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Abstract. Document Clustering is an unsupervised categorisation of
documents based on the contents of the documents. Numerous algorithms
have been proposed for this and invariably, all of these algorithms use
some variation of the vector space model to represent the documents
on which the clustering algorithm is run. Lexical chains are groups of
words which exhibit a cohesion among them. It is based on the idea
that semantically related words co-occur more than “just by chance”.
By identifying and using lexical chains, it would be possible to represent
the document in terms of its concepts. We propose here the use of lexical
chains as an alternative representation for the documents and further
leverage them to cluster the documents.

1 Introduction

Document clustering is an unsupervised categorisation of documents based on
its contents. Document clusters are useful for various tasks such as text mining,
topic detection and tracking, organising web search results, etc. Various algo-
rithms and approaches [1] have been proposed for clustering in general, most of
which can be applied to documents as well. Almost all these algorithms use the
Vector Space Model [2] or a variation of it to represent these documents as data
points in a very high dimensional space.

The algorithms usually work by using a similarity (or a dissimilarity) measure
to compute the similarity (or dissimilarity) between the data points. Data points
are then grouped such that the similarity between the points in the same cluster
is very high, while it is low between points in different clusters. Typically, in
document clustering, the feature vector used is the set of terms occurring in
that document along with its frequency, suitably normalised.

One of the key problems in document clustering techniques is that most
clustering algorithms typically require the number of clusters to be specified as
an input parameter to the algorithm. It is difficult to predict the actual number
of clusters among the documents and is usually just a guess. Moreover most
algorithms are capable of placing the document in only one cluster. Documents
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usually describe one or more allied topics and putting them into crisp clusters
serves only to partition the dataset in groups but may not have any bearing on
the underlying topics of the document. Ideally, there should be as many clusters
as there are topics in the document collection, and it should be possible to place
a document in as many clusters as it belongs to.

Lexical Chaining is a technique which seeks to identify and exploit the se-
mantic relatedness of words in a document. It is based on the phenomenon of
lezical cohesion [3] and works on the premise that semantically related words
co-occur close together in a passage more than “just by chance”. Lexical chain-
ing is the process of identifying and grouping such words together to form chains
which in turn will help in identifying and representing the topic and content of
the document.

Lexical chains have been used as an intermediate representation of text for
various tasks such as automatic text summarisation [4, 5], malapropism detec-
tion and correction [6], and hypertext construction [7]. An algorithm for com-
puting lexical chains was first given by Morris and Hirst [8] using the Roget’s
Thesaurus. Since an electronic version of the Roget’s Thesaurus was not avail-
able, later algorithms were based on the WordNet lexical database [9].

Morris and Hirst [8] showed that the lexical chains obtained from a document
will reflect the discourse structure of the document i.e., they will reflect the
pattern of topics and subtopics in a document. It is this property of lexical
chains that we exploit to cluster these documents. In the course of this paper,
we discuss an approach to topic driven document clustering using lexical chains.

2 Lexical Chains - An Overview

Lexical chains are groups of words which exhibit lexical cohesion. Cohesion as
given by Halliday and Hasan [3] is a way of getting text to “hang together as a
whole”. Lexical cohesion is exhibited through cohesive relations. They [3] have
classified these relations as:

1. Reiteration with identity of reference

2. Reiteration without identity of reference
3. Reiteration by means of super ordinate
4. Systematic semantic relation

5. Non systematic semantic relation

The first three relations involve reiteration which include repetition of the
same word in the same sense (e.g., car and car), the use of a synonym for a word
(e.g., car and automobile) and the use of hypernyms (or hyponyms) for a word
(e.g., car and vehicle) respectively. The last two relations involve collocations
i.e, semantic relationships between words that often co-occur (e.g., football and
foul). Lexical chains in a text are identified by the presence of strong semantic
relations between the words that it is made up of.

Algorithms for building lexical chains work by considering candidate words
for inclusion in the chains constructed so far. Usually these candidate words



are nouns and compound nouns. Several algorithms have been proposed for
computing lexical chains. Prominent among them are those by [6, 4, 5, 10].
Except for the one by Jarmasz and Szpakowicz, all others use WordNet [9] to
identify relations among words.

