
Relativized Options: Choosing the Right Transformation

Balaraman Ravindran ravi@cs.umass.edu

Andrew G. Barto barto@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01002 USA

Abstract

Relativized options combine model mini-
mization methods and a hierarchical rein-
forcement learning framework to derive com-
pact reduced representations of a related
family of tasks. Relativized options are de-
fined without an absolute frame of reference,
and an option’s policy is transformed suit-
ably based on the circumstances under which
the option is invoked. In earlier work we ad-
dressed the issue of learning the option policy
online. In this article we develop an algo-
rithm for choosing, from among a set of can-
didate transformations, the right transforma-
tion for each member of the family of tasks.

1. Introduction

Techniques for scaling decision theoretic planning and
learning methods to complex environments with large
state spaces have attracted much attention lately,
e. g. (Givan et al., 2003; Dietterich, 2000; Sutton et al.,
1999). Learning approaches such as the MaxQ algo-
rithm (Dietterich, 2000), Hierarchies of Abstract Ma-
chines (Parr & Russell, 1997), and the options frame-
work (Sutton et al., 1999) decompose a complex prob-
lem into simpler sub-tasks and employ the solutions of
these sub-tasks in a hierarchical fashion to solve the
original task. The sub-problems chosen are not only
simpler than the original task but often are sub-tasks
whose solutions can be repeatedly reused.

Model minimization methods (Givan et al., 2003;
Hartmanis & Stearns, 1966; Ravindran & Barto, 2001)
also address the issue of planning in large state spaces.
These methods attempt to abstract away redundancy
in the problem definition to derive an equivalent
smaller model of the problem that can be used to de-
rive a solution to the original problem. While reducing
entire problems by applying minimization methods is

often not feasible, we can apply these ideas to various
sub-problems and obtain useful reductions in problem
size. In ref. (Ravindran & Barto, 2002) we showed
that by applying model minimization we can reduce
a family of related sub-tasks to a single sub-task, the
solution of which can be suitably transformed to re-
cover the solutions for the entire family. We extended
the options framework (Sutton et al., 1999) to accom-
modate minimization ideas and introduced the notion
of a relativized option: an option defined without an
absolute frame of reference. A relativized option can
be viewed as a compact representation of a related
family of options. We borrow the terminology from
Iba (1989) who developed a similar representation for
related families of macro operators.

In this article we explore the case in which one is given
the reduced representation of a sub-task and is re-
quired to choose the right transformations to recover
the solutions to the members of the related family.
Such a scenario would often arise in cases where an
agent is trained in a small prototypical environment
and is required to later act in a complex world where
skills learned earlier are useful. For example, an agent
may be trained to perform certain tasks in a particu-
lar room and then be asked to repeat them in differ-
ent rooms in the building. In many office and univer-
sity buildings, rooms tend to be very similar to one
another. Thus the problem of navigating in each of
these rooms can be considered simply that of suitably
transforming the policy learned in the first room. An
appropriate set of candidate transformations in this
case are reflections and rotations of the room. We
build on the options framework and propose a trans-
formation selection mechanism based on Bayesian pa-
rameter estimation. We empirically illustrate that the
method converges to the correct transformations in a
gridworld “building” environment with multiple simi-
lar rooms. We also consider a game like environment
inspired by the Pengi (Agre, 1988) video game. Here
there are many candidate transformations and the con-

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

ditions for minimization are only satisfied very approx-
imately. We introduce a heuristic modification to our
transformation selection method and again empirically
demonstrate that this method performs adequately in
the game environment.

We employ Markov Decision Processes (MDPs) as our
basic modeling paradigm. First we present some no-
tation regarding MDPs and partitions (Section 2),
followed by a brief summary of MDP homomor-
phisms and our MDP minimization framework (Sec-
tion 3). We the introduce relativized options (Sec-
tion 4) and present our Bayesian parameter estimation
based method to choose the correct transformation to
apply to a sub-task (Section 5). We then briefly de-
scribe approximate equivalence and present a heuristic
modification of our likelihood measure (Section 6). In
Section 7 we conclude by discussing relation to existing
work and some future directions of research.

