

for parameter estimation is maximum likelihood. In maximum likelihood, the parameters

are estimated as:

θ̂ = argmaxθp(X|θ) (2.31)

20

The generative model may also include latent or hidden variables. We will denote hidden

variables by Z. These random variables act as links, that connect the observations to the

unknown parameters, and help to explain the data. Given this set up, we aim to find the

posterior distribution of latent variables which is written as follows:

p (Z|X,θ) =
p(X|Z,θ)p(Z|θ)

p(X|θ)
(2.32)

=
p(X|Z,θ)p(Z|θ)∫

Z
p(X|Z,θ)p(Z|θ)dZ

(2.33)

But often the denominator in Eq. (2.33) is intractable and hence we need to resort

to some approximate inference techniques to calculate the posterior distribution approxi-

mately. We explain two popular approximate inference techniques in details below which

are used in this thesis.

2.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods [Metropolis and Ulam, 1949; Hastings,

1970] are established tools for solving intractable integration problems central to Bayesian

statistics. MCMC method was first proposed by Metropolis and Ulam in 1949 [Metropolis

and Ulam, 1949] and then generalized to Metropolis-Hastings method [Hastings, 1970].

MCMC method constructs a Markov chain with state spaceZ and p (Z|X,θ) as stationary

distribution to sample from p (Z|X,θ). The simulated values can be considered as coming

from the target distribution if the chain is run for long time. A Markov chain is generated by

sampling for a new state of the chain depending on the present state of the chain, ignoring

all the past states.

2.4.1 Gibbs Sampling

Gibbs sampling [Geman and Geman, 1984; Gelfand and Smith, 1990] is the most widely

applied MCMC method. Gibbs sampling is a powerful tool when we cannot sample di-

rectly from the joint-posterior distribution, but when sampling from the conditional distri-

21

butions of each variable, or set of variables, is possible. Gibbs sampling aims to generate

samples from the posterior distribution ofZ that is partitioned intoM disjoint components

Z = (Z1,Z2, ...,ZM). Although it may be hard to sample from the joint-posterior, it is

assumed that it is easy to sample from the full conditional distribution of Zi. Initially

all the parameters are initialized by random values and then the sampling process goes as

follows:

Z
(t+1)
1 |− ∼p

(
Z1|X,θ,Z

(t)
2 ,Z

(t)
3 , ...,Z

(t)
M

)
Z

(t+1)
2 |− ∼p

(
Z2|X,θ,Z

(t+1)
1 ,Z

(t)
3 , ...,Z

(t)
M

)
Z

(t+1)
3 |− ∼p

(
Z3|X,θ,Z

(t+1)
1 ,Z

(t+1)
2 ,Z

(t)
4 , ...,Z

(t)
M

)
...

where Zt
i is the sample drawn for the ith component in the tth iteration. For more detailed

discussion on MCMC methods look into [Metropolis and Ulam, 1949].

2.5 Variational Bayes

Variational methods have their origins on the calculus of variations. Unlike standard calcu-

lus, variational calculus considers functional which is defined as a mapping which takes as

input a function and output the value of the functional. The functional derivative is defined

as the change of the functional for the small change in the input function. Variational in-

ference, an alternative to MCMC sampling, transforms a complex inference problem into

a high-dimensional optimization problem [Beal, 2003; Tzikas et al., 2008; Hoffman et al.,

2013]. It explores all possible input functions to find the one that maximizes, or minimizes,

the functional.

Variational inference optimizes the marginal likelihood function. For our framework,

the marginal likelihood function can be written as follows:

ln p(X|θ) = L(q,θ) +KL(q||p), (2.34)

22

where,

L(q,θ) =

∫
Z

q(Z) ln

(
p(Z,X|θ)

q(Z)

)
dZ, (2.35)

KL(q||p) = −
∫
Z

q(Z) ln

(
p(Z|X,θ)

q(Z)

)
dZ, (2.36)

where q(Z) is any probability distribution. KL(q||p) is the Kullback-Leibler divergence

between q(Z) and p(Z|X,θ), and is always non-negative. Thus ln p(X|θ) is lower-

bounded by the term L(q,θ), also known as evidence lower bound (ELBO) [Beal, 2003;

Tzikas et al., 2008]. We can maximize the lower bound L(q,θ) by optimization with

respect to the distribution q(Z), which is equivalent to minimizing the KL divergence.

Maximum of the lower bound occurs when KL divergence vanishes, which occurs when

q(Z) equal to p(Z|X, θ). However, in practice working with the true posterior distribu-

tion is intractable. Therefore, a restrictive form of q(Z) is considered, and then a member

of this family is found which minimizes the KL divergence. Typically, a factorized distri-

bution is considered of the hidden variables Z which factorizes into M disjoint partitions.

Also it is assumed that q(Z) factorizes with respect to these partitions as follows:

q(Z) =
M∏
i=1

qi(Zi) (2.37)

Among all distributions q(Z) with the form Eq. (2.37), we want to find the distribution

for which the lower bound is largest. A free form optimization is performed of L(q,θ)

with respect to all of the distributions qi(Zi), which is done by each factors in turn. Let us

consider qj(Zj) as qj and using Eq. (2.37) lower bound can be written as:

L(q,θ) = KL(p̃||qj)−
∑
i 6=j

∫
qi ln qidZi, (2.38)

where,

ln p̃(X,Zj|θ) = Ei 6=j [ln p(X,Z|θ)] + const (2.39)

Now keeping {qi 6=j} fixed and maximization of lower bound with respect to all possible

distributions of qj(Zj) is equivalent to minimizing KL divergence in Eq. (2.38). So we

23

get:

ln q∗j (Zj) = ln p̃(X,Zj|θ) = Ei 6=j [ln p(X,Z|θ)] + const (2.40)

The constant term can be calculated using normalization.

q∗j (Zj) =
exp (Ei 6=j [ln p(X,Z|θ)])∫

exp (Ei 6=j [ln p(X,Z|θ)]) dZj

(2.41)

In summary, the variational EM algorithm can be written as:

E-Step: Evaluate qNEW(Z) to maximize L(q,θ) solving the system of Eq. (2.41).

M-Step: Find θNEW = argmaxθL(q,θ).

Note, that here we do not consider the form of qj(Zj), they are found automatically.

Also, the lower bound provides another way to approach the variational inference. If the

functional form of the factors in the variational posterior distribution are known, then by

taking general parametric form of these distributions, we can write the lower bound. Then

we can maximize the lower bound with respect to these parameters by setting the derivative

of lower bound with respect to these parameters to zero, which gives the re-estimation

equations. For more detailed and introductory discussion on variational Bayes look into

[Bishop, 2006; Tzikas et al., 2008; Beal, 2003].

2.5.1 Stochastic Variational Inference

Recently stochastic variational inference has been applied in many places such as, stochas-

tic variational inference (SVI) in matrix factorization [Hernández-Lobato et al., 2014],

topic modeling [Hoffman et al., 2013] and network modeling [Gopalan et al., 2012].

Specifically, SVI samples a complete data instance, such as a document, and updates all

the model parameters. Often, to reduce the variance instead of sampling a single data point

to update the parameters, a batch of points are sampled and then the variational parameters

associated to this batch of data points are updated. This version of variational inference is

called as mini-batch variational inference [Hoffman et al., 2013].

24

CHAPTER 3

SCALABLE BAYESIAN MATRIX FACTORIZATION

Bayesian Probabilistic Matrix Factorization (BPMF), which is a Markov chain Monte

Carlo (MCMC) based Gibbs sampling inference algorithm for matrix factorization, pro-

vides state-of-the-art performance. BPMF uses multivariate Gaussian prior on latent factor

vector which leads to cubic time complexity with respect to the dimension of latent space.

To avoid this cubic time complexity, in this chapter, we develop the Scalable Bayesian

Matrix Factorization (SBMF) which considers independent univariate Gaussian prior over

latent factors. We also incorporate bias terms in the model which are missing in baseline

BPMF model. Similar to BPMF, SBMF is a MCMC based Gibbs sampling inference al-

gorithm for matrix factorization. SBMF has linear time complexity with respect to the

dimension of latent space and linear space complexity with respect to the number of non-

zero observations.

3.1 Introduction

Factor based models have been used extensively in Recommender Systems (RSs). In a

factor based model, preferences of each user are represented by a small number of unob-

served latent factors. Matrix factorization [Srebro and Jaakkola, 2003; Koren et al., 2009;

Salakhutdinov and Mnih, 2007, 2008; Gopalan et al., 2015] is the simplest and most well

studied factor based model and has been applied successfully in several domains. Formally,

matrix factorization recovers a low-rank latent structure of a matrix by approximating it as

a product of two low-rank matrices.

Probabilistic Matrix Factorization (PMF) [Salakhutdinov and Mnih, 2007] provides

a probabilistic interpretation of matrix factorization. In PMF, latent factor variables are

assumed to be marginally independent whereas rating variables, given the latent factor

variables, are assumed to be conditionally independent.The main drawback of PMF is that

inferring the posterior distribution over the latent factors, given the ratings, is intractable.

PMF handles this intractability by providing a maximum a posteriori estimation of the

model parameters by maximizing the log-posterior over the model parameters, which is

equivalent to minimizing the regularized square error loss. This optimization problem can

be solved using stochastic gradient descent (SGD) [Koren et al., 2009]. SGD is an online

algorithm which obviates the need to store the entire dataset in the memory. Although

SGD is scalable and enjoys local convergence guarantee [Sato, 2001], it often overfits

the data and requires manual tuning of the learning rate and regularization parameters.

Hence, maximum a posteriori estimation of matrix factorization suffers from the problem

of overfitting and entails tedious job of finding the learning rate (if SGD is the choice of

optimization) and regularization parameters.

On the other hand, fully Bayesian methods [Salakhutdinov and Mnih, 2008; Beal,

2003; Tzikas et al., 2008; Hoffman et al., 2013] for matrix factorization do not require

manual tuning of learning rate and regularization parameters and are robust to overfit-

ting. As direct evaluation of posterior is intractable in practice, approximate inference

techniques are adopted to learn the posterior distribution. One of the possible choices

to approximate inference is to apply variational approximate inference technique [Beal,

2003; Tzikas et al., 2008]. Bayesian matrix factorization based on the variational ap-

proximation [Lim and Teh, 2007; Silva and Carin, 2012; Kim and Choi, 2014; Hoffman

et al., 2013] considers a simplified factorized distribution and assumes that the latent fac-

tor vectors of users are independent of the latent factor vectors of items while approxi-

mating the posterior. But this assumption often leads to over simplification and can pro-

duce inaccurate results as shown in [Salakhutdinov and Mnih, 2008]. On the other hand,

Markov chain Monte Carlo (MCMC) based approximation method can produce exact re-

sults when provided with infinite resources. Bayesian Probabilistic Matrix Factorization

(BPMF) [Salakhutdinov and Mnih, 2008] directly approximates the posterior distribution

using the MCMC based Gibbs sampling inference mechanism and outperforms the varia-

tional based approximation.

In BPMF model, user/item latent factor vectors are assumed to follow a multivariate

Gaussian distribution, which results a cubic time complexity with respect to the latent fac-

26

rij

τ

a0 b0

µ

µg σg

αi

µα σα

uik

µuk
σuk

vjk

µvk
σvk

βj

µβσβ

µ0, ν0 µ0, ν0α0, β0 α0, β0

i = 1..I j = 1..J

k = 1..K

Figure 3.1: Graphical model representation of SBMF.

tor vector dimension. Though BPMF performs well in many applications, this cubic time

complexity makes it difficult to apply BPMF on very large datasets. Hence, we propose

the Scalable Bayesian Matrix Factorization (SBMF) which considers independent univari-

ate Gaussian prior over latent factors as opposed to multivariate Guassian prior in BPMF.

Due to this assumption, the time complexity of SBMF reduces to linear with respect to

the dimension of latent space. We also consider user and item bias terms in SBMF model

which are missing in BPMF model. These bias terms capture the variation in rating values

that are independent of any user-item interaction. Also, the proposed SBMF algorithm is

parallelized for multicore environments. We show through extensive experiments on three

large scale real world datasets that the adopted univariate approximation in SBMF results

in only a small performance loss and provides significant speed up when compared with

the baseline method BPMF for higher latent space dimension.

The remainder of the chapter is structured as follows. Section 3.2 presents the SBMF

model and its inference mechanism. Section 3.3 evaluates the performance of SBMF.

Finally, the summary is presented in Section 3.4.

27

3.2 Method

3.2.1 Model

Figure 3.1 shows a graphical model representation of SBMF. Consider Ω as the set of

observed entries inR provided during the training phase. The observed data rij is assumed

to be generated as follows:

rij ∼ N
(
µ+ αi + βj + uTi vj, τ

−1
)
, (3.1)

where τ is the precision parameter, µ is the global bias, αi is the bias associated with the ith

user, βj is the bias associated with the j th item, ui is the latent factor vector of dimension

K associated with the ithuser, and vj is the latent factor vector of dimension K associated

with the j th item. Bias terms are particularly helpful in capturing the individual bias for

user/item: a user may have the tendency to rate all the items higher than the other users or

an item may get higher ratings if it is perceived better than the others [Koren et al., 2009].

