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Abstract

Positional analysis is considered an important tool in
the analysis of social networks. It involves partition-
ing of the set of actors into subsets such that actors
in a subset are similar in their structural relationships
with other actors. Traditional methods of positional
analysis such as structural equivalence, regular equiv-
alence, and equitable partitions are either too strict or
too generic. For real world large graphs, most of these
methods result into almost trivial partitions. We pro-
pose a useful relaxation to the concept of equitable
partition called an epsilon equitable partition. A vari-
ant of epsilon equitable partition called maximal ep-
silon equitable partition is also proposed and formu-
lated as an optimization problem. A fast algorithm
for computing epsilon equitable partitions is proposed.
We also present the results of performing positional
analysis on a number of networks and demonstrate em-
pirically that positional analysis with our notion gives
raise to non-trivial and meaningful partitions. Along
with the static network analysis with respect to po-
sitions, we study the impact of positional analysis on
the evolution of networks. Our results show that po-
sitional analysis indeed plays an important role in the
evolution of networks.

1 Introduction

Positional analysis, or role analysis, is one of the im-
portant methods for analyzing the structure of a social
network. The assignment of positions to actors is done
based on their connectivity structure. Actors similarly
embedded in the network are given the same position.
The objective is to assign meaningful positions to the
actors such that the structural and behavioural prop-
erties of the network can be studied with respect to the
positions. The main challenge in solving a positional
analysis problem is to define an appropriate notion of
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position which is easy to compute and which results in
a meaningful interpretation.

It is natural for human beings to extract useful ab-
stractions from the data about entities and their rela-
tionships to each other. For example, from the data
about nations and their trading relationships with each
other, we naturally tend to look for nations which play
the roles of key importers, exporters etc. Thus, ex-
tracting such patterns from a network helps the anal-
ysis of the structure of the network at an abstract
level. Assignments of positions to actors have proven
to be useful for analysis of different types of networks
[1, 2, 3]. It is conjectured that position plays an impor-
tant role in the evolution of networks as actors belong-
ing to a position tend to evolve similarly [4]. Positional
analysis can also be treated as graph clustering and
hence can have similar applications. But it is different
from the traditional clustering approaches in that it
considers the network connections and their properties
in grouping the actors together. The applications of
positional analysis also include graph summarization
and enhancing graph searchability.

However, mining such roles from the network data
though easy for humans, is difficult to automate. Re-
search in the area of positional analysis has shown that
coming up with useful abstractions of a network is
a non-trivial problem. Various definitions of a posi-
tion have been suggested but as discussed in the next
section, the existing notions are either too strict or
too generic to be useful in practice. Also, the posi-
tional analysis work so far mainly deals with smaller
graphs and we observed that the usability of the ex-
isting methods for large complex networks is severely
limited.

We propose a relaxation to an existing positional
analysis method which leads to more useful abstrac-
tions. This relaxed formulation is based on the no-
tion of �-equitable partition and the corresponding op-
timized version,maximal �-equitable partition. We also
give a heuristic based algorithm to compute the par-
tition of a graph based on our notion of position. We
show that our method can be applied to real world



large and complex graphs and explain the meaningful
partitions of such graphs in the results section.

The partitioning of a graph using positional anal-
ysis is a relatively unexplored area compared to the
partitioning using dense communities. The difference
in the two approaches is that the communities tend to
divide the actors such that actors in a subgroup are
densely connected to each other [5, 6, 7]. On the other
hand, positional analysis tries to find actors similarly
embedded in the network. Actors in the same posi-
tion can be far from each other and may not even be
reachable from each other but they are similar in terms
of their connectivity in the network. Such partitions
help in the structural analysis of graphs. For example,
actors in a particular position could all have high cen-
trality, and vice versa. Also, analyzing the behaviour
of the positions can find application in problems like
anomaly detection and churn prediction. We believe
that our work is the first one which tries to apply po-
sitional analysis to real world large complex networks
and their evolution.

The rest of the paper is organized as follows: We
present the background on the existing methods of po-
sitional analysis in Section 2. We introduce our def-
inition of maximal � partition and discuss the advan-
tages and the algorithm proposed in Section 3. The
evaluation of our method on a number of datasets is
given in Section 4. Finally, we conclude and discuss
the planned future work in Section 5.

2 Existing Methods

To understand the concept of positional analysis, let
us consider the example network given in Fig. 1.
It is a network showing the relationships between a
teacher (node A), three teaching assistants (nodes
B, C, and D) working under A and the students
related to the teaching assistants (TAs). Performing
positional analysis on this network would give us a
partition of the nodes such that each block of the
partition represents a position. Intuitively, the first
level of abstraction suggests positions like teacher,
TA, student. We explain some of the existing methods
and their limitations with the help of this example
and we also explain the result of our method on this
network in section 4.

Structural equivalence. Two actors are structurally
equivalent if they have identical ties to and from all
other actors in the network [8]. Though this notion of
position is widely used for small networks, it is a very
strict definition and hence we rarely find structurally
equivalent actors in real world networks.

Automorphism. Given a graph G = <V, E>,
an automorphism is a bijective function f from V to
V such that (a, b) ∈ E if and only if (f(a), f(b)) ∈ E.

