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Abstract. The Shapley Value is arguably the most important normative solution concept in coali-
tional games. One of its applications is in the domain of networks, where the Shapley Value is
used to measure the relative importance of individual nodes. This measure, which is called node
centrality, is of paramount significance in many real-world application domains including social and
organisational networks, biological networks, communication networks and the internet. Whereas
computational aspects of the Shapley Value have been analyzed in the context of conventional coali-
tional games, this paper presents the first such study of the Shapley Value for network centrality.
Our results demonstrate that this particular application of the Shapley Value presents unique op-
portunities for efficiency gains. In particular, we develop exact analytical formulas for computing
Shapley Value based centralities in both weighted and unweighted networks. These formulas not
only provide an efficient (polynomial time) and error-free way of computing node centralities, but
their surprisingly simple closed form expressions also offer intuition into why certain nodes are
relatively more important to a network.

1 Introduction
The Shapley Value (SV) is a fundamental normative solution concept in coalitional games. Given a sce-
nario where agents are allowed to realize collective payoffs through mutual co-operation, the SV postulates
a fair method to evaluate each agent’s individual contribution. One of the many applications of the SV
is in the domain of networks, where it is used to measure the importance of individual nodes, which is
known as game theoretic network centrality [1, 2]. Although centrality plays a key role in many real-life
network applications, efficient algorithms for its measurement via the SV remain unknown.
In fact, to date, computational aspects of the SV have been studied only in the context of conventional
coalitional games. To the best of our knowledge, this paper is the first study of the computational aspects
of the SV, as applied to network centrality. We believe that the additional challenges that arise in this
context can be overcome by harnessing the unique opportunities available for efficiency gains, stemming
from the underlying network structure. In this paper, we address the question of how to take advantage
of this special structure to compute SV-based centralities efficiently. Indeed, our research shows that it is
possible to develop efficient (polynomial time) and exact algorithms for SV computation in the networks
domain. By contrast, SV computation has been proved to be a hard problem for many other structured
domains [3–5]. Therefore, we believe that the algorithms presented in this paper represent rare examples
of practically relevant applications that nevertheless permit efficient SV solutions1.
We now introduce the concept of “centrality”. In the networks context, it is often paramount to determine
which nodes and edges are more critical than others. Classic examples include identifying the most
important highways in a road network, the most influential people in a social network or the most critical
functional entities in a protein network. As a result, the concept of centrality, which aims to quantify the
importance of individual nodes/edges in a network, has been extensively studied in network analysis.
Conventional centrality measures2 usually work by assigning a score to each node in the network, which
in some way corresponds to the importance of that node for the application at hand. For instance, if the
application is to design an infrastructure network (such as a power transmission network or communication
network) with minimum vulnerability to random node failures, a conventional centrality measure might
work by analysing the consequences of failure at each individual node. The more adverse the consequences
of failure, the higher the node centrality.
Such a conventional centrality metric, however, suffers from the following drawbacks:
1. By considering only the failure of individual nodes, it completely ignores real-world situations where

multiple nodes can fail simultaneously. For example, if the network is so designed that no single node’s
failure carries any consequence, but the failure of certain specific pairs of nodes can bring down the
entire network, the above centrality metric would fail to give a higher centrality score to the nodes
belonging to these critical pairs.

1 Other positive results on SV computation (e.g. MC-Nets [6]) are discussed in the Related Work section
2 An overview of conventional centrality measures (such as degree centrality, betweenness centrality, closeness
centrality and eigenvalue centrality) can be found in [7].
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2. Because each node is treated separately, the hidden assumption is that node failures occur indepen-
dently of each other. As a result, real-world phenomena such as cascading node failures, that have
been known to precipitate widespread disruption in a very short time [8], are outside the scope of this
centrality analysis.

In short, conventional centrality measures fail to recognize that in many network applications, it is not
sufficient to merely understand the relative importance of nodes as stand-alone entities. Rather, the key
requirement is to understand the importance of each node in terms of its utility when combined with other
nodes [9]. For instance, in the above infrastructure network, an ideal centrality measure would assign a
score to a node v based on the failure probabilities (and consequences thereof) of every subset of nodes
containing v, rather than just failure of the single node v. This approach would automatically allow the
ideal centrality measure to give due consideration to real-world failure patterns such as cascading failures
and simultaneous multiple node failures. On the other hand, this flexibility, which comes from the ability
to take into account the contributions of all possible combinations of nodes (rather than just one node at
a time), is absent in conventional centrality measures, which is a crucial limitation in many applications.
Game theoretic network centrality [1,2] has been proposed as a framework that would address the above
limitation. Given the network to be analysed, the idea is to define a co-operative game where the agents
(players) are the nodes of the network. Then the SV of each agent (node) in this game is interpreted
as a centrality measure because it represents the average marginal contribution made by each node to
every possible combination of the other nodes. This powerful paradigm of SV-based network centrality
thus confers a high degree of flexibility (which was completely lacking in traditional centrality metrics)
to model real-world network phenomena. Indeed, this new paradigm has already been proved to be more
useful than traditional centrality measures for certain real-life network applications [1, 10].
From a computational perspective, however, evaluating game theoretic network centrality using the orig-
inal SV formula involves an analysis of the marginal contribution of every node (i.e. player) to every
coalition. Thus, given a network G(V,E), a direct application of the SV formula involves considering
O(2|V (G)|) coalitions. Such an exponential computation is clearly prohibitive for bigger networks (of, e.g,
100 or 1000 nodes). For such networks, the only feasible approach currently outlined in the literature is
Monte-Carlo sampling, which is not only inexact, but also very time-consuming.
The above problem of exponential complexity in the number of agents is a fundamental challenge asso-
ciated with computing the SV. As a result, for conventional coalitional games, this issue has received
considerable attention in the literature. As an alternative to the straightforward (but exponential) listing
of all possible coalitions, some authors [3, 6] have proposed more efficient representations for coalitional
games. In addition to being concise for many games, these representations also possess desirable compu-
tational properties, including efficient SV computation3. Thus, the choice of representation has been the
foremost consideration for efficient SV computation in the context of conventional coalitional games.
The networks domain, by contrast, poses a very different set of challenges. Unlike conventional coalitional
games, conciseness is usually not an issue in the networks context. This is because the games that aim to
capture network centrality notions already specify a concise closed-form expression for evaluating coalition
values (please see next section for an example). But on the other hand, the exact functional forms of
these expressions are dictated not by computational considerations, but by the real-world applications
of game theoretic network centrality. Therefore, while the available representations for these games are
concise, they are already fixed by the application at hand, i.e, beyond a point, they cannot be changed to
suit computational convenience. Moreover, because these games are designed to reflect network centrality,
their definition of coalition values often depends highly non-trivially on the underlying graph structure.
For example, this definition may involve quantities such as shortest path lengths, adjacent vertex counts
etc. with respect to the underlying graph.
Therefore, the challenge we face in this paper is to efficiently compute the SV, given a network and a game
defined over it, where coalition values for this game are given by a closed-form expression that depends
non-trivially on the network. The key question here is how to take advantage of (a) the network structure,
and (b) the functional form for the coalition values, so as to compute SVs efficiently, i.e, without the need
to enumerate all possible coalitions.
Against this background:

[1] Our key contribution in this paper is to demonstrate that it is possible to exactly and efficiently
compute SV-based network centralities of practical interest defined on large networks which
exceed thousands of nodes! By contrast, the only previously known method that scaled to such large
networks was Monte-Carlo simulation, which was neither exact nor particularly efficient.

[2] For four different measures of network centrality, we develop exact closed-form formulas for the
SVs. We present pseudo-codes of linear and polynomial time algorithms to implement these
formulas.

3 For more details, please see the Related Work section
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[3] We develop a closed-form polynomial time computable SV approximation for a fifth measure
of centrality defined on weighted networks.

[4] We test our algorithms on two real-life examples, (a) an infrastructure network representing the
topology of the Western States Power Grid, and (b) a collaboration network from the field of as-
trophysics. The results show that the algorithms proposed in this paper are not only accurate but
also deliver significant speedups (upto 550 times for the 16000+ node collaboration network!) over
Monte-Carlo simulation.

The remainder of the paper is organized as follows. Section 2 presents an example of how a coalitional
game may be used to capture the notion of network centrality. Section 3 analyses five types of centrality-
related coalitional games and presents polynomial time SV algorithms for all of them. Section 4 discusses
related work. Conclusions follow. Finally, the appendix presents numerical simulation results.

2 SV as a Centrality Measure
As mentioned in the introduction, the concept of game theoretic network centrality based on the SV has
been proposed in [1, 2] and further explored in [10]. Here we illustrate this concept with an example.
Consider the notion of “closeness centrality” of a node in a graph G(V,E), which is traditionally defined
as the reciprocal of the average distance of that node from other (reachable) nodes in the graph [7].
This definition captures the intuitive idea that a node “in close proximity to many other nodes” is more
valuable by virtue of its central location, and hence should be assigned a higher centrality score.
The above measure, however, fails to recognize the importance of combinations of nodes. For example,
consider a typical real-world application of closeness centrality: that of disseminating a piece of informa-
tion to all nodes in the network. At any time point t in the dissemination process, define the random
variable Ct to be the subset of nodes most actively involved in propagating the information. In this sit-
uation, a new node added to Ct would make maximum contribution to the diffusion of information only
if it is “in close proximity to nodes that are not currently in close proximity to any node in Ct”. Thus,
while conventional closeness centrality only takes into account average proximity to all other nodes, the
actual importance of a node in the real-world application is based on a very different measure: proximity
to nodes that are not in close proximity to the random variable Ct.
We now show how coalitional game theory can be used to construct a centrality measure that faithfully
models the above real-world importance of a node. Let C be any subset of nodes from the given network
G(V,E). Then, for every such C, assign a value ν(C) given by

ν(C) =
∑

v∈V (G)

1
1 + min{d(u, v)|u ∈ C}

where d(u, v) is the distance between nodes u and v (measured as the shortest path length between u
and v in graph G).
The map ν defined above captures a fundamental centrality notion: that the intrinsic value of a subset
of nodes C in the context of a real-world application (such as information dissemination) is proportional
to the overall proximity of the nodes in C to the other nodes in the network. In effect, the map ν carries
the original definition of closeness centrality to a global level, where a measure of importance is assigned
to every possible combination of nodes.
The map ν above is therefore a characteristic function for a coalitional game, where each vertex of the
network is viewed as an agent playing the game. It follows that if a node v has a high SV in this game,
it is likely that v would “contribute more” to an arbitrary randomly chosen coalition of nodes C in terms
of increasing the proximity of C to other nodes on the network. Thus, computing the SVs of this game
yields a centrality score for each vertex that is a much-improved characterization of closeness centrality.
The only difficulty in adopting such a game-theoretically inspired centrality measure is the previously
mentioned problem of exponential complexity in the number of agents. In the next section, we show how
to overcome this difficulty and compute the SV for many centrality applications (including the above
formulation) in time polynomial in the size of the network.