2. Notation

A Markov Decision Process is a tuple 〈S,A,Ψ, P,R〉,
where S is a finite set of states, A is a finite set of ac-
tions, Ψ ⊆ S × A is the set of admissible state-action
pairs, P : Ψ × S → [0, 1] is the transition probabil-
ity function with P (s, a, s′) being the probability of
transition from state s to state s′ under action a, and
R : Ψ → IR is the expected reward function, with
R(s, a) being the expected reward for performing ac-
tion a in state s. Let As = {a|(s, a) ∈ Ψ} ⊆ A denote
the set of actions admissible in state s. We assume
that for all s ∈ S, As is non-empty.

A stochastic policy, π, is a mapping from Ψ to the real
interval [0, 1] with

∑
a∈As

π(s, a) = 1 for all s ∈ S.
For any (s, a) ∈ Ψ, π(s, a) gives the probability of ex-
ecuting action a in state s. The value of a state-action
pair (s, a) under policy π is the expected value of the
sum of discounted future rewards starting from state
s, taking action a, and following π thereafter. The
action-value function, Qπ, corresponding to a policy π

is the mapping from state-action pairs to their values.
The solution of an MDP is an optimal policy, π?, that
uniformly dominates all other possible policies for that
MDP.

Let B be a partition of a set X. For any x ∈ X,
[x]B denotes the block of B to which x belongs. Any
function f from a set X to a set Y induces an equiv-
alence relation on X, with [x]f = [x′]f if and only if
f(x) = f(x′).

An option (or a temporally extended action) (Sutton
et al., 1999) in an MDP M = 〈S,A,Ψ, P , R〉 is de-
fined by the tuple O = 〈I, π, β〉, where the initiation

set I ⊆ S is the set of states in which the option can
be invoked, π is the option policy, and the termination
function β : S → [0, 1] gives the probability of the op-
tion terminating in any given state. The option policy
can in general be a mapping from arbitrary sequences
of state-action pairs (or histories) to action probabili-
ties. We restrict attention to Markov options in which
the policies are functions of the current state alone.
The states over which the option policy is defined is
known as the domain of the option.

3. Model Minimization

Minimization methods exploit redundancy in the def-
inition of an MDP M to form a reduced model M′,
whose solution yields a solution to the original MDP.
One way to achieve this is to derive M′ such that
there exists a transformation from M to M′ that maps
equivalent states in M to the same state in M′, and
equivalent actions in M to the same action in M′. An
MDP homomorphism from M to M′ is such a trans-
formation. Formally, we define it as:

Definition: An MDP homomorphism h from an
MDP M = 〈S,A,Ψ, P,R〉 to an MDP M′ =
〈S′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, de-
fined by a tuple of surjections 〈f, {gs|s ∈ S}〉, with
h((s, a)) = (f(s), gs(a)), where f : S → S′ and
gs : As → A′

f(s) for s ∈ S, such that ∀s, s′ ∈ S, a ∈ As:

P ′(f(s), gs(a), f(s′)) =
∑

s′′∈[s′]f

P (s, a, s′′), (1)

R′(f(s), gs(a)) = R(s, a). (2)

We call M′ the homomorphic image of M under h.
We use the shorthand h(s, a) to denote h((s, a)). The
surjection f maps states of M to states of M′, and
since it is generally many-to-one, it generally induces
nontrivial equivalence classes of states s of M: [s]f .
Each surjection gs recodes the actions admissible in
state s of M to actions admissible in state f(s) of
M′. This state-dependent recoding of actions is a key
innovation of our definition, which we discuss in more
detail below. Condition (1) says that the transition
probabilities in the simpler MDP M′ are expressible
as sums of the transition probabilities of the states
of M that f maps to that same state in M′. This
is the stochastic version of the standard condition for
homomorphisms of deterministic systems that requires
that the homomorphism commutes with the system
dynamics (Hartmanis & Stearns, 1966). Condition (2)
says that state-action pairs that have the same image
under h have the same expected reward. A policy in
M′ induces a policy in M and the following describes
how to derive such an induced policy.