Automorphism is an isomorphism from a graph to
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Figure 1: Example 1: A teachers - TAs - students
network

itself. The orbits of an automorphism group form a
partition of the graph and each block of this partition
indicates a position [10]. The problem of finding
all automorphically equivalent vertices is known to
be computationally hard. However, efficient graph
automorphism solvers like NAutY - No Automor-
phisms, Yes? [9] based on McKay [10] exist which are
widely used for solving this problem. Automorphism
is also a strict notion for position since it is a bijective
function. It fails to characterize the real world notion
of similarity as real world networks are quite irregular
and existence of symmetries is very rare in such
networks.

Regular equivalence. A regular partition is a
partition of nodes into classes such that nodes of the
same class are surrounded by the same classes of
nodes [11]. It is same as the notion of bisimulation
from computer science [12].

Definition Given a graph G = <V, E> and ≡, an
equivalence relation on V, ≡ is a regular equivalence if
and only if for all a, b, c ∈ V, a ≡ b implies:

1. (a, c) ∈ E implies there exists d ∈ V such that (b,
d) ∈ E and d ≡ c and

2. (c, a) ∈ E implies there exists d ∈ V such that (d,
b) ∈ E and d ≡ c.

A graph may contain several regular equivalences
and it is shown that the set of regular equivalences
forms a lattice [13]. The supremum element of the
lattice is known as the maximal regular equivalence
or MRE. For undirected graphs with no isolates, the
MRE is trivial and results in a complete partition
which is a partition with one block containing all the
nodes.

For the directed graph of Fig. 1, the maximal
regular partition is given in Fig. 2. This result seems
quite reasonable as the first level of abstraction, but
in practice, this may not relate much to the structural
properties since the degree of the nodes is completely
ignored while forming the partition. In the given
network, say, a TA having a large number of students
under him/her would have different structural and be-
havioural properties than a TA having a small number
of students. But maximal regular partition would still
put them in the same block. As mentioned earlier, the
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Figure 2: Regular partition of example 1. Positions
are indicated by colors, thus the regular partition is
{{A}, {B, C, D}, {E, F, G, H, I, J, K, L, M, O, P, Q,
R, S, T, U}}

undirected version of this graph has a trivial regular
partition. When the maximal regular equivalence is
trivial, deciding on what element of the regular lattice
should be chosen as a final regular partition is not
obvious. Generation of all the elements of the lattice
is computationally expensive. Two algorithms REGE
and CATREGE [15] define a measure of regular
equivalence between two actors but the partitions
produced using these algorithms can not be char-
acterized in terms of any graph theoretic properties
and the similarity measure lacks a theoretical support.

Equitable partition. A partition Π is said to be
equitable if,

∀Ci ∈ Π, v1, v2 ∈ Ci implies that
d(v1, Cj) = d(v2, Cj), ∀Cj ∈ Π, where

d(vi, Cj) = sizeof{ vk ∣ (vi, vk) ∈ E and vk ∈ Cj }

Equitable partition is a relaxation of automorphism
since the partitions formed by automorphism are al-
ways equitable but the reverse is not true. Polynomial
time algorithms exist for finding the coarsest equitable
partition of a graph [10, 16]. It can be observed that
equitable partition is a regular partition with an addi-
tional constraint that the number of connections to the
neighbouring positions should be equal for equivalent
nodes. This constraint is too strict for complex large
graphs and hence results in almost trivial partitions
(with most of the blocks having small sizes). For ex-
ample, for the undirected version of the graph of Fig.
1 (obtained by ignoring the directions), the coarsest
equitable partition is given in Fig. 3. Nodes C and
D are TAs under the same teacher, handling almost
the same number of students but equitable partition
put them in different blocks just because their degrees
differ by one.

3 Relaxed Equitable Partitions

3.1 Problems Addressed

In previous sections, we have seen the importance of
meaningful positional analysis and problems with the
current methods of positional analysis. With increas-
ing network size, it is even more important to define a
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Figure 3: equitable partition of undirected version of
example 1. Positions are indicated by colors, thus the
equitable partition is {{A}, {B}, {C}, {D}, {E, F, G,
H, I, J, K, L}, {M, N, O, P, Q}, {R, S, T, U}}

notion of position which results in a meaningful par-
titioning of large graphs. As discussed, analysis of
complex social networks using structural equivalence
and automorphism tends to result into trivial parti-
tions. For undirected graphs, even regular equivalence
gives a trivial partition. Considering regular equiva-
lence and equitable partition, we observe three major
limitations:

1. Regular equivalence does not take the number of
connections to other positions into account. For
example, node a1 having 10 connections to posi-
tion p1 is considered equivalent to node a2 having
just 1 connection to position p1. This may not be
suitable for most of the analysis problems.

2. Regular equivalence, however, is strict when com-
paring two actors based on the positions in the
neighbourhood. For example, if node a1 has a
single connection to position p1 and node a2 does
not have any connection to position p1, a1 and a2
are not equivalent according to the definition, but
again, for complex networks, this restriction leads
to trivial partitions.

3. Definition of equitable partition rectifies the lim-
itation 1 listed above, but it imposes a strict con-
dition that the number of connections to other
positions should be exactly equal for two nodes
to be equivalent. For example, if node a1 has
10 connections to position p1, the node a2 should
also have 10 connections to position p1 for it to
be equivalent to a1.