3 Algorithms for SV-based network centrality
In this section, we present 5 characteristic function formulations ν(C), each designed for a different real-
world application. While each formulation captures a different flavor of centrality, they all embrace one
fundamental centrality idea: that the definition for ν(C) must somehow quantify the sphere of influence of
the coalition C over the other nodes. For instance, in our first game formulation, we start with the simplest
possible idea that the sphere of influence of a coalition of nodes C is the set of all nodes immediately
reachable (within one hop) from C. Subsequent games further generalize this notion of sphere of influence.
For example, the second formulation specifies a more sophisticated sphere of influence: one that includes
only those nodes which are immediately reachable in at least k different ways from C. The other three
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formulations extend the notion of sphere of influence to weighted graphs. The third game, for instance,
defines sphere of influence as the set of all nodes within a cutoff distance of C (as measured by shortest
path lengths on the weighted graph). The fourth formulation is an extreme generalization: it allows the
sphere of influence of C to be specified by an arbitrary function f(.) of the distance between C and the
other nodes. The fifth and final formulation is a straightforward extension of the second, to the case of
weighted networks.
Throughout this section, we assume the reader is familiar with concepts of graph theory, including
weighted and unweighted graphs, vertex degrees, neighboring vertices and shortest paths. We do not
define these concepts here but suggest the references [11, 12]. The terms “network” and “graph” are used
interchangeably in this paper, as are the terms “node” and “vertex”. All the weighted graphs considered
in this paper are positive weighted. We do not use digraphs in this paper, so all graphs are assumed to
be undirected.
We also assume familiarity with the concepts of co-operative game theory, including the definition of
coalitional games in characteristic function form and the Shapley Value. We do not define these concepts
here but suggest the references [13,14].
We now set the notation for a general coalitional game played on a network. Given a graph G(V,E) with
vertex set V and edge set E, we use G to define a coalitional game g(V (G), ν) with set of agents V (G)
and characteristic function ν. Here the agents of the coalitional game are the vertices of the graph G.
Thus a coalition of agents C is simply any subset of V (G). The characteristic function ν : 2V (G) → R can
be any function that depends on the graph G as long as it satisfies the condition ν(∅) = 0. We use the
phrase “value of coalition C” to informally refer to ν(C).
With the above notation, we now proceed to formally define and solve the 5 centrality-related coalitional
games mentioned above.

3.1 Game 1: ν1(C) = #agents at-most 1 degree away

Given an unweighted, undirected network G(V,E). We first define “fringe” of a subset C ⊆ V (G) as the
set {v ∈ V (G) : v ∈ C (or) ∃u ∈ C such that (u, v) ∈ E(G)}, i.e, the fringe of a coalition includes all
nodes reachable from the coalition in at most one hop.
Based on the fringe, we define the coalitional game g1(V (G), ν1) with respect to the network G(V,E) by
the characteristic function ν1 : 2V (G) → R given by

ν1(C) =

{
0 if C = ∅
size(fringe(C)) else

This coalitional game has been extensively discussed in [1], where the authors motivate the game by
arguing that the SVs of nodes in this game constitute a centrality metric that is superior to degree
centrality for some applications. It is therefore desired to compute the SVs of all nodes for this game. We
shall now present an exact formula for this computation rather than obtaining it through Monte-Carlo
simulation as was done in [1].
To evaluate the SV of node vi, consider all possible permutations of the nodes in which vi would make
a positive marginal contribution to the coalition of nodes occurring before itself. Let the set of nodes
occurring before node vi in a random permutation of nodes be denoted Ci. Let the neighbors of node vi

in the graph G(V,E) be denoted NG(vi) and the degree of node vi be denoted degG(vi).
The key question to ask is: what is the necessary and sufficient condition for node vi to marginally
contribute node vj ∈ NG(vi) ∪ {vi} to fringe(Ci)? Clearly this happens if and only if neither vj nor any
of its neighbors are present in Ci. Formally (NG(vj) ∪ {vj}) ∩ Ci = ∅.
Given that permutations are chosen uniformly at random for computing the SV, combinatorial arguments
can be used to show that the above condition is satisfied with probability 1

1+degG(vj)
. Denote by Bvi,vj

the Bernoulli random variable that vi marginally contributes vj to fringe(Ci). Thus:

E[Bvi,vj
] = Pr[(NG(vj) ∪ {vj}) ∩ Ci = ∅] =

1
1 + degG(vj)

Therefore, the Shapley Value SVg1(vi), which is the expected marginal contribution of vi, is given by:

SVg1(vi) =
∑

vj∈{vi}∪NG(vi)

E[Bvi,vj
] =

∑
vj∈{vi}∪NG(vi)

1
1 + degG(vj)

which is an exact closed-form expression for computing the SV of each node on the network.
Algorithm 1 describes an O(V +E) procedure that directly implements the above equation to compute the
exact SVs of all nodes in the network. By contrast, Monte-Carlo simulation requires O(V +E) operations
for every iteration. Moreover, the results obtained using Monte-Carlo are statistical in nature and may
not be sufficiently accurate unless a large number of iterations are carried out.
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Algorithm 1: Computing SVs for Game 1

Input: Unweighted graph G(V,E)
Output: SVs of all nodes in V (G) for game g1
foreach v ∈ V (G) do

ShapleyValue[v] = 1
1+degG(v) ;

foreach u ∈ NG(v) do
ShapleyValue[v] += 1

1+degG(u) ;
end

end
return ShapleyValue;

It is possible to derive some intuition from the
above formula. If a node has a high degree, the
number of terms in its SV summation above will
also be high. But the terms themselves would be in-
versely related to the degree of neighboring nodes.
This gives the intuition that a node will have high
centrality not only when its degree is high, but also
whenever its degree tends to be higher in compari-
son to the degree of its neighboring nodes. In other
words, power comes from being connected to those
who are powerless, a fact that is well-recognized
[15] by the centrality literature.