have , i = 1, ... , 5ibinary:

y = {0, ... , 19}
x = {0, ... , 9}
rooms = {0, 1, 2, 3, 4, 5}

Features:

n

s
ew

x0

y

1

2

5

4

3

0
Features:

binary: have
y = {0, ... , 9}
x = {0, ... , 9}

(a) (b)

Figure 1. (a) A simple rooms domain with stochastic ac-
tions. The task is to collect all 5 objects, the black dia-
monds, in the environment. The state is described by the
number of the room the agent is in, the agent’s x and y

co-ordinates within the room or corridor with respect to
the reference direction indicated in the figure, and boolean
variables havei, i = 1, . . . , 5, indicating possession of ob-
ject in room i.(b) The option MDP corresponding to the
sub-task get-object-and-leave-room.

Definition: Let M′ be the image of M under homo-
morphism h = 〈f, {gs|s ∈ S}〉. For any s ∈ S, g−1

s (a′)
denotes the set of actions that have the same image
a′ ∈ A′

f(s) under gs. Let π be a stochastic policy in

M′. Then π lifted to M is the policy πM such that for

any a ∈ g−1
s (a′), πM(s, a) = π(f(s), a′)

/ ∣∣g−1
s (a′)

∣∣.1

An optimal policy in M′ when lifted to M yields an
optimal policy in M (Ravindran & Barto, 2001). Thus
one may derive a reduced model of M by finding suit-
able homomorphic image. Our minimization frame-
work is an extension of the approach proposed by Dean
and Givan (Givan et al., 2003). In ref. (Ravindran &
Barto, 2003) we explore application of minimization
ideas in an hierarchical setting and show that the ho-
momorphism conditions are a generalization of the safe
state abstraction conditions introduced by Dietterich
(2000).

4. Relativized Options

Consider the problem of navigating in the gridworld
environment shown in Figure 1(a). The goal is to
reach the central corridor after collecting all the ob-
jects in the gridworld. There exists no non-trivial ho-
momorphic image of the entire problem. But there are
many similar components in the problem, namely, the
five sub-tasks of getting the object and exiting roomi.
Since the rooms are similarly shaped, we can map one

1It is sufficient that
∑

a∈g
−1

s (a′)
πM(s, a) = π(f(s), a′),

but we use the above definition to make the lifted policy
unique.

sub-task onto the other by applying simple transforma-
tions such as reflections and rotations. We can model
this similarity among the sub-tasks by a “partial” ho-
momorphic image—where the homomorphism condi-
tions are applicable only to states in the rooms. One
such partial image is shown in Figure 1(b).

A relativized option (Ravindran & Barto, 2002) com-
bines partial reductions with the options framework to
represent compactly a family of related options. Here
the policy for achieving the option’s sub-goal is defined
in a partial image MDP (option MDP). When the op-
tion is invoked, the current state is projected onto the
option MDP and the policy action of the option MDP
is lifted to the original MDP based on the states in
which the option is invoked. For example, action E

in the option MDP will get lifted as action W when
invoked in room 3 and as action N when invoked in
room 5. Formally we define a relativized option as
follows:

Definition: A relativized option of an MDP M =
〈S,A,Ψ, P,R〉 is the tuple O = 〈h,MO, I, β〉, where
I ⊆ S is the initiation set, β : S ′ → [0, 1] is the ter-
mination function and h = 〈f, {gs|s ∈ S}〉 is a partial
homomorphism from the MDP 〈S,A,Ψ, P,RO〉 to the
option MDP MO = 〈S′, A′,Ψ′, P ′, R′〉 with RO chosen
based on the sub-task.

In other words, the option MDP MO is a partial ho-
momorphic image of an MDP with the same states,
actions and transition dynamics as M but with a re-
ward function chosen based on the option’s sub-task.
The homomorphism conditions (1) and (2) hold only
for states in the domain of the option O. The option
policy π : Ψ′ → [0, 1] is obtained by solving MO by
treating it as an episodic task. Note that the initiation
set is defined over the state space of M and not that
of MO. Since the initiation set is typically used by the
higher level when invoking the option, we decided to
define it over S. When lifted to M, π is transformed
into policy fragments over Ψ, with the transformation
depending on the state of M the system is currently
in.