WordNet is a lexical database which organises words into synonym sets or
synsets. Each synset contains one or more words that have the same meaning. A
word may appear in many synsets, depending on the number of senses that it has.
The synsets are connected by links that indicate different semantic relations such
as generalisation (hypernyms), specialisation (hyponyms), part-of (holonyms and
meronyms), etc.

Hirst and St-Onge [6] qualify relations into extra-strong (identity and syn-
onymy), strong (hypernymy and hyponymy) and medium strong (hypernymy,
hyponymy path). Given a word, they try to identify a relation with a chain in
the following order of importance - extra strong, strong and then medium strong.
They employ a greedy strategy to disambiguate between the chains i.e., words
are added to the chain with which they have the strongest relation.

Barzilay and Elhadad [4] showed that chain selection cannot be done through
a greedy approach. They proposed using the “whole picture” of the chain distri-
bution in order to select the right chain. In their approach they create a compo-
nent which is a list of interpretations which are exclusive of each other. As each
new word is encountered, it is assessed to determine if there exists a relation
with any of the existing components, failing which a new component is created.
If a relation exists, all possible interpretations in the matching component are
created. They then compute the score of an interpretation using an empirically
derived scoring scheme based on the number and weight of the relations between
the chain members. They define the best interpretation as that interpretation
with the most connections. Since in this approach the number of interpretations
can grow rapidly, they maintain a threshold beyond which they prune out the
weak interpretations.

Silber and McCoy [5] propose a two pass algorithm for computing lexical
chains. They propose four relations - identity, synonymy, hypernym /hyponym
relation and sibling hypernym/hyponym tree relation. They employ a part-of-
speech tagger to identify the noun instances within the document. In the first
step, for each noun instance encountered, each sense of the noun instance is
placed into every “meta-chain” for which it has an identity, synonym or hy-
pernym relation with that sense. These meta-chains represent every possible
interpretation of the text. In the second step, they find the best interpretation
by taking each noun and looking at all its meta-chains. A score is computed
based on the type of relation and distance factors to identity which meta-chain
the nouns contribute the most to and then delete the noun from the other meta-
chains.

Jarmasz and Szpakowicz [10] use a computerised version of the 1987 edition
of Penguin’s Roget’s Thesaurus of English Words and Phrases [11] called the
Electronic Lexical Knowledge Base (ELKB) [12] to build lexical chains. Their
algorithm builds proto-chains, a set of words linked via thesaural relations. They



then score the proto-chains using a scheme similar to that of Silber and McCoy [5]
to obtain the final lexical chains.

3 Clustering using Lexical Chains

We extend the notion of computing lexical chains to beyond that of just a docu-
ment. We work on the premise that, instead of just computing the lexical chains
with respect to a single document, if we compute the chains across many docu-
ments, we would be able to obtain a grouping of the documents based on their
underlying topics and subtopics.

All algorithms described in the previous section, assume to disambiguate
the sense of the word as part of the chaining process. Our experiments have
revealed that though this is true, it is not good enough to be used in prac-
tise. We feel that the words should be disambiguated by looking at its context
in a sentence/paragraph as a whole. Both Word Sense Disambiguation(WSD)
and lexical chaining are very profound processes and tying them up tends to
deteriorate the outcome of both. As such, we propose to perform WSD as a
preprocessing step, before the word is considered for lexical chaining. We use an
algorithm by Patwardhan, et.al., [13] to disambiguate the senses before using
our algorithm.

We preprocess the documents by running it through a tokeniser, a stop word
removal tool, and a WSD utility [14]. We then filter out all non-noun words
identified in the WSD stage. The result is a sequence of nouns which appear
in the text along with its sense. We refer to these as ‘candidate words’. The
complete steps of the preprocessing stage is shown in Algorithm 1.

Algorithm 1 Preprocessing

1: for each document do
2:  Tokenise

3:  Remove stopwords
4:  Perform WSD

5:  Filter all non-nouns
6: end for

We base our algorithm on the WordNet Lexical Database. WordNet is used to
identify the relations among the words. We use only the identity and synonymy
relations to compute the chains. Empirically, we found that using only these two
relations, resulted in chains representing crisp topics.