3.2 Game 2: ν2(C) = #agents with at-least k neighbors in C

We now consider a more general game formulation for an unweighted graph G(V,E), where the value of
a coalition includes the number of agents who are either in the coalition or are adjacent to at least k
agents who are in the coalition. Formally, we consider game g2 characterised by ν2 : 2V (G) → R, where

ν2(C) =

{
0 if C = ∅
|{v : v ∈ C (or) |NG(v) ∩ C| ≥ k}| else

Note that this game reduces to game g1 for k = 1.
The motivation for this generalization is that in many real-life networks, the value of a coalition is
interpreted as the number of agents who can be “influenced” by the coalition. For instance, in a viral
marketing or innovation diffusion analysis [16], it is usually assumed that an agent will “be influenced”
only if atleast k of his neighbors have already been convinced, which suggests such a game formulation.
Adopting notation from the previous subsection, we again ask: what is the necessary and sufficient
condition for node vi to marginally contribute node vj ∈ NG(vi) ∪ {vi} to the value of the coalition Ci?
Clearly, if degG(vj) < k, we have E[Bvi,vj

] = δ(vi, vj), i.e, E[Bvi,vj
] = 1 for vi = vj and 0 otherwise.

For degG(nj) ≥ k, we split the argument into two cases. If vj 6= vi, the condition for marginal contribution
is that exactly (k − 1) neighbors of vj already belong to Ci and vj /∈ Ci. On the other hand, if vj = vi,
marginal contribution happens if and only if Ci originally consisted of at most (k − 1) neighbors of vj .
So for degG(vj) ≥ k and vj 6= vi, we have

E[Bni,nj
] =

(
degG(vj)− 1

k − 1

)
(k − 1)!(1 + degG(vj)− k)!

(1 + degG(vj))!
=

1 + degG(vj)− k
degG(vj)(1 + degG(vj))

And for degG(vi) ≥ k and vj = vi, we have

E[Bvi,vi
] =

k

1 + degG(vi)
As before, the SVs are given by substituting
the above formulas into:

SVg2(vi) =
∑

vj∈NG(vi)∪{vi}

E[Bvi,vj
]

Although this game is a generalization of
game g1, it can still be solved to obtain the
SVs of all nodes in O(V + E) time, as for-
malised by Algorithm 2.

Algorithm 2: Computing SVs for Game 2

Input: Unweighted graph G(V,E), positive integer k
Output: SVs of all nodes in V (G) for game g2
foreach v ∈ V (G) do

ShapleyValue[v] = min(1, k
1+degG(v) );

foreach u ∈ NG(v) do
ShapleyValue[v] += max(0, degG(u)−k+1

degG(u)(1+degG(u)) );
end

end
return ShapleyValue;

An even more general formulation of the game is possible by allowing k to be a function of the agent, i.e,
each node vi ∈ V (G) is assigned its own unique attribute k(vi). This translates to an application of the
form: agent i is convinced if and only if atleast ki of his neighbors are convinced, which is a frequently
used model in the literature [16].
The above proof does not use the fact that k is constant across all nodes. So this generalized formulation
can be solved by a simple modification to the original SV expression:

SV (vi) =
k(vi)

1 + degG(vi)
+

∑
vj∈NG(vi)

1 + degG(vj)− k(vj)
degG(vj)(1 + degG(vj))

The above equation (which is also implementable in O(V + E) time) assumes that k(vi) ≤ 1 + degG(vi)
for all nodes vi. This condition can be assumed without loss of generality because all cases can still be
modeled (we set k(vi) = 1 + degG(vi) for the extreme case where node vi is never convinced no matter
how many of its neighbors are already convinced).
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3.3 Game 3: ν3(C) = #agents at-most dcutoff away

Hitherto, our games have been confined to unweighted networks. But in many applications, it is necessary
to model real world networks as weighted graphs. For example, in a co-authorship network, each edge is
often assigned a weight proportional to the number of joint publications the corresponding authors have
produced [17].
This subsection extends the game g1 to the case of weighted networks. Whereas game g1 equates ν(C) to
the number of nodes located within one hop of some node in C, our new formulation in this subsection
equates ν(C) to the number of nodes located within a distance dcutoff of some node in C. Here, distance
between two nodes is measured as the length of the shortest path between the nodes in the given weighted
graph G(V,E,W ), where W : E → R+ is the weight function.
Formally, we define the game g3, where for each coalition C ⊆ V (G),

ν3(C) =

{
0 if C = ∅
size({vi : ∃vj ∈ C | distance(vi, vj) ≤ dcutoff}) else

We shall now show that even this highly general centrality game g3 is amenable to analysis which yields
an exact formula for SVs. However, in this case the algorithm for implementing the formula is not linear
in the size of the network, but has O(V E + V 2log(V )) complexity.
Before deriving the exact SV formula, we introduce some extra notation. Define the extended neighborhood
NG(vj , dcutoff) = {vk 6= vj : distance(vk, vj) ≤ dcutoff}, i.e, the set of all nodes whose distance from vj is
at most dcutoff. Denote the size of NG(vj , dcutoff) by degG(vj , dcutoff).
With this notation, the necessary and sufficient condition for node vi to marginally contribute node vj

to the value of coalition Ci is: distance(vi, vj) ≤ dcutoff and distance(vj , vk) > dcutoff ∀vk ∈ Ci. That is,
neither vj nor any node in its extended neighborhood should be present in Ci. But from the discussion
of previous subsections, we know that the probability of this event is exactly 1

1+degG(vj ,dcutoff) . Therefore,
the exact formula for SV of node vi in game g3 is:

SVg3(vi) =
∑

vj∈{vi}∪NG(vi,dcutoff)

1
1 + degG(vj , dcutoff)

Algorithm 3: Computing SVs for Game 3

Input: Weighted graph G(V,E,W ), dcutoff > 0
Output: SVs of all nodes in G for game g3
foreach v ∈ V (G) do

DistanceVector D = Dijkstra(v,G);
extNeighbors(v) = ∅; extDegree(v) = 0;
foreach u ∈ V (G) such that u 6= v do

if D(u) ≤ dcutoff then
extNeighbors(v).push(u);
extDegree(v)++;

end
end

end
foreach v ∈ V (G) do

ShapleyValue[v] = 1
1+extDegree(v) ;

foreach u ∈ extNeighbors(v) do
ShapleyValue[v] += 1

1+extDegree(u) ;
end

end
return ShapleyValue;

Algorithm 3 works as follows: for each node v
in the network G(V,E), the extended neighbor-
good NG(v, dcutoff) and its size degG(v, dcutoff) are
first computed using Dijkstra’s algorithm in O(E+
V log(V )) time [18]. The results are then used to di-
rectly implement the above equation, which takes
maximum time O(V 2). In practice this step runs
much faster because the worst case situation only
occurs when every node is reachable from every
other node within dcutoff. Overall the complexity is
O(V E + V 2log(V )).

