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Abstract— Transfer learning refers to reusing the knowledge
gained while solving a task, to solve a related task more
efficiently. Much of the prior work on transfer learning,
assumes that identical robots were involved in both the tasks.
In this work we focus on transfer learning across heterogeneous
robots while solving the same task.The action capabilitiesof the
robots are different and are unknown to each other. The actions
of one robot cannot be mimicked by another even if known.
Such situations arise in multi-robot systems. The objective then
is to speed-up the learning of one robot, i.e., reduce its initial
exploration, using very minimal knowledge from a different
robot. We propose a framework in which the knowledge
transfer is effected through a pseudo reward function generated
from the trajectories followed by a different robot while solving
the same task. The framework can effectively be used even with
a single trajectory. We extend the framework to enable the robot
to learn an equivalence between certain sequences of its actions
and certain sequences of actions of the other robot. These are
then used to learn faster on subsequent tasks. We empirically
validate the framework in a rooms world domain.

I. I NTRODUCTION

One of the drawbacks associated with the reinforcement
learning paradigm is the initial period of nearly random
exploration while the robot looks for the goal. One approach
for addressing this problem is to adopt a transfer learning
framework. In a transfer learning setting, the knowledge
acquired in solving one task is used to bootstrap the solving
of another task. There have been several approaches proposed
for transfer learning. In most of the approaches, a mapping
is used to relate the new task to the task for which a policy
had been learned (Torrey, Walker, Shavlik and Maclin 2005;
Taylor, Whiteson, Stone 2007). In few others, a mapping
between the base actions of the robots or the transitions is
learnt and re-used. They also require substantial amount of
accurate transition information collected in the source and
target tasks (Taylor, Kuhlmann and Stone 2008). In all the
earlier work on transfer learning the assumption has been
that the same (or an equivalent) robot is involved in both the
tasks. The problem of transfer between robots with different
action capabilities has not received much attention in the
literature.

In multi-robot systems, the robots have different action
capabilities. The action capabilities may be unknown to each
other or one robot may not be able to imitate another robot.
Hence, even if the policy (state to action mapping) to solve
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the task is available from another robot, it cannot be used
as the action capabilities are different. If the action models
of the two robots are known, a complete mapping between
the base actions may not always be possible or they would
often need to be hand coded. Even if such a mapping is
possible, it may not be precise. It is hard to obtain an exact
action model of a robot as some amount of stochasticity is
always involved and might require several self calibrations
and result in control related problems.

Our work is primarily related to transfer learning across
heterogeneous robots when the action models of the robots
are different and are either unknown to each other or a
mapping between their base actions do not exist. The robots
do not have any prior knowledge of the environment. The ob-
jective is to speed-up learning, i.e., reduce initial exploration,
with very minimal prior information (single trajectory) from
a different robot. The focus is to solve the task quickly and
not the optimality of the solution. In general, for any robot, it
might take many exploration and exploitation steps in order
to solve the task. The knowledge gained by one robot while
solving a task in an environment can be reused by a second
robot for learning a policy faster and solving the same task
in the same environment. For instance, the first robot might
have a circular action model and move in arcs while the
second robot has a linear action model as seen inFigure 2.
Given that the first robot has solved the task and learnt a path,
our aim is to use the knowledge with the second robot and
accelerate the learning to solve the same task. The framework
we propose can be used for multi-robot system including
different robotic arms or robotic arms with different degrees
of freedom as shown inFigure 1.

We present a pseudo reward function framework for the
second robot based on the knowledge obtained from the
first robot. The second robot also learns to map its action
sequences to certain sequence of actions of the first robot and
uses this mapping while solving subsequent task. There are
many real world applications of the work like quick response
robots, search and rescue systems, etc., where gathering
information would be expensive.

The rest of the paper is structured as follows: the next
section gives the background of the problem. Then we
describe our solution framework. After that, we present the
experimental set-up and results that serve to support our
solution framework. We then review some of the recent
transfer learning work followed by the discussion and direc-
tions for future work. We will be using the terms, agent and
robot interchangeably, for better understanding in appropriate
sections.



Fig. 1. Different Robotic Arm
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Fig. 2. Action models of the two robots and their respective paths to reach
the goal. The actions of one robot cannot be imitated by the other robot
even if it they are known.