Our algorithm works by maintaining a global set of lexical chains, each of
which represents a topic. When a new document is encountered, we preprocess
it using Algorithm 1 to obtain the set of candidate words.

We now compute the lexical chains corresponding to each of the candidate
words by looking up the synset for the word from WordNet. We then traverse the
global list of lexical chains to identify those chains with which it has a identity or



Algorithm 2 Clustering Using Lexical Chains

1: Maintain a global set of lexical chains

2: for each document do

3 for each candidate word in document do

4 Obtain WordNet Synset for word and sense

5: Identify lexical chains with which the word has a identity /synonym relation
6 if No chain are identified then

7 Create a new potential chain for this word

8

end if
9: Add identified/created chains to Potential Chain Set
10: end for
11:  for each Potential Chain in Potential Chain Set do
12: Apply chain selection heuristics
13: if chain is retained then
14: Add document to this chain
15: end if
16: end for
17: end for

18: for each document d do
19:  Initialise a new cluster
20: for all documents where document # d do

21: Compute number of common lexical chains

22: if number of common lexical chains > threshold then
23: Add this document to the cluster

24: end if

25:  end for

26:  if cluster is empty then

27: delete cluster

28: end if

29: end for

synonymy relation. We refer to these identified lexical chains as potential chains.
If the candidate word has no identity /synonymy relation with any of the chains
in the global list, a new potential chain is created.

Once the set of all potential chains are identified, we then evaluate the po-
tential chains, in order to select a subset of chains to which the document is
added. We use a simple chain selection heuristic as follows:

_ 2 length of all potential chains
"~ total no of potential chains

We select all those potential chains whose length exceeds h.

Each document is now represented by a subset of lexical chains from the
global set. We now group together the documents based on the number of com-
mon lexical chains among them, to obtain a grouping which will best reflect
the distribution of topics contained in the documents. An intersection of the set
of lexical chains, i.e., the number of common lexical chains, representing two
documents will reveal how similar they are. We threshold the cardinal of the



intersection to decide if the two documents are similar. We set the threshold
such that a document gets selected if it has atleast 50% common lexical chains
more than number of chains assigned to the original document. The complete
algorithm is listed in Algorithm 2.

Our algorithm works on the assumption that lexical chains represent the
topic of the document, and grouping documents based on these lexical chains
results in the documents being clustered based on its topic. It is straightforward
to see that our algorithm is capable of placing each document in multiple clusters
and also automatically discovering the actual number of clusters in a collection
of documents.

4 Evaluation

We use a small dataset consisting of 31 documents derived from the 20 New-
groups (20NG) dataset [15]. We keep the number of documents small in order
to be able to do a qualitative analysis of the clusters formed as opposed to a
quantitative one. To the best of our knowledge, no such qualitatively analysed
benchmarks are available wherein the clustering obtained is assessed semanti-
cally with reference to topics discussed.

We selected 4, 9, 9, 5, 4 documents from comp.graphics, talk.politics.guns,
talk.mideast, talk.religion.misc and rec.auto groups respectively of the 20NG
dataset. From each group, we first picked documents at random, and in the
case of some of those documents we picked up a few more documents which are
related directly and indirectly to it. This was done to obtain a controlled set of
clustered documents. We had also introduced a few documents to act as outliers.

We ran our algorithm on this dataset. We used an in-house implementation
of a tokeniser and stop word removal tool. For the stop words, we used the
list given in [16]. The WSD was done using the WordNet SenseRelate tool [14]
using default parameters. WordNet v2.0 was used as the lexical database and
the WordNet C API for interfacing with WordNet. The various clusters obtained
along with the filenames are given in Table 1.

A recent study [17] of various document clustering algorithms revealed that
the bisecting k-Means algorithm gives best result. We compare our results with
that obtained by clustering the same dataset using the bisecting k-Means algo-
rithm. We used the Cluto software [18] for the purpose and ran the algorithm
with k set to 10, 16 and 26. The results are shown in Table 2.