We make one final observation: that the above proof
does not depend on dcutoff being constant across all
nodes. Indeed, each node vi ∈ V (G) may be as-
signed its own unique value dcutoff(vi), where ν(C)
would be the number of agents vi who are within a
distance dcutoff(vi) from C. For this case, the above
proof gives:

SV (vi) =
∑

vj :distance(vi,vj)
≤dcutoff(vj)

1
1 + degG(vj , dcutoff(vj))

3.4 Game 4: ν4(C) =
∑

vi∈V (G) f(distance(vi, C))

This subsection further generalizes game g3, again taking motivation from real-life network problems. In
game g3, all agents at distances dagent ≤ dcutoff contributed equally to the value of a coalition. However,
this assumption may not always hold true because in some applications, we intuitively expect agents
closer to a coalition to contribute more to its value. For instance, we expect a Facebook user to exert
more influence over his immediate circle of friends than over “friends of friends”, even though both may
satisfy the dcutoff criterion. Similarly, we expect a virus-affected computer to infect a neighboring computer
more quickly than a computer two hops away.
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In general, we expect that an agent at distance d from a coalition would contribute f(d) to its value,
where f(.) is a positive valued decreasing function of its argument. More formally, we define the game g4
where the value of a coalition C is given by:

ν4(C) =

{
0 if C = ∅∑

vi∈V (G) f(d(vi, C)) else

where d(vi, C) is the minimum distance min{distance(vi, vj)|vj ∈ C}.
The key question to ask is: what is the expected value of the marginal contribution of vi through node
vj 6= vi to the value of coalition Ci? Let this marginal contribution be denoted MC(vi, vj). Clearly:

MC(vi, vj) =

{
0 if distance(vi, vj) ≥ d(vj , Ci)
f(distance(vi, vj))− f(d(vj , Ci)) else

Let Dvj
= {d1, d2...d|V |−1} be the distances of node vj from all other nodes in the network, sorted in

increasing order. Let the nodes corresponding to these distances be {w1, w2...w|V |−1} respectively. Let
kij + 1 be the number of nodes (out of these |V | − 1) whose distances to vj are ≤ distance(vi, vj). Let
wkij+1 = vi (i.e, among all nodes that have the same distance from vj as vi, vi is placed last in the
increasing order).
We use literal wi to mean wi ∈ Ci and the literal
wi to mean wi /∈ Ci. Define a sequence of boolean
variables pk = vj ∧ w1 ∧ w2 ∧ ... ∧ wk for each
0 ≤ k ≤ |V | − 1. Finally denote expressions of the
form MC(vi, vj |F ) to mean the marginal contribu-
tion of vi to Ci through vj given that the coalition
Ci satisfies the boolean expression F .

MC(vi, vj |pkij+1 ∧ wkij+2) = f(dkij+1)− f(dkij+2)

MC(vi, vj |pkij+2 ∧ wkij+3) = f(dkij+1)− f(dkij+3)
...

...
...

MC(vi, vj |p|V |−2 ∧ w|V |−1) = f(dkij+1)− f(d|V |−1)

MC(vi, vj |p|V |−1) = f(dkij+1)

With this notation, we obtain expressions for MC(vi, vj) by splitting over the above mutually exclusive
and exhaustive (i.e, covering all possible non-zero marginal contributions) cases.
The probabilities Pr(pk ∧ wk+1) are found by elementary combinatorics which gives:

Pr(pk ∧ wk+1) =
k!

(k + 2)!
=

1
(k + 1)(k + 2)

∀ 1 + kij ≤ k ≤ |V | − 2

Using the MC(vi, vj) equations and the probabilities Pr(pk ∧ wk+1):

E[MC(vi, vj)] =

 |V |−2∑
k=1+kij

f(distance(vi, vj))− f(dk+1)
(k + 1)(k + 2)

+
f(distance(vi, vj))

|V |

=
f(distance(vi, vj))

kij + 2
−
|V |−2∑

k=kij+1

f(dk+1)
(k + 1)(k + 2)

Algorithm 4: Computing SVs for Game 4

Input: Weighted graph G(V,E,W ), function f : R+ → R+

Output: SVs of all nodes in G for game g4
Initialise: ∀v ∈ V (G) set ShapleyValue[v] = 0;
foreach v ∈ V (G) do

[Distances D, Nodes w] = Dijkstra(v,G);
sum = 0; index = |V|-1; prevDistance = -1, prevSV = -1;
while index > 0 do

if D(index) == prevDistance then
currSV = prevSV;

else
currSV = f(D(index))

1+index − sum;
end
ShapleyValue[w(index)] += currSV;
sum += f(D(index))

index(1+index) ;
prevDistance = D(index), prevSV = currSV;
index--;

end
ShapleyValue[v] += f(0) − sum;

end
return ShapleyValue;

For vi = vj , a similar analysis produces:

E[MC(vi, vi)] = f(0)−
|V |−2∑
k=0

f(dk+1)
(k + 1)(k + 2)

Finally the exact SVs are given by:

SVg4(vi) =
∑

vj∈V (G)

E[MC(vi, vj)]

Algorithm 4 implements the above formulas.
For each vertex v, a vector of distances to ev-
ery other vertex is first computed using Dijk-
stra’s algorithm [18]. This yields a vector Dv

that is already sorted in increasing order. This
vector is then traversed in reverse, to compute
the backwards cumulative sum

∑ f(dk+1)
(k+1)(k+2) .