The conditional on the observed entries of R (Likelihood term) can be written as fol-

lows:

p(R|Θ) =
∏

(i,j)∈Ω

N (rij|µ+ αi + βj + uTi vj, τ
−1), (3.2)

where Θ = {τ, µ, {αi}, {βj},U ,V }. We place independent univariate priors on all the

model parameters in Θ as follows:

µ ∼N (µ|µg, σ−1
g), (3.3)

αi ∼N (αi|µα, σ−1
α), (3.4)

βj ∼N (βj|µβ, σ−1
β), (3.5)

U ∼
I∏
i=1

K∏
k=1

N (uik|µuk , σ−1
uk

), (3.6)

V ∼
J∏
j=1

K∏
k=1

N (vjk|µvk , σ−1
vk

), (3.7)

τ ∼Gamma(τ |a0, b0). (3.8)

28

As normal-gamma is the conjugate prior of a normal distribution with unknown mean

and precision, similar to BPMF, we place normal-gamma priors on hyperparamters ΘH =

{µα, σα, µβ, σβ, {µuk , σuk}, {µvk , σvk}} as follows:

µα, σα ∼ NG (µα, σα|µ0, ν0, α0, β0) , (3.9)

µβ, σβ ∼ NG (µβ, σβ|µ0, ν0, α0, β0) , (3.10)

µuk , σuk ∼ NG (µuk , σuk |µ0, ν0, α0, β0) , (3.11)

µvk , σvk ∼ NG (µvk , σvk |µ0, ν0, α0, β0) . (3.12)

We denote {µg, σg, a0, b0, µ0, ν0, α0, β0} as Θ0 for notational convenience. The joint dis-

tribution of the observations and the hidden variables can be written as:

p(R,Θ,ΘH |Θ0) = p(R|Θ)p(µ)
I∏
i=1

p(αi)
J∏
j=1

p(βj)p(U)p(V)p(µα, σα)

p(µβ, σβ)
K∏
k=1

p(µuk , σuk)p(µvk , σvk). (3.13)

3.2.2 Inference

Since evaluation of the joint distribution in Eq. (3.13) is intractable, we adopt a MCMC

based Gibbs sampling approximate inference technique. As all our model parameters are

conditionally conjugate [Hoffman et al., 2013], equations for Gibbs sampling can be writ-

ten in closed form using the joint distribution as given in Eq. (3.13). Replacing Eq. (3.2)-

(3.12) in Eq. (3.13), the sampling distribution of uik can be written as follows:

uik|− ∼ N (uik|µ∗, σ∗) , (3.14)

where

σ∗ =

(
σuk + τ

∑
j∈Ωi

v2
jk

)−1

, (3.15)

µ∗ = σ∗
(
σukµuk + τ

∑
j∈Ωi

vjk

(
rij −

(
µ+ αi + βj +

K∑
l=1&l 6=k

uilvjl

)))
. (3.16)

29

Table 3.1: Time and space complexity comparison between SBMF and BPMF.

Method Time Complexity Space Complexity
SBMF O(|Ω|K) O((I + J)K)
BPMF O(|Ω|K2 + (I + J)K3) O((I + J)K)

Here, Ωi is the set of items rated by the ith user in the training set. We sample model

parameters in parallel whenever they are independent of each other. Algorithm 2 describes

the detailed Gibbs sampling procedure. In each iteration of Gibbs sampling, line 7-12

sample hyperparameters. As line 7-12 are independent for each k, we sample them in

parallel. Line 13-18 sample global bias parameter. As the sampling equation of user latent

factor vectors are independent to each other, we sample them in line 19-30 in parallel.

Similarly, we sample item latent factors in parallel in line 31-42.

3.2.3 Time and Space Complexity

Now, directly sampling uik from Eq. (3.14) requires O(K|Ωi|) complexity. However if we

precompute a quantity eij = rij − (µ + αi + βj + uTi vj) for all (i, j) ∈ Ω and write Eq.

(3.16) as:

µ∗ = σ∗
(
σukµuk + τ

∑
j∈Ωi

vjk (eij + uikvjk)

)
. (3.17)

then the sampling complexity of uik reduces to O(|Ωi|). Table 3.1 shows the space and

time complexities of SBMF and BPMF.

3.3 Experiments

3.3.1 Datasets

In this section, we show empirical results on three large real world movie-rating datasets1,2

to validate the effectiveness of our proposed model. The details of these datasets are pro-

1http://grouplens.org/datasets/movielens/
2http://www.netflixprize.com/

30

Algorithm 2 Scalable Bayesian Matrix Factorization (SBMF)
Require: Θ0, initialize Θ and ΘH .
Ensure: Compute eij for all (i, j) ∈ Ω
1: for t = 1 to T do
2: // Sample hyperparameters

3: α∗ ← α0 + 1
2

(I + 1), β∗ ← β0 + 1
2

(ν0 (µα − µ0)2 +
I∑
i=1

(αi − µα)), σα|− ∼ Gamma(α∗, β∗).

4: σ∗ ← (ν0σα + σαI)−1, µ∗ ← σ∗(ν0σαµ0 + σα
I∑
i=1

αi), µα|− ∼ N (µ∗, σ∗).

5: α∗ ← β0 + 1
2

(J + 1), β∗ ← β0 + 1
2

(ν0

(
µβ − µ0

)2
+

J∑
j=1

(
βj − µβ

)
), σβ |− ∼ Gamma(α∗, β∗).

6: σ∗ ← (ν0σβ + σβJ)−1, µ∗ ← σ∗(ν0σβµ0 + σβ
J∑
j=1

βj), µβ |− ∼ N (µ∗, σ∗).

7: for k = 1 to K do in parallel

8: α∗ ← α0 + 1
2

(I + 1), β∗ ← β0 + 1
2

(ν0 (µuk − µ0)2 +
I∑
i=1

(uik − µuk)), σuk |− ∼ Gamma(α∗, β∗).

9: σ∗ ← (ν0σuk + σukI)
−1, µ∗ ← σ∗(ν0σukµ0 + σuk

I∑
i=1

uik), µuk |− ∼ N (µ∗, σ∗).

10: α∗ ← β0 + 1
2

(J + 1), β∗ ← β0 + 1
2

(ν0 (µvk − µ0)2 +
J∑
j=1

(
vjk − µvk

)
), σvk |− ∼ Gamma(α∗, β∗).

11: σ∗ ← (ν0σvk + σvkJ)−1, µ∗ ← σ∗(ν0σvkµ0 + σvk

J∑
j=1

vjk), µvk |− ∼ N (µ∗, σ∗).

12: end for
13: a∗0 ← a0 + 1

2
|Ω|, b∗0 ← b0 + 1

2

∑
(i,j)∈Ω

e2ij , τ |− ∼ Gamma(a∗0, b
∗
0).

14: // Sample model parameters
15: σ∗ ← (σg + τ |Ω|)−1, µ∗ ← σ∗(σgµg + τ

∑
(i,j)∈Ω

(eij + µ)), µ|− ∼ N (µ∗, σ∗).

16: for (i, j) ∈ Ω do in parallel
17: eij ← eij + (µold − µ)
18: end for
19: for i = 1 to I do in parallel
20: σ∗ ← (σα + τ |Ωi|)−1, µ∗ ← σ∗(σαµα + τ

∑
j∈Ωi

(eij + αi)), αi|− ∼ N (µ∗, σ∗).

21: for j ∈ Ωi do
22: eij ← eij + (αold − αi)
23: end for
24: for k = 1 to K do
25: σ∗ ← (σuk + τ

∑
j∈Ωi

v2
jk)−1, µ∗ ← σ∗(σukµuk + τ

∑
j∈Ωi

vjk
(
eij + uikvjk

)
), uik|− ∼ N (µ∗, σ∗).

26: for j ∈ Ωi do
27: eij ← eij + vjk(uoldik − uik)

28: end for
29: end for
30: end for
31: for j = 1 to J do in parallel
32: σ∗ ← (σβ + τ |Ωj |)−1, µ∗ ← σ∗(σβµβ + τ

∑
i∈Ωj

(eij + βj)), βj |− ∼ N (µ∗, σ∗).

33: for i ∈ Ωj do
34: eij ← eij + (βold − βj)
35: end for
36: for k = 1 to K do
37: σ∗ ← (σvk + τ

∑
i∈Ωj

u2
ik)−1, µ∗ ← σ∗(σvkµvk + τ

∑
i∈Ωj

uik
(
eij + uikvjk

)
), vjk|− ∼ N (µ∗, σ∗).

38: for i ∈ Ωj do
39: eij ← eij + uik(voldjk − vjk)

40: end for
41: end for
42: end for
43: end for

31

vided in Table 3.2. Both the Movielens datasets are publicly available and 90:10 split is

used to create their train and test sets. For Netflix, the probe data is used as the test set.

3.3.2 Experimental Setup and Parameter Selection

All the experiments are run on an Intel i5 machine with 16GB RAM. We have considered

the serial as well as the parallel implementation of SBMF for all the experiments. In the

parallel implementation, SBMF is parallelized in multi-core environment using OpenMP

library. Although BPMF can also be parallelized, the base paper [Salakhutdinov and Mnih,

2008] and its publicly available code provide only the serial implementation. So in our

experiments, we have compared only the serial implementation of BPMF against the serial

and the parallel implementations of SBMF. Serial and parallel versions of the SBMF are

denoted as SBMF-S and SBMF-P respectively. Since performance depends on the number

of factors K, it is necessary to investigate how the models work with different values of

K, for both SBMF and BPMF. Hence, three sets of experiments are run for each dataset

corresponding to K = {50, 100, 200} for SBMF-S, SBMF-P, and BPMF. As our main aim

is to validate that SBMF is more scalable as compared to BPMF under same conditions,

we choose 50 burn-in iterations for all the experiments of SBMF-S, SBMF-P, and BPMF.

In Gibbs sampling process burn-in refers to the practice of discarding an initial portion

of a Markov chain sample, so that the effect of initial values on the posterior inference

is minimized. Note that, if SBMF takes less time than BPMF for a particular burn-in

period, then increasing the number of burn-in iterations will make SBMF more scalable as

compared to BPMF. Additionally, we allow the methods to have 100 collection iterations

where collection iterations are the ones that come after the burn-in iterations and contribute

to the sample collections for the variables.

In SBMF, we initialize parameters in Θ using a Gaussian distribution with zero mean

and 0.01 variance. All the parameters in ΘH are set to zero. Also, a0, b0, ν0, α0, and β0

are set to one, and µ0 and µg are set to zero. σg is initialized to 0.01. For BPMF, we use

standard parameter setting as provided in the paper [Salakhutdinov and Mnih, 2008]. We

collect samples of user and item latent factor vectors and bias terms from the collection

32

Table 3.2: Description of the datasets.

Dataset No. of users No. of movies No. of ratings
Movielens 10m 71567 10681 10m
Movielens 20m 138493 27278 20m

Netflix 480189 17770 100m

iterations and approximate a rating rij as:

r̂tij =
1

C

C∑
c=1

(
µc + αci + βcj + (uci)

ᵀvcj
)
, (3.18)

where uci and vcj are the cth drawn samples of the ith user and the j th item latent factor

vectors respectively, µc, αci , and βcj are the cth drawn samples of the global bias, the ith user

bias, and the j th item bias respectively. C is the number of drawn samples. Then the Root

mean square error (RMSE) [Koren et al., 2009] is used as the evaluation metric for all the

experiments.

3.3.3 Results

In Figure 3.2, for all the graphs, x-axis represents the time elapsed since the starting of an

experiment and y-axis presents the RMSE value. Since we allow 50 burn-in iterations for

all the experiments and each iteration of BPMF takes more time than SBMF-P’s, collection

iterations of SBMF-P begin earlier than BPMF’s and thus we get the initial RMSE value

of SBMF-P earlier. In SBMF-S also, iterations take less time as compared to BPMF’s

iterations, except for K = {50, 100} in the Netflix dataset, where iterations of SBMF-S

take more time than iterations of BPMF. We believe that in Netflix dataset, forK = 50 and

100, BPMF takes less time than SBMF-S because BPMF is implemented in Matlab where

matrix computations are efficient. On the other hand, SBMF is implemented in C++ where

the matrix storage is unoptimized. As the Netflix data is large with respect to the number

of entries as well as the number of users and items, number of matrix operations are more

in it as compared to other datasets. So for lower values of K, the cost of matrix operations

for SBMF-S dominates the cost incurred due to O(K3) complexity of BPMF, thus BPMF

takes less time than SBMF-S. But with large values of K, BPMF start taking more time

33

Table 3.3: Results comparison between SBMF and BPMF.

K = 50 K = 100 K = 200
Dataset Method RMSE Time(Hr) RMSE Time(Hr) RMSE Time(Hr)

Movielens 10m
BPMF 0.8629 1.317 0.8638 3.517 0.8651 22.058

SBMF-S 0.8655 1.091 0.8667 2.316 0.8654 5.205
SBMF-P 0.8646 0.462 0.8659 0.990 0.8657 2.214

Movielens 20m
BPMF 0.7534 2.683 0.7513 6.761 0.7508 45.355

SBMF-S 0.7553 2.364 0.7545 5.073 0.7549 11.378
SBMF-P 0.7553 1.142 0.7545 2.427 0.7551 5.321

Netflix
BPMF 0.9057 11.739 0.9021 28.797 0.8997 150.026

SBMF-S 0.9048 17.973 0.9028 40.287 0.9017 89.809
SBMF-P 0.9047 7.902 0.9026 16.477 0.9017 34.934

as the O(K3) complexity of BPMF becomes dominating. We leave the task of optimizing

the code of SBMF, to decrease the runtime of SBMF, as future work.

We can observe from Figure 3.2 that SBMF-P takes much less time in all the experi-

ments than BPMF and incurs only a small loss in the performance. Similarly, SBMF-S also

takes less time than the BPMF (except for K = {50, 100} in Netflix dataset) and incurs

only a small performance loss. Important point to note is that total time difference between

both of the variants of SBMF and BPMF increases with latent factor dimension and the

speedup is significantly high for K = 200. Table 3.3 shows the final RMSE values and the

total time taken corresponding to each dataset and K. We find that the RMSE values for

SBMF-S and SBMF-P are very close for all the experiments. We also observe that increas-

ing the latent dimension reduces the RMSE value in the Netflix dataset. Note, in past it has

been shown that increasing the number of latent factors improves RMSE [Koren, 2009;

Salakhutdinov and Mnih, 2008]. With high latent dimension, the running time for BPMF

is significantly high due to its cubic time complexity with respect to the latent dimension

and it takes approximately 150 hours on Netflix dataset with K = 200. However, SBMF

has linear complexity with respect to the latent dimension and SBMF-P and SBMF-S take

only 35 and 90 hours (approximately) respectively on the Netflix dataset with K = 200.

