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Abstract— Transfer learning refers to reusing the knowledge
gained while solving a task, to solve a related task more
efficiently. Much of the prior work on transfer learning,
assumes that identical robots were involved in both the task
In this work we focus on transfer learning across heterogenaus
robots while solving the same task.The action capabilitiesf the
robots are different and are unknown to each other. The actias
of one robot cannot be mimicked by another even if known.
Such situations arise in multi-robot systems. The objectie then
is to speed-up the learning of one robot, i.e., reduce its itial
exploration, using very minimal knowledge from a different
robot. We propose a framework in which the knowledge
transfer is effected through a pseudo reward function geneated
from the trajectories followed by a different robot while solving
the same task. The framework can effectively be used even it
a single trajectory. We extend the framework to enable the rbot
to learn an equivalence between certain sequences of its mxets
and certain sequences of actions of the other robot. These ar
then used to learn faster on subsequent tasks. We empiricgll
validate the framework in a rooms world domain.

the task is available from another robot, it cannot be used
as the action capabilities are different. If the action niede
of the two robots are known, a complete mapping between
the base actions may not always be possible or they would
often need to be hand coded. Even if such a mapping is
possible, it may not be precise. It is hard to obtain an exact
action model of a robot as some amount of stochasticity is
always involved and might require several self calibragion
and result in control related problems.

Our work is primarily related to transfer learning across
heterogeneous robots when the action models of the robots
are different and are either unknown to each other or a
mapping between their base actions do not exist. The robots
do not have any prior knowledge of the environment. The ob-
jective is to speed-up learning, i.e., reduce initial exafimn,
with very minimal prior information (single trajectory)dm
a different robot. The focus is to solve the task quickly and

not the optimality of the solution. In general, for any rolot

i . . might take many exploration and exploitation steps in order
One of the drawbacks associated with the relnforcemeﬂ; solve the task. The knowledge gained by one robot while

Iearning- paradjgm is the initial period of nearly randorTkolving a task in an environment can be reused by a second
exploration yvh|le Fhe robot Ioc_)ks for the goal. One appro""_crbbot for learning a policy faster and solving the same task

for addressing this problem is to adopt a transfer leaming the same environment. For instance, the first robot might

framework. In a transfer learning setting, the knowledgg,ye g circular action model and move in arcs while the

acquired in solving one task is used to bootstrap the solving..ond robot has a linear action model as seefigare 2

of another task. T_here have been several approaches pmp_oé?/en that the first robot has solved the task and learnt g path

for transfer learning. In most of the approaches,_ 8 MappInglyr aim is to use the knowledge with the second robot and

is used to relate the new task to the task for which a policy ejerate the learning to solve the same task. The frarkewor

had been learned (Torrey, Walker, Shavlik and Maclin 2003, propose can be used for multi-robot system including

Taylor, Whiteson, Stone 2007). In few others, a mappingigerent robotic arms or robotic arms with different degge
between the base actions of the robots or the transitions i$ s aadom as shown ifigure 1

learnt and re-used. They also require substantial amount ofyy, present a pseudo reward function framework for the

accurate transition information collected in the sourcd anga-ond robot based on the knowledge obtained from the
target tasks (Taylor, Kuhimann and Stone 2008). In all thgg; rohot. The second robot also learns to map its action
earlier work on transfer learning the assumption has beey,ences to certain sequence of actions of the first rokot an
that the same (or an equivalent) robot is mvolved.m bpth theses this mapping while solving subsequent task. There are
tas!<s. The pr.o.bllem of transfer bgtween robots W'th d'f_fererPnany real world applications of the work like quick response
action capabilities has not received much attention in th&)bots search and rescue systems, etc., where gathering
Ilterature._ ) __information would be expensive.

