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Abstract— In environments with identical features, the global
localization of a robot, might result in multiple hypotheses
of its location. If the situation is extrapolated to multiple
robots, it results in multiple hypotheses for multiple robots.
The localization is facilitated if the robots are actively guided
towards locations where it can use other robots as well as
obstacles to localize itself. This paper aims at presentinga
learning technique for the above process of active localization
of multiple robots by co-operation. An MDP framework is used
for learning the task, over a semi-decentralized team of robots
hereby maintaining a bounded complexity as opposed to various
multi-agent learning techniques, which scale exponentially with
the increase in the number of robots.

I. INTRODUCTION

To navigate reliably in an enviornment and to perform
tasks like map-building, mobile robots must know where
they are. Therefore, estimating the position of a robot based
on sensing and motion is one of the fundamental problems
of mobile robotics. The various flavours of the localization
problem are characterized by the type of knowledge that is
available intially and at run-time. Local localization is the
correction of the dead reckoning errors in the robot’s position
due to odometry. In this case, the initial pose of the robot
is known. Global self-localization addresses the problem of
localization with no apriori information i.e. a robot is nottold
its initial pose but instead has to determine it from scratch. A
hypothesis is a probable location(x,y) in the map that a robot
might be in. In environments which possess relatively few
features that enable a robot to unambiguously determine its
location, global localization algorithms can result in multiple
hypotheses about the location of the robot. This is inevitable
as the local environment seen by a robot repeats at other parts
of the map. The global localization method is called passive
localization if the robots motion is not aimed at facilitating
localization. It is termed as ’active localization’ if the robots
plans every movement such that localization is facilitated.
The complexity of the problem can be used to its advantage
if there are multiple robots trying to localize. By using active
localization, the robots can use each other’s relative poseas
well as obstacles to localize.
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In general, the work on active localization has been limited
when compared to passive localization. The pioneering work
has been from [1] and [2]. In [1], a method of active local-
ization based on maximum information gain was presented.
Dudek et al. [2] presented a method for minimum distance
traversal for localization that works in polygonal environ-
ments without holes that they have shown to be NP-Hard. In
[3], the enviornment’s ambiguity in the terms of observation
and robot’s ambiguity in pose is modelled as a POMDP
and an optimal strategy to move to the target location is
devised. In [4], this method is extended by estimating actions
which allow the robot to improve its position estimation. All
the above methods tackle the problem for a single robot.
[5] devises a Bayesian approach to enable the robots to
calculate the relative poses of every other robot. Since it
only estimates the relative pose, it is unable to perform
global localization. [6] uses Partially Observable Stochastic
Games to solve a multi-agent co-operative problem in a
fully distributive fashion. Since it is decentralized the cross
product of the action and the observation space is consid-
ered, which exponentially increases the complexity with the
increase in the number of robots. In [7], the problems of
large joint action and state spaces is mitigated by using
a multi-agent MDP that reduces the search space for an
optimal action set by considering just the upper and lower
bounds of the single agent MDPs. But this method requires
isolated training of each agent seperately before undertaking
the task as a team. The method presented here enables all
the agents to get trained simultaneously, leading to faster
convergence. The only optimal known solution to the above
problem has been provided by [8], [9]. An extension with
a learning framework to the same is intended in this paper.
The improvement over [8], [9] is its semi-distributed nature
as opposed to completely centralized nature of the former.
Since the agents are loosely coupled, they take advantage
of robot-robot detection if applicable, and continue trying
to localize with the help of enviornment, if not. This also
brings in a certain level of autonomy with respect of the
number of agents. The paper is organized as follows: Sec
II explains the problem of Active Localization in detail, Sec
III describes the framework used, Sec IV explains the basic
algorithm and the MDP formulation, Sec V talks about the
results in simulation and Sec VI concludes by stating the
scope of further work.