3.2 Maximal �-Equitable Partition

The proposed solution is a useful relaxation to the
definition of equitable partition with some added con-
straints. Before defining the term maximal �-equitable
partition, we define a few notations and terms as fol-
lows:

Definition Given a graph G = <V, E> and a parti-
tion Π = {C1, C2, ..., CK},

d(vi, Ck) = sizeof{ vj ∣ (vi, vj) ∈ E and vj ∈ Ck }



The term d(vi, Ck) is thus the number of vertices
in Ck which are adjacent to vi. We know that the
block Ck denotes a position and thus the d(vi, Ck) is
the number of connections actor vi has to the position
denoted by the block Ck.

Definition Given a graph G = <V, E> and a parti-
tion Π = {C1, C2, ..., CKΠ

}, slack of a node vi is defined
as,

slackΠi = ∣∣ 1
sizeof(Cvi

)−1

∑
vj∈Cvi

i∕=j (⃗�− ∣ d⃗i − d⃗j ∣

)∣∣, where

d⃗i = the degree vector of node vi such that dik =
d(vi,Ck), for k = 1, 2, ...,KΠ.

Cvi = the block to which node vi belongs

�⃗ = KΠ dimensional vector such that �k = �, for
k = 1, 2, ...,KΠ, where � is an integer greater than
zero.

∣∣ ∣∣ is the l1 norm of a vector (sum of the compo-
nents)

Slack of a node denotes how close it is to the other
nodes in the block. Large value of slack indicates
small within-block distance. We give a new definition
of partition such that each block indicates a position
as follows:

Definition Given a graph G = <V, E>, partition Π
= {C1, C2, ..., CKΠ

} is maximal �-equitable if,

1. ∀Ci ∈ Π, v1, v2 ∈ Ci implies that
∣ d(v1, Cj)− d(v2, Cj) ∣ <= �, ∀Cj ∈ Π

2. ∀Π′ satisfying condition 1,
(KΠ −

∑
vi
slackΠi ) ≤ (KΠ′ −

∑
vi
slackΠ

′

i ),

i = 1, 2, ..., ∣V∣

The definition can be explained as follows: The first
condition of the definition proposes a relaxation to the
strict condition of equitable partition. We are allowing
an error of � in the number of connections to positions
for two actors to be equivalent. For example, if � is 2
and node a1 has 10 connections to position p1 then it is
enough for node a2 to have more than 7 and less than
13 connections to position p1 for it to be equivalent to
a1. If Π is such that condition 1 alone holds, then Π
is an �-equitable partition.

The second condition of the definition is an opti-
mization condition which implies that the number of
blocks in the partition should be minimum and the
sum of the slacks of all the nodes should be maximum.
Thus we are looking for a coarsest partition satisfying
the � condition such that the sum of the within block
distance for all the blocks is minimum.

3.3 Advantages

1. The proposed relaxation is useful in large social
networks where not many actors are equitable.
Say, with � value of 2, in IMDB [17] graph, an
actor who has worked with 10 directors, 20 ac-
tresses would be equivalent to an actor who has
worked with 12 directors and 18 actresses which
is fine since the real world notion of position is
not that strict.

2. Also, the parameter � in the definition lets us tune
the amount of relaxation. The special case of the
definition is � value of 0 which corresponds to a
coarsest equitable partition.

3. It can be seen that the first condition indicates a
stricter version of regular equivalence with respect
to the number of connections to positions (as reg-
ular equivalence does not care about the number
of connections as long as there are some). It also
solves the problem of strictness of regular equiv-
alence, since a node a1 having no connections to
position p1 and node a2 having � connections to
position p1 can belong to the same block of the
maximal �-equitable partition. With an � value
of infinity and a condition that non-zero values
of d(vi, Ck) are not to be treated �-equal to zero
values, the definition results in a maximal regular
partition.

4. Maximal �-equitable partition is an intuitively ap-
pealing notion of equivalence. We can give a guar-
antee on the amount of error each block would
have in terms of the slack.

3.4 Computation Issues

It is known that clustering a set of data with a given
number of clusters to minimize the mean squared dis-
tance from each data point to its nearest center is an
NP-hard problem [18] and approximation algorithms
exist for the same. The proposed formulation of max-
imal �-equitable partition, intuitively, is harder than
those kinds of problems since we are not assuming the
value of K to be known. Roberts and Sheng [19] show
that the optimization approaches to regular equiva-
lence are NP-complete. Hence, based on the known
problems of similar kind, we can safely assume that
the problem of finding a maximal �-equitable partition
of a graph is hard.

The most naive solution to the problem is to ex-
haustively try all possible partitions and pick the one
which satisfies the proposed conditions. This approach
clearly leads to an exponential algorithm as the num-
ber of possible partitions is

∑n

k=1 k
n, n is the number

of nodes in the graph. Ideally, we should come up
with a polynomial time approximation algorithm with
a bounded approximation ratio. Currently, we propose



two approaches for obtaining the proposed partition
from a graph as follows:

1. Top-down approach: This approach starts with a
complete partition (a partition with a single block
containing all the nodes) and works iteratively to
split the existing blocks into two or more in each
iteration. We tried a number of greedy heuristics
with this approach two of which gave meaningful
and almost optimal partitions for small networks.
But they turned out to be computationally ex-
pensive to be applied to large graphs. We do not
report those methods here as the main objective
is to present a scalable method.