II. BACKGROUND

A. Reinforcement Learning

Markov decision process (MDP) is the modeling paradigm
of choice for reinforcement learning problems. An MDP is
quadruple{S, A, T, R}, where S is the finite set of possible
states of the agent, A is the finite set of actions the agent can
take, T(s, a,s′) is the transition function which defines the
probability of a transition from state s∈ S to s′ ∈ S when
action a∈ A is taken. R(s, a) is the reward function, which
defines an expected immediate reward for taking action a
∈ A in state s∈ S. An MDP defines a formal model of
an environment that an agent can interact with and learn
about. In the reinforcement-learning framework, the agent
has knowledge of its state and its action spaces, but does
not have knowledge of the transition and reward functions.
The task of the agent is encoded in the reward function and
the objective of the agent is to obtain a policy by interacting
with the environment over a period of time.

In the MDP formalism, the objective of the agent is to
learn to maximize the expected value of reward received over
time. It does this by learning an optimal mapping from states
to actions defined as policyπ : S→ A.

Qπ(s,a) = Eπ
{

∑γ ir i |s0 = s,a0 = a
}

where,γ ∈ [0,1) is the discount factor andr i is the reward
from the environment at stepi.

B. Transfer Learning

Transfer Learning has been traditionally observed as a
method of utilizing the knowledge gained by solving one

or more tasks, to speed up the learning in a related but
different task. Speeding up the learning is important as the
learner takes large number of steps to reach an unknown
goal state in an environment with unknown dynamics and
thus comes up with a feasible policy. If there are two MDPs
with the same state and action space and related transition
and reward functions, transfer learning reuses the knowledge
gained from the first MDP with the second MDP, to obtain
a feasible or nearly optimal policy, faster.

Our work is aimed at using the knowledge gained by one
agent having one action model with another agent having
a different action model, given the same environment and
task. Hence, the two MDPs differ in their action space and
transition function while the state space and reward function
remain the same. We aim to rapidly learn and solve a task
using very minimal prior knowledge from another agent with
a different action model.1

III. SOLUTION FRAMEWORK

A. Problem Space

As in most transfer learning frameworks, the first agent is
assumed to have solved the task. However, it is not necessary
for the first agent to have learnt a value function or a policy.
The agent is assumed to have knowledge of the sequence of
states in the respective order it had covered to reach the goal.
If the agent had learnt a policy, the sequence of states can
be generated from the policy. The policy may or may not be
optimal and the agent could have learned the policy using
any algorithm. The second agent needs to solve the same
task solved by the first agent, in the same environment. It
has a different action model compared to first agent and has
no knowledge of the state connectivity of the environment.
It has only the state perception and can identify its current
state. It also has no knowledge of the action model of the
first agent and it doesn’t understand the action capabilities
of the first agent.

B. Knowledge Based Pseudo Rewards

For the first agent, there is an MDP{St , At , Tt , Rt} and a
task for which either a solution or a policy has been learnt.
For the second agent there is another MDP{S, A, T, R} and a
task for which a solution needs to be learnt. The state spaces
St and S are the same. The reward functionsRt and R encode
the same task. The action modelsAt and A and transition
function Tt and T are different. From a given start statest0,
a trajectory consisting of a sequence of state action pairs
{(st0,at0),(st1,at1)...(stn,atn),stg} is known by the first agent
or generated using the first agent’s policy and is transferred
to the second agent to reach the goal statestg. st0, st1, .., stn

are intermediate states visited in that order, by the first robot
to reach the goal state. The action taken at each intermediate
state is transferred as a label and is used for action sequence
mapping.

For the second robot, we now introduce a pseudo reward
function based on the trajectory of the first robot. This pseudo

1The reward function can be different as long as the encoded task of the
agent remains the same.



reward function is inversely proportional to the distance of
the intermediate states from the goal state in the sequence.
This pseudo reward function is combined with the regular
reward function from the environment and used during
exploration. This accelerates the learning and helps to solve
the task faster and reach the goal. The pseudo reward is
defined as follows:

r ′(s) =

{

iK if s= sti

0 otherwise

where, K is a constant chosen to ensure that the pseudo
reward is much smaller than the tasks reward functions. The
pseudo rewards are linearly scaled depending on the order
of the state in the transferred sequence. Now the modifiedQ
function is defined as:

Qπ ′ (s,a) = Eπ ′
{

∑γ i(r ′i + r i)
}

.
This can be used with any of the reinforcement learning
methods to solve the task. We have used sarsa(λ ), shown in
Algorithm 1.