II. A CTIVE LOCALIZATION

In order to localize, the robot uses its sensor readings
of the enviornment. In highly symmetrical enviornments
(Figure 1), like office spaces with similar cubicles, or cor-
ridors with symmetric rooms or evenly spaced pillars,the
sensor readings for a position are replicated at various
positions in the map. This results in multiple hypotheses for
a robot’s pose. With every hypothesis is associated a value
that defines the probability of robot being in that hypothesis.
The probabilities are calculated using Markov localization
method [13]. Markov localization addresses the problem of
state estimation from sensor data. It maintains a probability
distribution over the space of all possible hypothesis of a
robot. The probabilistic representation allows it to weigh
these hypotheses in a mathematically sound way. To actively
localize, a robot should move towards the locations which
promise the highest information gains. When a group of
robots are involved in the scenario, robot-robot detections
can be used along with the map feature detection to speed
up the localization. The robot is considered localized when
it converges to a single hypothesis.

Fig. 1. Symmetrical enviornments: Cubicles in an office

III. M ARKOVIAN DECISION PROCESSES

A finite MDP is defined as a 4-tuple(S,A,P,R) , in which
S is the finite set of states, A is the finite set of actions,
P is the transition probability function and R is the reward
function. The dynamics of the enviornment is defined by the
transition probability function

P : S ×A× S → [0, 1] (1)

The reward function is defined as a real value bounded
function

R : S ×A× S → R (2)

Ra
ss′ is the reward of taking actiona in states and landing

in states’. A value functionVπ(s) is to be estimated, which
determines the value of states under a policyπ, i.e the
expected return when starting ins and following the policy
π thereafter. The solution of the value function is given by
the Bellman optimality equation. For alls ∈ S:

V (s) = maxa∈A(Σs′P a
ss′ [Ra

ss′ + γV (s′)]) (3)

The Bellman equations can be solved using iterative
algorithms, where we start with an initial guessV0 and iterate
for every states:

Vk+1(s) = maxa∈A(Σs′∈SP a
ss′ [Ra

ss′ + γVk(s′)]) (4)

As k goes to infinity, Vk converges to the optimal policy,
V∗.

A. Framework

In this work, we model the problem of active localization
as a MDP. A location hypothesis of a robot is a probable
location (x,y) in the map, a robot can be in. Consider a
workspace populated by robots, each of them having such
multiple location hypotheses. A probabilty distribution over
all location hypotheses of a robot constitutes a belief state
for that robot. And belief states for all robots constitute the
state space for the MDP. The problem is to move these
robots to locations so that each of the robot localizes in
an optimal fashion. Frontiers [10] are boundaries separating
the seen and the unseen. The frontiers are considered as
good places to move to, since they are easier to compute
and provide a sufficient set of places to move, to converge
to a single hypothesis. The orientation is considered to be
known through a compass installed on the robot. The robots
can detect each other with help of an IR transreciever which
provides the angle and the distance from the robot detected.
This experimental setup has been tested and can be safely
assumed to work quite robustly. The belief state calculation
involves the method of Markov localization. It starts by
assuming the belief of a robot as an uniform distribution
over all positions in the map. The query to the sensors
yield a set of readings which are tried to match with the
readings at different locations in the map. This belief can be
multimodal if there are no unique features in the map. If its
unimodal, the robot is considered to be localized. Clustering
is performed over all positions in the map, which have a
belief value greater than some pre-defined threshold. The
number of clusters define the number of hypotheses for a
robot and the probability associated with them forms the
belief value. These set of hypotheses for a robot is defined
as a belief state of the robot. The action space consists of
actions that lead to the different frontiers visible from a
position. The reward is calculated intuitively on the basis
of the information gain on transition from one belief state
to another. This aims at reducing entropy. Considering the
Markov property, the rewards can be zero but never negative.
It is because of Markov property of the enviornment, that
one-step dynamics are sufficient to predict the next state and
next reward, given the current state and action.