Thus SBMF is more suited for large datasets with large factor dimensions. Similar speed

up patterns are found on the other datasets also.

34

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Left, middle, and right columns correspond to the results for K = 50, 100, and
200 respectively. {a,b,c}, {d,e,f}, and {g,h,i} are results on Movielens 10m,
Movielens 20m, and Netflix datasets respectively.

3.4 Summary

We have proposed the Scalable Bayesian Matrix Factorization (SBMF), which is a Markov

chain Monte Carlo based Gibbs sampling algorithm for matrix factorization, has linear

time complexity with respect to the target rank and linear space complexity with respect

to the number of non-zero observations. Also, we show using extensive experiments on

35

three sufficiently large real world datasets that SBMF incurs only a small loss in the per-

formance and takes much less time as compared to the baseline Bayesian Probabilistic

Matrix Factorization (BPMF) for higher latent space dimension. It is worth while to note

that with small latent space dimension we should use BPMF. However for higher latent

space dimension, SBMF is preferred.

36

CHAPTER 4

SCALABLE VARIATIONAL BAYESIAN

FACTORIZATION MACHINE

In this chapter, we develop the Variational Bayesian Factorization Machine (VBFM) which

is a scalable variational Bayesian inference algorithm for Factorization Machine (FM).

VBFM converges faster than the existing state-of-the-art Markov chain Monte Carlo (MCMC)

based Gibbs sampling inference algorithm for FM while providing similar performance.

Additionally, for large-scale learning, we propose the Online Variational Bayesian Factor-

ization Machine (OVBFM) which utilizes stochastic gradient descent (SGD) to optimize

the lower bound in variational approximation. OVBFM outperforms existing online algo-

rithm for FM as validated by extensive experiments performed on numerous large-scale

real world datasets.

4.1 Introduction

Feature based methods, such as Support Vector Machines (SVMs), are one of the standard

approach in machine learning which work on the generic features extracted from the data.

Standard tools like LIBSVM [Chang and Lin, 2011], SVM-Light [Joachims, 2002] for

SVMs can be applied for feature based methods. These approach do not require expert’s

intervention to extract information from the data. However, feature based methods fail in

domains with very sparse and high dimensional data, where instead, a class of algorithms

called factorization model is widely used due to its prediction quality and scalability. Ma-

trix factorization [Koren et al., 2009; Salakhutdinov and Mnih, 2007, 2008; Gopalan et al.,

2015] is the simplest and most well studied factorization model. Though factorization

models have been successful due to their simplicity, performance and scalability in several

domains, deploying these models to new prediction problems is non-trivial and requires

– 1) designing of the model and feature representation for the specific application; 2) de-

riving learning or inference algorithm; and 3) implementing the approach for that specific

application – all of which are time consuming and often call for domain expertise.

Factorization Machine (FM) [Rendle, 2010] is a generic framework which combines

high prediction quality of factorization model with the flexibility of feature engineering.

FM represents data as real-valued features like standard machine learning approaches, such

as SVMs, and uses interactions between each pair of variables in a low-dimensional latent

space. Interestingly, the framework of FM subsumes many successful factorization models

like matrix factorization [Koren et al., 2009], SVD++ [Koren, 2008], TimeSVD++ [Ko-

ren, 2009], Pairwise Interaction Tensor Factorization (PITF) [Rendle and Schmidt-Thieme,

2010], and factorized personalized Markov chains (FPMC) [Rendle et al., 2011a].

One of popular learning algorithm for FM is SGD-FM [Rendle, 2010] which uses

stochastic gradient descent (SGD) to learn the model. Though SGD is scalable and enjoys

local convergence guarantee [Sato, 2001], it often overfits the data and requires manual

tuning of learning rate and regularization parameters [Salakhutdinov and Mnih, 2007].

Alternative methods to solve FM include MCMC-FM [C. Freudenthaler, 2011] which pro-

vides state-of-the-art performance using Markov chain Monte Carlo (MCMC) based Gibbs

sampling as the inference mechanism and avoids expensive manual tuning of the learning

rate and regularization parameters. However, MCMC-FM is a batch learning method and

is less straight forward to apply to datasets as large as the KDD music dataset [Dror et al.,

2012]. Also, it is difficult to preset the values of burn-in and collection iterations and

gauge the convergence of the MCMC inference framework, a known problem with sam-

pling based techniques.

Variational inference, an alternative to MCMC sampling, transforms a complex infer-

ence problem into a high-dimensional optimization problem [Beal, 2003; Tzikas et al.,

2008; Hoffman et al., 2013]. Typically, the optimization is solved using a coordinate as-

cent algorithm and hence is more scalable compared to MCMC sampling [Hoffman et al.,

2010]. Motivated by the scalability of variational methods, we propose a batch Variational

Bayesian Factorization Machine (VBFM). Empirically, VBFM is found to converge faster

than MCMC-FM and performs as good as MCMC-FM asymptotically. The convergence

38

is also easy to track when the objective associated with the variational approximation in

VBFM stops changing significantly. Additionally, the Online Variational Bayesian Factor-

ization Machine (OVBFM) is introduced which uses SGD for maximizing the lower bound

obtained from the variational approximation and performs much better than the existing

online algorithm of FM that uses SGD. To summarize, the chapter makes the following

contribution:

1. The VBFM is proposed which converges faster than MCMC-FM.

2. The OVBFM is introduced which exploits the advantages of online learning and
performs much better than SGD-FM.

3. Extensive experiments on real-world datasets validate the superiority of both VBFM
and OVBFM.

The remainder of the chapter is structured as follows. Section 4.2 presents the model

description. A detailed description of the inference mechanism for both VBFM and OVBFM

is provided in Section 4.3. Section 4.4 evaluates the performance of both VBFM and

OVBFM on several real world datasets. Finally, the summary is presented in Section 4.5.

4.2 Model

Consider a training set containing N tuples of the form (xn, yn)Nn=1 where each tuple con-

sists of the covariate xn and the response variable yn. The data is further represented in the

form of Figure 2.1 where the ith column represents the ith variable. For detailed description

of FM please refer to Section 2.2.4. Similar to Eq. (2.19), the observed data yn is assumed

to be generated as follows:

yn ∼ N
(
w0 +

D∑
i=1

xniwi +
D∑
i=1

D∑
j=i+1

xnixnjv
ᵀ
i vj, α

−1

)
, (4.1)

where α is the precision parameter, w0 is the global bias, wi is the bias associated with

the ith variable, and vi is the latent factor vector of dimension K associated with the ith

39

ynw0

σ0
xni

wi

σwcl

vik

σvclk

wi

σwc1

vik

σvc1k

α

i ∈ cl

n = 1..N, i = 1..D

i ∈ c1

k = 1..K k = 1..K

Figure 4.1: Graphical model representation of VBFM.

variable. Independent prior is imposed on each of the latent variables as follows:

w0 ∼ N (w0|0, σ−1
0), (4.2)

wi ∼ N (wi|0, σ−1
wci

), (4.3)

vik ∼ N (vik|0, σ−1
vcik

), (4.4)

where ci denotes the group in which the ith variable belongs to. For example, in Figure

2.1, users, songs, and genres form three separate groups. If users form the first group, then

according to this notation, {u1, u2, · · · } belong to group c1. Figure 4.1 shows a graphical

model for VBFM with l different groups.

Note that unlike MCMC-FM, VBFM does not incorporate hyperpriors over the model

hyperparamters.

4.3 Approximate Inference

4.3.1 Batch Variational Inference

Let X ∈ RN×D be the sparse feature representation of input data and y be the vector of

corresponding response variables, as shown in Figure 2.1. For notational convenience, the

40

set of parameters in the model is denoted by θ = {α, σ0, {σwci}i, {σvcik}i,k} and the set of

latent variables is represented concisely by Z = {w0, {wi}i,V }.

Given a training set, the objective is to maximize the likelihood of the observations

given by p(y|X,θ). The marginal log-likelihood can be written as:

ln p(y|X,θ) = L(q,θ) +KL(q||p), (4.5)

where

L(q,θ) =

∫
Z

q(Z) ln

(
p(Z,y|X,θ)

q(Z)

)
dZ, (4.6)

KL(q||p) = −
∫
q(Z) ln

(
p(Z|y,X,θ)

q(Z)

)
dZ, (4.7)

where q(Z) is any probability distribution. KL(q||p) is the Kullback-Leibler divergence

between q(Z) and p(Z|y,X,θ), and is always non-negative. Thus ln p(y|X,θ) is lower-

bounded by the term L(q,θ), also known as evidence lower bound (ELBO) [Beal, 2003;

Tzikas et al., 2008]. While maximizing the ELBO L(q,θ), note that the optimum is

achieved at q(Z) = p(Z|y,X,θ). However, in practice working with the true poste-

rior distribution is intractable. Therefore, a restrictive form of q(Z) is considered, and

then a member of this family is found which minimizes the KL divergence. For large-scale

applications, a fully factorized variational distribution is considered:

q(Z) = q(w0)
D∏
i=1

q(wi)
D∏
i=1

K∏
k=1

q(vik), (4.8)

where

q(w0) = N (w0|µ
′

0, σ
′

0), (4.9)

q(wi) = N (wi|µ
′

wi
, σ
′

wi
), (4.10)

q(vik) = N (vik|µ
′

vik
, σ
′

vik
). (4.11)

41

The ELBO in Eq. (4.6) can be calculated as follows:

L(q,θ) =
N∑
n=1

Fn + F 0 +
D∑
i=1

Fw
i +

D∑
i=1

K∑
k=1

F v
ik, (4.12)

where

Fn = Eq

[
N∑
n=1

lnN (yn|xn,Z, α−1)

]
= −1

2
ln 2πα−1 − α

2
((yn − ȳn)2 + Tn), (4.13)

ȳn = µ
′

0 +
D∑
i=1

µ
′

wi
xni +

D∑
i=1

D∑
j=i+1

xnixnj

K∑
k=1

µ
′

vik
µ
′

vjk
, (4.14)

Tn = σ
′

0 +
D∑
i=1

σ
′

wi
x2
ni +

D∑
i=1

D∑
j=i+1

x2
nix

2
nj

K∑
k=1

(
µ
′2
vik
σ
′

vjk
+ µ

′2
vjk
σ
′

vik
+ σ

′

vik
σ
′

vjk

)
+ 2

D∑
i=1

x2
niσ

′

vik

D∑
j=1

D∑
(j′=j+1)&(j&j′ 6=i)

xnjxnj′µ
′

vjk
µ
′

v
j
′
k

(4.15)

F 0 = Eq[lnN (w0|0, σ−1
0)− lnN (w0|µ

′

0, σ
′

0)] =
1

2
+

1

2
lnσ0σ

′

0 −
σ0

2
(µ
′2
0 + σ

′

0),

(4.16)

Fw
i = Eq[lnN (wi|0, σ−1

wci
)− lnN (wi|µ

′

wi
, σ
′

wi
)] =

1

2
+

1

2
lnσ

′

wi
σwci

−
σwci

2
(µ
′2
wi

+ σ
′

wi
), (4.17)

F v
ik = Eq[lnN (vik|0, σ−1

vcik
)− lnN (vik|µ

′

vik
, σ
′

vik
)] =

1

2
+

1

2
lnσ

′

vik
σvcik

−
σvcik

2
(µ
′2
vik

+ σ
′

vik
). (4.18)

Let Q be the set of all distributions having a fully factorized form as given in Eq. (4.8).

The optimal distribution that produces the tightest possible lower bound L is given by:

q∗ = arg min
q∈Q

KL(q(Z)||p(Z|y,X,θ)). (4.19)

The update rule corresponding to a variational parameter describing q∗ can be obtained by

setting the derivative of Eq. (4.12) with respect to that variational parameter to zero. For

example, the update equation for the variational parameters associated with q∗(vik) can be

42

written as follows:

σ
′

vik
=

σvcik + α
N∑
n=1

x2
ni

(D∑
l=1&l 6=i

xnlµ
′

vlk

)2

+
D∑

l=1&l 6=i
x2
nlσ

′

vlk

−1

, (4.20)

µ
′

vik
= σ

′

vik
α

N∑
n=1

xni

D∑
l=1&l 6=i

xnlµ
′

vlk

(
yn − ȳn + xniµ

′

vik

D∑
l=1&l 6=i

xnlµ
′

vlk

)
. (4.21)

Straightforward implementation of Eq. (4.20) and (4.21) requires O(KNiD) complexity,

where Ni is a set of indices n for which xni is non-zero. However, using a simple trick we

can reduce the complexity to O(NiD). To that end, we first show the calculation of ȳn:

ȳn = µ
′

0 +
D∑
i=1

µ
′

wi
xni +

1

2

K∑
k=1

(D∑
i=1

xniµ
′

vik

)2

−
D∑
i=1

x2
niµ

′2
vik

 (4.22)

Now, ȳn can be computed in O(KD) time. However, the complexity to update Eq.