The transfer learning framework we propose does not
require the first agent to learn a value function or a policy
for solving the task or a transition model. The pseudo
reward function proposed is characterized by the order of
states in the trajectory transferred and does not depend on
policy or value function. The framework is not bound to a
deterministic environment and can be extended to stochastic
environments as the pseudo reward framework for any given
transition is dependent on the destination state and not on
state action pair.

C. Action Sequence Mapping

One way of further speeding up learning in future transfer
is to use the learnt knowledge to establish mapping between
the actions of the two robots. With robots that are very
different in their capabilities, it is difficult to establish a one
to one correspondence between the actions. Hence we look
to mapping fragments of policies, or action sequences of
the first agent to action sequences of the second agent. It
is easier to quantify what such a correspondence implies in
a deterministic world. Two action sequences correspond to
each other, if starting from the same state, sayx, executing
the action sequences by the respective robots will result in
them ending up at the same state, sayy. This notion has to be
extended to preservation of state distributions in a stochastic
environment, and is harder to establish.

During transfer, let a sequence of state, action index pair
{(st0,at0),(st1,at1). ..(stn,atn),stg} be framed by the first robot
and transferred to the second robot. The second robot, on
reaching the goal, converges on a policy and let the sequence
generated from the policy be{(s0,b0),(s1,b1)...(sm,bm),sg}.
We have the start statess0 same asst0 while goal statesg is
same asstg. Let there be two pairs of equivalent states, say
sti andsj are equivalent,stk andsl are equivalent, satisfying
the condition 0≤ i < k ≤ n and 0≤ j < l ≤ m. Now the
sequences of actions{ati , ..., at(k−1)} and{b j , ...,b(l−1)} are
mapped as equivalent.at(k−1) is the index of the action that
takes first agent fromst(k−1) to stk and b(l−1) is the action

TABLE I

DIFFERENT SETS OF TASK FOR TRANSFER FROM LARGER TO FINER

ACTION MODEL (ROBOT)

TASK START STATE GOAL STATE DISTANCE*

TASK 1 (0,0)[ROOM 1] (-8,12)[ROOM 2] 20
TASK 2 (2,-2)[ROOM 1] (-12,18)[ROOM 2] 34
TASK 3 (2,6)[ROOM 1] (-6,-6)[ROOM 3] 40
TASK 4 (20,18)[ROOM 1] (-22,-16)[ROOM 3] 76

*DISTANCE is the optimal number of steps required to reach the Goal State from Start State

that takes second agent froms(l−1) to sl . The mapped action
sequence is replaced by another action equivalent action
sequence if it contains lesser number of actions. A sample
of mapping computed is shown inTable 3 and Figure 7.
Once we have such a mapping we can re-use it while solving
subsequent tasks.

In the subsequent tasks, if the same sequence of actions are
observed in transferred action index sequence, the mapped
action sequence of the second robot can be directly used
during exploration. This can take the second robot faster to
the goal, though not always guaranteed. In some instances,
the mapped action sequence might take the second robot
away from the goal and make it longer to solve the task.
Hence, we use the mapped action sequence (1 -ε time) at
the useful intermediate state during the exploration phaseof
the robot and forε time, the regular algorithmAlgorithm 1is
used. However, if the new task is a combination of mapped
action sequences, the convergence is very quick.