2. Bottom-up approach: This approach starts with
an equitable partition of the graph and iteratively
merges two or more blocks in each iteration. We
tried some greedy heuristics with this approach
too and we report the most efficient of them.

3.5 Our Algorithm

Algorithm 1 An efficient algorithm to find �-
equitable partition

1: Sort the input equitable partition according to as-
cending order of the degree of the blocks (degree
of the block of an equitable partition is same as
the degree of the member nodes of that block)

2: for i = 0 to � do
3: merge all the blocks having degree = i into a

single block and update the partition by deleting
the original blocks and by adding the new block
update the variable numBlocks according to the
resulting partition

4: end for

5: for each node of the graph do

6: calculate the degree vector d⃗i
7: end for

currentBlock = the first block in the ordered par-
tition having degree > �

8: for each block in the current partition do

9: check if it can be merged with currentBlock
without violating the � criterion, where � = �/2
if yes, merge it with currentBlock and update
the partition, numBlocks, and the degree vectors
else make the block as currentBlock and con-
tinue

10: end for

As mentioned before, we tried a number of heuris-
tic based algorithms for computation of maximal �-
equitable partition but most of them were computa-
tionally intensive. The algorithm explained in this
section aims at scalability and hence tries to follow
the bottom-up approach with minimum processing re-
quired to choose the candidates to merge. The algo-
rithm is a simple single iteration trying to merge the

blocks of the coarsest equitable partition of the graph.
The hierarchical approaches tried were expensive and
since the goal of this work is to demonstrate positional
analysis of large graphs, we present the simplest yet ef-
ficient algorithm.

A coarsest equitable partition of the given graph is
obtained using the tool NAutY [9]. Nauty finds equi-
table partition of a graph as the first step towards find-
ing its automorphisms [10]. It has an efficient imple-
mentation of an iterative algorithm to find the coarsest
equitable partition of a graph. The time complexity
of this algorithm is reported as O(n2 logn) where n is
the number of nodes in the graph.

The input to our algorithm is the original graph,
the coarsest equitable partition of the graph and a
value for �. The algorithm proposed tries to merge the
blocks of the equitable partition such that the merging
does not violate the � criterion defined by maximal
�-equitable partition. There are a few mathematical
observations which form the basis of the merging step
of the algorithm which are given as follows.

Observation 1: Merging the blocks of an equi-
table partition having same degree such that it is less
than � does not violate the � condition defined by
�-equitable partition. This mathematical property can
be proved as follows:

For all the elements with degree less than �, all the
components of the degree vector (as defined in the
algorithm) are less than �. It can be easily seen that
the difference of two numbers which are less than �
is never greater than �. This shows that the block
obtained by merging the elements with degree less
than � would never violate the � criterion. Since this
merging is to be performed on equitable partition, the
members of rest of the blocks have identical degree
vectors before merging and hence there is no violation
after merging.

Observation 2: Merging blocks according to
the � criterion with �1 = �/2 does not violate the �
condition for other blocks. It can be proved as follows:

Consider the partition {A, B, C} such that the
last block either corresponds to a block of the initial
equitable partition or is obtained by merging blocks
with �1 = �/2. Say, we merge the blocks A and B
with �1 = �/2. Before merging, the degree vectors of
any two arbitrary nodes c and d from block C were

d⃗c = (dc1, dc2, dc3)

d⃗d = (dd1, dd2, dd3)
where the positions 1, 2, and 3 correspond to blocks A,
B, and C respectively. We claim that, after merging
of blocks A and B, the block C would not violate the
� condition. To see this, lets write down the degree
vectors for node c and d after the merger in terms of
the quantities before the merger.

d⃗c = (dc1 + dc2, dc3)



d⃗d = (dd1 + dd2, dd3)
We want to show that ∣(dc1 + dc2) − (dd1 + dd2)∣ < �.
Since we said that the block C satisfies the � condition
with �1 = �/2,

∣dc1 − dd1∣ < �/2 (1)

∣dc2 − dd2∣ < �/2 (2)

Now, summing up the above two equations,

∣dc1 − dd1∣+ ∣dc2 − dd2∣ < � (3)

We know that for any two real numbers x and y, ∣x+
y∣ < ∣x∣+ ∣y∣, hence

∣dc1 − dd1 + dc2 − dd2∣ < � (4)

∣(dc1 + dc2)− (dd1 + dd2)∣ < � (5)

Hence the result. During any stage of the execution
of our algorithm, when two blocks are to be merged,
each block from the set of the rest of the blocks is ei-
ther same as one from the equitable partition or was
obtained by merging in some previous iteration using
the updated value of �. So even if the above discussion
considers only 3 blocks, since the blocks are indepen-
dent, it applies to any number of blocks. This suffices
to prove that the algorithm proposed finally results in
an �-equitable partition with the value of � given by
the user.