(4.20) and (4.21) is still O(KNiD). We can reduce the complexity to O(NiD) by pre-

computing the quantities Rn = (yn− ȳn) for all the training points. The update equations,

with Rn, can be written as follows:

σ
′

vik
=

(
σvcik + α

N∑
n=1

x2
ni

(
S1(i, k)2 + S2(i, k)

))−1

, (4.23)

µ
′

vik
= σ

′

vik
α

N∑
n=1

xniS1(i, k)
(
Rn + xniµ

′

vik
S1(i, k)

)
, (4.24)

where S1(i, k) =
D∑
l=1

xnlµ
′
vlk
− xniµ′vik and S2(i, k) =

D∑
l=1

x2
nlσ

′
vlk
− x2

niσ
′
vik

. The same

trick works for all other parameters as well. Rn is updated iteratively as and when each

hyperparameter is updated. The detail procedure is presented in Algorithm 3. In each it-

eration, Algorithm 3 updates all the parameters in turn. In line 3-9, variational parameters

of the global bias term are updated. Line 11-31 update the variational parameters corre-

spond to the individual bias term and the pairwise interaction term. Then all the model

hyperparamters are updated in line 33-42. This procedure is then repeated for M number

of iterations.

43

Algorithm 3 Variational Bayesian Factorization Machine (VBFM)

Require: α, σ0, σwci , σvci,k ∀i, k
Ensure: Randomly Initialize σ

′
0, µ′0, σ′wi ,

µ
′
wi

, σ′vik , µ′vik ∀i, k
Ensure: Compute Rn for all the training

data points.
1: for t = 1 to M do
2: // Update w0’s parameter
3: σold ← σ

′
0

4: µold ← µ
′
0

5: σ
′
0 ← (σ0 + αN)−1

6: µ
′
0 ← σ

′
0α

N∑
n=1

(
Rn + µ

′
0

)
7: for n = 1 to N do
8: Rn ← Rn + µold − µ′0
9: end for

10: // Update wi’s parameter
11: for i = 1 to D do
12: σold ← σ

′
wi

13: µold ← µ
′
wi

14: σ
′
wi
←
(
σwci + α

N∑
n=1

x2
ni

)−1

15: µ
′
wi
← σ

′
wi
α

N∑
n=1

xni
(
Rn + xniµ

′
wi

)
16: for n in Ωi do
17: Rn ← Rn + xni(µold − µ′wi)
18: end for
19: end for
20: // Update vik’s parameter
21: for k = 1 to K do
22: for i = 1 to D do

23: σold ← σ
′
vik

24: µold ← µ
′
vik

25: σ
′
vik
←
(

(σvcik + α
N∑
n=1

x2
ni

(S1(i, k)2 + S2(i, k))

)−1

26: µ
′
vik

← σ
′
vik
α

N∑
n=1

xniS1(i, k)

[Rn + xniµvikS1(i, k)]
27: for n in Ωi do
28: Rn ← Rn+xniS1(i, k)(µold−

µ
′
vik

)
29: end for
30: end for
31: end for
32: // Update hyperparameters
33: α← N

N∑
n=1

R2
n+Tn

34: σ0 ← 1
µ2

0+σ0

35: for i = 1 to |c| do

36: σwci ←
∑
j∈ci

1∑
j∈ci

(
µ′2wj+σ′wj

)
37: end for
38: for k = 1 to K do
39: for i = 1 to |c| do

40: σvcik ←
∑
j∈ci

1∑
j∈ci

(
µ′2vjk

+σ′vjk

)
41: end for
42: end for
43: end for

4.3.2 Stochastic Variational Inference

Stochastic approximation methods follow noisy gradient of a target function with decreas-

ing step sizes. Such noisy gradient is calculated only for the sub-sampled data (data gen-

erated from the original dataset according to a sampling mechanism), the computation of

which is often cheaper. Scaling of the objective function is necessary in such case to ensure

that the expectation of the noisy gradient is equal to the gradient of the original target func-

44

tion. Therefore, in the implementation, after sub-sampling a data instance n uniformly at

random from the given dataset, the noisy estimate of L(q,θ) can be computed as follows:

Lnoisy(q,θ) = sn
−1Fn + F 0 +

D∑
i=1;i∈n

Fw
i +

D∑
i=1;i∈n

K∑
k=1

F v
ik, (4.25)

where sn is the rescaling constant. Eq. (4.25) is the rescaled version of Eq. (4.12). Rescale

factors for w0, wi and vik are set to N , |Ωi|, and |Ωi| respectively. The variational pa-

rameters associated with q(Z) are updated by making a small step in the direction of the

gradient of Eq. (4.25). Since natural gradient leads to faster convergence [Amari, 1998;

Hoffman et al., 2013], natural parameters of q(Z) are considered for the updates. The nat-

ural gradient of a function accounts for the information geometry of its parameter space.

The classical gradient method for maximization tries to find a maximum of a function by

taking small steps in the direction of the gradient. The gradient (when it exists) points in

the direction of steepest ascent. However, the Euclidean metric might not capture a mean-

ingful notion of distance [Hoffman et al., 2013]. The natural gradient corrects for this

issue by redefining the basic definition of the gradient [Amari, 1998]. While the Euclidean

gradient points in the direction of steepest ascent in Euclidean space, the natural gradient

points in the direction of steepest ascent in the Riemannian space, that is, the space where

local distance is defined by KL divergence rather than the L2 norm.

Natural parameters are represented as: v̄ik =
µ
′
vik

σ
′
vik

, v̂ik = 1
σ
′
vik

and v̊ik = {v̄ik, v̂ik},
with v̊ik denoting the natural parameter corresponding to vik. Also, the natural gradient

of Lnoisy(q,θ) with respect to v̊ik is given by ∇L′ (̊vik). As the model is conditionally

conjugate [Hoffman et al., 2013],∇L′ (̊vik) = v̊∗ik− v̊ik, where v̊∗ik = {v̄∗ik, v̂∗ik} is the value

of v̊ik that maximizes Eq. (4.25). Therefore, update equation for v̊ik can be written as:

v̊new
ik = v̊old

ik + ηiv (̊v
∗
ik − v̊old

ik) = (1− ηiv)̊vold
ik + ηivv̊

∗
ik, (4.26)

where ηiv is the step size corresponding to v̊ik. Step sizes η0
w, ηiw and ηiv are updated each

time the corresponding parameters get updated using Robbins-Monro conditions [Hoffman

et al., 2013] which ensures convergence. In particular, let tw0 , twi and tvik be the number

of times corresponding parameters get updated. Then the update rules can be written as

45

Algorithm 4 Online Variational Bayesian Factorization Machine (OVBFM)

Require: α, σ0, σwci , σvcik , η
i ∀i, k

Ensure: Randomly Initialize σ
′
0, µ′0, σ′wi ,

µ
′
wi

, σ′vik , µ′vik ∀i, k
1: for t = 1 to M do
2: for s ∈ B do
3: Compute Rn ∀n ∈ s
4: // Update w0’s parameter
5: for i = 1 to n do
6: Update ẘavg

0 using (4.31)
7: end for
8: Update ẘ0 using (4.29)
9: UpdateRn like algorithm 3 for cur-

rent batch
10: // Update wi’s parameter
11: for i = 1 to D do
12: for n = 1 to Ωi do
13: Update ẘavg

i using (4.32)
14: end for
15: Update ẘi using (4.29)
16: Update Rn like algorithm 3 for

current batch
17: end for
18: // Update vik’s parameter
19: for k = 1 to K do
20: for i = 1 to D do
21: for n = 1 to Ωi do
22: Update v̊avg

ik using (4.33)

23: end for
24: Update v̊ik using (4.29)
25: Update Rn like algorithm 3

for current batch
26: end for
27: end for
28: Update η0

w, ηiw, ηiv using (4.27) and
(4.28)

29: // Update hyperparameters
30: α← (1− η0

w)α + η0
w(|s|

|s|∑
n=1

R2
n+Tn

)

31: σ0 ← (1− η0
w)σ0 + η0

w(1
µ2

0+σ0
)

32: for i = 1 to |c| do
33: σwci ← (1 − ηiw)σwci +

ηiw(

∑
j∈ci

1∑
j∈ci

(
µ′2wj+σ′wj

))

34: end for
35: for k = 1 to K do
36: for i = 1 to |c| do
37: σvcik ← (1 − ηiv)σvcik +

ηiv(

∑
j∈ci

1∑
j∈ci

(
µ′2vjk

+σ′vjk

))

38: end for
39: end for
40: end for
41: end for

follows:

η0
w = (1 + tw0)−λ, ηiw = (1 + twi)

−λ ∀i ∈ {1, 2, · · · , D}, (4.27)

ηiv = (1 + tvik)
−λ ∀i ∈ {1, 2, · · · , D} and ∀k ∈ {1, 2, · · · , K}, (4.28)

where λ ∈ (0.5, 1). For all the experiments, minimum value of λ produced best results.

Therefore λ is set at 0.5.

To reduce the variance due to noisy estimate of the gradient, a mini-batch version is

considered with a batch size of s number of points. To update a parameter, for example

v̊ik = {v̄∗ik, v̂∗ik} are computed and stored for all the data instances with non-zero feature

46

values in the ith column. The update of v̊ik can then be derived as follows:

v̊new
ik = (1− ηiv)̊vold

ik + ηivv̊
avg
ik , (4.29)

where,

v̊avg
ik =

ni∑
n=1

v̊∗,nik /ni. (4.30)

Here ni is the number of non-zero entries in the ith column of the design matrix constructed

from the current batch and v̊∗,nik is the value of v̊∗ik produced when the nth data point is

considered. Detailed update equations of parameters set {ẘ∗0, ẘ∗i , v̊∗ik}, which are used in

Eq. (4.29) to calculate the variational parameters {ẘ0, ẘi, v̊ik}, are as follows.

• Update rule for the parameters of ẘ∗0 = {w̄∗0, ŵ∗0} given the nth data point is as
follows:

ŵ∗0 = σ0 +Nα,

w̄∗0 = Nα(Rn + µ
′

0) . (4.31)

• Update rule for the parameters of ẘ∗i = {w̄∗i , ŵ∗i } given the nth data point is as
follows:

ŵ∗i = (σwci + |Ωi|αx2
ni),

w̄∗i = |Ωi|αxni
(
Rn + xniµ

′

wi

)
. (4.32)

• Update rule for the parameters of v̊∗ik = {v̄∗ik, v̂∗ik} given the nth data point is as
follows:

v̂∗ik = σvcik + |Ωi|αx2
ni

(
S1(i, k)2 + S2(i, k)

)
,

v̄∗ik = |Ωi|αxniS1(i, k)
(
Rn + xniµ

′

vik
S1(i, k)

)
. (4.33)

Algorithm 4 describes the detail procedure of OVBFM. In each iteration of OVBFM,

the dataset is partitioned into B random batches. Then in each iteration, OVBFM loops

through these B batches sequentially. For a given batch, line 3-27 update all the natural

parameters, and line 28-39 update all the model hyperparameters. These steps are then

repeated for B batches which completes a full iteration of OVBFM. These steps are then

repeated for M iterations.

47

Table 4.1: Description of the datasets.

Dataset No. of User No. of Movie No. of Entries
Movielens 1m 6040 3900 1m

Movielens 10m 71567 10681 10m
Netflix 480189 17770 100m

KDD Music 1000990 624961 263m

4.4 Experiments

4.4.1 Dataset

In this section, empirical results on four real-world datasets are presented that validate the

effectiveness of the proposed models. Except Netflix, all the other datasets are publicly

available. The details of these datasets are provided in Table 4.1. For Movielens 1m and

10m datasets, the train-test split provided by Movielens is used for the experiments. For

Netflix, the probe data is used as the test set. In case of KDD Music dataset, standard

train-test split is used for analysis.

4.4.2 Methods of Comparison

VBFM and OVBFM are compared against MCMC-FM [C. Freudenthaler, 2011] and SGD-

FM [Rendle, 2012]. A version of MCMC-FM is also considered as another baseline which

allows 20 burn-in iterations for the sampler and is named as MCMC-Burnin-FM.

4.4.3 Parameter Selection and Experimental Setup

The variational parameters {µ′0, µ
′
wi
, µ
′
vik
} are initialized using a standard normal distribu-

tion and {σ′0, σ
′
wi
, σ
′
vik
} are initialized to 0.02 for both VBFM and OVBFM. The param-

eters θ of the model are initialized to 1.0 for both VBFM and OVBFM. Additionally, in

OVBFM, all the η’s are initialized to 1.0 and decayed further using Robbins-Monro se-

quence for all the experiments. The number of batches for OVBFM is chosen by cross

validation. In MCMC-FM and MCMC-Burnin-FM, the parameters are initialized accord-

ing to the values suggested in [C. Freudenthaler, 2011]. In SGD-FM, MCMC-FM and

48

MCMC-Burnin-FM, parameters in Z are initialized using a normal distribution with zero

mean and standard deviation of value 0.01. As performance of SGD-FM is susceptible

to the learning rate and regularization parameter, they are chosen by cross-validation. In

Movielens 1m, 10m, and Netflix, the best performances are achieved with the following

values of learning rate and regularization parameter – (0.001, 0.01), (0.0001, 0.01), and

(0.001, 0.01) respectively. For KDD music dataset, experiments are run for SGD-FM with

three different learning rates 0.0001, 0.00005, and 0.00001, but the regularization parame-

ter is kept fixed at 0.01. Each of the algorithm are run for 100 iterations.

In past, it is shown that increasing the number of latent factor improves the RMSE [Ko-

ren, 2009; Salakhutdinov and Mnih, 2008]. Hence, it is necessary to investigate how the

models work with different values of K. So three sets of experiments are run for each

of Movielens 1m, 10m, and Netflix datasets corresponding to three different values of

K ∈ {20, 50, 100}. As we run experiments on an Intel I5 machine with 16GB RAM,

employing batch algorithms (MCMC-FM, MCMC-Burnin-FM, and VBFM) on KDD mu-

sic data is not possible due to memory limitation. Hence, for KDD music dataset, we

only compare performances of SGD-FM and OVBFM for K = 20 and K = 50. All

of the proposed and baseline methods are allowed to run for 100 iterations. In case of

MCMC-Burnin-FM, 20 burn-in iterations are followed by 80 collection iterations. Root

Mean Square Error (RMSE) [Koren et al., 2009] is used as the evaluation metric for all the

experiments.