Algorithm 1 Transfer Knowledge motivated Learning
Input: s ∈ S, a∈ A, st0,st1...stn,stg ∈ St , at0,at1...atn

∈ At , Intrinsic rewardr ′

Initialize Q(s,a) arbitrarily and e(s,a) =0, for all s,a
Initialize s,a
repeat

Take action a and observe next states′ and reward r
from the environment
Choose actiona′ from s′ using policy derived from Q
(ε-greedy)
if s′ = sti (i = 1 to n) ∈ St then

δ ← r ′ + r + γ Q(s′,a′) - Q(s,a)
else

δ ← r + γ Q(s′,a′) - Q(s,a)
end if
e(s,a)← e(s,a)+1
for all (s,a) do

Q(s,a)← Q(s,a)+α δ e(s,a)
e(s,a)← γ λ e(s,a)

end for
s← s′; a← a′

until s is terminal

IV. EXPERIMENTAL SET-UP AND RESULTS

To evaluate our algorithm, we created a rooms world
environment, shown inFigure 3. The states of the domain
are based on 50x50 grid world and the states are represented
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Fig. 3. Rooms world environment used in the experiment

X axis: Different Tasks as given in Table I
Y axis: Average number of exploration steps to reach the
Goal

Fig. 4. Comparison of the number of exploration steps beforereaching
the goal for transfer from larger to finer action model (Robot). (averaged
across ten trials)

as (x,y) [-25 ≤ x, y ≤ 25]. There are 4 rooms with
different orientations and 4 doors connecting them. The agent
can move from one room to another only through these
doors. The knowledge transferred is a sequence of state
and corresponding action indices. The sequence of states is
used for generating the pseudo reward function while the
action indices are used for action sequence matching. The
experiments have been run in deterministic and stochastic
environments. We have also run trials to evaluate trans-
fer learning from the robot with the larger action model
(Robot 1) to the robot with the finer action model(Robot
2) and the reverse. An example of the knowledge trans-
ferred is {{(-4,6),1},{(-4,8),1},{(-4,10),4},{(-6,10),4},{(-
8,10),2},{(-8,8),2},{(-8,6),2},{-8,4}}. The action model of
Robot 1 is larger andRobot 2 is finer. A transfer learning
solution framework is effective for the robot, if it speeds up
the time to solve the task comparing the steps it takes oth-
erwise. Hence, we measure the effectiveness by comparing
the number of exploration steps taken by the robot to reach
the goal without transfer and with transfer.

A. Transfer from Larger to Finer Action Model (Robot) in
Deterministic Environment

Robot 1 having action model, shown inFigure 2(a) is
assumed to have solved the task. We can represent index
the actions as{1, 2, 3, 4}. The second robotRobot 2,

X axis: Different Tasks as given in Table I
Y axis: Average number of exploration steps to reach the
Goal

Fig. 5. Comparison of the number of exploration steps beforereaching
the goal for transfer from finer to larger action model (Robot). (averaged
across ten trials)

X axis: Different Tasks as given in Table I
Y axis: Average number of exploration steps to reach the
Goal

Fig. 6. Comparison of the number of exploration steps to reach the goal
in stochastic environment

which needs to learn a policy to reach the goal has action
model, shown inFigure 2(b) {Forward, Backward, Right,
Left} represented as{F,B,R,L} and move one step in the
corresponding direction of each action. Experiments were
conducted with four different sets of start and goal states in
a deterministic environment. These states were distributed in
different rooms and were of varying complexities, shown in
Table 1.

The results show that there has been a speed up in learning
because of transfer, shown inFigure 4indicated by the reduc-
tion in number of exploration steps to reach the goal. From
our experiments, we find that there is an improvement of 10%
to 47% , shown inTable 2. The speed-up may vary depending
on the knowledge transfered and the resulting pseudo reward
function. For all meaningful knowledge transferred, thereis
an appropriate speed-up happening for the second robot. The
speed-up comparisons across different knowledge (sequence
of states) transferred for the same task are indicated inTable
4.

B. Transfer from Finer to Larger Action Model (Robot) in
Deterministic Environment

Here Robot 2 is assumed to have solved the task is
assumed to be having action model, shown inFigure 2(c).



TABLE II

COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH

THE GOAL FOR TRANSFER FROM LARGER TO FINER ACTION MODEL

(ROBOT). (AVERAGED ACROSS TEN TRIALS)

TASK A B C D E F

TASK 1 9777.80 5200.1 46.82 3152.4 NA NA
TASK 2 7338.3 3841.7 47.65 1039.6 34.38 85.83
TASK 3 11797.5 6467.8 45.18 2880.10 56.82 75.59
TASK 4 9222.2 8282.9 10.19 11419.4 0 -23.83

