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Abstract

Keratoconus, is a non-inflammatory disorder
of the eye in which structural changes within
the cornea cause it to thin and change to a
more conical shape which leads to substan-
tial distortion of vision. Current methods
for the detection of the disease mainly are
Supervised learning approaches. Our goal
is to label suspect patients who have not
been clinically diagnosed(unlabeled data).
Hence, we propose a new model, which in-
tegrates Manifold learning techniques with
Semi-Supervised learning, to maximize the
utility of the unlabeled data.

1. Introduction

Keratoconus is a degenerative noninflammatory
corneal thinning disorder characterized by anterior
protrusion of the cornea and its irregular shape. This
causes substantial distortion of vision with multiple
images, irregular astigmatism and sensitivity to light.
Because of this irregular shape, glasses do not ade-
quately correct the vision in the patients since they
cannot conform to the shape of the eye. Detection
of Keratoconus is important to avoid unpredictable
results in refractive surgery. This surgery on a ker-
atoconic eye might lead to even more thinning of the
cornea.

Current methods for the detection of Keratoconus
mainly consist of building Artificial Neural Net-
works(Carvalho, 1996; Maeda, 1995) and Decision
trees(Twa, 2005) (supervised learning), using the
asymmetry of the corneal topography of the labeled
data alone. We propose a new model, which integrates
Manifold learning techniques with Semi-Supervised
learning, to maximize the utility of unlabeled data.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

1.1. Objective

Our aim is to build a model which recognizes patients
prone to Keratoconus and classify them based on the
advancement of the disease. This involves analyzing
differential asymmetry of the corneal elevation, thick-
ness, aberrations and classifying the patients into the
4 major stages(categories), which are:

• Normal

• Mild

• Moderate

• Advanced

Although, Advanced keratoconus is easily diagnosed
by slit lamp findings and keratometry readings, it is
difficult to detect early keratoconus with these instru-
ments. There exists another class, keratoconic sus-
pects (or just Suspects), which are the corneas with a
videokeratographic pattern of localized steepening but
none of the traditional clinical signs of keratoconus nor
any other circumstances that might explain the topog-
raphy pattern.

Keratoconus suspects may also be considered to be
preclinical patterns of keratoconus when the disease is
clinically diagnosed in the fellow eye(other eye). Nev-
ertheless, fellow eye observations are not reliable for
ruling out keratoconus in the suspect eye, because the
suspect eye may show the first indication of the disease
in the patient.

Hence this category can be divided as:

• Initial Suspects : These are clinically normal eyes,
but were detected or suspected to be keratoconic
by a Neural Network based classifier which takes
the corneal topography parameters as the input.

• Fellow normal eye : It is the clinically and topo-
graphically normal eye of a patient who has got
evident keratoconus in the other eye.

• Abnormal : These are also clinically normal, Ker-
atoconus is not detected, but the pattern is simi-
lar. This classification is done by the clinical ob-
server.
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Thus the Suspects class data consists of the unlabeled
data, that is the data which is not given any of the four
major class labels. We have to appropriately classify
this data into the Major classes, mainly as Mild, Nor-
mal or a third class called Fuzzy. The Fuzzy class
consists of the suspect eyes which may not have Ker-
atoconus currently, but might develop later. Thus the
data we have consists of 5 categories: Normal, Mild,
Moderate, Advanced, Suspects. So we have a set of
labeled points which belong to the four major groups
and set of unlabeled points (Suspects).

Thus we are looking to:

• Use the suspects data to improve the performance
of our classifier.

• Generate severity labels for the suspects that will
be verified later on follow up.

• Find the correlation between various measures
suggested in the literature (refer section 2) and
the class labels.

2. Corneal Topography Analysis

Keratoconus is a disease starting in the inferotemporal
part of cornea (bottom part of cornea away from the
nose) mostly. So our aim is to bring out the difference
between that sector and the other sectors such that
asymmetry is established and it can be used for the
classification. The differential assymetry of the corneal
topography is considered for analysis. The different
kinds of topographical data which can be used are :
Elevation, Curvature, Corneal Thickness and Aberra-
tion. We characterize corneal topography with quanti-
tative corneal indexes(Maeda, 1994; Dingeldein, 1989;
Wilson, 1991) such as:

• Opposite sector Index (OSI) : Maximum differ-
ence between the opposite sectors.

• Differential sector Index (DSI) : Maximum differ-
ence between any two sectors

• Center Surround Index (CSI) : Difference between
the central annulus and the annulus surrounding
it.

• Successive Sector Index (SSI) : Maximum differ-
ence between the successive sectors.

• Irregular Astigmatism Index (IAI) : Average sum-
mation of inter-ring power variations along every
semi meridian for entire corneal surface.