4.4.4 Results

Left, middle and right columns in Figure 4.2 show results for K = 20, 50, and 100 respec-

tively on Movielens 1m, 10m and Netflix datasets. In Figure 4.3, left and right columns

show results on KDD music dataset with K = 20 and 50 respectively. In all the plots,

x−axis represents the number of iterations and the y−axis presents the RMSE value. Each

iteration of VBFM and MCMC-FM takes almost equal time. However, SGD-FM is faster

than VBFM and MCMC-FM as it is online algorithm. In case of OVBFM, we consider

mini batch. hence, it is slower than SGD-FM but faster than VBFM and MCMC-FM.

49

0 20 40 60 80 100
Iterations

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(a)

0 20 40 60 80 100
Iterations

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(b)

0 20 40 60 80 100
Iterations

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(c)

0 20 40 60 80 100
Iterations

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(d)

0 20 40 60 80 100
Iterations

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(e)

0 20 40 60 80 100
Iterations

0.85

0.90

0.95

1.00

1.05

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(f)

0 20 40 60 80 100
Iterations

0.90

0.95

1.00

1.05

1.10

1.15

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(g)

0 20 40 60 80 100
Iterations

0.90

0.95

1.00

1.05

1.10

1.15

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(h)

0 20 40 60 80 100
Iterations

0.90

0.95

1.00

1.05

1.10

1.15

R
M

S
E

VBFM

OVBFM

MCMC-FM

MCMC-Burnin-FM

SGD-FM

(i)

Figure 4.2: Left, middle, and right columns correspond to the results for K = 20, 50, and
100 respectively. {a,b,c}, {d,e,f}, and {g,h,i} are results on Movielens 1m,
Movielens 10m, and Netflix datasets respectively.

Though the over-all performance varies for VBFM, MCMC-FM, and MCMC-Burnin-

FM depending on the datasets and the number of latent factors used, the differences among

their asymptotic behaviors are negligible. For all the experiments on Movielens 1m, 10m,

and Netflix dataset, VBFM is found to converge faster than both MCMC-FM and MCMC-

Burnin-FM. The convergence of VBFM is faster probably due to the fact that MCMC-

FM is a hierarchical model. On the other hand, VBFM is a single level model where

50

0 20 40 60 80 100
Iterations

24

26

28

30

32

34

36

38
R

M
SE

OVBFM

SGD-FM L.R = 0.0001

SGD-FM L.R = 0.00005

SGD-FM L.R = 0.00001

0 20 40 60 80 100
Iterations

24

26

28

30

32

34

36

38

R
M

SE

OVBFM

SGD-FM L.R = 0.0001

SGD-FM L.R = 0.00005

SGD-FM L.R = 0.00001

Figure 4.3: Left and right columns show results on KDD music dataset for K = 20 and 50
respectively.

hyperpriors are not considered. For all the experiments on Movielens 1m, 10m, and Netflix

dataset, OVBFM performs much better than SGD-FM. Also it is evident from the graph

that SGD overfits the data quite often. In KDD music dataset, OVBFM performs better

than SGD-FM and the gap in RMSE is more significant forK = 50. Overfitting with SGD

is more problematic with higher values of K in the KDD music dataset. Also for SGD,

there is an additional difficulty of tuning the learning rate for each dataset. For very small

values of learning rate, SGD underfits the data and for very large values it overfits the data.

On the contrary, we tried OVBFM with different learning rates and the performance of

OVBFM is quite robust with respect to the learning rate. In Netflix dataset, for VBFM and

MCMC-FM K = 100 gives approximately 1% lift over K = 20. For other datasets the

lift is less. SGD-FM performs worse with higher K due to overfitting and OVBFM gives

small lift in some cases. Note, we experimented with different values ofK to be consistent

with the literature [Koren, 2009; Salakhutdinov and Mnih, 2008].

4.5 Summary

We have proposed the Variational Bayesian Factorization Machine (VBFM) which is a

scalable variational Bayesian approach for Factorization Machine (FM). VBFM converges

faster than the existing state-of-the-art Markov chain Monte Carlo (MCMC) based Gibbs

sampling inference algorithm for FM while providing similar performance. Additionally,

51

the Online Variational Bayesian Factorization Machine (OVBFM) is introduced, which

uses SGD for maximizing the lower bound obtained from the variational approximation,

and performs much better than the existing online algorithm of FM that uses SGD.

52

CHAPTER 5

NONPARAMETRIC POISSON FACTORIZATION

MACHINE

In this chapter, we develop the Nonparametric Poisson Factorization Machine (NPFM),

which models count data using the Poisson distribution, provides both modeling and com-

putational advantages for sparse data. The ideal number of latent factors is estimated from

the data itself. We also consider a special case of NPFM, the Parametric Poisson Factor-

ization Machine (PPFM), that considers a fixed number of latent factors. Both NPFM anf

PPFM have linear time and space complexity with respect to the number of non-zero ob-

servations. Extensive experiments on four different movie review datasets show that both

NPFM and PPFM outperform two competitive baseline methods by huge margin.

5.1 Introduction

Factorization models have received extensive attention in the data mining community re-

cently for certain problems characterized by high-dimensional, sparse matrices, due to

their simplicity, prediction quality, and scalability. One of the most successful domains for

factorization models have been Recommender Systems(RSs). Perhaps the most well stud-

ied factorization model is matrix factorization [Srebro and Jaakkola, 2003; Koren et al.,

2009; Salakhutdinov and Mnih, 2007, 2008; Gopalan et al., 2015] using the Frobenius

norm as the loss function. Tensor factorization [Xiong et al., 2010; Ho et al., 2014;

Chi and Kolda, 2012] methods have also been developed for multi-modal data. Several

specialized factorization models have been proposed specific to particular problems, for

instance: SVD++ [Koren, 2008], TimeSVD++ [Koren, 2009], Factorizing Personalized

Markov Chains (FPMC) [Rendle et al., 2011a], and Bayesian Probabilistic Tensor Factor-

ization (BPTF) [Xiong et al., 2010]. Also many learning and inference methods have been

studied for factorization models, for example: stochastic gradient descent (SGD) [Koren

et al., 2009], alternating least-squares [Zhou et al., 2008], variational Bayes [Lim and

Teh, 2007; Kim and Choi, 2014; Silva and Carin, 2012], and Markov Chain Monto Carlo

(MCMC) Gibbs sampling inference [Salakhutdinov and Mnih, 2008].

In more challenging prediction scenarios where additional “side-information” is avail-

able and/or higher order features may be needed, new challenges due to feature engineering

needs arise. The side-information may include user specific features such as age, gender,

demographics, and network information and item specific information such as product de-

scriptions. While interaction terms are typically desired in such scenarios, the number

of such terms grows very quickly. This dilemma is cleverly addressed by the Factoriza-

tion Machine (FM) [Rendle, 2010], which combines high prediction quality of factoriza-

tion models with the flexibility of feature engineering. FM represents data as real-valued

features like standard machine learning approaches, such as Support Vector Machines

(SVMs), and uses interactions between each pair of variables as well but constrained to

a low-dimensional latent space. By restricting the latent space, the number of parameters

needed to be determined is kept manageable. Interestingly, the framework of FM sub-

sumes many successful factorization models like matrix factorization [Koren et al., 2009],

SVD++ [Koren, 2008], TimeSVD++ [Koren, 2009], Pairwise Interaction Tensor Factor-

ization (PITF) [Rendle and Schmidt-Thieme, 2010], and factorized personalized Markov

chains (FPMC) [Rendle et al., 2011a].

A stochastic gradient descent (SGD) based algorithm SGD-FM [Rendle, 2010] is usu-

ally used to learn FM. Though SGD is scalable and enjoys local convergence guarantees

[Sato, 2001], it requires manual tuning of learning rate and regularization parameters, and

may overfit the data. Alternative methods to solve FM include MCMC-FM [C. Freuden-

thaler, 2011] which provides state-of-the-art performance using Markov chain Monte Carlo

(MCMC) based Gibbs sampling as the inference mechanism and avoids expensive manual

tuning of the learning rate and regularization parameters. However, MCMC-FM assumes

that the observations are generated from a Gaussian distribution which, obviously, is not

a good fit for count data. Additionally, for both SGD-FM and MCMC-FM, one needs to

solve an expensive model selection problem to identify the optimal number of latent fac-

54

tors. We note that alternative models for count data have recently emerged that use discrete

distributions, provide better interpretability and scale only with the number of non-zero el-

ements [Gopalan et al., 2014b; Zhou and Carin, 2015; Zhou et al., 2012; Acharya et al.,

2015].

This chapter proposes a Nonparametric Poisson Factorization Machine (NPFM) to

overcome the limitations of the existing inference techniques for FM mentioned above.

The specific advantages of NPFM include:

• NPFM provides a more interpretable model with a better fit for count dataset.

• NPFM is a nonparametric approach and avoids the costly model selection procedure

by automatically finding the number of latent factors suitable for modeling the pairwise

interaction matrix in FM.

• NPFM takes advantages of the Poisson distribution [Gopalan et al., 2015] and considers

only sampling over the non-zero entries. On the other hand, existing FM methods, which

assume a Gaussian distribution, must iterate over both positive and negative samples in

the implicit setting. Such iteration is expensive for large datasets and often needs to be

solved using a costly positive and negative data sampling approach instead. NPFM can

take advantage of natural sparsity of the data which existing inference technique of FM

fails to exploit.

The remainder of the chapter is structured as follows. Section 5.2 presents pertinent

background and related work. A detailed description of NPFM and associated inference

mechanisms is provided in Section 5.3. Section 5.4 demonstrates the performance of

NPFM on both simulated and real world datasets. Finally, the conclusions are summa-

rized in Section 5.5.

5.2 Background and Related Work

This section presents the related literature and the background materials that are useful for

understanding the framework described in Section 5.3.

55

5.2.1 Negative Binomial Distribution

The negative binomial (NB) distribution m ∼ NB(r, p), with probability mass function

(PMF) P (M = m) = Γ(m+r)
m!Γ(r)

pm(1 − p)r for m ∈ Z, can be augmented into a gamma-

Poisson construction as m ∼ Pois(λ), λ ∼ Gamma(r, p/(1− p)), where Pois and Gamma

represent Poisson and gamma distribution respectively, and the gamma distribution is pa-

rameterized by its shape r and scale p/(1−p). It can also be augmented under a compound

Poisson representation as m =
∑l

t=1 ut, ut
iid∼ Log(p), l ∼ Pois(−rln(1 − p)), where

u ∼ Log(p) is the logarithmic distribution [Johnson et al., 2005]. Consequently, we have

the following Lemma.

Lemma 5.2.1 ([Zhou and Carin, 2012]). If m ∼ NB(r, p) is represented under its com-

pound Poisson representation, then the conditional posterior of l given m and r has PMF:

P (l = j|m, r) =
Γ(r)

Γ(m+ r)
|s(m, j)|rj, j = 0, 1, · · · ,m, (5.1)

where |s(m, j)| are unsigned Stirling numbers of the first kind. We denote this conditional

posterior as (l|m, r) ∼ CRT(m, r), a Chinese restaurant table (CRT) count random vari-

able, which can be generated via l =
∑m

n=1 zn, zn ∼ Bernoulli(r/(n− 1 + r)).

Lemma 5.2.2. LetX =
∑K

k=1 xk, xk ∼ Pois(ζk) ∀k, and ζ =
∑K

k=1 ζk. If (y1, · · · , yK |X)

∼ Mult(X, ζ1/ζ, · · · , ζK/ζ) and X ∼ Pois(ζ), then the following holds:

P (X, x1, · · · , xK) = P (X, y1, · · · , yK). (5.2)

Lemma 5.2.3. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then x =
∑

i xi ∼ NB(r, p),

where p = (
∑

imi)/(c+
∑

imi).

Lemma 5.2.4. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then

(λ|{xi}, r, c) ∼ Gamma

(
r +

∑
i

xi,
1

c+
∑

imi

)
. (5.3)

Lemma 5.2.5. If ri ∼ Gamma(ai, 1/b) ∀i, b ∼ Gamma(c, 1/d), then we have:

56

(b|{ri, ai}, c, d) ∼ Gamma

(∑
i

ai + c,
1∑

i ri + d

)
. (5.4)

The proofs of Lemmas 5.2.3, 5.2.4 and 5.2.5 follow from the definitions of gamma,

Poisson and negative binomial distributions.

Lemma 5.2.6. If xi ∼ Pois(mir2), r2 ∼ Gamma(r1, 1/d), r1 ∼ Gamma(a, 1/b), , then

(r1|−) ∼ Gamma(a + `, 1/(b − log(1 − p))) where (`|x, r1) ∼ CRT(
∑

i xi, r1), p =∑
imi/(d+

∑
imi).

The proof and illustration of Lemma 5.2.6 can be found in Section 3.3 of [Acharya

et al., 2015].