Going back to our example in Figure 1(a), we can now
define a single get-object-and-leave-room relativized
option using the option MDP of Figure 1(b). The
policy learned in this option MDP can then be lifted
to M to provide different policy fragments in the dif-
ferent rooms.

5. Choosing Transformations

In (Ravindran & Barto, 2002) we explored the issue of
learning the relativized option policy while learning to

solve the original task. We established that relativized
options significantly speed up initial learning and en-
able more efficient knowledge transfer. We assumed
that the option MDP and the required transforma-
tions were specified beforehand. In a wide variety of
problem settings we can specify a set of possible trans-
formations to employ with a relativized option but lack
sufficient information to specify which transformation
to employ under which circumstances. For example,
we can train a two-arm ambidextrous robot to accom-
plish certain sub-tasks like grasping and moving ob-
jects using one arm and a small set of object orienta-
tions. If the robot is then supplied a set of rotations
and reflections, it could learn the suitable transforma-
tions required when it uses the other arm and when it
encounters objects in different orientations.

Given a set of candidate transformations H and the op-
tion MDP MO = 〈S′, A′,Ψ′, P ′, R′〉, how do we choose
the right transformation to employ at each invocation
of the option? Let s be a function of the current state
s that captures the features of the states necessary to
distinguish the particular sub-problem under consid-
eration.2 We formulate the problem of choosing the
right transformation as a family of Bayesian parame-
ter estimation problems, one for each possible value of
s.

We have a parameter, θ, that can take a finite number
of values from H. Let p(h, s) denote the prior proba-
bility that θ = h, i.e., the prior probability that h is
the correct transformation to apply in the sub-problem
represented by s. The set of samples used for comput-
ing the posterior distribution is the sequence of tran-
sitions, 〈s1, a1, s2, a2, · · ·〉, observed when the option is
executing. Note that the probability of observing a
transition from si to si+1 under ai for all i, is inde-
pendent of the other transitions in the sequence. We
employ recursive Bayes learning to update the poste-
rior probabilities incrementally.

Let pn be the posterior probability n time steps after
the option was invoked. We start by setting p0(h, s) =
p(h, s) for all h and s. Let En = 〈sn, an, sn+1〉
be the transition experienced after n time steps of
option execution. We update the posteriors for all
h = 〈f, {gs|s ∈ S}〉 as follows:

pn(h, s) =
Pr(En|h, s)pn−1(h, s)

N
(3)

where Pr(En|h, s) = P ′(f(sn), gsn
(an), f(sn+1))

2In the example in Figure 1, the room number is suffi-
cient, while in an object-based environment some property
of the target object, say color, might suffice. Frequently s
is a simple function of s like a projection onto a subset of
features, as in the rooms example.

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

Trial Number

A
ve

ra
ge

 S
te

ps
 p

er
 T

ria
l

slip=0.7

slip=0.5

slip=0.1

know transforms
choose transforms

Figure 2. Comparison of initial performance of agents with
and without knowledge of the appropriate partial homo-
morphisms on the task shown in Figure 1 with various lev-
els of stochasticity.

is the probability of observing the h-projection
of transition En in the option MDP and
N =

∑
h′∈H

P ′((f ′(sn), g′sn
(a), f ′(sn+1))pn−1(h

′, s) is
a normalizing factor. When an option is executing, at
time step n we use ĥ = arg maxh pn(h, s) to project
the state to the option MDP and lift the action to
the original MDP. After experiencing a transition, we
update the posteriors of all the transformations in H
using (3).