As it can be deduced, the MDP framework divides the
map into a hierarchical structure that reduces the size of the
state space. This is because it is now considered in terms of
the belief states which is a subset of all the possible positions



in the map.The mapping of these logical clusters, i.e belief
states, to actual positions in the map is done by dividing
the map into a grid structure. The granularity of the grid
structure can be assumed to be some appropriate value for
e.g, the smallest cubicle in the map. The granularity should
assure that no two clusters fall in the same grid. The learning
algorithm would enable the robots to learn how to move, if
they find themselves in a certain grid in the map, such that
it encounters either other robots or unique features in the
map thereby facilitating localization. Intuitively the robots
learn the features in the map as well as the locations where
it might find other robots. To avoid enumeration of all the
possible belief states, a CMAC is used to implement the
value functionV(b). A CMAC [14] uses tile coding and
the weighted sum of the tiles yield the V(b) for a belief
state. It in turn acts as a function approximator for the
belief states which dont get visited during the training. Since
the cardinality of a belief state represents the dimension of
the state space, the number of tilings to be used become
enormous. But since only few of the values in the belief
state are non-zero at every instant ( since sensor readings are
clustered into hypotheses ) , number of tilings dont extend
more than 10, say. Hence 10 tilings can be safely used. The
tiles in the tiling are assumed to be uniformly spaced since no
prior information about the nature of input space is known.

IV. FORMULATION

The algorithm is semi-distributed in nature. Most of the
multi-agent learning algorithms suffer by high computational
complexity because of the joint state and action spaces for the
robots which increase exponentially with the increase in the
number of robots. The robots in this framework are loosely
coupled to each other. They update the same value function,
but the information about other robots in the enviornment
is only limited to robot-robot detection. Thereby, the robots
dont need to know the positions of all other robots in the
map as well as the actions they take. In this way, the
method provides an effective solution of learning from the
experiences of the other robots, but avoids the large state and
action spaces at the same time. This feature of the algorithm
also captures the robot-robot interaction effectively hence
driving the robots to move to frontiers where the probability
of finding other robots is maximum.

A. Basic Algorithm

The pseudocode for the algorithm is provided below. The
notations used are:
V(a) → The goodness value for the action ’a’
b(sn) → Is the vector of the belief state ’b’, nth element
’sn’
Rmap → The reward due to map information.
b’ → The next belief state b-prime.
V(b) → The goodness value of the belief state b.

Rmap+(r−r)detection → The reward due to map information
and information gain due to robot-robot detection.

1) Make observations, Compute the belief state ’b’
2) Calculate the projected gain that each action would

yield

V (a1)← Σn∈N [b(sn) ∗ (Rmap + (λ ∗ V (b′)))] (5)

3) Choose the action ’a’ which has the highest V value.
4) Execute ’a’
5) If finds another robot

• Update belief state.
• Calculate reward Rmap+(r−r)detection .

6) Update V(b)

V (b)← α(Rmap+(r−r)detection+γ∗V (b′)−V (b))+V (b)
(6)

7) Repeat until the robot is localized
A set of robots are set up in the enviornment. The above

algorithm is executed on all the robots independently except
the step 6. The robots start with sensing their surroundings
and calculating the belief state, as explained above. Then
the robots perform a one-step look ahead by calculating the
action which would yield the maximum information gain.
Since its a look-ahead, the only information gain availableis
due to the map features, hence the reward Rmap. The robots
execute the action which seems to be most beneficial in step
(3). Now the robot looks for any possibilities of robot-robot
detections. If any robot is found in the vicinity, the angle and
distance from the robot is supplied. With this information,the
robot tests all its hypotheses and checks which of them are
now feasible. (For, e.g, one of the hypothesis might suggest
that the robot is detected beyond a wall, discard it). Update
the new belief state and calculate the reward. Since this
reward is due to both the map features (from step 2) and
presence of other robots, its termed as Rmap+(r−r)detection.
This reward is jointly fed back by all robots to the commonly
shared CMAC. The above set of steps are repeated, until all
robots get localized. The training runs consists of various
initial configurations for varied number of robots.
To avoid getting stuck in the local minimas at step(3), the
exploration strategy ofǫ- greedy with a slight modification
is adopted. One could use strategies like softmax action se-
lection butǫ- greedy is used for computational convenience.
The value ofǫ is high in the initial training iterations but is
decreased as the training proceeds. This is done to avoid the
unlearning. Since, the higher frequency of low rewards can
over weigh a low frequency of high reward, it is ensured that
random actions are not exceuted too frequently.
The state value function V(s) is estimated instead of state-
action value function ,i.e Q(s,a). This has twofold benefits.