The corneal elevation and curvature can also be rep-
resented as a set polynomials called, Zernike polyno-
mials(Carvalho, 1996) . These are a set of orthogonal
polynomials that arise in the expansion of a wavefront
function for optical systems with circular pupils. They
are used to describe aberrations of the cornea or lens
from an ideal spherical shape, which result in refrac-
tion errors.

2.1. Related Work

Most of the earlier work in the classification of
Keratoconus consisted of building neural network
based(Carvalho, 1996; Maeda, 1995) systems. Arti-
ficial Neural network models consist of hardware or
software that simulates some common aspects of the
biological nervous system. Different topography in-
dices, such as the ones escribed above, are used as the
input data for the Artificial Neural network models.

Another previous approach for detection of Kerato-
conus uses decision trees(Twa, 2005). The main idea
behind this approach is that ANN models make diag-
nostic classifications of corneal disease using summary
statistics as network inputs, neglect global shape fea-
tures and produce results that are difficult to interpret
clinically. In this approach the use of Zernike polyno-
mials to model the global shape of the cornea and use
the polynomial coefficients as features for decision tree
classifier is proposed. This model is used to classify
a sample of normal patients and patients with corneal
distortion caused by keratoconus. The resulting model
is easy to interpret using visual cues.

3. Semi Supervised Learning

Many machine-learning researchers have found that
unlabeled data, when used in conjunction with a small
amount of labeled data, can produce considerable im-
provement in learning accuracy. One could say that
the knowledge on p(x) that one gains through the un-
labeled data has to carry information that is useful in
the inference of p(y|x).

Thus for Semi-Supervised Learning (SSL) to work, cer-
tain assumptions(Chapelle, 2005) will have to hold.
One of the assumption states that : The (high-
dimensional) data lie (roughly) on a low-dimensional
manifold. We are interested in finding this low dimen-
sional manifold which is embedded in the high dimen-
sional input data. This is called Manifold Learning,
which is a popular recent approach to nonlinear di-
mensionality reduction.

The general idea of SSL is to utilize the geometry
of the underlying space of possible patterns to con-
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struct representations. The simplest example is two
disjoint classes on the real line. In this case, given suf-
ficiently many unlabeled points, the structure can be
recovered completely with just one labeled point. In
general unlabeled data provides us with information
about the probability distribution p(x), while the la-
beled points tell us about the conditional distributions.
We see that p(x) puts all its measure on a compact
(low dimensional) manifold. Therefore, the unlabeled
points are used to estimate the manifold and labeled
examples then specify a classifier defined on the man-
ifold.(Belkin, 2004)

4. Our Model

We are interested in using the entire data(labeled and
unlabeled) to find an appropriate low dimensional em-
bedding of the data. Manifold Learning techniques
such as Classical Multi Dimensional Scaling (Cox,
2001) and Isometric Feature Mapping(Cayton, 2005)
are used to find the low dimensional representations of
the data(Embeddings).

Multidimensional scaling : Suppose there are a
set of n objects is under consideration and between
each pair of objects (r, s) there is a measurement δrs

of the dissimilarity. Multi Dimensional Scaling can be
defined as a search for a low-dimensional space, usu-
ally Euclidean, in which points in the space represent
objects, such that the distances between the points
in the space (drs), match as well as possible with the
original dissimilarities(δrs).

Isometric Feature mapping (IsoMap) : Isomap
is perhaps the best known and most applied among the
multitude of procedures now available for the problem
at hand. It may be viewed as an extension to Mul-
tidimensional Scaling (MDS). Isomap consists of two
main steps:

• Estimate the geodesic distances(distances along
the manifold) between points in the input using
shortest-path distances on the data sets k-nearest
neighbor graph.

• Use cMDS to find points in low-dimensional Eu-
clidean space whose interpoint distances match
the distances found in step 1.

Geodesics are defined to be (locally) the shortest path
between points on the space. Thus, the Euclidean dis-
tance between nearby points in the highdimensional
data space is assumed to be a good approximation
to the geodesic distances between these points. For

Algorithm 1 classical Multidimensional Scaling
(cMDS)

Input: D ε Rn×n (Dii = 0, Dij ≥ 0), d ε {1, . . . , n}
1. Set B = − 1

2HDH, where H = I − 1
n11T is the

centering matrix.
2. Compute the spectral decomposition of B : B =
UΛUT .
3. Form Λ+ by setting [Λ+]ij = max{Λij , 0}
4. Set X = UΛ1/2

+

5. Return [X]n×d

points that are distant in the high-dimensional space,
the Euclidean distance between them is not a good es-
timate of the geodesic distance. The problem is that
though the manifold is locally linear (at least approx-
imately), this approximation breaks down as the dis-
tance between points increases. Estimating distances
between distant points, thus, requires a different tech-
nique. To perform this estimation, the Isomap algo-
rithm first constructs a k-nearest neighbor graph that
is weighted by the Euclidean distances. Then, the al-
gorithm runs a shortest-path algorithm (Dijkstras or
Floyds) and uses its output as the estimates for the
remainder of the geodesic distances.