5.1. Results

We tested the algorithm on the gridworld in Figure 1.
The agent has one get-object-and-exit-room relativized
option defined in the option MDP in Figure 1(b). Con-
sidering all possible combinations of reflections about
the x and y axes and rotations through integral multi-
ples of 90 degrees, we have eight distinct transforma-
tions in H. For each of the rooms in the world there
is one transformation in H that is the desired one. In
some ways this is a contrived example chosen so that
we can illustrate the correctness of our algorithm. Re-
duction in problem size is possible in this domain by
more informed representation schemes. We will dis-
cuss, briefly, the relation of such schemes to relativized
options in the Section 7. The agent employed hier-
archical SMDP Q-learning with ε-greedy exploration,
with ε = 0.1. The learning rate was set at 0.01 and γ

at 0.9. We initialized the priors in each of the rooms
to a uniform distribution with p0(h, s) = 0.125 for all
h ∈ H and s. The trials were terminated either on
completion of the task or after 3000 steps. The results
shown in Figure 2 are averaged over 100 independent
runs. We repeated the experiment with different levels

1

2 3

4

��������������
�
��
�

������
���
�

	�		�	
�

�

���
�

�
��
�
��
�

������
���
�

������
��
�
��
�

������
�������
�

��
��
�

!�!"�"
##$
$

%&
'�''�'(�((�(

)�))�)*�**�*++
+
,,
,

-.
//0
0 1�12�2

3�33�34�44�4 5�5
6�6
77
7
88
8

9�9:�:
;;
;
<<
<

=�=>�>
?�??�?
?�?
@�@@�@
@�@

AAB
B

CCD
D

x

y

0
EW

N

S

(a) (b)

Figure 3. (a) A game domain with interacting robots and
stochastic actions. The task is to collect all 4 objects, the
black diamonds, in the environment. The state is described
as before by the number of the room the agent is in, the
agent’s x and y co-ordinates within the room or corridor,
boolean variables havei, i = 1, . . . , 4, and in addition, the
room number, and x and y co-ordinates of every robot in
the domain. The robots are of two types—benign (shaded)
and delayers (black). See text for explanation of robot
types. (b) The option MDP corresponding to the sub-task
get-object-and-leave-room. There is just one delayer robot
in this image MDP.

of stochasticity, or slip, for the actions.

The probability with which an action “fails”, i.e., re-
sults in movement in a direction other than the desired
one, is called the slip in the environment. The greater
the slip, the harder the problem. As shown in Figure
2 the agent rapidly learned to apply the right transfor-
mation in each room under different levels of stochas-
ticity. We compared the performance to an agent
learning with primitive actions alone. The primitive
action agent didn’t start improving its performance
until after 30,000 iterations and hence we did not em-
ploy that agent in our experiments. We also compared
the performance to an agent that knew the right trans-
formations to begin with. As can be seen in Figure 2
the difference in performance is not significant.3 In
this particular task our transformation-choosing algo-
rithm manages to identify the correct transformations
without much loss in performance since there is noth-
ing catastrophic in the environment and the agent
is able to recover quickly from wrong initial choices.
Typically the agent identifies the right transformation
in a few updates. For example in room 5 the agent
quickly discards all pure reflections and the posterior
for transform 5, a rotation through 90 degrees, con-
verges to 1.0 by the tenth update.

3All the significance tests were two sample t-tests, with
a p-value of 0.01, on the learning time distributions.

6. Approximate Equivalence

The task in Figure 1 exhibits perfect symmetric equiv-
alence. Such a scenario does not often arise in practice.
In this section we consider a more complex game exam-
ple with imperfect equivalences inspired by the Pengi
environment used by Agre (1988) to demonstrate the
effectiveness of deictic representations. The layout of
the game is shown in Figure 3(a). As in the previous
example, the objective of the game is to gather all the
objects in the environment and the environment has
standard stochastic gridworld dynamics.

Each room also has several robots, one of which might
be a delayer. If the agent happens to occupy the same
square as the delayer then it is prevented from mov-
ing for a randomly determined number of time steps,
given by a geometric distribution with parameter hold.
When not occupying the same square, the delayer pur-
sues the agent with some probability, chase. The other
robots are benign and act as mobile obstacles, exe-
cuting random walks. The agent does not have prior
knowledge of the hold and chase parameters, nor does
the agent recognize the delayer on entering the room.
But the agent is aware of the room numbers, and x and
y co-ordinates of all the robots in the environment, all
the have features, its own room number, and x and y

co-ordinates.

