
Where Do I Look Now? Gaze Allocation During Visually Guided
Manipulation

Jose Nunez-Varela, B. Ravindran, Jeremy L.Wyatt

Abstract— In this work we present principled methods for the
coordination of a robot’s oculomotor system with the rest of its
body motor systems. The problem is to decide which physical
actions to perform next and where the robot’s gaze should be
directed in order to gain information that is relevant to the suc-
cess of its physical actions. Previous work on this problem has
shown that a reward-based coordination mechanism provides
an efficient solution. However, that approach does not allow the
robot to move its gaze to different parts of the scene, it considers
the robot to have only one motor system, and assumes that
the actions have the same duration. The main contributions of
our work are to extend that previous reward-based approach
by making decisions about where to fixate the robot’s gaze,
handling multiple motor systems, and handling actions of
variable duration. We compare our approach against two
common baselines: random and round robin gaze allocation.
We show how our method provides a more effective strategy
to allocate gaze where it is needed the most.

I. INTRODUCTION

A. Problem Definition

Real-world tasks require robots to act under uncertain
and incomplete information. In this work we show how a
robot should act to reduce that uncertainty by controlling
its gaze in a principled way. We consider robots that have
an oculomotor system and multiple motor systems. The
oculomotor system can move the robot’s cameras to specific
fixation points. After a fixation is made, the robot can
extract visual information from the captured image. The
robot’s motor systems (e.g. its arms) can perform physical
actions (e.g. grasping an object), and can run simultaneously.
Furthermore, at any point in time a particular motor system
might require the oculomotor system to gather information
relevant to the success of its physical actions.

To achieve this a coordination mechanism must be defined
in order to allocate the control of gaze to the motor system
which most needs it. Since the camera has a limited field
of view not all different motor systems can be assisted by a
single fixation. Thus the robot needs to choose which motor
system to assist with gaze. Also, visual information is noisy,
so the robot should be able to handle uncertainty.

Our coordination framework has been implemented using
the iCub simulator [1] (Fig. 1). The iCub is a humanoid robot

We gratefully acknowledge the support given by CONACYT-Mexico
(Reg.179604), UKIERI (SA06-0031), CogX (FP7-ICT-215181).

J. Nunez-Varela is with the School of Computer Science,
University of Birmingham, B15 2TT Birmingham, UK
j.i.nunez@cs.bham.ac.uk

B. Ravindran is with the Department of Computer Science and Engineer-
ing, IIT Madras, India ravi@cse.iitm.ac.in

J. Wyatt is with the School of Computer Science, University of Birming-
ham, B15 2TT Birmingham, UK j.l.wyatt@cs.bham.ac.uk

Fig. 1. Snapshot of the iCub Simulator. The task is to pick up and place
objects from the table top to the containers.

with multiple motor systems and an oculomotor system. The
iCub simulator is a powerful tool that simulates closely what
the real robot can do, it uses exactly the same controllers and
modules used to control the real robot. The main advantage
of using a simulator is to have greater control over the
configuration of the environment and the robot. For instance,
the creation and manipulation of objects, and changing its
field of view can be altered easily between trials.

To test our approach we have defined a task that consists of
picking up objects from the table top and then placing them
inside one of two containers. In this paper, the arms cannot
interact with each other (e.g. to perform bi-manual grasps),
so the task is divided into two sub-tasks, one for each arm.
This means that objects reachable by the right arm are placed
inside the right container, with the same happening for the
left side. A new object appears on the table every 60 seconds
and also every time an object is put inside a container. The
robot has to look at objects and containers in order to get an
estimate of their location. The only precisely known location
to the robot is the centre of the table.

B. Related Work

Current research on visual perception has focused on atten-
tional systems based on saliency [2] in order to detect regions
of interest which may provide possible fixation points. Some
other systems incorporate saliency and active vision [3], that
allow the robot to move its camera to get different views
of one object. Although these systems provide a good way
to predict where to direct the gaze, they normally fail to
incorporate information about the task being performed. In

c©2012 IEEE.

[4] a system capable to plan its image processing actions is
presented, but the camera remains fixed to a single position.