The algorithm based on these two observations is
given in Algorithm 1. The time complexity of the al-
gorithm is O(n3) where n is the number of nodes in
the graph. Step 1 of the algorithm takes O(n logn)
time for sorting. The for loop of line 2 takes O(n)
time. Calculation of degree vectors for all nodes for
the first time involves visiting all the edges twice and
hence takes O(n2) time. The for loop of line 9 exe-
cutes for each block of the partition and there could
be a maximum of n blocks in a partition. The body of
the loop involves traversing the degree vectors of all the
nodes of currentBlock, each vector can be of a maxi-
mum length of n (the maximum number of blocks) and
there could be a maximum of n nodes in the block. The
updation of degree vector after merging of the blocks
can be done in constant time by just adding the com-
ponents corresponding to the merged blocks. The en-
tire for loop of line 9 thus takes O(n3) time. However,
it should be noted that, this is a very loose theoretical
upper bound, in practice, the algorithm is very effi-
cient since the number of blocks in the partition and
the average number of nodes in a block are inversely
proportional to each other. The algorithm to obtain
equitable partition is reported to have time complex-
ity of O(n2 logn). Therefore, the overall complexity of
computing the �-equitable partition is O(n3).

4 Experimental Results

In this section we discuss the results of our method
on a number of datasets. We demonstrate that our
method gives meaningful and non-trivial abstractions
facilitating structural and behavioural analysis of the
graphs. We compare it against equitable partitions on
different parameters and show that it is more useful
and still is quite scalable to large graphs. We also con-
duct experiments observing the evolution of the net-
works and study the role of positions in the evolution.
We compare the results of our method with the pref-
erential attachment model [20] to show that positions
form a more stable and stronger basis for evolution
than just the degree of the nodes.

4.1 Datasets

A kinship network [21] that consists of a set of sixteen
Italian families in the early 15tℎ century was consid-
ered for the preliminary analysis. The relation mod-
elled in the network is that of marriage between pairs
of families. The nodes are labelled with the surnames
of the families and there are 20 edges indicating mar-
riages between the pairs of actors. This dataset was
used for manual validation of the results since it is a
real life social network of small size.

IMDB [17] dataset was used to construct a network
of actresses of Hindi movies. Hindi was chosen as a
language to use the familiarity with the domain to
facilitate intuitive evaluation. An edge between two
actresses in the graph indicates that they worked to-
gether for one or more movies. The network was cre-
ated for years 2000 to 2009 such that it includes all
the movies released on or before that year. The sizes
of these networks range between 3165 and 5328 nodes
(37716 and 60947 edges).

4.2 Static Analysis

In this section, we take 3 case studies of networks of
different sizes and evaluate their partitions intuitively.
Such intuitive explanation of the results is common in
the work related to graph partitioning since there is
no labelled data available for evaluation of such tasks
[22, 23]. We also evaluate the results of partitioning
the IMDB network quantitatively on some parameters
and compare it with existing methods.

4.2.1 Network of Example 1

For the undirected version of the graph of Fig. 1, the
maximal �-equitable partition with � value of 1 is given
in Fig. 4. It can be seen that the result is a mean-
ingful abstraction of the graph. It not only identifies
teacher, TAs and students correctly, but also treats
nodes C and D as equivalent since they are TAs under
the same teacher, handling almost the same number
of students. It also differentiates B from them since
it is connected to more number of students and hence
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Figure 4: maximal �-equitable partition of undirected
version of example 1 with � = 1. Positions are indi-
cated by colors, thus the maximal �-equitable partition
is {{A}, {B}, {C, D}, {E, F, G, H, I, J, K, L, M, O,
P, Q, R, S, T, U}}

might have different properties than C and D. The
value of � should be chosen according to the percep-
tion of position for the graph. Studying the structural
properties of the graph like average degree, mode of
degree etc. can help decide the value of �.

4.2.2 Kinship Network

The quality of the results of our method can be judged
by manual inspection of the partition for small net-
works. Figure 5 shows the result for the Italian fam-
ilies kinship network with � = 2. Nodes belonging to
the same position are colored same. The regular par-
tition of the kinship graph is a complete partition and
the equitable partition is a discrete partition with 16
blocks. The result can be explained as:

Pucci is an isolated node with no relations with oth-
ers and hence represents the isolate position. On the
other hand, Medici is the most central node with a
degree more than two and half times the average de-
gree of the graph and hence occupies the central posi-
tion. The families Pazzi, Acciaiuoli, Ginori, and Lam-
berteschi have had relationships with one family each.
Since these nodes have just one relationship each, for
most of the problems we are interested in, it does not
matter much with whom they have that connection.
Similar is the case with Salviati and Barbadori but
they still have connection to Medici in common.

Ridolfi and Tornabuoni are regular equivalent to
each other with the same number of connections to
the neighboring positions, Albizzi is similar with one
different connection. Castellani and Bischeri however,
have 2 and 3 connections respectively to the last but
one position unlike the others in their block (others
have just one connection to that position). But they
are still treated the same since the allowed relaxation
is of 2. Peruzzi and Strozzi are regular equivalent with
a difference of 1 in connections to one of the neighbor-
ing positions. Inclusion of Guadagni follows due to the
allowed relaxation.

It can be observed that the number of blocks is
much less than those of the equitable partition. The
usability and meaning of the blocks depends on the
choice of � which in turn depends on the user’s desired
level of abstraction and approximation.