In multi-robot systems, the robots have different action The rest of the paper is structured as follows: the next
capabilities. The action capabilities may be unknown tdeagqtion gives the background of the problem. Then we

other or one r,ObOt may not be able tollmltate another rOboélescribe our solution framework. After that, we present the
Hence, even if the policy (state to action mapping) to SOIVSxperimentaI set-up and results that serve to support our

solution framework. We then review some of the recent
transfer learning work followed by the discussion and direc
tions for future work. We will be using the terms, agent and
robot interchangeably, for better understanding in apipatg
sections.
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@ﬁ Y or more tasks, to speed up the learning in a related but
T different task. Speeding up the learning is important as the
learner takes large number of steps to reach an unknown

Articulated Arm Robot

Q_‘_“fﬁﬁ goal state in an environment with unknown dynamics and
EL% thus comes up with a feasible policy. If there are two MDPs
H:*— with the same state and action space and related transition
and reward functions, transfer learning reuses the knayeled
Fig. 1. Different Robotic Arm gained from the first MDP with the second MDP, to obtain
Image courtesy: www.osha.gov a feasible or nearly optimal policy, faster.

Our work is aimed at using the knowledge gained by one
agent having one action model with another agent having
. a different action model, given the same environment and
task. Hence, the two MDPs differ in their action space and
+ ’ transition function while the state space and reward foncti
remain the same. We aim to rapidly learn and solve a task
using very minimal prior knowledge from another agent with
a different action modef

(a) FIRST ROBOT (b) SECOND ROBOT
CIRCULAR MOVEMENT STRAIGHT LINE MOVEMENT

IIl. SOLUTION FRAMEWORK
A. Problem Space

As in most transfer learning frameworks, the first agent is
assumed to have solved the task. However, it is not necessary
for the first agent to have learnt a value function or a policy.
The agent is assumed to have knowledge of the sequence of
Fig. 2. Action models of the two robots and their respectiathg to reach states in the respective Order_it had covered to reach the goa
the goal. The actions of one robot cannot be imitated by therotobot  If the agent had learnt a policy, the sequence of states can

1]

(c) PATH TAKEN BY THE ROBOTS

even if it they are known. be generated from the policy. The policy may or may not be
optimal and the agent could have learned the policy using
[I. BACKGROUND any algorithm. The second agent needs to solve the same

A. Reinforcement Learning task solved by the first agent, in the same environment. It

Markov decision process (MDP) is the modeling paradigrﬁas a different action model compa_re_d to first agent and has
of choice for reinforcement learning problems. An MDP ig'© knowledge of the state connectivity of the environment.
quadruple(S, A, T, R}, where S is the finite set of possible't has only the state perception and can |d.ent|fy its current
states of the agent, A is the finite set of actions the agent cgF€- It also has no knowledge of the action model of the
take, T(s, as) is the transition function which defines thefirst agent and it doesn’t understand the action capalsilitie
probability of a transition from state s S tos € S when  ©f the first agent.
action ac A is taken. R(s, a) is the reward function, whichB, Knowledge Based Pseudo Rewards
defines an expected immediate reward for taking action aprg. v« first agent, there is an MDI, A, T, R} and a

€A In state se S. An MDP defmeg a forma_l model of 42 for which either a solution or a policy has been learnt.
an environment that an agent can interact with and lea'ifbrthe second agent there is another MEP A, T, R} and a
about. In the requrcement-learr_nng frfimework, the agenfqy for which a solution needs to be learnt. The state spaces
has knowledge of its state and its action spaces, but dogsand S are the same. The reward functiBpand R encode

not have knowledge of the transition and reward function he same task. The a{ction models and A and transition

The task of the agent is encoded in the reward function aqgnction'ﬁ and T are different. From a given start state
the objective of the agent is to obtain a policy by interagtin trajectory consisting of a sequence of state action pairs

with the environment over a period of time. { : :
. e _ S0, &0), (51, &1)---(Sn, &n) Sg} IS known by the first agent
In the MD.P _formahsm, the objective of the agef‘t IS 105y generated using the first agent’s policy and is transflerre
learn to maximize the expected value of reward received ov

) . . . . f the second agent to reach the goal stgfeso, S1, .., Sn
tme. I.t doeds tfh's gy Iearnl!ng_asn Oa\t'mal mapping from stateg e inermediate states visited in that order, by the filgbto
to actions defined as policy : S— A, to reach the goal state. The action taken at each interneediat

T - i — —
Q"(s.a) = En {Z VrilSo =S = a} . state is transferred as a label and is used for action segquenc
where,y € [0,1) is the discount factor andlis the reward

f th : t at sta mapping.
rom the environment at step For the second robot, we now introduce a pseudo reward
B. Transfer Learning function based on the trajectory of the first robot. This pgeu

Transfer Le_‘tir_ning has been traditi(_)na”y Obser\_/ed aS AiThe reward function can be different as long as the encodaddathe
method of utilizing the knowledge gained by solving oneagent remains the same.