Sprague and Ballard [5] developed a reward-based per-
ceptual coordination mechanism for a simulated human-
agent. The agent performs a set of behaviours concurrently
(where each behaviour has a separate goal), by sharing the
set of actions amongst them. Each behaviour also has an
associated visual routine that updates the information used
by that behaviour. Only one visual routine can be executed
each time step. Their key idea is to select the visual routine
which minimises uncertainty for the behaviour that is likely
to lose more reward. Their results show that a reward-based
approach provides an effective way to coordinate perception
and action. However, there are several restrictions in their
approach. First, the agent’s eyes do not move independently
from its body. Second, the agent has only one motor system
that is shared by all the behaviours. Third, they require that
all physical actions have the same duration.

C. Contributions

We extend Sprague and Ballard’s approach by:

• Considering a separate oculomotor system for control
of the robot’s cameras.

• Considering multiple motor systems.
• Considering actions with variable duration.
• Considering the actual information to be gained by

perceptual actions rather than assuming all uncertainty
disappears in one gaze.

Fig. 2. A. Sprague and Ballard’s approach handles several concurrent
behaviours but only one motor system with actions of identical duration.
B. Our approach handles multiple motor systems operating in parallel with
actions of variable duration. Each block represents an action.

Fig. 2 shows a graphical representation of Sprague and
Ballard’s system handling concurrent behaviours with a
shared motor system and with actions of the same duration.
In contrast, our system considers multiple motor systems
(where each motor system achieves a single goal), and
actions of variable duration.

D. Modelling Decision Problems

A common approach for modelling decision making prob-
lems is to use Markov decision processes (MDPs) [6].
Sprague and Ballard model each behaviour as an MDP,
which they use to learn the agent’s task via reinforcement
learning (RL) [7]. Their perceptual coordination mechanism
is formalised as a partially observable MDP (POMDP) [8], in
order to handle the state uncertainty during execution time.
The selection of perceptual actions is done by a modified
version of the Q-MDP algorithm [9]. This algorithm is a one-
step look-ahead strategy for solving POMDPs that assumes
the current uncertainty will disappear after executing the
current action. They also use Kalman filters [10] in order to
maintain an estimate of the state variable and its uncertainty.

One disadvantage with MDPs is the assumption that
actions have the same duration. In real-world tasks, actions
can take variable amounts of time to finish (e.g. the time
for reaching and grasping an object is likely to be different).
Thus, we model our problems using semi-MDPs (SMDPs)
[6], that allow us to model actions with variable duration.
Furthermore, we follow the concept of options [11], defined
as temporally extended actions that can be composed of one
or multiple single-step actions.

By having multiple motor systems it is possible to exploit
parallelism and/or concurrency. In this paper, we take into
account only parallelism (i.e. motor systems do not interact
with each other). Thus, we decompose the task and model
each motor system as a separate SMDP, then each of them
learns its corresponding sub-task via RL. By modelling the
task using options we end up with a two-level state space.
The high-level state space describes the task qualitatively,
and the lower-level state space describes continuous variables
representing uncertainty. We make use of particle filters [10]
to keep track of the state variables and its uncertainty (in our
case the location of objects and containers). We have chosen
particle filters over Kalman filters because the probability
distributions modelled do not need to be Gaussians, thus
allowing more flexibility. Section II describes the theory
behind our proposed framework. Section III presents the
experiments and results, and Section IV provides some final
remarks and future work.

II. COORDINATING GAZE AND ACTIONS

In this section we first describe how the task is modelled,
then we explain the different components of our system and
their interaction as Fig. 3 illustrates.

A. Modelling the task

As described in Section I, the task is to pick up objects
from the table top and then place them inside one of two
containers. We consider two motor systems: the right and
left arm/hand. Thus we divide the task into two sub-tasks,
one for each motor system. Furthermore, each sub-task is
modelled as a hierarchy of two levels. The high-level models
the sub-task qualitatively as an SMDP with a discrete state
representation. Whereas the low-level models each high-level
action with a continuous state space representation.

TABLE I
FACTORISED STATE SPACE FOR RIGHT AND LEFT ARM.

State Variable State Value
armPosition {onObject, onTable, onContainer, outsideTable}
handStatus {grasping, empty}
tableStatus {objectsOnTable, empty}

TABLE II
OPTIONS FOR RIGHT AND LEFT ARMS.

Options Average completion time (secs)

moveToObject 2.65
moveToTable 2.95

moveToContainer 3.25
graspObject 2.87

releaseObject 1.0

In the high-level SMDP, each motor system ms ∈ MS
(where MS is the set of motor systems), is modelled as a
tuple 〈Sms,Oms, Tms,R〉, where Sms is the set of discrete
states, Oms is the set of options (temporally extended high-
level actions [11]), Tms : Sms × Oms × Sms × N � [0, 1]
is the transition probability distribution, where N is the set
of natural numbers representing the execution time of each
option, and R : Sms×Oms � R is the reward function. For
this domain, the reward function is identical for all motor
systems.