Peruzzi

CastellaniPucci

Barbadori

Strozzi

Bischeri

Ridolfi

Tornabuoni

Medici

Salviati

Pazzi

Acciaiuoli Albizzi

Ginori Lamberteschi

Guadagni

Pajek

Figure 5: Result of our method on kinship dataset
with � = 2. The partition is {{Pucci}, {Acciaiuoli,
Pazzi, Ginori, Lamberteschi}, {Salviati, Barbadori},
{Albizzi, Tornabuoni, Ridolfi, Castellani, Bischeri}
{Peruzzi, Guadagni, Strozzi}, {Medici}}

4.2.3 IMDB Network

Intuitive Evaluation

We focus the intuitive evaluation of the results of our
method on analysis of IMDB Hindi actresses graph. To
demonstrate the quality of the partition, we discuss a
few positions and their characteristics. The actresses
graph was created for year 2009 which means all the
movies released on or before 2009 are considered for
creation of the network. Since this is a dense graph
with 5328 nodes and 60947 edges, the value of � is
chosen to be 10 for this analysis.

The �-equitable partition has 770 blocks, giving an
approximate average block size of 7. As given later
in the paper, the blocks are found to be homogeneous
with respect to the number of movies the member ac-
tresses worked for. We also observe many interesting
blocks which could be characterized in some way or
the other. We present some of those cases here start-
ing with the nodes having higher degrees.

Actresses Anjana Mumtaz and Shashikala are found
to be in one block who share the property of being
famous actresses who started with small roles in the
movies and then evolved as famous mothers of the lead
roles. Famous actresses in lead role Amrita Singh and
Meenakshi Sheshadri who started their career in the
same year (1983) and have shown similar career graph
with respect to the number of movies, types of movies,
types of roles, and popularity, form a block of the par-
tition.

It should be noted that the nodes with high val-
ues of degree do not form large size blocks but those
with smaller degrees tend to be part of larger blocks.
One of the blocks is {Sonu Walia, Bharati Achrekar,
Shefali, Anita Guha, Kimi Katkar} where all the ac-
tresses have acted in supporting roles and two of them
have been considered for one of the famous awards for
best supporting role. Another similar block {Simone



Singh, Tanaaz Currim, Ranjana Sachdev, Deepshika,
Neeta Mehta, Vidya Sinha, Padma Rani} corresponds
to relatively younger actresses in supporting role who
have also acted on TV. One block consists of actresses
Rajshree, Babita Kapoor, Nagma, and Rambha which
happen to be the actresses in lead role who gained
popularity even though they have acted in very few
movies.

Note that, while most of the blocks contain actresses
who worked in a similar time period, some blocks show
a mix of old and new actresses who share some other
common characteristics. As most of the popular ac-
tresses have high nodal degrees in this graph, they
tend to be singletons. As we move on towards lower
degrees, we find a number of large blocks which con-
tain almost all the actresses of a particular movie/TV
show. The examples are: a block of 37 actresses who
acted as models for movie ‘Fashion (2008)’, block of 31
actresses who acted as players in the movie ‘Chak de
India’, block of 24 actresses from the movie ‘Bend it
like Beckham’, block of 10 actresses from the famous
TV series ‘Kyunki... Saas Bhi Kabhi Bahu Thi...’ etc.

Thus the analysis shows that the positions do cor-
respond to the real positions in many cases. Some of
the blocks do not show any known characteristics but
the analysis is limited due to unavailability of extra
information about those actresses. Some cases might
not even have any common characteristics in terms
of actor attributes but their structural characteristics
still follow from the definition of the partition. This
is expected since we know that a dataset can be clus-
tered naturally in multiple ways and combining our
approach with other attributes and methods can per-
form even better in such cases.

Quantitative Evaluation

Validation of positional analysis results using actor at-
tributes is one of the known techniques of evaluation
[21]. In the network of actresses of Hindi movies, we
consider the number of movies as the attribute for val-
idation. We expect the actresses in a position to have
acted in almost the same number of movies. Table 1
gives the results of such analysis. The year column
shows the year the graph was created for, as explained
earlier. We calculated the standard deviation of the
number of movies for all the blocks of the partition.
The average stddev column shows the average of the
standard deviation of the blocks.

The degree distribution of IMDB follows power law
as expected [24] and by intuition we can expect the
number of movies to be correlated to the number of co-
actresses. Hence the number of movies distribution for
the nodes can be expected to follow power law. Since
the blocks of the partition are more or less homoge-
neous with respect to degree, we might attribute the
homogeneity with respect to movies to the degree. To
show that degree alone is not a good reason for blocks

to have actresses who have acted in almost same num-
ber of movies we report the results for the partition
based on just the degree of the nodes. The row having
no value for � indicates such a partition.

Table 1 shows that the partitions obtained using
our method are reasonable with respect to the num-
ber of blocks compared to the equitable partition. As
discussed, equitable partitions of such real world large
graphs turn out to be almost trivial with the average
size of the blocks ranging from 1 to 2. However, our
relaxation results in non trivial partitions which could
be followed for further analysis of the positions.

The average stddev column shows that the blocks in
�-equitable partitions are quite homogeneous with re-
spect to the number of movies. The homogeneity with
respect to number of movies decreases with increase
in the value of � as expected but the average stddev
is still less than 1 for almost all the cases. Though we
observe that the stddev has very small values for most
of the blocks compared to the average, we report the
average just to give an idea of the values. The average
mean values for the number of movies of the blocks
were almost in the same range for all the partitions
and hence are not reported here.