L . . TABLE |
reward function is inversely proportional to the distande o
DIFFERENT SETS OF TASK FOR TRANSFER FROM LARGER TO FINER

the intermediate states from the goal state in the sequence.

. . . . . ACTION MODEL (ROBOT)
This pseudo reward function is combined with the regular
reward function from the environment and used during

exploration. This accelerates the learning and helps teesol Task | START STATE GOALSTATE | DISTANCE®
the_ task faster and reach the goal. The pseudo reward is et | omoont] | (oazmonz) 2
. T 2 2,-2)[Rox 1 -12,18)[Ro 2 34
deflned as fOIIOWS' T22E3 ((2,6))[[R000r\’/\1l11]] ((—6,—6)EI[QOOOMM3]] 40
. . TASK 4 (20,18)[Room 1] (-22,-16)[Room 3] 76
, iK if s=g _ , .
r (S) = X *DISTANCE is the optimal number of steps required to reach @oal State from Start State
0 otherwise

hat takes second agent fras. 1) to 5 . The mapped action
%quence is replaced by another action equivalent action
%quence if it contains lesser number of actions. A sample
g‘rmapping computed is shown imable 3 and Figure 7.
Once we have such a mapping we can re-use it while solving
subsequent tasks.

In the subsequent tasks, if the same sequence of actions are
bserved in transferred action index sequence, the mapped

where, K is a constant chosen to ensure that the pseu
reward is much smaller than the tasks reward functions. T
pseudo rewards are linearly scaled depending on the or
of the state in the transferred sequence. Now the modiied
function is defined as:

Q"(s.a) = Ex {3V (r{+1)}.

This can be used with any of the reinforcement Iearning
methods to solve the task. We have used sajsafiown in action sequence of the second robot can be directly used

Algorithm 1 . during exploration. This can take the second robot faster to
The transfer learning framework we propose does n A

; . i N%he goal, though not always guaranteed. In some instances,
require Fhe first agent to learn a-vlalue function or a pOIIC¥he mapped action sequence might take the second robot
for solving the task or a transition model. The pseud ay from the goal and make it longer to solve the task.
reward function proposed is characterized by the order ence, we use the mapped action sequencetime) at
states in the trajectory transferred and does not depend fié uséful intermediate state during the exploration plodse

palicy or value function. The framework is not bound to 8he robot and foe time, the regular algorithrAlgorithm 1is

deterministic environment and can be extended to stoa:hasHsed However, if the new task is a combination of mapped

environments as the pseudo reward framework for any give:ﬂ:tion sequences, the convergence is very quick
transition is dependent on the destination state and not on ' '

state action pair.

Algorithm 1 Transfer Knowledge motivated Learning
C. Action Sequence Mapping Input: s€ S, a€ A, $0,%1--Sn,Sg € S, &0,&1---an
€ A, Intrinsic rewardr’
Initialize Q(s,a) arbitrarily and e(s,a) =0, for all s,a
Initialize s,a
repeat
Take action a and observe next stateand reward r
from the environment
Choose actiord’ from s using policy derived from Q
(e-greedy)
if §=gj(=1ton)e S then

1" +r1r+yQE.d)-Q(sa)

One way of further speeding up learning in future transfer
is to use the learnt knowledge to establish mapping between
the actions of the two robots. With robots that are very
different in their capabilities, it is difficult to estabisa one
to one correspondence between the actions. Hence we look
to mapping fragments of policies, or action sequences of
the first agent to action sequences of the second agent. It
is easier to quantify what such a correspondence implies in
a deterministic world. Two action sequences correspond to
each other, if starting from the same state, gagxecuting

the action sequences by the respective robots will result in elsée f+y0E.d) - Q(s.a)
them ending up at the same state, gayhis notion has to be end F v ' '

extended to preservation of state distributions in a ststiha
environment, and is harder to establish.