5.2.2 Gamma Process

The gamma process [Zhou and Carin, 2015] G ∼ ΓP(c,G0) is a completely random mea-

sure defined on the product space R+ × Ω, with scale parameter 1
c

and a finite and con-

tinuous base measure G0 over a complete separable metric space Ω, such that G(Ai) ∼
Gamma(G0(Ai), 1/c) for each Ai ⊂ Ω. The Lévy measure of the gamma process can be

expressed as ν(drdω) = r−1e−crdr(dω). Since the Poisson intensity ν+ = ν(R+ × Ω) =

∞ and the value of
∫ ∫

R+×Ω
rν(drdω) is finite, a draw from the gamma process consists

of countably infinite atoms, which can be expressed as follows:

G =
∞∑
k=1

rkδωk , (rk, ωk)
iid∼ π(drdω), π(drdω)ν+ ≡ ν(drdω). (5.5)

5.2.3 Poisson Factor Analysis

Since the pairwise interaction matrix in NPFM is modeled using a Poisson factorization,

some discussion on Poisson factor analysis is necessary. A large number of discrete latent

variable models for count matrix factorization can be united under Poisson factor analysis

(PFA) [Zhou et al., 2012; Zhou and Carin, 2015; Acharya et al., 2015], which factor-

izes a count matrix Y ∈ ZD×V under the Poisson likelihood as Y ∼ Pois(ΦΘ), where

57

Φ ∈ RD×K
+ is the factor loading matrix or dictionary, Θ ∈ RK×V

+ is the factor score ma-

trix. A wide variety of algorithms, although constructed with different motivations and

for distinct problems, can all be viewed as PFA with different prior distributions imposed

on Φ and Θ. For example, non-negative matrix factorization [Cemgil, 2009], with the

objective to minimize the Kullback-Leibler divergence between N and its factorization

ΦΘ, is essentially PFA solved with maximum likelihood estimation. LDA [Blei et al.,

2003] is equivalent to PFA, in terms of both block Gibbs sampling and variational infer-

ence [Gopalan et al., 2014b, 2015], if Dirichlet distribution priors are imposed on both

φk ∈ RD
+ , the columns of Φ, and θk ∈ RV

+, the columns of Θ. The gamma-Poisson

model [Canny, 2004; Titsias, 2007] is PFA with gamma priors on Φ and Θ. A family of

negative binomial (NB) processes, such as the beta-NB [Zhou et al., 2012] and gamma-

NB processes [Zhou and Carin, 2012, 2015], impose different gamma priors on {θvk}, the

marginalization of which leads to differently parameterized NB distributions to explain the

latent counts. Both the beta-NB and gamma-NB process PFAs are nonparametric Bayesian

models that allow K to grow without limits [Hjort, 1990].

5.3 Nonparametric Poisson Factorization Machine

5.3.1 Model

Consider a training data consisting of N tuples of the form (xn, yn)Nn=1 where xn is the

feature representation as shown in Figure 2.1 and yn is the associated response variable for

the nth training instance. In NPFM, the response variable yn ∈ Z is assumed to be linked

to the covariate xn ∈ RD
+ as:

yn ∼ Pois

(
w0 +wᵀxn +

D∑
i=1

D∑
j=i+1

xnixnj

∞∑
k=1

rkvikvjk

)
. (5.6)

According to the standard terminology in the literature of recommender systems, w0 de-

notes the global bias and is sampled as w0 ∼ Gamma(α0, 1/β0). w = (wi)
D
i=1 ∈ RD

+

and wi indicates the strength of the ith variable (the ith column from Figure 2.1) and

58

can be thought of as the bias corresponding to the ith feature. wi is modeled as wi ∼
Gamma(αi, 1/βi) ∀i ∈ {1, 2, · · · , D}. A gamma process G ∼ ΓP(c,G0) is further in-

troduced, a draw from which is expressed as G =
∑∞

k=1 rkδvk , where vk = (vik)
D
i=1 is

an atom drawn from a D-dimensional base distribution as vk ∼
D∏
i=1

Gamma(ζi, 1/δk) and

rk = G(vk) is the associated weight. The ith column in Figure 2.1 is associated with the in-

finite dimensional latent vector vi. The objective is to learn a distribution over the weights

w0, w, {rk,vk} based on the training observations. To complete the generative process,

gamma priors are imposed on the parameters as:

α0 ∼ Gamma(a0, 1/b0), β0 ∼ Gamma(c0, 1/d0),

αi ∼ Gamma(ai, 1/bi), βi ∼ Gamma(ci, 1/di), ζi ∼ Gamma(ei, 1/fi),

δk ∼ Gamma(gk, 1/hk).

The pairwise interaction matrix W (please refer to Section 2.2.4 for more details) is

modeled little differently in NPFM compared to other existing formulations of FM. In

NPFM, W is factored as wij ∼ Pois (
∑

k rkvikvjk), where rk denotes the strength of the

kth latent factor and vik denotes the affinity of the ith variable towards the kth latent fac-

tor. Note that such assumptions have been successfully used already for network analysis

[Zhou, 2015] and count data modeling [Acharya et al., 2015] and is similar to using eigen

decomposition of the matrix W with integer entries. However, unlike in eigen decom-

position, the factors vik’s are neither normalized nor do they form an orthogonal set of

basis vectors. Of course, by sampling the entries ofW from a Poisson distribution, we do

restrict these entries to integers, which is yet another departure from the standard formu-

lation of FM. However, the empirical results reveal that this is not at all an unreasonable

assumption. The gamma process G =
∑∞

k=1 rkδvk allows to estimate the ideal number of

latent factors from the data itself, without any need to cross-validate the performance with

varying number of latent factors.

The factor specific variable rk adds more flexibility to the model. For example, if

there is a need for modeling temporal count datasets, such as in a recommender system

that evolves over time, rk’s can be linked across successive time stamps using a gamma

59

Markov chain [Acharya et al., 2015]. This would imply that a certain combination of user-

item pair changes its characteristics over time. Since in practical recommender systems,

such evolution is very natural, we prefer to maintain these latent variables. In Section 5.3.3,

we illustrate PPFM, a simplified version of NPFM, which does not use the variables rk’s

at all. In Section 5.4, we see that the performances of NPFM and PPFM are comparable,

implying that the added flexibility does not hurt the predictive performance.

5.3.2 Inference Using Gibbs Sampling

Though NPFM supports countably infinite number of latent factors, in practice, it is im-

possible to instantiate all of them. Instead of marginalizing out the underlying stochastic

process [Blackwell and MacQueen, 1973] or using slice sampling [Walker, 2007] for non-

parametric modeling, for simplicity, a finite approximation of the infinite model is consid-

ered by truncating the number of latent factors K, by letting rk ∼ Gamma(γ0/K, 1/c).

Such an approximation approaches the original infinite model as K approaches infinity.

Further, gamma priors are imposed on both γ0 and c as:

γ0 ∼ Gamma(e0, 1/f0), c ∼ Gamma(g0, 1/h0).

With such approximation, the graphical model of NPFM is displayed in Figure 5.1.

For each (xn, yn), consider a vector of latent count variables zn, which is assumed to

consist of three parts:

zn =
(
z1n, (z2ni)

D
i=1, (z3nijk)(i,j):i<j;k

)
,

where z1n ∼ Pois(w0), z2ni ∼ Pois(xniwi) and z3nijk ∼ Pois(xnixnjrkvikvjk). These

latent variables are incorporated to make the model conjugate [Zhou and Carin, 2012]. As

a sum of Poisson random variables is itself a Poisson with rate equal to the sum of the

rates, one gets the following:

yn = z1n +
D∑
i=1

z2ni +
∑

(i,j):i<j;k

z3nijk.

60

ynxni w0

α0

β0

a0

b0

c0

d0

wi

αi βi

vik

ζi

ai bi ci di ei fi

δk

gk hk

rk

γ c

e0 f0 g0 h0

i = 1..D

n = 1..N

k = 1..∞

Figure 5.1: Graphical Model representation of NPFM where yn are target values drawn
from a Poisson distribution; all other intermediate variables are drawn from
gamma distributions.

Note that when yn = 0, zn = 0 with probability 1. Hence, the NPFM inference procedure

needs to consider zn only when yn > 0. Using Lemma 5.2.2, the conditional posterior of

these latent counts can be expressed as follows:

zn|− ∼ Mult


w0 + (wixni)

D
i=1 , (xnixnjrkvikvjk)(i,j):i<j;k

w0 +
∑

iwixni +
∑

(i,j):i<j

xnixnj

K∑
k=1

rkvikvjk

; yn

 . (5.7)

Sampling of w0 : Using Lemma 5.2.4, the conditional posterior of w0 can be expressed

as:

w0|− ∼ Gamma (α0 + z1., 1/(β0 +N)) . (5.8)

Sampling of wi : Using Lemma 5.2.4, the conditional posterior of wi can be expressed as:

wi|− ∼ Gamma (αi + z2.i, 1/(βi + x.i)) . (5.9)

Sampling of vik : Using Lemma 5.2.4, the conditional posterior of vik can be expressed

as:

61

vik|− ∼ Gamma

(
ζi + z3.ik, 1/(δk +

N∑
n=1

rkxni
∑
j 6=i

xnjvjk

)
. (5.10)

Sampling of rk : Using Lemma 5.2.4, the conditional posterior of rk can be expressed as:

rk|− ∼ Gamma (γ0/K + qk, 1/(c+ sk)) , (5.11)

qk =
N∑
n=1

∑
(i,j):i<j

z3nijk, sk =
N∑
n=1

∑
(i,j):i<j

xnixnjvikvjk.

Sampling of β0 : Using Lemma 5.2.5, the conditional posterior of β0 can be expressed as:

β0|− ∼ Gamma(c0 + α0, 1/(d0 + w0). (5.12)

Sampling of βi : Using Lemma 5.2.5, the conditional posterior of βi can be expressed as:

βi|− ∼ Gamma(ci + αi, 1/(di + wi)). (5.13)

Sampling of δk : Using Lemma 5.2.5, the conditional posterior of δk can be expressed as:

δk|− ∼ Gamma(gk + ζ., 1/(hk + v.k)). (5.14)

Sampling of c : Using Lemma 5.2.5, the conditional posterior of c can be expressed as:

c|− ∼ Gamma(γ0 + g0, 1/(h0 + r.)). (5.15)

Sampling of α0 : Straightforward sampling of α0 is not possible as this is the shape param-

eter of a gamma distribution and the prior and the likelihood are not conjugate. However,

from the generative assumptions, we have z1. ∼ Pois(Nw0). Using Lemma 5.2.3, one

can have w0 ∼ NB(α0, N/(N + β0)). Now augment l0 as l0 ∼ CRT (z1., α0), and using

Lemma 5.2.6 one can sample:

α0|− ∼ Gamma(a0 + l0, 1/(b0 − log(β0/(β0 +N)))). (5.16)

62

Sampling of αi : Straightforward sampling of αi is not possible as this is the shape pa-

rameter of a gamma distribution and the prior and the likelihood are not conjugate. How-

ever, from the generative assumptions, we have z2.i ∼ Pois(wimi), where mi =
∑

n xni.

Using Lemma 5.2.3, one can have wi ∼ NB(αi,mi/(mi + βi)). Now augment li as

li ∼ CRT (z2.i, αi), and using Lemma 5.2.6 one can sample:

αi|− ∼ Gamma(ai + li, 1/(bi − log(1− pi))), (5.17)

where pi = mi/(βi +mi).

Sampling of ζi : Since z3.ik ∼ Pois(mikvik) where mik =
∑
n

xnirk
∑
j 6=i

xnjvjk and vik ∼

Gamma(ζi, 1/δk), integrating out vik and using Lemma 5.2.3, one has z3.ik ∼ NB (ζi, pik)

∀k ∈ {1, 2, · · · , K} where pik = mik
δk+mik

. Augment `ik ∼ CRT (z3.ik, ζi) and using Lemma

5.2.6 sample ζi as follows:

ζi|− ∼ Gamma(ei +
∑
k

`ik, 1/(fi −
∑
k

log(1− pik))). (5.18)

Sampling of γ0 : Since z3...k ∼ Pois(rkmk) where mk =
∑

n,{(i,j):i<j} xnixnjvikvjk and

rk ∼ Gamma(γ0/K, 1/c), integrating out rk and using Lemma 5.2.3, one has z3..k ∼
NB (γ0/K, pk) where pk = mk/(c + mk). Augment `k ∼ CRT (z3...k, γ0/K) and using

Lemma 5.2.6 sample,

γ0|− ∼ Gamma(e0 +
∑
k

`k, 1/(f0 − 1/K
∑
k

log(1− pk))). (5.19)

5.3.3 Parametric Version

We also consider a special case of NPFM, Parametric Poisson Factorization Machine

(PPFM), as a baseline to compare against. The key difference between NPFM and PPFM

is that in NPFM, one does not need to tune over the number of latent factors. Even with a

finite approximation of NPFM, it is sufficient to set K at a high value and the inference it-

self predicts the ideal number of latent factors from the data. On the other hand, in PPFM,

one needs to choose the number of latent factors by a cross-validation process which is

63

time-consuming and computationally intensive. Additionally, to make the baseline com-

parable against other existing formulations of FM (see Eq. (2.17)), the term rk is left out.

To be more precise, in PPFM, we consider the following generative process for the label

yn:

yn ∼ Pois

(
w0 +wᵀx+

D∑
i=1

D∑
j=i+1

xnixnj

K∑
k=1

vikvjk

)
. (5.20)

Here, w0 ∼ Gamma(α0, 1/β0), w = (wi)
D
i=1 ∈ RD

+ and wi ∼ Gamma(αi, 1/βi) ∀i ∈
{1, 2, · · · , D}. Also vik ∼ Gamma(ζi, 1/δk). Similar to NPFM, gamma prior are imposed

on other parameters as:

αi ∼ Gamma(ai, 1/bi), βi ∼ Gamma(ci, 1/di), ζi ∼ Gamma(ei, 1/fi),

α0 ∼ Gamma(a0, 1/b0), β0 ∼ Gamma(c0, 1/d0), δk ∼ Gamma(gk, 1/hk).

Sampling equations for these parameters are similar to those of NPFM and follow from

the Lemmas listed in Section 5.2.1.

5.3.4 Prediction

Let θ denote the set of all the variables that are sampled in NPFM, other than the zn’s.