At each step of the backward traversal, the SV
of the appropriate node w is updated according
to the E[MC(w, v)] equation. After the traver-
sal, the SV of v itself is updated according to
the E[MC(v, v)] equation. This process is re-
peated for all nodes v so that at the end of the
algorithm, all SVs have been computed exactly
in O(V E + V 2log(V )) time.
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3.5 Game 5: ν5(C) = #agents with
∑

(weights inside C) ≥ Wcutoff(agent)

In this subsection, we generalize the game g2 for the case of weighted networks. Given a positive weighted
network G(V,E,W ) and a value Wcutoff(vi) for every node vi ∈ V (G), we first define W (vj , C) =∑

vi∈C W (vj , vi) for every coalition C, where W (vi, vj) is the weight of the edge between nodes vi and vj

(or 0 if there is no such edge). With this notation, we define the game g5 by the characteristic function:

ν5(C) =

{
0 if C = ∅
size({vi : vi ∈ C (or) W (vi, C) ≥Wcutoff(vi)}) else

The formulation above has applications in the analysis of information diffusion, adoption of innovations
etc. Indeed, many cascade models of such phenomena on weighted graphs have been proposed [19] [20] [21],
which work by assuming that an agent will change state from “inactive” to “active” if and only if the sum
of the weights to all active neighbors is at least equal to an agent-specific cutoff.
Although we have not been able to come up with an exact formula for SVs in this game, our analysis
yields an approximate formula which was found to be quite accurate in practice.
We observe that node vi marginally contributes node vj ∈ NG(vi) to the value of coalition Ci if and only
if vj /∈ Ci and Wcutoff(vj)−W (vi, vj) ≤W (vj , Ci) < Wcutoff(vj). Denote by Bvi,vj

the Bernoulli random
variable corresponding to this event.
Let NG(vj) = {vi, w1, w2...wdegG(vj)−1}. Let the weights of edges between vj and each of the nodes in
NG(vj) be Wj = {W (vi, vj),W1,W2...WdegG(vj)−1} in that order. Also, let αj be the sum of all the
weights in Wj and βj be the sum of the squares of all the weights in Wj .

Let kij be the number of nodes of NG(vj) that occur before vi in Ci. Let X
ij
t be the sum of a t-subset of

Wj \ {W (vi, vj)} drawn uniformly at random from the set of all such possible t-subsets. Let Y ij
m be the

event {kij = m ∧ vj /∈ Ci}. Then:

E[Bvi,vj ] =
degG(vj)−1∑

m=0

Pr(Y ij
m ) Pr{Xij

m ∈ [Wcutoff(vj)−W (vi, vj),Wcutoff(vj))}

where Pr(Y ij
m ) can be analytically evaluated to be

Pr(Y ij
m ) =

(
degG(vj)− 1

m

)
m! (degG(vj)−m)!

(degG(vj) + 1)!
=

degG(vj)−m
degG(vj)(degG(vj) + 1)

Evaluating Pr{Xij
m ∈ [Wcutoff(vj)−W (vi, vj),Wcutoff(vj))} is much more difficult because the distribution

of Xij
m is a complicated function of the degG(vj)−1 numbers in Wj \{W (vi, vj)}. However, we can obtain

analytical expressions for the mean µ(Xij
m) and variance σ2(Xij

m). These are given by:

µ(Xij
m) =

m

degG(vj)− 1
(αj −W (vi, vj))

σ2(Xij
m) =

m(degG(vj)− 1−m)
(degG(vj)− 1)(degG(vj)− 2)

(βj −W (vi, vj)2 −
(αj −W (vi, vj))2

degG(vj)− 1
)

Knowing only the mean and variance (not the exact distribution) of Xij
m, we propose the approximation:

Xij
m ∼ N (µ(Xij

m), σ2(Xij
m))

where N (µ, σ2) denotes the Gaussian random variable with mean µ and variance σ2. This approximation
is similar to the randomised approach that has been proposed and tested in [22].
With this approximation, we have Zij

m = Pr{Xij
m ∈ [Wcutoff(vj)−W (vi, vj),Wcutoff(vj))} given by

Zij
m ≈

1
2

[
erf

(
Wcutoff(vj)− µ(Xij

m)
√

2σ(Xij
m)

)
− erf

(
Wcutoff(vj)−W (vi, vj)− µ(Xij

m)
√

2σ(Xij
m)

)]

This allows us to write: E[Bvi,vj
] =

degG(vj)−1∑
m=0

degG(vj)−m
degG(vj)(degG(vj) + 1)

Zij
m

The above equations are true only for vj 6= vi. For vj = vi we have:

E[Bvi,vi
] ≈ 1

1 + degG(vi)

degG(vi)∑
m=0

Pr{N (µ(Xii
m), σ2(Xii

m)) < Wcutoff(vi)}

where µ(Xii
m) =

m

degG(vi)
αi and σ2(Xii

m) =
m (degG(vi)−m)

degG(vi) (degG(vi)− 1)
(βi −

α2
i

degG(vi)
)

Finally the SV of node vi is given by
∑

vj∈{vi}∪NG(vi)
E[Bvi,vj

].
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Algorithm 5 implements an O(V +
∑

vi∈V (G) deg
2
G(vi)) ≤ O(V + E2) algorithm to compute SVs of all

agents in game g5 using the above approximation.
We make one final observation: that the approximation of the discrete random variableXij

m as a continuous
Gaussian random variable is good only when degG(vj) is large. For small degG(vj), one might as well use
the brute force computation to determine E[Bvi,vj ] in O(2degG(vj)−1) time.