Typically, an option Oj is modelled as Oj =
〈Mj , Ij , βj〉, where Mj = 〈Sj ,Aj , T j ,Rj〉 is an MDP,
Ij ⊆ Sj is the initiation set where the option can start, and
βj : Sj � [0, 1] defines a termination condition. In our case,
an option Oj

ms ∈ Oms is modelled with continuous states
(Sj) and actions (Aj), and with a non-stochastic transition
function (T j). Options are defined as commands provided
by the motor controllers available to the iCub [12]. These
controllers receive 3D positions in robot coordinates and they
calculate and execute trajectories in the joint space of the
robot.

The set of motor systems for the high-level SMDPs is de-
fined as MS = {right arm, left arm}. Table I shows the
factorised discrete state space used for both arms (Sright arm

and Sleft arm). Table II defines the set of options available
for both arms (Oright arm and Oleft arm), and next to each
option is the average completion time in seconds. These
times were obtained by executing all options in sequence
for 60 minutes. It is important to point out that for option
graspObject we use a special command, defined in the iCub
simulator, that makes the hand act like a magnet. Even
though we simplify the problem of grasping, we can control
its sensitivity by checking the offset between the centre of the
hand and the centre of the object. Except for releaseObject,
all options can fail if the offset between the centre of the hand
and the desired final position is greater than some threshold
(e.g. 1 cm). The iCub controllers have a limited accuracy
and the minimum value of that threshold is 0.5 cm.

B. Visual Memory

The central component in the system is what we call
the visual memory (Fig. 3), which captures the con-
tinuous state information about object pose needed for
low-level control and supplies the discrete objects id’s
needed to create the high-level discrete state. We define
the visual memory as the set of ordered pairs VM =
〈(e1, bel(e1)), (e2, bel(e2)), . . . , (en, bel(en))〉, where ei is
the ith entity of interest on the table, where an entity can be
an object or a container. Every time a new entity is seen it is
added to the visual memory. bel(ei) is a probability density
(or belief state), associated with the location of the entity ei.
This location is used by the low-level options. Each object
has a diameter of 4 cm, and its location refers to its centre
projected in the X-Y plane in robot coordinates. Containers
are 10x10x3 cm in width, length and height, and the location
refers to its centre as well. In our case, the belief state for
each entity ei will be approximated by a particle filter, where
each particle represents a possible location. In this paper we
distinguish between the belief state for an individual entity,
the overall belief state for the task (i.e. the set of belief states
for all ei), and the belief state relevant to a particular motor
system ms (i.e. the set of belief states for all ei that are
relevant to motor system ms at the current time).

Fig. 3. Interaction between the components of the system.

C. Learning Phase

As described above, each high-level SMDP models a given
sub-task, and learning this sub-task is achieved via RL using
SMDP Q-learning [13]. Each motor system ms should learn
a policy πms : Sms � Oms, that defines a mapping from
states to options. The robot initially learns how to perform
the task under an assumption of complete observability. This
means that the visual memory contains the complete list of
entities (ei), and their corresponding belief (bel(ei)) indicates
the true location of that entity. We follow a minimal time to
goal strategy, so for any option taken the robot receives -1
unit of reward. When the task is completed (i.e. there are no
objects on the table), it receives 0 units of reward. It receives
-2 units if it tries to grasp an object when the hand is not
empty, when the hand is not on an object, and if it tries to

release an object when the hand is empty. For our task, the
policy learnt for one arm can be used for the other as well.
The learning rule for SMDP Q-learning is formulated as:

Q(s, o) � Q(s, o)+α
[
r + γk max

o′∈O′
ms

Q(s′, o′)−Q(s, o)
]
,

(1)
where 0 ≤ α ≤ 1 is the learning rate, r is the immediate

reward received for executing option o in discrete state s
(where s ∈ Sms), 0 ≤ γ ≤ 1 is a discounted factor to
indicate the preference between short term and long term
rewards, and k is the duration of option o. In our task, α =
0.2, γ = 0.9, and k takes the values shown in Table II.

D. Execution Phase

Once the policies for each motor system are stored in
the robot’s memory we can execute them to solve the task.
However, the robot is now in charge of maintaining the visual
memory, which does not contain any entity at the beginning.
The robot has to look at entities in order to add its pair
(ei, bel(ei)) into visual memory. Every time an entity ei is
observed, its belief bel(ei) (that represents its location in the
low-level MDPs) is updated with new information.