The option MDP (Figure 3(b)) we employ is a symmet-
rical room with just one robot—a delayer with fixed
chase and hold parameters. The features describing
the state space of the option MDP consists of the x

and y co-ordinates of the agent and the robot and a
boolean variable indicating possession of the object.
Unlike in the previous example, no room matches the
option MDP exactly and no robot has the same chase
and hold parameters as the delayer in the image MDP.
In fact room 2 does not have a delayer robot. While
employing the relativized option, the agent has to not
only figure out the right orientation of the room but
also which robot is the delayer, i. e. , which robot’s
location it needs to project onto the option MDP’s de-
layer’s features. Thus there are 40 candidate transfor-
mations, comprising of different reflections, rotations
and projections.4

While this game domain is also a contrived example,
projection transformations arise often in practice. In
an environment with objects, selecting a subset of ob-
jects (say blocks) with which to perform a sub-task can
be modeled as projecting the features of the chosen ob-

4Please refer to http://www-all.cs.umass.edu/˜ravi/
ICML03-experiments.pdf for a more detailed description
of the experimental setup.

jects onto an option MDP. Such projections can also be
used to model indexical representations (Agre, 1988).
In this game example, finding the projection that cor-
rectly identifies the delayer is semantically equivalent
to implementing a the-robot-chasing-me pointer.

In ref. (Ravindran & Barto, 2002) we extended our
minimization framework to accommodate approxi-
mate equivalences and symmetries. Since we are ig-
noring differences between the various rooms there will
be a loss in asymptotic performance. We discussed
bounding this loss using Bounded-parameter MDPs
(Givan et al., 2000) and approximate homomorphisms.

We cannot employ the method we developed in the
previous section for choosing the correct transforma-
tions with approximate homomorphisms. In some
cases even the correct transformation causes a state
transition the agent just experienced to project to an
impossible transition in the image MDP, i.e., one with
a P ′ value of 0. Thus the posterior of the correct trans-
formation might be set to zero, and once the posterior
reaches 0, it stays there regardless of the positive evi-
dence that might accumulate later.

To address this problem we employed a heuristic—
lower bound the P ′ values used in the update equation
(3). We compute a “weight” for the transformations
using:

wn(h, s) =
P ′((f(s), gs(a), f(s′))wn−1(h, s)

N
(4)

where P ′(s, a, s′) = max (ν, P ′(s, a, s′)), and N =∑
h′∈H

P ′((f ′(s), g′s(a), f ′(s′))wn−1(h
′, s) is the nor-

malizing factor. Thus even if the projected transition
has a probability of 0 in the option MDP, we use a
value of ν in update. The weight w(h, s) is a measure
of the likelihood of h being the right transformation
in s and we use this weight instead of the posterior
probability.

We measured the performance of this heuristic in the
game environment. Since none of the rooms match the
option MDP closely, keeping the option policy fixed
leads to very poor performance. So we allowed the
agent to continually modify the option policy while
learning the correct transformations. As with the ear-
lier experiments, the agent simultaneously learned the
policies of the lower level and higher level tasks, using
a learning rate of 0.05 for the higher level MDP and
0.1 for the relativized option. The discount factor γ

was set to 0.9, ε to 0.1 and ν to 0.01. We initialized
the initial weights in each of the rooms to a uniform
distribution with w0(h, s) = 0.025 for all h ∈ H and
s. The trials were terminated either on completion of
the task or after 6000 steps.

We compared the performance of this heuristic against
that of an agent that had 4 different regular Markov
options. The agent learned the option policies si-
multaneously with the higher level task. The results
shown in Figure 4 were averaged over 10 indepen-
dent runs. As shown in Figure 4 the agent using
the heuristic shows rapid improvement in performance
initially. This vindicates our belief that it is easier
to learn the “correct” transformations than to learn
the policies from scratch. As expected the asymptotic
performance of the regular agent is better than the
relativized agent. We couldn’t compare the heuristic
against an agent that knew the correct transformations
beforehand since there are no correct transformation
in some of the cases.