One, it reduces the computational complexity since the
Q(s,a) would require maintaining multiple CMAC’s, one for
every kind of action. And second, by estimating V(s), one
can assimilate the experience and capture the interaction of
the multiple robots effectively. So, in a way, the method tries
to estimate a goodness value of every belief state and guiding
the robots towards the belief states with higher goodness
value.
The immediate feedback of a(state, action) pair is incorpo-
rated with the help of one step look-ahead in step(2) of the
algorithm.

V. TESTS ANDRESULTS

The experiment was carried out with 20 robots on Map
B, Fig 7. The belief state evolution as explained in section
IV-A, is shown for one robot.

Fig. 2. Green dots represent the probability of all hypotheses of the robot

In Figure 2, the robot takes an initial scan and calculates
its belief state. Each cluster of green dots represent one
hypothesis, and hence one element in the belief state.

Fig. 3. The sensor scan is taken from all hyptheses locations

In Figure 3, the robot considers a scan from all its possible
hypotheses.

In Figure 4, after the scan, the robot moves south because
Q value for the action south was highest. This is evidently
due to the memory of finding other robots during training.

In Figure 5, after the robot moves south, it detects
an another robot and is able to localize. The belief state
becomes unimodal.

There were two kind of tests performed.

Fig. 4. The red dots indicate the probability before robot-robot detection

Fig. 5. The green dots indicate the probability after robot-robot detection

1) The method was tested on different kind of maps to
verify the proof of concept. These maps were designed
in order to test the algorithm in practical situations. The
learning pattern for different kind of maps are shown below:

a) Map A: Figure 6

Fig. 6. Map A: Learning pattern shown by arrows

As seen in Figure 6, if the robots are present in the
section A which is on the top left half of the map, intuitively
the best action to be taken is south, since it leads to the
unqiue features of the map that would help to localize in the
absence of the other robots. On the other hand, if all robots
are guided to south, the probabilty of robot-robot detections
is also high. The algorithm learns to choose the action south
if the robot is in any of the cubicles in the section A.

In section B of the map that has no unique features the



algorithm learns to move the robots in such a direction
(shown in the figure) that there are more robot-robot
detections. In cases, where there were not enough robots
in the opposite row of cubicles, the robots learn to move
towards the sides.

In section C, the robots clearly learn to move towards the
obstacles. It is apparent due to the fact that there is a unique
feature outside every cubicle which surpasses the gain due
to robot-robot detections.

In section D, the learning pattern is the most intuitive.
The robots first move towards the obstacles, i.e north for
the upper row of cubicles and south for the lower row.
This is because of the huge gain yielded by the action
towards the obstacles when the robot was in any one of the
corner cubicles and got instantly localized. If the robot still
remains unlocalized, it moves towards the space between
two cubicles in the hope of finding other robots. If it still
remains unlocalized, it moves sideways to get localized.

The above pattern was verified by a testcase consisting of
7 robots, one in every row of cubicles. The corresponding
pattern for every section stated above was observed.

b) Map B: Figure 7

Fig. 7. Map. With almost no unique features in map to aid localization

As it can be seen, the above map is challenging since there
are almost no unique map features to aid localization. Hence
it serves as an ideal platform to test the algorithm. The robots
learn to move in directions shown by the arrows. The space
between the cubicles is where there is highest probability
of having robot-robot detections. When there are no other
robots, the frontiers on the sides are selected which lead the
robots to the end of the row where they get localized with
the help of the wall.