1) Physical Action Selection: By having SMDPs built on
a belief state, we now effectively have partially observable
SMDPs (POSMDPs) [14]. The robot selects options for each
of its motor systems by following the Q-MDP algorithm [9]:

oms = arg max
o∈Oms

∑
s∈Sms

bel(s)Qms(s, o), (2)

where oms represents the option with the highest expected
reward for motor system ms, according to the belief bel(s)
of being in the discrete state s, and Qms(s, o) is the Q-value
taken from the policy πms. Because the motor systems are
independent of each other in this task, the option selection
can be executed in parallel with no problems.

To do the mapping between the high-level discrete state
space (Table I), and the low-level continuous state of a
particular entity location (bel(ei)), we define the belief bel(s)
of being in a discrete state s as the probability distribution
given by bel(ei). For instance, the discrete state variable
armPosition takes the value onObject if and only if the offset
of the hand’s centre with respect to the object’s centre is less
or equal than some threshold (e.g. 1 cm). Each belief bel(ei)
determines the likelihood of success or failure of options,
which in turn determines changes in the discrete space.

The locations of entities are represented using particle
filters, where each particle represents a possible location. The
following equation redefines (2) in terms of particle filters:

oms = arg max
o∈Oms

1
|G|
∑
g∈G

weight(g)cost(g, o), (3)

where G is the set of particles, and g refers to an individual
particle. weight(g) defines the weight given to particle g,
and cost(g, o) takes the value of Qms(s, o) if the offset
between the centre of the hand and the object is less than

or equal to some threshold, otherwise it takes the value of
mino∈Oms

Qms(s, o), indicating that the option failed.
2) Perceptual Coordination: The selection of good op-

tions depends heavily on having the correct state information.
But only some information needs to be known to complete
each step of the task, and the robot can choose which infor-
mation to gather by pointing its cameras to a specific part
of the world. However, since there is only one oculomotor
system, it must be shared amongst all motor systems. The
coordination mechanism works in the following way:

1) Each entity ei listed in visual memory represents a
fixation point, i.e. a perceptual action p ∈ P , where P
is the set of perceptual actions at any given time. The
number of perceptual actions varies depending on the
number of entities in visual memory.

2) We define msf as the motor system that will benefit
the most if it is given access to perception:

msf = arg max
ms∈MS

{gainms} , (4)

where MS is the set of motor systems, and gainms

represents the expected gain that would result if gaze is
allocated to motor system ms. The gain of each motor
system is computed as:

gainms = max
p∈P
{V p

ms} − max
o∈Oms

{V o
ms} , (5)

where p is a particular perceptual action, and P is
the set of all possible perceptual actions. V p

ms is
the expected value for motor system ms assuming
perceptual action p is taken. V o

ms is the expected value
with the current uncertainty. In fact, maxo∈Oms{V o

ms}
has been calculated during the option selection using
(2), so we can cache this value. The difference between
the maximum of these two values tells us how much
we gain if gaze is allocated to this motor system. To
calculate V p

ms we follow:

V p
ms=

∑
ω∈Ω

[
P (ω|bel, p) max

o∈Oms

∑
s∈Sms

belωp (s)Qms(s, o)

]
(6)

where P (ω|bel, p) is the probability of making an ob-
servation ω given the current belief bel and perceptual
action p. belωp (s) is the belief that results assuming we
have taken perceptual action p and ω is the observation
that results from this action. This equation is trying
to predict the value of moving the gaze to a specific
fixation point by using “imaginary” observations ω to
update the current belief, and then checking the effect
this possible new belief would have in the selection of
options.

3) We define pf as the perceptual action to be chosen
once a motor system msf is selected using (4):

pf = arg max
p∈P

{
V p

msf

}
, (7)

which is straightforward if we cache the results of
maxp∈P {V p

ms} when calculating (5).

In our task, we just need to redefine (6) in order to handle
particle filters:

V p
ms =

1
|Ω|

∑
ω∈Ω

max
o∈Oms

 1
|G|
∑
g∈G

weight(g, ω)cost(g, o)

 ,

(8)
where Ω is the set of observations, ω is a particular

observation, G is the set of particles, and g is a single
particle. weight(g, ω) represents the weight of particle g
after having observed ω, and cost(g, o) takes the value of
Qms(s, o) if the offset between the centre of the hand and
the object is less than or equal to some threshold, otherwise it
takes the value of mino∈Oms

Qms(s, o). Equation 8 updates
a temporal belief bel(ei) of entity ei which is not stored
in visual memory since it is calculated from the imaginary
observations ω.