4 Related Work

Three related bodies of literature can be distinguished, (a) game theory literature on the SV for graph-
based games, (b) network analysis literature on centrality measures, and (c) computer science literature
on concise representation of coalitional games and the complexity of SV computation.
Game theory literature: Myerson [23] introduced graph-based games in which each allowable (or feasible)
coalition is induced by a subgraph of a graph, and for these games he redefined the concept of SV. In a
number of follow-up works, the SV was studied for games in which the set of feasible coalitions was based
on mathematical structures such as distributive lattices [24], convex geometries [25], antimatroids [26]
and augmenting systems [27].

Algorithm 5: Computing SVs for Game 5

Input:
� Weighted network G(V,E,W )
� Cutoffs Wcutoff(vi) for each vi ∈ V (G)

Output: SVs of all nodes in G for game g6
foreach vi ∈ V (G) do

compute and store αi and βi;
end
foreach vi ∈ V (G) do

ShapleyValue[vi] = 0;
foreach m in 0 to degG(vi) do

compute µ = µ(Xii
m), σ = σ(Xii

m);
compute p = Pr{N (µ, σ2) < Wcutoff(vi)};
ShapleyValue[vi] += p

1+degG(vi)
;

end
foreach vj ∈ NG(vi) do

p = 0;
foreach m in 0 to degG(vj)− 1 do

compute µ = µ(Xij
m), σ = σ(Xij

m);
compute z = Zij

m;
p += z

degG(vj)−m
degG(vj)(degG(vj)+1) ;

end
ShapleyValue[vi] += p;

end
end
return ShapleyValue;

Network analysis literature: Freeman [28] formalised
the notion of centrality in network analysis, by pre-
senting three different conventional centrality mea-
sures: degree, closeness and betweenness. Many au-
thors have since worked on (a) developing new cen-
trality measures for specific applications [29–31], and
(b) developing algorithms for efficient centrality com-
putation [32,33].

Gòmez et al. [2] combined Myerson’s idea of graph-
restricted games with the concept of centrality from
network analysis to propose new SV-based network
centrality measures. Suri and Narahari [1] proposed
a new SV-based centrality measure which was fun-
damentally different from the existing literature be-
cause it permitted all coalitions to be feasible. They
have also explored the application of such centrality
measures to determine the most important people in
a social network [10].

Computer science literature: While the game the-
ory literature focused on mathematical properties of
games, the computer science literature was primarily
concerned with algorithmic and computational as-
pects. Hence a major emphasis was placed on devel-
oping concise representations for coalitional games.

Such representations fall into two categories [34]:

1. Those which give the characteristic function a spe-
cific interpretation in terms of combinatorial struc-
tures such as graphs. This is, for instance, the appr-

roach adopted in [3,34,35] and its advantage is that the resulting representation is always guaranteed to
be succinct. However, the disadvantage is that it is not always fully expressive.
2. Those which try to find a succinct but still fully expressive representation (see, for instance, [6,36,37]).
These representations are more general (in that they completely capture all coalitional games of interest),
although they are not always guaranteed to be succinct.
The computational complexity of the SV for succinctly representable games has also been considered
by the computer science literature. Unfortunately, SV computation has been proved NP-Hard (or even
worse, #P-Complete) for many domains, including weighted voting games [3], threshold network flow
games [5] and minimum spanning tree games [4].
Fortunately, some positive results have also been discovered. The most prominent among these is due to
Ieong and Shoham [6], who developed a representation consisting of a finite set of logical rules of the form
Boolean Expression → Real Number, with agents as the atomic boolean variables. In this representation,
the value of a coalition is equal to the sum of the right sides of those rules whose left sides are satisfied by
the coalition. The rules have an interesting game-theoretic interpretation, as each rule directly specifies
an incremental marginal contribution made by agents featured in that rule. This representation, called
marginal contribution networks (MC-Nets) is (i) fully expressive (i.e, it can be used to model any game),
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(ii) exponentially more concise for some games, and most importantly, (iii) allows for computing the
SV in time linear in the size of the representation, provided the boolean expressions in all rules are
conjunctions of (either positive or negative) atomic literals. Elkind et al. [37] developed extensions to more
sophisticated (read-once) boolean expressions while Michalak et al. [38, 39] developed generalizations to
coalitional games with externalities.
While MC-Nets offer a fully-expressive representation that works for arbitrary coalitional games, the
question of whether SV computation can be speeded up (to polynomial time) by restriction to specific
(not necessarily fully expressive) classes of games or real-life applications has received comparatively little
attention. The one specific class of games/applications that has been investigated in detail is weighted
voting, for which both approximate (but strictly polynomial) [22] and exact (but pseudo-polynomial)
algorithms [40, 41] have been proposed. Aside from MC-Nets (and extensions thereof) and weighted
voting games, the only other positive results known for SV computation are the restricted cases (of more
general game classes) that can be solved in polynomial time, to which many papers [5,22] draw attention.

5 Summary and conclusions

Game Graph ν(C) Complexity
g1 UW ≤ 1 degree away V + E
g2 UW ≥ k neighbors ∈ C V + E
g3 W ≤ dcutoff away V E + V 2logV
g4 W

∑
vi
f(d(vi, C)) V E + V 2logV

g5 W |{vi : W (vi, C) ≥Wcutoff(vi)}| V + E2

Second Column =⇒ {W = weighted, UW = unweighted}

The table to the left presents a brief summary
of the SV algorithms discussed in this paper.
These algorithms enable efficient centrality
computation for many real-world applications
including the analysis of social networks, in-
formation diffusion, spread of epidemics, bio-
logical and biochemical networks, viral mar-
keting and internet/web phenomena.