Figure 5 shows the evolution of weights in room 4 dur-
ing a typical run. The weights have not converged
to their final values after 600 updates, but transform
12, the correct transformation in this case, has the
biggest weight and is picked consistently. After about
thousand updates the weight for transform 12 reached
nearly 1 and stayed there. Figure 6 shows the evolu-
tion of weights in room 2 during a typical run. The
weights oscillate a lot during the runs, since none of
the transforms are entirely correct in this room. In
this particular run, the agent converged to transform
5 after about 1000 updates, but that is not always the
case. But the agent can solve the sub-task in room
2 as long as it correctly identifies the orientation and
employs any of transforms 1 through 5.

While none of the transformations are completely “cor-
rect” in this environment, especially in room 2, the
agent is able to complete each sub-task successfully
after a bit of retraining. One can easily construct en-
vironments where this is not possible and we need to
consider some fail-safe mechanism. One alternative is
to learn the policy for the failure states at the primi-
tive action level and use the option only in states where
there is some chance of success. Another alternative
is to spawn a copy of the relativized option which is
available only in the failure states and allow the agent
to learn the option policy from scratch thus prevent-
ing harmful generalization. We have not explored this
issue in detail in this paper, since we were looking to
develop a method that allows us to select the right
transformation under the assumption that we have ac-
cess to such a transformation.

7. Discussion and Future Work

In this article we presented results on choosing from
among a set of candidate partial homomorphisms, as-
suming that the option MDP and the policy are com-

0 5000 10000 15000
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Trial Number

A
ve

ra
ge

 S
te

ps
 p

er
 T

ria
l

Regular Options

Choose Transforms

Figure 4. Comparison of the performance of an agent with
4 regular options and an agent using a relativized option
and no knowledge of the correct transformation on the task
shown in Figure 3(a). The option MDP employed by the
relativized agent is shown in Figure 3(b).

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Updates

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d

M
ea

su
re transform 12

transform 17
transform 2
transform 7

Figure 5. Typical evolution of weights for a subset of trans-
forms in Room 4 in Figure 3(a), with a slip of 0.1.

pletely specified. We are currently working on relax-
ing these assumptions. Specifically we are looking at
learning the option policy online and working with par-
tial specification of the option MDP. We are also ap-
plying this approach to more complex problems. In
particular we are applying this to solving a family of re-
lated tasks on the UMass torso (Wheeler et al., 2002).
The torso is initially trained on a single task, and is
later required to learn the transformations to apply to
derive solutions to the other tasks in the family.

The experiments reported in this paper employ a two-
level hierarchy. Our ideas generalize naturally to
multi-level hierarchies. The semi-Markov decision pro-
cess (SMDP) framework is an extension of the MDP
framework which is widely employed in modeling hier-
archical systems (Dietterich, 2000; Sutton et al., 1999).

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Updates

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d

M
ea

su
re transform 5

transform 10
transform 15
transform 35
transform 40

Figure 6. Typical evolution of weights for a subset of trans-
forms in Room 2 in Figure 3, with a slip of 0.1.

We recently developed the notion of SMDP homomor-
phism and used it in defining hierarchical relativized
options (Ravindran & Barto, 2003). The option is now
defined using an option SMDP and hence can have
other options as part of its action set. We are cur-
rently applying the methods developed in this paper
to domains that require hierarchical options.

We employed the options framework in this work, but
our ideas are applicable to other hierarchical frame-
works such as MAXQ (Dietterich, 2000) and Hierar-
chies of Abstract Machines (Parr & Russell, 1997).
Sub-tasks in these frameworks can also be relativized
and we could learn homomorphic transformations be-
tween related sub-tasks. Relativization can also be
combined with automatic hierarchy extraction algo-
rithms (McGovern & Barto, 2001; Hengst, 2002) and
algorithms for building abstractions specific to differ-
ent levels of the hierarchy (Dietterich, 2000; Jonsson
& Barto, 2001).

In some environments it is possible to choose repre-
sentation schemes to implicitly perform the required
transformation depending on the sub-task. Examples
of such schemes include ego-centric and deictic repre-
sentations (Agre, 1988), in which an agent senses the
world via a set of pointers and actions are specified
with respect to these pointers. In the game environ-
ment we employed projection transformations to iden-
tify the delayer robot. As mentioned earlier, this is a
form of indexical representation with the available pro-
jections specifying the possible pointer configurations.
Thus choosing the right transformation can be viewed
as learning the-robot-chasing-me pointer. While em-
ploying such representations largely simplifies the so-
lution of a problem, they are frequently very difficult
to design. Our work is a first step toward systematiz-

ing the transformations needed to map similar sub-
tasks onto each other in the absence of versatile sen-
sory mechanisms. The concepts developed here will
also serve as stepping stones to designing sophisticated
representation schemes.