A: Number of exploration steps taken to reach the goal without transfer
B: Number of exploration steps taken to reach the goal with transfer
C: Percentage Improvement using transfer learning
D: Number of exploration steps taken to reach the goal with transfer and action sequence mapping
E: Percentage of mapped action sequences used in the final path
F: Percentage Improvement using transfer learning and action sequence mapping

TABLE III

ACTION SEQUENCEMAPPINGEXAMPLE FOR TRANSFER FROM LARGER

TO FINER ACTION MODEL (ROBOT)

SET ROBOT 1 ROBOT 2
ACTION INDEX SEQUENCE MAPPED ACTION SEQUENCE

I 11 RFFRFFLL

II 4 LL

III 2 BB

IV 1 BRFFFL

V 4411 FLFRFFLLBLFL

VI 3 FRRB

VII 222244 LLLBBLBRBBLBBLBR

VIII 444 RBRBLBLLLFFLBLFLLF

IX 44 LBLLLF

X 422 BLBBBL

XI 22 BRBBLB

The second robot which needs to learn a policy to reach the
goal has action model represented as{1,2,3,4} and move
two steps in the corresponding direction of each action. The
speed up in learning because of transfer is shown inFigure 5.
There is an improvement in performance using the mapped
action sequences.

C. Transfer from Larger to Finer Action Model (Robot) in
Stochastic Environment

In the rooms world environment, shown inFigure 3, a
wind is modeled to blow from left to right with a probability
0.01. It moves the agent to the right by one step.Robot 1is
assumed to have solved the task and transfers the sequence
of states it has traversed to reach the goal to(Robot 2). From
Figure 6, it is evident that there has been a speed-up because
of the transfer even if the environment is stochastic.

V. D ISCUSSION

Time to converge on a policy for a given task is a measure
of evaluating a transfer learning approach. A transfer learning
solution framework is effective, if it speeds up the learning
of the agent comparing the time it takes otherwise. In almost
all the experiments we conducted using our transfer learning
framework, there has been a considerable improvement in
time to learn and converge on a policy. We have analyzed the
solution framework using different tasks and using different
transfer for same task in both deterministic and stochasticen-
vironments. One of our observation is that the performance is
not completely dependent on the optimality of the transferred
knowledge. FromTable 4, we find that the transfer based

Fig. 7. Action sequence Mapping Example for transfer from larger to finer
action model (Robot)

TABLE IV

COMPARISON ACROSS DIFFERENT KNOWLEDGE TRANSFER FOR SAME

TASK FOR TRANSFER FROM LARGER TO FINER ACTION MODEL(ROBOT).

(AVERAGED ACROSS TEN TRIALS)

TASK DISTANCE* A B C D

NO TRANSFER NA 7338.80 NA 104.4 NA
OPTIMAL PATH 24 3841.7 47.65 80.2 23.18

SET 1 32 7256.6 1.12 89.2 14.56
SET 2 48 5081.2 30.76 54 48.28
SET 3 56 3772.2 48.6 68 34.87

*DISTANCE is the optimal number of steps required to reach the Goal State from Start State
A: Number of exploration steps taken to reach the goal with transfer
B: Percentage Improvement on exploration steps taken to reach the goal using transfer learning
C: Number of greedy steps on converged policy taken to reach the goal with transfer
D: Percentage Improvement on greedy steps on converged policy using transfer learning

on Set 3 provides faster learning, though it is based on a
non-optimal path with larger path length. As our approach
provides pseudo rewards based on the distance of the state
from the goal in the transfer, the less relevant states are
bypassed by more important states. In case of loops in the
transferred sequence, the second agent bypasses the loop to
more useful states.

Learning action sequence mapping accelerates the conver-
gence of the second robot with a high degree, if the mapped
action sequences are useful with respect to the task. In few
instances if the new task is a collection of mapped action
sequences, the convergence, understandably, is extremely
fast. If none of the mapped action sequences are relevant
to the current task, the proposed transfer learning algorithm
Algorithm 1 is used. But in tasks, where the mapped action
sequences are relevant but not useful, it affects the learning
and results in slowing down the learning. The result inTable
2 for TASK 4 is an example of this behavior. An interesting
observation is that, in the case of loops in the sequence
of the first robot, the second robot maps ”no action” as
an equivalent action sequence. This helps to identify the
loops and bypass them straight away. However, computing
the usefulness of a mapped action sequence, for the current
task need to be fine tuned for better performance. While it
is easier to establish such an equivalence in a deterministic
world, it is harder to establish in stochastic domain.