During transfer, let a sequence of state, action index pair
{(st0, @0),(S1,@1)- -.(Sn, &n),Sg} be framed by the first robot
and transferred to the second robot. The second robot, on
reaching the goal, converges on a policy and let the sequence
generated from the policy bf(so, bo),(S1,b1)...(Sm, bm).Sg}-
We have the start stateg same aso while goal statesy is
same asg. Let there be two pairs of equivalent states, say
§i ands; are equivalentsy ands are equivalent, satisfying
the condition 0< i < k < nand 0<j < | < m. Now the
sequences of actiod®yi, ..., k-1)} and{bj, ...,by_1} are To evaluate our algorithm, we created a rooms world
mapped as equivalerdy_;) is the index of the action that environment, shown irFigure 3 The states of the domain
takes first agent frong_1) to sk andb_y is the action are based on 50x50 grid world and the states are represented

e(s,a)- e(s,a)+1
for all (s,a) do
Q(s,a)}- Q(s,a)+a I e(s,a)
e(s,a)> y A e(s,a)
end for
s— §; a— &
until s is terminal

IV. EXPERIMENTAL SET-UP AND RESULTS
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Fig. 3. Rooms world environment used in the experiment

Fig. 5. Comparison of the number of exploration steps befeeehing
the goal for transfer from finer to larger action model (Rybgaveraged

14000 .
across ten ftrials)
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X axis: Different Tasks as given in Table |
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Fig. 4. Comparison of the number of exploration steps befeeehing X axis: Different Tasks as given in Table |
the goal for transfer from larger to finer action model (Rybgaveraged g .
across ten trials) Y axis: Average number of exploration steps to reach the

Goal

a_s (x,y) [_.25 S_X, y < 25]_ There ar? 4 rooms with ::r:gétc?éha(s:t(i)g]gr?\'/’ilrsgr?m(:ntthe number of exploration steps tohéhe goal
different orientations and 4 doors connecting them. Thetge

can move from one room to another only through thes&hich needs to learn a policy to reach the goal has action
doors. The knowledge transferred is a sequence of stdftodel, shown inFigure 2(b) {Forward, Backward, Right,
and corresponding action indices. The sequence of stated-gft} represented a¢F,B,R,L} and move one step in the
used for generating the pseudo reward function while theorresponding direction of each action. Experiments were
action indices are used for action sequence matching. TR@nducted with four different sets of start and goal states i
experiments have been run in deterministic and stochasficdeterministic environment. These states were distribinte
environments. We have also run trials to evaluate tranélifferent rooms and were of varying complexities, shown in
fer learning from the robot with the larger action modeiTable 1

(Robot 1)to the robot with the finer action modéRobot The results show that there has been a speed up in learning
2) and the reverse. An example of the knowledge tran$ecause of transfer, shownRigure 4indicated by the reduc-
ferred is {{(-4,6),1},{(-4.8),1},{(-4,10),4,{(-6,10),4,{(- tion in number of exploration steps to reach the goal. From
8,10),2,{(-8,8),2,{(-8,6),2,{-8,4}}. The action model of ourexperiments, we find that there is an improvement of 10%
Robot 1is larger andRobot 2is finer. A transfer learning t0 47% , shown iffable 2 The speed-up may vary depending
solution framework is effective for the robot, if it speeds u on the knowledge transfered and the resulting pseudo reward
the time to solve the task comparing the steps it takes otfinction. For all meaningful knowledge transferred, thisre
erwise. Hence, we measure the effectiveness by compariffy appropriate speed-up happening for the second robot. The

the number of exploration steps taken by the robot to reagpeed-up comparisons across different knowledge (sequenc
the goal without transfer and with transfer. of states) transferred for the same task are indicat8ele

4.
A. Transfer from Larger to Finer Action Model (Robot) in
Deterministic Environment B. Transfer from Finer to Larger Action Model (Robot) in
Robot 1having action model, shown iffigure 2(a)is Deterministic Environment
assumed to have solved the task. We can represent indextere Robot 2 is assumed to have solved the task is
the actions as{1, 2, 3, 4. The second roboRobot 2 assumed to be having action model, showrFigure 2(c)