Equitable partition consists of a large number of
singleton blocks and a number of blocks of small sizes
and hence report zero or very low value of the standard
deviation for most of the blocks. The high value of the
average stddev for the partition based on nodal degrees
clearly shows that degree is not a sufficient criterion
for such analysis.

Table 1: Statistics of the positions of IMDB network
with respect to the number of movies. * - The row
corresponds to a partition based only on degree.

Year � No. of No. of Average stddev
nodes blocks of no. of movies

2000 0 3165 2233 0.0022
2000 2 3165 1218 0.2433
2000 4 3165 852 0.6138
2000 6 3165 617 1.0850
2000 -* 3165 206 4.3302
2009 0 5328 3201 0.0024
2009 2 5328 1871 0.1531
2009 4 5328 1423 0.3752

4.3 Dynamic Analysis

We study the evolution of the IMDB Hindi actresses
network with respect to the positions. It is interesting
to find that, to a large extent, social networks evolve
according to the positions. The procedure followed for
such analysis is as follows: We construct the IMDB
Hindi actresses network for years 2000 to 2009. We
perform positional analysis on these 10 networks. The
positions of a network are compared with the positions
obtained for another network such that the second net-
work is an evolved version of the first network. For



example, the partition of the network corresponding
to year 2000 is compared with the partitions of net-
works corresponding to years 2001 to 2009. For each
position of the first network we find a corresponding
position in the second network such that the size of the
intersection (the set intersection) of these positions is
maximum possible. We consider the second position
found in such a way to have evolved from the first po-
sition if the number of nodes in their intersection is
greater than or equal to � percentage of the number
of nodes in the first position.

The procedure can be understood better with an
example. Assume that the networks under study are
networks for year 2000 and 2001 and the value of �
is chosen to be 90. For a particular position of the
year 2000 network, say p1, we iterate over all the po-
sitions of year 2001 network to find a position say p2,
such that the size of intersection is maximum possible.
We say that position p1 has evolved into position p2
if the size of intersection of p1 and p2 is greater than
or equal to 90% of the size of p1. In such a case, the
nodes belonging to the intersection are considered to
follow a position. We add up the number of nodes
from year 2000 network which follow positions while
evolving into year 2001 network and report their per-
centage relative to the size of the network (the total
number of nodes).

Positional analysis is performed using equitable par-
tition and �-equitable partition methods. During our
study we observed that, to a large extent, positions
given by equitable partitions evolve similarly. One rea-
son for this is the large number of singleton blocks in
equitable partitions. The other reason could be that
since the blocks of an equitable partition have same de-
grees, according to the preferential attachment model
[20], nodes with same degree tend to evolve similarly.
The probability of a new node attaching to an old node
is directly proportional to the degree of the old node.
In order to study the effect of this, we partition the
graph based on the degrees of the nodes such that
same degree nodes are put in the same block.

Tables 2, 3, and 4 summarize the results of such
analysis for different values of �. The source network
indicates the base network for evolution. The second
column indicates the value of �, 0 indicates equitable
partition and ‘-’ indicates a partition based on nodal
degree. All the other values are the percentages of
nodes following positions during the evolution from the
network given in that row to network given in that col-
umn for the method indicated by corresponding value
in second column. Figures 6, 7, and 8 facilitate the
comparison of different methods for the evolution of
the year 2000 network.

Table 2 and Fig. 6 indicate that equitable partitions
perform the best during the evolution as the percent-
age of nodes following positions is consistently high for
all the years with an average of around 88%. But we
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Figure 6: Comparison of the % of nodes following po-
sitions given by different partitioning methods in the
evolution of IMDB Hindi actresses year 2000 network.
� = 100
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Figure 7: Comparison of the % of nodes following po-
sitions given by different partitioning methods in the
evolution of IMDB Hindi actresses year 2000 network.
� = 90

know that, equitable partitions are almost trivial and
hence have many singleton blocks. Also, the degree
of the nodes in a block is same in an equitable parti-
tion. These two factors lead to the high values of the
percentages. Our method performs consistently with
an approximate average of 47%. The partition based
on nodal degree however performs very poor with an
average of around 4.5%.

Table 3 and Fig. 7 also show similar trend for eq-
uitable partitions. But since the value of � is smaller,
more number of positions were qualified according to
our criterion, resulting in higher percentages of nodes.
Our method also shows similar trend with a significant



Table 2: Percentage of nodes following positions during evolution for different positional analysis techniques. �
= 100

Source � 2001 2002 2003 2004 2005 2006 2007 2008 2009
Network
2000 0 92.73 90.58 89.06 88.18 87.36 86.50 84.96 84.83 84.83
2001 0 93.90 91.62 89.74 88.04 87.17 86.30 86.00 86.00
2000 2 52.10 50.14 48.24 47.77 47.23 45.75 44.80 44.92 44.96
2001 2 53.27 50.16 49.59 47.65 46.90 46.33 46.00 45.65
2000 - 6.35 4.89 4.51 4.39 4.13 4.13 4.07 4.07 4.07
2001 - 8.63 7.59 6.39 6.03 4.06 4.00 4.00 4.00

Table 3: Percentage of nodes following positions during evolution for different positional analysis techniques. �
= 90