In our approach we employ different transformations
to get different interpretations of the same MDP
model. Researchers have investigated the problem
of employing multiple models of an environment and
combining the predictions suitably using the EM al-
gorithm (Haruno et al., 2001) and mixtures of experts
models (Doya et al., 2002). We are investigating spe-
cializations of such approaches to our setting where the
multiple models can be obtained by simple transforma-
tions of one another. This close relationship between
the various models might yield significant simplifica-
tion of these architectures.

Acknowledgments

We wish to thank Mohammad Ghavamzadeh, Dan
Bernstein, Amy McGovern and Mike Rosenstein for
many hours of useful discussion. This material is based
upon work supported by the National Science Foun-
dation under Grant No. ECS-0218125 to Andrew G.
Barto and Sridhar Mahadevan. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

Agre, P. E. (1988). The dynamic structure of everyday
life (Technical Report AITR-1085). Massachusetts
Institute of Technology.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposi-
tion. Artificial Intelligence Research, 13, 227–303.

Doya, K., Samejima, K., Katagiri, K., & Kawato, M.
(2002). Multiple model-based reinforcement learn-
ing. To appear in Neural Computation.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence
notions and model minimization in Markov decision
processes. To appear in Artificial Intelligence.

Givan, R., Leach, S., & Dean, T. (2000). Bounded-
parameter Markov decision processes. Artificial In-
telligence, 122, 71–109.

Hartmanis, J., & Stearns, R. E. (1966). Algebraic
structure theory of sequential machines. Englewood
Cliffs, NJ: Prentice-Hall.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001).
MOSAIC model for sensorimotor learning and con-
trol. Neural Computation, 13, 2201–2220.

Hengst, B. (2002). Discovering hierarchy in reinforce-
ment learning with HEXQ. Proceedings of the 19th
International Conference on Machine Learning (pp.
243–250).

Iba, G. A. (1989). A heuristic approach to the dis-
covery of macro-operators. Machine Learning, 3,
285–317.

Jonsson, A., & Barto, A. G. (2001). Automated state
abstraction for options using the u-tree algorithm.
Proceedings of Advances in Neural Information Pro-
cessing Systems 13 (pp. 1054–1060). Cambridge,
MA: MIT Press.

McGovern, A., & Barto, A. G. (2001). Automatic dis-
covery of subgoals in reinforcement learning using
diverse density. Proceedings of the 18th Interna-
tional Conference on Machine Learning ICML 2001
(pp. 361–368).

Parr, R., & Russell, S. (1997). Reinforcement learn-
ing with hierarchies of machines. Proceedings of Ad-
vances in Neural Information Processing Systems 10
(pp. 1043–1049). MIT Press.

Ravindran, B., & Barto, A. G. (2001). Symmetries
and model minimization of Markov decision pro-
cesses (Technical Report 01-43). University of Mas-
sachusetts, Amherst.

Ravindran, B., & Barto, A. G. (2002). Model mini-
mization in hierarchical reinforcement learning. Pro-
ceedings of the Fifth Symposium on Abstraction, Re-
formulation and Approximation (SARA 2002) (pp.
196–211). New York, NY: Springer-Verlag.

Ravindran, B., & Barto, A. G. (2003). SMDP homo-
morphisms: An algebraic approach to abstraction
in semi-Markov decision processes. To appear in
the Proceedings of the Eighteenth Internatinal Joint
Conference on Artificial Intelligence (IJCAI 2003).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial In-
telligence, 112, 181–211.

Wheeler, D. S., Fagg, A. H., & Grupen, R. A. (2002).
Learning prospective pick and place behavior. Pro-
ceedings of the International Conference on Devel-
opment and Learning (ICDL’02).