The similar pattern has been observed in Map A. Since
the learning pattern is consistent over different kind of
maps, it can be safely assumed that the method would work
on all general maps.

2) The second test performed was to show the flexibility
of the framework to infer the results for different number

TABLE I

TREND OF LOCALIZATION TIME WITH RESEPECT TO THE NUMBER OF

ROBOTS FORMAP B

No. of robots No. of Iterations
6 12
7 8
11 9
15 5
20 1

of robots without re-training. The framework, if trained for
an appropriate number of robots can be used for a varied
range of number of robots without re-training each time. To
prove this, the MAP B was trained with test cases for 10
robots ( i.e 5 in each row of cubicle) and 6 robots ( 3 in each
row of cubicle). The objective is to train the framework to
look out for map features when there are no robots around to
aid localization and move to locations of higher robot-robot
detections, in general. The former is achieved by training it
extensively with lesser number (6) of robots and the later by
training with large number of robots (10).
The testing is done with a range of number of robots and
number of iterations required to localize were recorded.

The trend is plotted in the graph 8. The graph shows that
on an average the number of iterations required to localize
all the robots decreases with the increase in the number
of robots. This shows that the framework learns to take
advantage of the presence of other robots. On the other hand,
it does not get handicapped in the absence of other robots
and uses the map features available to localize.

Fig. 8. Trend showing number of iterations VS Number of robots

This as a matter of course, also proves that the framework
need not be re-trained everytime the number of robots to
be localized changes. The training sample space should
consist of test cases with appropriate number of robots after
which the framework can handle the entire range of robots
in between.

An interesting observation was made regarding the rewards



Fig. 9. Transition of states, blue numbers above the arrow, represents the
action taken

that were used as feedbacks for the CMAC. The reward
is calculated as the information gain which is basically the
difference in entropies. For actions which yield no increase
in the information gain, the difference in entropies is a
small negative number instead of zero. Assuming the Markov
property, which states that there can no negative rewards, the
information gain should be set to zero and fed back to the
CMAC. But if this quantity is fed back in its pristine form, it
acts as negative feedback that prevents the robots to get stuck
in a prolonged and recursive loop of actions not leading to
any progress.
One such situation has been shown in Figure 9. The robot
starts from state S4, executes some action ’0’ and transits
to state S5. The robot then executes the action ’1’ and ends
up in state S4. It remains stuck in this loop for 4 iterations,
until action ’3’ is selected and the robot transists to S6 and
localizes. The corresponding Q(a) values have been plotted
in Graph 10.

Fig. 10. Variation in the Q(a) behavior

With reference to the graph in Figure 10, at time instant
1, the robot is in state S4 and Q(0) is greater than Q(3).
Hence the robot selects the action ’0’ and transists to state
S5. At time instant 2, the robot is in state S5 and executes
the action ’1’ to reach back the state S4. At time instant 3,
the difference in the Q values of action ’0’ and ’3’ decreases.
But Q(0) is still greater than Q(3). Hence action ’0’ is

selcted again. At time instant ’5’,the robot is in state S4
and Q(3) finally surpasses Q(0). Action ’3’ is executed the
robot reaches the state S6 where it localizes. This happens
because of the negative feedback that gets added during the
transitions between S4 and S5.

VI. CONCLUSIONS

A. Conclusions

The test results discussed in previous sections show that
the method is an effective way to perform Active localization
for multiple robots without dealing with huge joint state and
action spaces. Since the algorithm aims at learning the unique
features in the map, whether be it obstacles or other robots,
it performs a kind of feature learning and hence is scalable
to any number of robots or lack of them. That is to say, that
the system doesnt need to be retrained for every change in
the number of robots. Once it is trained for an appropriate
number of robots required to capture the basic features of
the map, the system would work for large range of number
of robots without re-training.
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