Once these geodesic distances are calculated, the
Isomap algorithm finds points whose Euclidean dis-
tances equal these geodesic distances. Since the man-
ifold is isometrically embedded, such points exist, and
in fact, they are unique up to translation and rota-
tion. As discussed earlier, Multidimensional Scaling is
a classical technique that may be used to find such
points. The basic problem it solves is this: given
a matrix D ε Rn×n of dissimilarities, construct a
set of points whose inter-point Euclidean distances
match those in D closely. The cMDS algorithm shown
above(Algorithm 1) returns the low dimensional em-
bedding [X]n×d, where n is the dataset size and d is
the new dimension.

4.1. Tests and Results

Initially, the cornea is divided into different number of
sectors and the quantitative descriptors are calculated
in each case. To check the best number of sectors
and the nature of data set, we performed k−Means
clustering using different number of centroids. We also
performed correlation analysis between the calculated
indices and the class labels. Figure 1 shows that for a
particular value of number of sectors(15), the indices
calculated correlate well with the class labels.

Our analysis can be broadly divided into two parts:
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Figure 1. Correlation Analysis

• On the original (high-dimensional) data

• On the embeddings (low-dimensional) obtained
using manifold learning

The details about the tests and results are listed below.

An ideal learning machine is sought for this classifica-
tion problem. We have analyzed the performance of
different classifiers and SVMs are chosen because of
their nature to maximize margins.

The following tests are performed on both original
data and the embeddings obtained.

• Build an SVM classifier and calculate the accura-
cies.

• Cluster the labeled data and calculate the cluster
purity values.

Depending on the accuracies and cluster purity values,
choose the appopriate learning machine to classify the
Suspects.

The embeddings(low dimensional data) are formed by
3 different methods:

• Isometric Feature Mapping

• Multi Dimensional Scaling

• Principal component analysis

The first two are non-linear dimensionality reduction
techniques and PCA uses linear dimensionality re-
duction. The first two dimensions of all the embed-
dings are projected and it is observed that for the

embeddings obtained by non-linear dimensionality re-
duction, there is a distinct separation between the
classes(Figures 2 and 3 ). As expected, linear dimen-
sionality reduction (PCA) did not give good results
as it could not extract the embedding from the high
dimensional space.(Figure 4 )

Figure 2. Embedding found by IsoMap : Projection of its
first two dimensions

Figure 3. Embedding found by MDS : Projection of its first
two dimensions

The manifolds are generated by using : 1. Only la-
beled data, 2. Both labeled and unlabeled data. The
cluster purities of both original data and the embed-
dings can be seen in Tables 1 and 2. Table 2 also gives
a comparison between the embeddings formed by the
labeled data and the complete data. It can be seen
that manifolds formed by using both labeled and un-
labeled data give good results. Also, in general, the
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Figure 4. Projection of first two prinicipal components

embeddings give better cluster purities than the orig-
inal (high dimensional) data.

Similarly, the classification results are given in Tables
3,4 and 5. As can be seen the accuracies are bet-
ter for the embeddings which are formed by the com-
plete data. Thus we were successful in extracting a
low-dimensional space that is embedded in the origi-
nal space by using the unlabeled data also, which was
our aim.

Table 1. Results of Cluster Analysis : Original data

Num Sectors k = 3 k = 6 k = 9
4 0.712 0.716 0.85
6 0.702 0.712 0.82
8 0.712 0.705 0.86
12 0.702 0.683 0.702
15 0.743 0.81 0.86

Table 2. Results of Cluster Analysis : Manifold data.
Comparison of Cluster purities across different methods,
labeled and complete data.

Algorithm Labeled data Complete data k

IsoMap 0.83 0.843
MDS 0.834 0.84 7

IsoMap 0.87 0.878
MDS 0.842 0.86 8

IsoMap 0.885 0.91
MDS 0.86 0.887 9

Table 6 gives the comparison between the best results
found for both original(high-dimensional) data and the
manifold embeddings.

Table 3. Confusion matrix for the classification on the orig-
inal data

Predicted → Moderate Mild Normal
Expected
Moderate 20 4 0
Mild 3 23 1
Normal 0 2 48

Table 4. Confusion matrix for the classification on embed-
dings formed by both Labeled and Unlabeled data

Predicted → Moderate Mild Normal
Expected
Moderate 20 4 0
Mild 1 26 0
Normal 0 0 50

Our main objective is to classify the Suspects (unla-
beled data) into one of the major classes. We choose
the best learning machine among the obtained (by
comparing the classification accuracies or the cluster
purity measures) and use it to assign classes(labels) to
the Suspects data.