In the training phase, we store the average values of these variables from T number of

collection iterations. While predicting on the held-out set or missing entires, one just needs

to sample the zn’s according to Eq. (5.7) given X and θ fixed at the value obtained from

the training phase. One should note that, while training, the calculation of the summary

statistics gets affected by the presence of missing/held-out entries. Such adaptation affects

directly the sampling of variables which are used in generating zn according to Eq. (5.7),

such as w0, wi’s, rk’s and vik’s. In the updates of these variables in the training phase, one

just needs to exclude the contribution from the missing entries and the equations work out

similar to the case of sampling without missing entries.

64

5.3.5 Tme and Space Complexity

NPFM has linear time complexity with respect to the number of non-zero training in-

stances. If S is the number of non-zero training instances in the data, maximum number of

latent factors used be K, and D be the feature dimension, then NPFM has time complexity

of O(SKD). Direct implementation NPFM is infeasible because one needs to store all

the latent count variables for all the observations in training set which leads to a space

complexity of O(D2SK), which is clearly prohibitive for large datasets like Netflix with

100 million observations. To avoid such space complexity, the implementation does not

store the latent count variables at all, but instead stores the summary statistics required in

the updates for the Gibbs sampler, such as z1., z2.i, and z3.ik. This representation helps

maintain space complexity of O(DK).

5.4 Experimental Results

We first validate the NPFM model using a simple synthetic dataset. Using a count matrix

with two clearly separable clusters we show that NPFM recovers the clusters accurately.

5.4.1 Generating Synthetic Data

We apply NPFM on a synthetically generated count matrix with 60 users and 90 items. The

whole matrix is divided into four parts with indices ranges as ([0, 20), [0, 30)) , ([0, 20), [30, 90)) ,

([20, 60), [0, 30)) , and ([20, 60), [30, 90)) .We populate the first and fourth parts by 5s, and

the other two parts by 0s. So 44% entries in the matrix are 0. Then, we randomly choose

20% entries as held-out set. First subplot in Figure 5.2 shows the count matrix generated

by this process, where the black dots represent the missing entries. The red and blue areas

are separate clusters with red and blue denoting a rating of 5 and 0 respectively.

65

Figure 5.2: Results of NPFM on Synthetic dataset. In both first and second sub-plot, x-axis
and y-axis represent users and items respectively. First represent the original
count matrix whereas second one is the estimated matrix using the NPFM.
Third sub-plot x-axis and y-axis are latent dimension and normalized value
assigned to a latent dimension. Fourth subplot shows users’ assignment to
latent factors.

5.4.2 Simulation

We apply NPFM on the synthetically generated matrix, with maximum latent dimension

set to 10. Figure 5.2 shows the output of NPFM on this synthetic count matrix. Subplot

2 in Figure 5.2 shows the matrix estimated by NPFM. It is evident from Figure 5.2 that

NPFM is able to recover the count data accurately. Further, Subplot 3 shows the weight

assigned to different rk’s. As there are only two clusters most of the mass is assigned to

just two factors. The last subplot represents the user’s assignment to the latent factors.

Thus this experiment demonstrates that NPFM is not only able to recover the count data

but also model the latent structure present in the data effectively.

66

Table 5.1: Description of the datasets.

Dataset No. of User No. of Movie No. of Entries
Movielens 100k 943 1682 100k
Movielens 1m 6040 3900 1m

Movielens 10m 71567 10681 10m
Netflix 480189 17770 100m

5.4.3 Real World Datasets

We now validate both the performance and the runtime of our model on four different

movie rating datasets1,2 popularly used in the recommender system literature. The detailed

statistics of these datasets are given in Table 5.1.

5.4.4 Metric

We evaluate our method on both accuracy and time. To evaluate accuracy, we consider the

recommendation problem as a ranking problem and use Mean Precision, Mean Recall, and

F-measure as the metrics [Gopalan et al., 2014a,b, 2015]. We also use Mean Normalized

Discounted Cumulative Gain (Mean NDCG) as the performance measure to capture the

positional importance of retrieved items. We use time per iteration for measuring the time

of execution. For all the datasets, we measure the accuracy of prediction on a held out set

consisting of 20% data instances randomly selected. Training is done on the remaining

80% of the data instances. During the training phase, the held out set is considered as

missing data.

We structure the evaluation along the lines of Ref. [Gopalan et al., 2014b]. For all the

datasets, utmost 10000 users were selected at random. For Movielens 100k and Movielens

1M, which had fewer than 10000 users, we used all the users. Let’s denote this randomly

selected user set by U . Let Relevantu and Retrievedu be the set of relevant and retrieved

items for user u. Further, let M be the set of all movies, Tu be the set of movies present

in the training set and rated by user u and Pu be the set of movies present in the held out

set and rated by user u. Note that, Relevantu = Pu. The set of unconsumed items for

1http://grouplens.org/datasets/movielens/
2 http://www.netflixprize.com/

67

user u is given by M − Tu. For each user u in U , we predict the rating score for all her

unconsumed items and select top P recommendations. These top P items are considered as

theRetrieved set for that user. We set P to 100 in our experiments. Using these definitions

ofRelevantu andRetrievedu, we calculate the Precisionu-at-P and Recallu-at-P for each

user u in U as follows:

Precisionu-at-P =
Relevantu ∩Retrievedu

P
, (5.21)

Recallu-at-P =
Relevantu ∩Retrievedu

|Relevantu|
. (5.22)

We calculate Mean Precision and Mean Recall by averaging the precision and recall score

from all the users as follows:

Mean Precision =

∑
u∈U

Precisionu-at-P

|U | , (5.23)

Mean Recall =

∑
u∈U

Recallu-at-P

|U | . (5.24)

The F-measure is calculated using,

F-measure =
2×Mean Precision×Mean Recall

Mean Precision + Mean Recall
. (5.25)

We calculate Discounted Cumulative Gainu-at-P as follows:

DCGu-at-P = rel(1) +
P∑
k=2

rel(k)

log2(k)
, (5.26)

where, rel(i) is 1 if the item is present in the test set, otherwise 0. We consider the test

set as the ideal ordering for users and calculate Ideal Discounted Cumulative Gain-at-P

(IDCG-at-P) based on that. Then we calculate Normalized Discounted Cumulative Gain-

at-P (NDCGu-at-P) for each user u in U as:

NDCGu-at-P =
DCGu-at-P
IDCGu-at-P

. (5.27)

Finally, we calculate Mean NDCG as follows:

68

Movielens 100k Movielens 1M Movielens 10M Netflix
0

5

10

15

20

M
e
a
n
 P

re
ci

si
o
n
 (

%
)

SGD-FM
MCMC-FM
PPFM
NPFM

(a)

Movielens 100k Movielens 1M Movielens 10M Netflix
0

10

20

30

40

50

60

M
e
a
n
 R

e
ca

ll
(%

)

SGD-FM
MCMC-FM
PPFM
NPFM

(b)

Movielens 100k Movielens 1M Movielens 10M Netflix
0

5

10

15

20

25

30

F-
m

e
a
su

re
 (

%
)

SGD-FM
MCMC-FM
PPFM
NPFM

(c)

Movielens 100k Movielens 1M Movielens 10M Netflix
0

10

20

30

40

50

M
e
a
n
 N

D
C

G
 (

%
)

SGD-FM
MCMC-FM
PPFM
NPFM

(d)

Figure 5.3: (a), (b), (c), and (d) show Mean Precision, Mean Recall, F-measure, and Mean
NDCG comparison on different datasets for different algorithms respectively.

Mean NDCG =
∑
u∈U

NDCGu-at-P
|U | . (5.28)

5.4.5 Baseline

We compare NPFM with two strong baseline methods: stochastic gradient descent for FM

(SGD-FM) [Rendle, 2010] and Markov chain Monte Carlo FM (MCMC-FM) [C. Freuden-

thaler, 2011]. Note that in both the SGD-FM and MCMC-FM, Gaussian distributional

assumption is made to represent the data likelihood.

69

5.4.6 Experimental Setup and Parameter Selection

NPFM selects all the model parameters automatically, but we set the maximum number

of factors as 50 for all the experiments. We chose the same latent factor dimension for

all the experiments with PPFM, SGD-FM, and MCMC-FM, as well. NPFM, PPFM, and

MCMC-FM are based on Gibbs sampling and they need an initial burn-in phase. We used

1500 burn-in iterations and 1000 collection iterations except in the Netflix dataset where

100 burn-in and 100 collection iterations were used due to time constraints. For SGD-FM

we found that 300 iterations were sufficient for convergence. So, we ran SGD-FM for

300 iterations for all the datasets except the Netflix dataset where only 200 iterations were

considered. Though due to the time constraints for Netflix dataset, we have considered less

number of iterations, the number of iterations was sufficient for convergence.

In NPFM, all the hyperprior parameters (a0, b0, c0, d0, {ai, bi, ei, fi}, h0, γ0) are initial-

ized to 1. We initialize w, v, r to a small positive value and all other parameters to 0.

Likewise, for PPFM, all hyperprior parameters are initialized to 1, w and v are initialized

to a small positive value and all other parameters are initialized to 0. We select the learn-

ing rate and regularization parameters of SGD-FM using cross validation. We found that

SGD-FM performs best with 0.001 learning rate and 0.01 regularization. So we stick to

this value for all the experiments of SGD-FM. For SGD-FM, we initialize w0, w, and v

using a Gaussian distribution with 0 mean and 0.01 variance. For MCMC-FM, we use

standard parameter setting provided in the paper [C. Freudenthaler, 2011]: we set all the

hyperprior parameters to 1, w0, w, v are initialized using a Gaussian distribution with 0

mean and 0.01 variance and all other parameters are set to 0.

5.4.7 Results

Accuracy

Figure 5.3 shows the results on three Movielens data sets with 100k, 1 million, and 10

million ratings and the Netflix dataset with 100 million ratings. For all the datasets, NPFM

and PPFM perform much better than the baseline method SGD-FM and MCMC-FM. We

70

Movielens 100k Movielens 1M
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

T
im

e
 (

H
o
u
r)

SGD-FM
MCMC-FM
PPFM
NPFM

(a)

Movielens 10M Netflix
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
im

e
 (

H
o
u
r)

SGD-FM
MCMC-FM
PPFM
NPFM

(b)

Figure 5.4: (a) and (b) show time per iteration comparison for different algorithms on
Movielens 100k & Movielens 1M and Movielens 10M & Netflix datasets re-
spectively.

observe that the Mean Recall scores (Figure 5.3 subplot (b)) and Mean NDCG values

(Figure 5.3 subplot (d)) on all the datasets for NPFM and PPFM are much higher than

the other methods. MCMC-FM and SGD-FM perform very poorly for all the datasets

primarily due to the inappropriateness of the Gaussian assumption for count data.

Time

Figure 5.4 shows time per iteration for different methods. As the four datasets have differ-

ent time scales, for visibility we group Movielens 100K and Movielens 1M together; and

Movielens 10M and Netflix together. In all the datasets SGD-FM takes much less time

than the other three methods. This is not surprising since SGD-FM is an online method

and updates model parameters for each data instance, whereas the other three methods are

batch algorithms. Though in Movielens 100K, MCMC-FM takes less time than the NPFM

and PPFM, as dataset size increases, sparsity in the dataset also increases and as a result

MCMC-FM, NPFM, and PPFM take almost equal time to run on the two larger datasets.

Thus we are able to get the power of Poisson modelling without too much additional com-

putational overhead. What is heartening to note is that NPFM and PPFM perform similarly

both in terms of accuracy and time. This indicates that we are able to avoid setting the la-

tent factor dimension apriori but still do not pay much of a cost in terms of performance.

71

This is particularly important when working with datasets where the appropriate dimension

is hard to determine ahead of time.

5.5 Summary

This chapter describes Nonparametric Poisson Factorization Machine (NPFM), an alterna-

tive for formulating Factorization Machine for count data. The model exploits the natural

sparsity of the data, has linear time and space complexity with respect to the number of

non-zero observations and predicts the ideal number of latent factors for modeling the

pairwise interaction in Factorization Machine. We also consider a special case of NPFM,

the Parametric Poisson Factorization Machine (PPFM), that considers a fixed number of

latent factors. Both NPFM and PPFM outperform some of the existing baselines by sig-

nificant margin on several real-world datasets. Though we have found that NPFM works

well when it mimic matrix factorization, but NPFM in the presence of “side-information”

is needed to be validated. The side-information may include user specific features such as

age, gender, demographics, and network information and item specific information such

as product descriptions.

72

CHAPTER 6

CONCLUSION AND FUTURE WORK

Factorization models are an important class of algorithms for Recommender Systems

(RSs). In spite of having a vast literature on factorization models, several problems exist

with different factorization model algorithms. In this thesis, we have taken a probabilistic

approach to develop several factorization models. We adopt a fully Bayesian treatment of

these models and develop scalable approximate inference algorithms for them.

Firstly, we develop the Scalable Bayesian Matrix Factorization (SBMF) which con-

siders independent univariate Gaussian prior over latent factors as opposed to multivariate

Guassian prior in Bayesian Probabilistic Matrix Factorization (BPMF) [Salakhutdinov and

Mnih, 2008]. SBMF uses Markov chain Monte Carlo (MCMC) based Gibbs sampling in-

ference mechanism to approximate the posterior, and has linear time and space complexity.

SBMF has competitive performance along with the scalibility as validated by experiments

on several real world datasets.

We then develop the Variational Bayesian Factorization Machine (VBFM) which is a

batch scalable variational Bayesian inference algorithm for Factorization Machine (FM) [Ren-

dle, 2010]. Additionally for large scale learning, we develop the Online Variational Bayesian

Factorization Machine (OVBFM) which utilizes stochastic gradient descent to optimize the

lower bound in variational approximation. The efficacy of both VBFM and OVBFM has

been validated using experiments on several real world datasets.