The conclusion is that many centrality-related co-operative games of interest played on real-life networks
can in fact be solved for SVs analytically. The resulting algorithms are not only error-free but also run
in polynomial time and in practice, much faster than Monte-Carlo methods. Approximate closed-form
expressions and algorithms can also be constructed for some classes of games played on weighted networks.
Simulation results (please see appendix) show that these approximations are quite acceptable.
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Appendix A: Simulation Results

This section presents results obtained by simulating games g1 to g5 on networks that have been well-
studied in the literature.
For games g1−g3 (which can be played on unweighted networks4), we present simulations on an undirected,
unweighted network representing the topology of the Western States Power Grid. This network (which
has 4940 nodes and 6594 edges) has been studied in many contexts before (for example see [42]) and has
been made freely available on the web. For games g3−g5 (played on weighted networks), we have used the
network of astrophysics collaborations between Jan 1, 1995 and December 31, 1999. This network (which
has 16705 nodes and 121251 edges) is also freely available on the web and has been used in previous
studies like [17].
The results for games g1 to g4 were generated as follows.

1. First we decide which game to play on the network and the parameters required if any.
2. Then we use exact algorithms proposed in this paper to solve for SVs. The runtime for the exact

algorithm is denoted texact.
3. We now run Monte-Carlo simulations of the game. After each Monte-Carlo run, we compare the

Monte-Carlo SVs with the true SVs. If the error is more than a tolerance level, we increase the
number of iterations and repeat until the error is within tolerance limits. We denote by minIter the
minimum number of iterations required for Monte-Carlo to yield results within the required tolerance.
The runtime for minIter iterations is denoted tMC.
Implementation note: The tolerance criterion we have used here is that for each node, the SV computed
by Monte-Carlo should be within 10% of the exact SV computed in Step 2. The initial number of
iterations was fixed at 100 for all simulations. All simulations were carried out in Java.

4. We present tMC
texact

as a measure of the speedup offered by our proposed algorithm over Monte-Carlo.

Table 1. Simulation results for games g1 to g4

Game Parameters minIter MC Error texact tMC Speedup
g1 − 2843 9.87% 7.97 ms 2.72 s 341
g2 k = 2 1625 8.55% 7.38 ms 1.6 s 217

g2 ki = degi
2

2233 8.75% 7.76 ms 2.14 s 276
g2 ki = 3

4
degi 1406 9.79% 7.89 ms 1.41 s 178

g3 kcutoff = 2 14950 7.56% 10.96 s 3.03 min 16.5
g3 kcutoff = 3 31027 8.57% 12.24 s 6.53 min 32

g3 dcutoff =
davg

8
> 100000 11.35% 5.3 min 59.22 min 11

g3 dcutoff =
davg

4
> 100000 15.28% 6.2 min 97.11 min 15.6

g4 f(d) = 1
1+d

12480 9.89% 44 sec 4.55 hrs 372

g4 f(d) = 1
1+d2 15340 9.64% 45.1 sec 5.51 hrs 423

g4 f(d) = e−d > 20000 16.64% 46.3 sec 7.12 hrs 553.6

davg is the average distance of a node from all other reachable nodes in the network

Table 1 shows that the algorithms proposed in this paper deliver much better performance than Monte-
Carlo simulation for both networks. Moreover, even with a generous 10% margin for error, we find that
minIter varies widely for different games. In some cases (like game g3), minIter was not reached even
after 100000 Monte-Carlo iterations.

Table 2. Game g5 - Approximation errors for small networks

Graph Wcutoff = 1
4
α Wcutoff = 1

2
α Wcutoff = 2

3
α Wcutoff = 3

4
α Wcutoff = 4

5
α

K5 1.13% 1.47% 0.91% 1.85% 2.46%
K6 1.37% 1.82% 2.14% 2.42% 2.25%
K7 2.35% 2.49% 3.17% 2.83% 2.61%
K8 4.11% 1.82% 3.14% 3.50% 2.86%
K9 4.19% 4.27% 2.18% 2.69% 4.42%
K10 6.14% 2.48% 2.22% 1.91% 2.54%
K11 2.47% 2.54% 1.03% 1.52% 0.95%
K12 2.77% 1.62% 1.48% 1.53% 1.07%

For game g5 we performed two levels of simulation: one for small networks and one for large networks.

1. For small networks, we first compute exact SVs using the exponential algorithm. We then use our
approximate algorithm for computing SVs. Hence we determine the error in our approximations.

4 Replacing the distance threshold dcutoff with a hop-threshold kcutoff enables the game g3 to be played on an
unweighted network
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Implementation note: The small networks we have used are randomly weighted complete graphs from
K5 to K12. The cutoff for each node Wcutoff(vi) is assigned as a fraction of α(vi) (please see the
analysis of game g5 for definitions).

2. For large networks, we run a fixed number (here 10000) of Monte-Carlo iterations (runtime tMC). We
also separately run our proposed algorithm (runtime tapprox) and present the speedups obtained.

We see from Table 2 that the approximation error in our proposed algorithm is quite well-contained for
small networks. In large networks the error may be higher but we still believe it will lie within practical
tolerance bounds, especially if we adopt the mixed strategy that uses the approximation only for large
degree vertices (as discussed in Section 3).

Table 3. Game g5 - Speedups on large networks

Parameters tapprox tMC Speedup

Wcutoff = 1
4
α 4 mins 2.2 hours 33

Wcutoff = 1
2
α 4.2 mins 2.2 hours 31.4

Wcutoff = 2
3
α 4.4 mins 2.2 hours 30

Wcutoff = 3
4
α 5 mins 2.2 hours 26.4

Wcutoff = 4
5
α 6.1 mins 2.2 hours 21.6

Table 3 shows that speedups obtained for the proposed algorithm are quite significant. Moreover, the
earlier results suggest that the proposed algorithm is likely to be more accurate than the Monte-Carlo
simulation.