TABLE Il
COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH

THE GOAL FOR TRANSFER FROM LARGER TO FINER ACTION MODEL L L
P—-—y
(RoBOT). (AVERAGED ACROSS TEN TRIAL9 ' =
1 { 4
\"‘l* RIF 3
> { \
14 TF el
TASK A B c D E F Y
Mo F Set (ii)
TAask 1 9777.80 5200.1 46.82 3152.4 NA NA R
TAsK 2 7338.3 3841.7 47.65 1039.6 34.38 85.83 Set (i)
TAsK 3 11797.5 6467.8 45.18 2880.10 56.82 75.59
TASK 4 9222.2 8282.9 10.19 11419.4 0 -23.83

A: Number of exploration steps taken to reach the goal wittiansfer

B: Number of exploration steps taken to reach the goal wihsfer

C: Percentage Improvement using transfer learning

D: Number of exploration steps taken to reach the goal wihsfer and action sequence mapping
E: Percentage of mapped action sequences used in the fihal pat

F: Percentage Improvement using transfer learning andrasgquence mapping Set (iii)

Fig. 7. Action sequence Mapping Example for transfer frorgdato finer

TABLE llI action model (Robot)

ACTION SEQUENCEMAPPINGEXAMPLE FOR TRANSFER FROM LARGER
TO FINER ACTION MODEL (ROBOT) TABLE IV

COMPARISON ACROSS DIFFERENT KNOWLEDGE TRANSFER FOR SAME

TASK FOR TRANSFER FROM LARGER TO FINER ACTION MODE(_ROBOT).
SET ROBOT 1 ROBOT 2
ACTION INDEX SEQUENCE | MAPPED ACTION SEQUENCE (AVERAGED ACROSS TEN TRIALY

! 11 RFFRFFLL

I 4 LL

[ 2 BB

v 1 BRFFFL

v 4411 FLFRFFLLBLFL TASK DISTANCE* A B c D
VI 3 FRRB

M 222244 LLLBBLBRBBLBBLBR NO TRANSFER NA 7338.80 NA 104.4 NA
Vil 444 RBRBLBLLLFFLBLFLLF OPTIMAL PATH 24 3841.7 47.65 80.2 23.18
1X 44 LBLLLF SET1 32 7256.6 1.12 89.2 14.56
X 222 BLBBEL SET2 48 5081.2 | 30.76 54 48.28
X 23 SREBS SET3 56 37722 | 486 68 34.87

*DISTANCE is the optimal number of steps required to reach @oal State from Start State

1 i v ber of lorati ki h thi | widhsfe
The Second r0b0t WhICh needs to Iearn a pO“Cy to reaCh t@gzzes{ageelﬁp%?/‘:;?esn‘legi ‘ei;j;‘a?i;asct_e;setizan&m‘mel;oal uvsing transfer learning
goal has action model represented{ds2,3,4 and MOVe C o o esy siepe on comergeynng vanser aming
two steps in the corresponding direction of each action. The
speed up in learning because of transfer is showkigare 5
There is an improvement in performance using the mapp
action sequences.

Set 3 provides faster learning, though it is based on a
non-optimal path with larger path length. As our approach
provides pseudo rewards based on the distance of the state
C. Transfer from Larger to Finer Action Model (Robot) infrom the goal in the transfer, the less relevant states are
Stochastic Environment bypassed by more important states. In case of loops in the
transferred sequence, the second agent bypasses the loop to

In the rooms world environment, shown KFigure 3 a
more useful states.