TABLE V

COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH

THE GOAL FOR TRANSFER FROM FINER TO LARGER ACTION MODEL

(ROBOT). (AVERAGED ACROSS TEN TRIALS)

TASK A B C D E
TASK 1 3365.89 331.89 90.14 371. NA
TASK 2 1967.3 1277.4 35.07 1333.2 32.23
TASK 3 2544.8 1468.6 42.29 2133.1 16.17
TASK 4 3126.7 2652.0 15.18 2480.2 20.67

A: Number of exploration steps taken to reach the goal without transfer
B: Number of exploration steps taken to reach the goal with transfer
C: Percentage Improvement using transfer learning
D: Number of exploration steps taken to reach the goal with transfer and action sequence mapping
E: Percentage Improvement using transfer learning and action sequence mapping

VI. RELATED WORK AND COMPARISON

There have been several methods proposed for transfer
learning. Often, a mapping is used to relate the new task
to the task for which a policy had been learnt. There have
been several work in learning such a mapping. The mapping
is used to find the similarities between the state variables
in source and target task. Most of the approaches exploit
the already learnt policy of one task and use it during
the exploration of new task. Madden and Howley (Madden
and Howley 2004) use symbolic learner and a propositional
representation of the task to build a generalized policy andis
used to aid exploration. Fernandez and Veloso (2006)re-use
the learned policy as an option during exploration and hence
use either exploration action or exploit learned policy. Liu
and Stone (2006) use specialized version of the structure
mapping theory, to find similarities in the tasks based on
similar patterns in their state transitions. Kuhlmann and
Stone (2007) use graph based domain mapping for value
function transfer learning. Talvitie and Singh (2007) use an
experts algorithm to select the best policy amongst a number
of given policies. By creating different target task policies
using the source task policy and different mappings, they can
hence find the best mapping. Transfer learning, recently have
also been achieved using transfer actions, where actions are
transferred from source task to target task and used to guide
during the exploration (Tom Croonenborghs, Kurt Driessens
and Maurice Bruynooghe 2008). In all the transfer learning
related work,the transfer happens across two reinforcement
learning tasks and the assumption has been that the same
robot is involved in both the tasks and their action models
are the same. They also assume the availability of significant
knowledge. There haven’t been approaches where the robots
are different and are trying to solve the tasks with very
minimal information. Our approach on the other hand is for
the condition where very limited information is available
and also makes no assumptions on the action model of
the other robot or its transition probabilities. Since our
approach and available knowledge are different it is hard
to absolutely compare the results of our method with the
existing approaches.

VII. C ONCLUSION AND FUTURE WORK

We introduced transfer learning across heterogeneous
robots. The action capabilities of the robots are differentand
unknown, while the task and environment are the same. The
knowledge gained by one robot in solving a task is modeled

as a sequence of states and action indices. It is passed to
the other robot. The sequence of states are used to develop a
pseudo reward function which are used along with the regular
reward function from the environment. It has been shown to
speed up the learning and solve the task faster with minimal
knowledge. The action indices are used to come up with a
mapping between the sequence of base actions of the two
robots. It is shown that if the mapped action sequences are
useful for subsequent task, it accelerates the learning and
helps to converge on the policy quicker.

The framework we have proposed use minimal infor-
mation, a single trajectory. It can also be extended to be
used with more information, say multiple trajectories, partial
action equivalence or partial map of the environment etc. Our
current work is based on the assumption that that environ-
ment and task are same. We can work towards extending
our model for related but different tasks, while the robots
are different. Our experiments have been performed on a
discrete state space environment. Working in a continuous
state space environment and exploiting the state space ap-
proximations can be done. Exploiting the symmetries and sub
goal discovery and combining it with transfer is promising.
Methods to identify useful action sequences for a given task
is also a direction for future work.

True hetrogenity of robots is when the robots have differ-
ent sensory input but however the underlying state space cab
be mapped and the proposed framework can be used. We can
extend the model to the condition when the observation of
the state space is partial for the robot. Besides mobile robots,
the framework can be extended to the robotic arm space.
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