As pointed out in the introduction, conventional clustering algorithms result
in hard clusters, i.e, each data point can be placed in only a single cluster. Also,
identifying the right number of clusters can be a problem. As already mentioned,
our algorithm is capable of detecting the actual number of clusters automatically,
based on the topics contained in the documents. Our algorithm discovered 26
clusters in this dataset. As can be seen from Table 2, at k£ = 26, k-Means hardly
identified any clusters. At £ = 16, which is the number of clusters identified
manually, the clusters formed are reasonable.



Cluster|Document Id
1 101557
2 101574, 101597
3 |101677
4 37261
5 (38400
6 |38406
7 38460, 38400
8 53294
9 53294, 53354
10 |53294, 53354, 54152, 54455
11 54206, 53294
12 {54253, 54269, 54358, 54819, 75414
13 (54269, 54253
14 54819, 53294, 54253, 54269, 54358, 75414
15 (75414
16 [75414, 75933
17 {76099, 76486
18 |76184
19 (76227
20 |76289
21 (76306
22 76506, 75933, 76184
23 |82781
24 |82782, 82783, 82784, 82785
25 |82783
26 |82784, 82785, 82783, 82782, 82781, 75414

Table 1. Clusters obtained through our algorithm. The numbers in the second column
refer to file names in the 20 Newsgroups dataset.

4.1 Discussion

Most of the popular clustering algorithms such as k-Means and HACs work
on the premise that the topographical distance between documents indicates
similarity. Meaning, if the documents are close together in the topographical
space, it implies that the documents have similar topics. But distance between
points need not necessarily indicate semantic relatedness.

Another issue is with the minimum support required for these algorithms
to function properly. Two words are semantically related is inferred indirectly
from the fact that the words co-occur in many documents. Most of these algo-
rithms need a significant number of input samples to identify the clusters. Our
algorithm is different in that, it is independent of the number of input samples
required. Even with very few samples, we can effectively identify the clusters.
Moreover, semantic relatedness is inferred through word meanings and the do-
main. Therefore even if semantically related words co-occur only in one or very



Document Id|k = 10|k =16{k = 26
101557 5 4 5
101574 8 12 1
101597 8 12 20
101677 8 7 11
37261 7 1 2
38400 7 3 4
38406 0 0 0
38460 7 2 3
53294 4 6 9
53354 5 5 8
54152 9 9 23
54206 9 15 17
54253 4 10 24
54269 4 10 24
54358 9 15 21
54455 9 9 23
54819 4 10 24
75414 9 15 16
75933 6 14 25
76099 2 11 6
76184 6 14 15
76227 6 14 7
76289 1 8 22
76306 1 8 22
76486 2 11 14
76506 6 14 25
82781 3 13 19
82782 3 13 13
82783 3 13 10
82784 3 13 12
82785 3 13 18

Table 2. Result obtained from k-Means for various values of ¥ . The numbers in the
first column refer to file names in the 20 Newsgroups dataset, and the subsequent
columns indicate the cluster ids assigned to the document.

few documents, the topical overlap in the documents will be captured by the
lexical chains.

Let us now examine the performance of our algorithm in detail. Consider
clusters 4, 5, 6, and 7 in Table 1. Documents 37261, 38400 and 38460 are all
‘Call for Presentations/Papers’ type documents. Document 37261 is on ‘Navy
Scientific Visualization and Virtual Reality’, while documents 38400 and 38460
are in the field of ‘Digital Imaging’ and ‘Imaging’ respectively. Document 38406
contains a request for a graphics package to generate graphs. Our algorithm
has correctly placed documents 37261, 38400 and 38406 in distinct clusters, and



document 38460 is grouped with 38400 as the two speak about very closely
related topics. Since the algorithm has seen only a small number of documents,
we feel that this grouping is quite good. Ideally, there should have been another
cluster which grouped all the ‘Call for Papers’ type documents.

A look at the results provided by bisecting k-Means in Table 2 reveals at k
= 16 and 26 levels it fails to identify any grouping for these documents. At k =
10 level some grouping is shown but it is just a monolithic group of all the ‘Call
for Papers’ type documents, which is not good enough.

Another interesting property can be observed in cluster 26. All the five docu-
ments (82781-82785) relate to ‘Israel’, ‘Jews’, and other related topics. Document
75414 also speaks about the same concepts but in a different context. Our al-
gorithm is able to identify and group such relations, something the bisecting
k-Means fails to detect altogether.