wind is modeled to blow from left to right with a probability
0.01 It moves the agent to the right by one st&mbot 1lis Learning action sequence mapping accelerates the conver-
assumed to have solved the task and transfers the sequegence of the second robot with a high degree, if the mapped
of states it has traversed to reach the gogRobot 2) From action sequences are useful with respect to the task. In few
Figure 6, it is evident that there has been a speed-up becausstances if the new task is a collection of mapped action
of the transfer even if the environment is stochastic. sequences, the convergence, understandably, is extremely
fast. If none of the mapped action sequences are relevant
to the current task, the proposed transfer learning algorit
Time to converge on a policy for a given task is a measurglgorithm 1is used. But in tasks, where the mapped action
of evaluating a transfer learning approach. A transfeniegr sequences are relevant but not useful, it affects the legrni
solution framework is effective, if it speeds up the leagnin and results in slowing down the learning. The resulfable
of the agent comparing the time it takes otherwise. In almo&tfor TASK 4 is an example of this behavior. An interesting
all the experiments we conducted using our transfer legrnirobservation is that, in the case of loops in the sequence
framework, there has been a considerable improvement @i the first robot, the second robot maps "no action” as
time to learn and converge on a policy. We have analyzed tla@ equivalent action sequence. This helps to identify the
solution framework using different tasks and using différe loops and bypass them straight away. However, computing
transfer for same task in both deterministic and stochastic the usefulness of a mapped action sequence, for the current
vironments. One of our observation is that the performascefask need to be fine tuned for better performance. While it
not completely dependent on the optimality of the transiérr is easier to establish such an equivalence in a deternginisti
knowledge. FromTable 4 we find that the transfer basedworld, it is harder to establish in stochastic domain.

V. DISCUSSION



TABLE V
COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH
THE GOAL FOR TRANSFER FROM FINER TO LARGER ACTION MODEL
(RoBOT). (AVERAGED ACROSS TEN TRIALY

as a sequence of states and action indices. It is passed to
the other robot. The sequence of states are used to develop a
pseudo reward function which are used along with the regular
reward function from the environment. It has been shown to
speed up the learning and solve the task faster with minimal

TASK A B C D E . . . .
Thsk1 | 336589 | 33189 | 9004 | 37T | WA knowledge. The action indices are used to come up with a
TAsk 2 1967.3 1277.4 35.07 1333.2 32.23 . .
Task3 | 25448 | 14686 | 4229 | 21331 | 1617 mapping between the sequence of base actions of the two
TASK 4 3126.7 2652.0 15.18 2480.2 20.67 . B .
robots. It is shown that if the mapped action sequences are
A: Number of exploration steps taken to reach the goal with@nsfer . .
B: Number of exploration steps taken to reach the goal withsfer useful for subsequent task, it accelerates the learning and
C: Percentage Improvement using transfer learning . .
D: Number of exploration steps taken to reach the goal wihsfer and action sequence mapping he|pS '[0 Convel’ge On the po“Cy QUICkeI’
E: Percentage Improvement using transfer learning andrasgéquence mapping .. .
The framework we have proposed use minimal infor-
VI. RELATED WORK AND COMPARISON mation, a single trajectory. It can also be extended to be

There have been several methods proposed for transf&ged with more information, say multiple trajectories,tiadr
learning. Often, a mapping is used to relate the new tagi€tion equivalence or partial map of the environment ete. Ou
to the task for which a policy had been learnt. There haveurrent work is based on the assumption that that environ-
been several work in |earning such a mappmg The mappirﬁgent and task are same. We can work towards extending
is used to find the similarities between the state variablé¥ir model for related but different tasks, while the robots
in source and target task. Most of the approaches explgite different. Our experiments have been performed on a
the already learnt policy of one task and use it duringliscrete state space environment. Working in a continuous
the exploration of new task. Madden and Howley (Maddeftate space environment and exploiting the state space ap-
and Howley 2004) use symbolic learner and a proposition&foximations can be done. Exploiting the symmetries and sub
representation of the task to build a generalized policyiand 9oal discovery and combining it with transfer is promising.
used to aid exploration. Fernandez and Veloso (2006)re-utethods to identify useful action sequences for a given task
the learned policy as an option during exploration and hendg also a direction for future work.
use either exploration action or exploit learned policyu Li ~ True hetrogenity of robots is when the robots have differ-
and Stone (2006) use specialized version of the structuféit sensory input but however the underlying state space cab
mapping theory, to find similarities in the tasks based oRe mapped and the proposed framework can be used. We can
similar patterns in their state transitions. Kuhlmann ang@xtend the model to the condition when the observation of
Stone (2007) use graph based domain mappmg for Va“ﬂée state space is partial for the robot. Besides mOblletHDbO
function transfer learning. Talvitie and Singh (2007) use athe framework can be extended to the robotic arm space.
experts algorithm to select the best policy amongst a number

of given policies. By creating different target task pai ] | o S and S — ;
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