These labels of the suspects will be validated by a fol-
low up on the patients. After an year of follow up on
the patient, they will consider his/her state and then
compare it with our predicted class. So the learning
machine we built needs considerable time to be vali-
dated.

But we can partially validate our model by checking
if the Initial suspects subclass of Suspects gets classi-
fied as Normal or Mild. Given that the Initial suspects
are already topographically suspected to have kerato-
conus(validated by a reliable ANN learning machine),
the probability that they being normal should not be
too high.

As the Initial Suspects(IS) do not totally resemble the
Mild class either, we cannot say that all of the data
points in IS class should fall into Mild category. We
can say that the probability of they being Mild should
be similar to the probability of they being normal.
Thus we came up with a metric : If the probability
of a suspect being Mild is p and it being Normal is q
and if,

• 0 < p ≤ 0.2, it belongs to Normal class.

• 0.2 < p ≤ 0.5 and p ≤ q, it belongs to Fuzzy class.

• p > q, it belongs to Mild class.

Thus using this metric, we got the results as shown
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Table 5. Confusion matrix for the classification on embed-
dings formed by only Labeled data

Predicted → Moderate Mild Normal
Expected
Moderate 21 3 0
Mild 3 24 0
Normal 0 1 49

Table 6. Classification accuracies and Cluster purities for
Original data and Embeddings.

Method Original Embedding

Clustering 86.1% 91.2%
Classification 90.1% 95.04%

in Table 7. We can see that, the initial suspects have

Table 7. Classification of Suspects

Predicted → Mild Fuzzy Normal
Actual
Abnormals 2 3 15
Fellow Eyes 1 15 4
Initial Suspects 2 16 2

mostly fallen into either Mild or Fuzzy class during
the classification. Thus our model does not classify
the initial suspects as normal, hence it is valid.

5. Conclusions and Future Work

Different Machine Learning techniques have been ap-
plied for the keratoconus problem and empirical results
for various methods have been shown. As expected,
results seem to suggest better performance on the em-
beddings generated by Manifold learning.

With accuracies of 95.04% and cluster purities of
91.2%, we can say that our model can be a reason-
able predictor of keratoconus. As the results suggest
the importance of building a manifold in our problem,
further work in this area would lead to better results.

The only limitation of the manifold learning is that
we need to obtain the right parameters for number
of nearest neighbors and the dimensionality at which
an intact manifold exists. This process needs good
amount of experimentation.

A perfect medical diagnosis tools require false nega-
tive and false positive to be close to zero. As such,
the methods attempted in this study cannot claim to
provide such a high level of confidence in its results.

Still, our model is a reliable prognostic tool to aid oph-
thalmologists to detect the existence of keratoconus.

References

Maeda N, Klyce SD and Smolek MK, A. (1994). Au-
tomated Keratoconus screening with corneal topog-
raphy analysis. Investigative Opthalmology Visual
Science

Wilson SE and KJyce SD (1991). Quantitative de-
scriptors of corneal topography: A clinical study.
Arch Opthalmology

Maeda N, Klyce SD and Smolek MK (1995). Neural
network classification of corneal topography Inves-
tigative Opthalmology Visual Science

Michael K. Smolek and Stephen D. Klyce (1994).
Current Keratoconus Detection Methods Compared
With a Neural Network Approach Investigative
Opthalmology Visual Science

Luis Alberto Carvalho (1996). Preliminary Re-
sults of Neural Networks and Zernike Polynomi-
als for Classification of Videokeratography Maps.
OPTOMETRY AND VISION SCIENCE, Escola
Paulista de Medicina Universidade Federal de Sao
Paulo(UNIFESP), Brazil.

Dingeldein SA, Klycc SD and Wilson SE (1989).
Quantitative descriptors of corneal shape de-
rived from computer-assisted analysis of photoker-
atographs. Investigative Opthalmology Visual Sci-
ence

Michael K. Smolek and Stephen D. Klyce (2005). Al-
gorithms for Manifold Learning.

Mikhail Belkin and Partha Niyogi (2004). Semi-
Supervised Learning on Riemannian Manifolds. Ma-
chine Learning

Olivier Chapelle, Bernhard Schlkopf and Alexander
Zien (2005). Semi-Supervised Learning.

Trevor F.Cox and Michael A.A.Cox (2001). MultiDi-
mensional Scaling.

Mikhail Belkin and Partha Niyogi (2004). Manifold
Regularization : A Geometric Framework for Learn-
ing From Examples. Technical Report, TR-2004-06.
Univ. of Chicago, Department of Computer Science

Twa MD, Parthasarathy S and Roberts C (2005). Au-
tomated Classification of Keratoconus. Machine
Learning