An alternative to the k-Means algorithm would have been a hierarchical
agglomerative clustering(HAC) algorithm. One could argue that HAC algorithms
also do not need the number of clusters to be specified in advance. But in some
sense this is not true! Even HACs require the user to decide the level at which
the dendrogram should be cut to obtain the clusters. Also, document feature
vectors are of extremely high dimensions and HAC algorithms have quadratic
time complexity. As a result, HAC algorithms will be too slow [19] for document
clustering. Another drawback of the HAC algorithms is that a misjudgement in
an early iteration of the algorithm will seriously affect all the further iterations.
We believe our algorithm is immune to such problems.

We traced our algorithm to evaluate the performance of each stage and in the
process identified certain problems. Proper nouns were getting wrongly looked
up in WordNet. For example, in document 101574 the chains formed are:

. bent, hang, knack

. design, designing

. station

waggon, wagon

. tercel, tercelet, tiercel
. corolla

. architect, designer

. sense, signified

o N B O B N

Of the above, chains 5 and 6 are in reference to ‘a male hawk’ and ‘a corolla
of a flower’ while in the document it refers to a ‘Toyota Tercel Car’ and ‘Toyota
Corolla Car’ respectively. Obviously, there seems to be a problem with trying
to handle proper nouns through WordNet. An easy way out would be to use a
POS tagger to identify and filter out proper nouns.

Another issue is that we have not used any compound nouns (e.g., police
officer, dinning table, printer cat ridge, etc.) as we did not have access to a
shallow parser. Intuitively, identifying and using compound nouns to compute
the chains will give better results than just using the individual nouns. Even in
the above case, chains 3 and 4 should have ideally been a single chain referring



to a ‘station wagon - a car that has a long body and rear door with space behind
rear seat’ which is the actual sense in the document as opposed to a ‘a wheeled
vehicle drawn by a horse or tractor’!

The chain evaluation heuristic used is a very simple technique based on the
thresholded normalised chain length. Even with this simple measure we are able
to select good lexical chains. Nevertheless, we intend to investigate the more
complex chain evaluation methods that have been proposed in the literature for
the other applications of lexical chains.

5 Concluding Remarks

The performance of the clustering algorithm is closely tied to the quality of
the lexical chains used to represent the documents. Some issues such as proper
nouns, compound nouns, word sense disambiguation and overall chain quality
when solved will help improve the clustering quality. Instead of just removing
the proper nouns from the input, we intend to work on resolving the proper
noun problem. If properly resolved, we feel that proper nouns together with
compound nouns will help us significantly to improve the chain quality and
hence the clustering quality. Word sense disambiguation (WSD) is an actively
researched topic in the context of WordNet and various proposals exist for doing
it. We intend to critically evaluate these proposals and see how we can enhance
the WSD capability in our algorithm.

One other enhancement that we plan to explore is to try to identify and
group the lexical chains formed based on the hypernymy relations. For example,
our algorithm would generate separate lexical chains as follows for the words
car, auto and vehicle:

— car, auto, motor car
— truck, motor truck
— motor vehicle

The first two groups are related to the third group by a hypernym relation
in WordNet. This we expect would result in a hierarchy of clusters, with clusters
reducing in granularity as we go up the hierarchy. We believe that identifying
and marking such semantic relations between the clusters will result in a more
semantically sensible clustering of the document.

Almost all existing algorithms for computing lexical chains seem to use only
noun words, ignoring other parts of speech. We intend to evaluate effectiveness
of using verbs and other parts of speech as well, in computing the lexical chains.

We have run our experiments on a small dataset of 30 documents. This was
because we were unable to get a pre-clustered dataset and comparing the results
would have been difficult. Hence, we limited our experiments to a small dataset
to keep our experiments humanly tractable. Our algorithm is easily scalable
to a larger number of documents. In the future, we plan to evaluate it on the
significant portion of the 20 Newsgroups and RCV1 corpus. We conclude with
the comment that our method can be used to create a hierarchy of document
clusters and can be effectively extended for automatic topic detection.
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