Finally, we propose the Nonparametric Poisson Factorization Machine (NPFM), which

models data using a Poisson distribution, and where the number of latent factors are theo-

retically unbounded and is estimated while computing the posterior distribution. We also

consider a special case of NPFM, the Parametric Poisson Factorization Model (PPFM),

that considers a fixed number of latent factors. Both PPFM and NPFM have linear time

and space complexity with respect to the number of observations. Extensive experiments

on four different movie review datasets show that our methods outperform two strong

baseline methods by large margins.

There are several potential future directions:

• It would be interesting to extend SBMF to applications like matrix factorization with
“side-information”, where the time complexity is cubic with respect to the number
of features (which can be very large in practice). The side-information may include
user specific features such as age, gender, demographics, and network information
and item specific information such as product descriptions.

• OVBFM is an online algorithm. Hence, it would be interesting to extend OVBFM
to applications where one can actively query labels for few data instances [Silva and
Carin, 2012], leading to solve the cold-start problem.

• In NPFM, firstly it is worth while to further increase the scalability. To accomplish
this, borrowing ideas from stochastic gradient Langevin dynamics [Welling and Teh,
2011], one can propose an online inference technique with parallel steps and reduce
the convergence time further. Such adaptation may help apply NPFM to very large
datasets like the KDD music dataset [Dror et al., 2012]. On the other hand, NPFM
can be applied to other types of factorization models as well apart from basic matrix
factorization. We note that the latter part is an important future work to validate the
efficacy of NPFM.

74

REFERENCES

Acharya, A., J. Ghosh, and M. Zhou, Nonparametric bayesian factor analysis for dy-
namic count matrices. In Proceedings of the Eighteenth International Conference on Ar-
tificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12,
2015. 2015.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2), 251–276.

Arora, S., R. Ge, and A. Moitra, Learning topic models - going beyond SVD. In 53rd An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012. 2012.

Beal, M. J., Variational algorithms for approximate Bayesian inference. In PhD. Thesis,
Gatsby Computational Neuroscience Unit, University College London.. 2003.

Bell, R. M. and Y. Koren, Improved neighborhood-based collaborative filtering. In 1st
KDDCup’07. San Jose, California, 2007.

Bishop, C. M., Pattern Recognition and Machine Learning. Springer-Verlag New York,
Inc., 2006.

Blackwell, D. and J. MacQueen (1973). Ferguson distributions via Pólya urn schemes.
The Annals of Statistics, 1, 353–355.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent dirichlet allocation. Journal of
Machine Learning Research, 3, 993–1022.

Burke, R. (2000). Knowledge-based Recommender Systems. Encyclopedia of Library
and Information Science, 69(32), 4:2–4:2.

Burke, R. D. (2002). Hybrid recommender systems: Survey and experiments. User Model.
User-Adapt. Interact., 12(4), 331–370.

C. Freudenthaler, S. R., L. Schmidt-Thieme, Bayesian factorization machines. In Proc.
of NIPS Workshop on Sparse Representation and Low-rank Approximation. 2011.

Canny, J. F., Gap: a factor model for discrete data. In SIGIR 2004: Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Sheffield, UK, July 25-29, 2004. 2004.

Cemgil, A. T. (2009). Bayesian inference for nonnegative matrix factorisation models.
Intell. Neuroscience, 2009, 4:1–4:17.

Chang, C. and C. Lin (2011). LIBSVM: A library for support vector machines. ACM
TIST , 2(3), 27.

75

Chi, E. C. and T. G. Kolda (2012). On tensors, sparsity, and nonnegative factorizations.
SIAM J. Matrix Analysis Applications, 33(4), 1272–1299.

Connor, M. and J. Herlocker (2001). Clustering items for collaborative filtering.

Dror, G., N. Koenigstein, Y. Koren, and M. Weimer, The yahoo! music dataset and
kdd-cup ’11. In Proceedings of KDD Cup 2011 competition, San Diego, CA, USA, 2011.
2012.

Gelfand, A. E. and A. F. M. Smith (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410), 398–409.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence,
6(6), 721–741.

Gopalan, P., L. Charlin, and D. M. Blei, Content-based recommendations with poisson
factorization. In Advances in Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada. 2014a.

Gopalan, P., J. M. Hofman, and D. M. Blei, Scalable recommendation with hierarchical
poisson factorization. In Proceedings of the Thirty-First Conference on Uncertainty in
Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands. 2015.

Gopalan, P., D. M. Mimno, S. Gerrish, M. J. Freedman, and D. M. Blei, Scalable
inference of overlapping communities. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States..
2012.

Gopalan, P., F. J. Ruiz, R. Ranganath, and D. M. Blei, Bayesian nonparametric poisson
factorization for recommendation systems. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland,
April 22-25, 2014. 2014b.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1), 97–109.

Hernández-Lobato, J. M., N. Houlsby, and Z. Ghahramani, Stochastic inference for
scalable probabilistic modeling of binary matrices. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014.
2014.

Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models
for life history data. Ann. Statist..

Ho, J. C., J. Ghosh, and J. Sun, Marble: high-throughput phenotyping from electronic
health records via sparse nonnegative tensor factorization. In The 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014. 2014.

76

Hoffman, M. D., D. M. Blei, and F. R. Bach, Online learning for latent dirichlet allo-
cation. In Advances in Neural Information Processing Systems 23: 24th Annual Confer-
ence on Neural Information Processing Systems 2010, December 2010, Vancouver, British
Columbia, Canada.. 2010.

Hoffman, M. D., D. M. Blei, C. Wang, and J. W. Paisley (2013). Stochastic variational
inference. Journal of Machine Learning Research, 14(1), 1303–1347.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1), 89–115.

Joachims, T. (2002). SVM light, http://svmlight.joachims.org.

Johnson, N. L., A. W. Kemp, and S. Kotz, Univariate Discrete Distributions. John Wiley
& Sons, 2005.

Kim, Y. and S. Choi, Scalable variational bayesian matrix factorization with side informa-
tion. In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014. 2014.

Koren, Y., Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008. 2008.

Koren, Y., Collaborative filtering with temporal dynamics. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Paris, France, June 28 - July 1, 2009. 2009.

Koren, Y., R. M. Bell, and C. Volinsky (2009). Matrix factorization techniques for rec-
ommender systems. IEEE Computer, 42(8), 30–37.

Lee, J., M. Sun, and G. Lebanon (2012). A comparative study of collaborative filtering
algorithms. CoRR, abs/1205.3193.

Lim, Y. and Y. Teh, Variational Bayesian approach to Movie Rating Prediction. In Proc.
of KDDCup. 2007.

Metropolis, N. and S. Ulam (1949). The monte carlo method. Journal of the American
statistical Association, 44(247), 335–341.

Miyahara, K. and M. J. Pazzani, Collaborative filtering with the simple bayesian classi-
fier. In PRICAI. 2000.

Rendle, S., Factorization machines. In ICDM 2010, The 10th IEEE International Confer-
ence on Data Mining, Sydney, Australia, 14-17 December 2010. 2010.

Rendle, S. (2012). Factorization machines with libfm. ACM TIST , 3(3), 57.

Rendle, S., Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, Fast context-aware
recommendations with factorization machines. In Proceeding of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2011, Beijing, China, July 25-29, 2011. 2011a.

77

Rendle, S., Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, Fast context-aware
recommendations with factorization machines. In Proceeding of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2011, Beijing, China, July 25-29, 2011. 2011b.

Rendle, S. and L. Schmidt-Thieme, Pairwise interaction tensor factorization for person-
alized tag recommendation. In Proceedings of the Third International Conference on Web
Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010.
2010.

Salakhutdinov, R. and A. Mnih, Probabilistic matrix factorization. In Advances in Neural
Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada, De-
cember 3-6, 2007. 2007.

Salakhutdinov, R. and A. Mnih, Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Machine Learning, Proceedings of the Twenty-Fifth International
Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008. 2008.

Salakhutdinov, R., A. Mnih, and G. E. Hinton, Restricted boltzmann machines for col-
laborative filtering. In Machine Learning, Proceedings of the Twenty-Fourth International
Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007. 2007.

Sato, M. (2001). Online model selection based on the variational bayes. Neural Compu-
tation, 13(7), 1649–1681.

Silva, J. G. and L. Carin, Active learning for online bayesian matrix factorization. In The
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, Beijing, China, August 12-16, 2012. 2012.

Srebro, N. and T. S. Jaakkola, Weighted low-rank approximations. In Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003,
Washington, DC, USA. 2003.

Su, X. and T. M. Khoshgoftaar (2009). A survey of collaborative filtering techniques.
Adv. Artificial Intellegence, 2009, 421425:1–421425:19.

Titsias, M. K., The infinite gamma-poisson feature model. In Advances in Neural In-
formation Processing Systems 20, Proceedings of the Twenty-First Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007. 2007.

Tzikas, D., A. Likas, and N. Galatsanos (2008). The variational approximation for
bayesian inference. IEEE Signal Processing Magazine, 25(6), 131–146.

Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications
in Statistics - Simulation and Computation, 36(1), 45–54.

Welling, M. and Y. W. Teh, Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011. 2011.

78

Xiong, L., X. Chen, T. Huang, J. G. Schneider, and J. G. Carbonell, Temporal collabo-
rative filtering with bayesian probabilistic tensor factorization. In Proceedings of the SIAM
International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus,
Ohio, USA. 2010.

Xue, G., C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen, Scalable collaborative
filtering using cluster-based smoothing. In SIGIR 2005: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, Salvador, Brazil, August 15-19, 2005. 2005.

Zhou, M., Infinite edge partition models for overlapping community detection and link
prediction. In Proceedings of the Eighteenth International Conference on Artificial In-
telligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015.
2015.

Zhou, M. and L. Carin, Augment-and-conquer negative binomial processes. In Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural Infor-
mation Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States.. 2012.

Zhou, M. and L. Carin (2015). Negative binomial process count and mixture modeling.
IEEE Trans. Pattern Anal. Mach. Intell., 37(2), 307–320.

Zhou, M., L. Hannah, D. B. Dunson, and L. Carin, Beta-negative binomial process
and poisson factor analysis. In Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, April 21-
23, 2012. 2012.

Zhou, Y., D. M. Wilkinson, R. Schreiber, and R. Pan, Large-scale parallel collaborative
filtering for the netflix prize. In Algorithmic Aspects in Information and Management, 4th
International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings.
2008.

79

LIST OF PAPERS BASED ON THESIS

1. Saha, A., A. Acharya, B. Ravindran, and J. Ghosh, Nonparametric Poisson Fac-
torization Machine, 2015 IEEE International Conference on Data Mining, (ICDM
2015), 967-972.

2. Saha, A., R. Misra, and B. Ravindran, Scalable Bayesian Matrix Factorization,
In Proceedings of the 6th International Workshop on Mining Ubiquitous and Social
Environments, (MUSE 2015), 43-54.

3. Saha, A., J. Rajendran, S. Shekhar, and B. Ravindran, How Popular Are Your
Tweets?, In Proceedings of the 2014 Recommender Systems Challenge, RecSysChal-
lenge’14, 2014, 66:66-66:69.

80

Curriculum Vitae
Name Avijit Saha

Date of Birth 10th December 1990

Address Vill - Daharthuba, PO - Hatthuba,
PS - Habra, DIST - North 24 Parganas,
STATE - West Bengal, PIN - 743269

Education B-Tech (CSE), West Bengal University of Technology,
MS by Research (CSE), IIT Madras

81

GTC Members
Chairman Dr. Shukhendu Das

Department of Computer Science and Engineering,
Indian Institute of Technology, Madras.

Guide Dr. Balaraman Ravindran
Department of Computer Science and Engineering,
Indian Institute of Technology, Madras.

Members Dr. Shankar Balachandran
Department of Computer Science and Engineering,
Indian Institute of Technology, Madras.

Dr. Krishna Jagannathan
Department of Electrical Engineering,
Indian Institute of Technology, Madras.

82

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	NOTATION
	INTRODUCTION
	Contribution of the Thesis
	Outline of the Thesis

	BACKGROUND
	Recommender Systems
	Collaborative Filtering
	Content-based
	Knowledge-based
	Hybrid

	Latent Variable Models and Factorization Models
	Matrix Factorization
	Probabilistic Matrix Factorization
	Bayesian Probabilistic Matrix Factorization
	Factorization Machine
	Learning Factorization Machine

	Probabilistic Modeling and Bayesian Inference
	Markov Chain Monte Carlo
	Gibbs Sampling

	Variational Bayes
	Stochastic Variational Inference

	SCALABLE BAYESIAN MATRIX FACTORIZATION
	Introduction
	Method
	Model
	Inference
	Time and Space Complexity

	Experiments
	Datasets
	Experimental Setup and Parameter Selection
	Results

	Summary

	SCALABLE VARIATIONAL BAYESIAN FACTORIZATION MACHINE
	Introduction
	Model
	Approximate Inference
	Batch Variational Inference
	Stochastic Variational Inference

	Experiments
	Dataset
	Methods of Comparison
	Parameter Selection and Experimental Setup
	Results

	Summary

	NONPARAMETRIC POISSON FACTORIZATION MACHINE
	Introduction
	Background and Related Work
	Negative Binomial Distribution
	Gamma Process
	Poisson Factor Analysis

	Nonparametric Poisson Factorization Machine
	Model
	Inference Using Gibbs Sampling
	Parametric Version
	Prediction
	Tme and Space Complexity

	Experimental Results
	Generating Synthetic Data
	Simulation
	Real World Datasets
	Metric
	Baseline
	Experimental Setup and Parameter Selection
	Results

	Summary

	CONCLUSION AND FUTURE WORK