Source � 2001 2002 2003 2004 2005 2006 2007 2008 2009
Network
2000 0 94.50 90.58 89.06 88.49 87.67 87.23 86.31 86.19 86.19
2001 0 96.14 92.22 91.36 90.40 89.35 87.74 87.44 87.44
2000 2 60.94 59.55 54.72 55.16 49.95 48.84 47.83 45.65 45.68
2001 2 64.96 57.75 57.54 51.74 50.79 50.13 47.44 47.08
2000 - 82.90 67.80 62.43 59.30 48.43 43.57 35.07 32.70 32.70
2001 - 84.30 66.48 63.10 57.87 55.72 54.23 41.37 41.37
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Figure 8: Comparison of the % of nodes following po-
sitions given by different partitioning methods in the
evolution of IMDB Hindi actresses year 2000 network.
� = 80

increase in individual percentage values. The behavior
of the partitions based on degree is however very un-
stable. The percentage of nodes is quite high (around
82%) for time duration of one year (from 2000 to 2001
and from 2001 to 2002) and it suddenly falls to around
66% for the time gap of two years and so on, with an
average value of 35% for time duration of 9 years. Such
an unstable behavior can not be used as a basis of any
prediction.

Similar observations can be made from Table 4 and
Fig. 8. The performance of partition based on nodal
degree is unstable in this case too. We can see that the
slopes of the curves for our method and equitable par-
tition are almost the same indicating that actors in a
position evolve together consistently. The steep curve
of the degree based partition indicates that nodes of
same degree evolve similarly over a shorter period and
show a large difference in the behaviour if observed for
a long period. Hence degree based partition does not
form a good basis for such evolution studies.

In summary, equitable partitions perform the best
due to the reasons given earlier. Our method however
performs consistently and beats the partitions based
on degrees for higher values of � and in stable per-
formance. The analysis clearly shows that the degree
of nodes is not the only factor responsible for their
behavior during evolution and positions of the nodes
definitely play a major role in that process. However,
finding a suitable positional analysis method for study
of evolution is a challenging problem. Though equi-
table partitions perform well, they are of little help



Table 4: Percentage of nodes following positions during evolution for different positional analysis techniques. �
= 80

Source � 2001 2002 2003 2004 2005 2006 2007 2008 2009
Network
2000 0 96.84 94.84 91.65 91.31 90.64 90.42 89.22 88.90 88.90
2001 0 97.10 94.31 93.48 92.67 91.39 89.98 89.93 89.93
2000 2 63.69 64.77 61.07 58.48 61.01 55.92 56.14 58.00 54.84
2001 2 67.68 62.78 60.41 60.56 57.19 57.57 57.72 55.45
2000 - 89.13 84.20 77.37 73.36 72.16 69.82 69.22 67.64 67.64
2001 - 90.82 83.88 82.12 79.46 75.87 75.03 73.48 73.48

in practice due to the large number of blocks. Our
method performs poorer when compared to equitable
partitions but as showed before, leads to a reasonable
number of blocks. It also is consistent unlike the par-
titions based on degree. Hence, our definition of a
partition can be considered a promising approach for
solving this problem. We believe that the performance
of our method can be improved by designing a hierar-
chical algorithm which preserves the degrees to make
the positional analysis more suitable for studying the
evolution of the networks.

5 Conclusion and Future Work

The main objective of our work was to come up with
an appropriate positional analysis technique for large
real world networks. The proposed concept ofmaximal
�-equitable partition achieves this objective to a great
extent and has been shown to be a significant first
step in that direction. It is a useful relaxation of the
concept of equitable partition in that it reduces the
size of the partitions and still gives meaningful par-
titions. We studied and concluded that the existing
positional analysis methods are not of much practical
use for large complex graphs. Our method succeeds
in overcoming some of the limitations of the existing
approaches. The heuristic based algorithm proposed
to compute �-equitable partition is scalable and hence
can be applied to large graphs to obtain partitions of
good quality.

Another important conclusion of our work is that
positional analysis can be effectively used in analyzing
the structural and behavioral properties of the nodes of
real world large networks. We showed that positional
analysis is indeed important in studying the evolution
of networks. According to our knowledge, no analysis
similar to the dynamic analysis done by us to study
the effect of positions on evolution of the network has
been reported anywhere in the literature.

The results of the proposed method depend on the
value of � and hence it should be chosen carefully. Also,
� remains the same for all the nodes of the graph irre-
spective of their degrees. But sometimes, a particular
value of � might be too big when merging nodes with
smaller degree while appropriate for nodes with large

degrees. The future work involves deciding on appro-
priate schemes for choosing and applying the value of �.
Coming up with better algorithms, that can find guar-
anteed approximations to maximal epsilon equitable
partitions is also one of the important next steps. We
evaluated our method on real world graphs and showed
intuitively that the positions make sense, but it would
be worthwhile to find a labelled graph, where the nodes
are marked with real world positions for evaluation.
The positions found by our method can be compared
against these real world positions in such case and a
better validation could be obtained. The problem in
this kind of evaluation though, is the unavailability of
such labelled network.

The definition maximal �-equitable partition as dis-
cussed in the paper applies to undirected simple
graphs. Since real world networks can be directed,
weighted, and multirelational, we plan to extend our
definition to these classes of graphs.
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