These observations ω are sampled assuming that the
robot would fixate on the mean of the cloud of particles
(mean(G))1. First, a number of particles gi are uniformly
selected. Then a bivariate Gaussian distribution is chosen
for each gi by indexing an observation model learnt off-line
(described below), according to the location of particle gi and
the imaginary fixation point (mean(G)) with respect to the
also imaginary oculomotor position. From the chosen bivari-
ate Gaussian distributions the observations Ω are sampled.

3) Visual Analysis: When the robot’s gaze fixates on some
entity, visual input is read from the right camera. First, we
detect entities appearing inside the camera’s field of view
(FoV). For detection we take advantage of the simulator;
using the entities’ true locations we calculate their 2D
coordinates in the image plane2. The 3D location (in robot
coordinates) of only those entities inside the FoV are added
or updated in visual memory. A 3D location is calculated by
triangulating the 2D coordinates of an entity with respect to
the camera’s position and the table’s plane. Since only the
right camera is used the triangulated locations are noisy3.

In order to handle this noise during execution, an ob-
servation model was learnt off-line. This model is used
for updating the particle filters and for sampling imagi-
nary observations. The observation model was created by
systematically moving the robot’s gaze and an object in
the robot space. Each fixation point and object location is
represented using spherical coordinates: (θg, φg, radiusg)
and (θo, φo, radiuso), respectively (Fig. 4 A and B). Whilst
varying these parameters we recorded the offset between the

1We could also fixate where the highest concentration of particles are, in
the case of having multimodal distributions.

2By using the simulator for detection we end up with a noiseless object
detection mechanism, which allow us to analyse our system just with the
noise generated during triangulation. We can later add more sources of noise
and analyse the effects that each one of them has in the system.

3Using both cameras for triangulation resulted in a perfect estimate, as the
cameras are perfectly aligned in the simulator. Using one camera produces
noisy estimates as it relies on a plane to calculate the depth.

estimated (triangulated) and the true object’s location, result-
ing in more than 150,000 data points. These data points were
divided into groups according to (θg, φg, θo, φo, radiuso),
then all the points of each group were fitted with a bivariate
Gaussian distribution. There are 405 distributions in the final
observation model, each representing a particular relationship
between gaze and object location. Fig. 4 shows 3 of these
distributions when the robot is fixating straight ahead, the
circle in the centre of the graph represents an object. Distri-
butions C and E represent the noise when objects are located
at the left and the right of the fixation point respectively.
Distribution D represents the noise when objects are located
in line with the fixation point. Notice how the estimate in
the location is much more accurate when the robot is looking
directly at the object. Once the object starts to move away
from the fixation point, in terms of (θo, φo, radiuso), the
estimate becomes very noisy. If an entity in visual memory
is not seen for 3 seconds, Gaussian noise with zero mean and
1.0 cm of standard deviation, is added to its current estimate.

Fig. 4. Coordinates for the observation model, and distributions repre-
senting the noise during the triangulation of objects when the robot is
looking straight ahead. A. The coordinates specifying fixation points. B.
The coordinates specifying object locations. C. Objects appearing at the left
of the fixation point. D. Objects in the fixation point. E. Objects appearing
at the right of the fixation point.

III. EXPERIMENTS

In order to test the effectiveness of our approach, we
implemented two alternative gaze strategies: random gaze
allocation, which randomly selects an entity from visual
memory; and round robin gaze allocation, which loops
through the current list of entities in visual memory.

As mentioned above, we can control the sensitivity of the
options whilst reaching and grasping by varying a threshold.
We conducted two sets of experiments, one for grasp sensi-
tivity of 1 cm and another for 2 cm. For each gaze strategy
we performed 15 trials of 5 minutes each. At the end of
each trial we counted the number of objects correctly placed
inside the containers. Fig. 5 compares the three strategies

in terms of the average number of objects correctly placed,
with grasp sensitivity of 1 and 2 cm. The error bars in the
graph represent 95% confidence intervals.

Fig. 5. Comparison between the three gaze allocation strategies in terms
of the average number of objects correctly placed. The error bars represent
95% confidence intervals.

Using the two-tailed unpaired T-test, we verified that all
the results are statistically significant at less than 0.019
level of significance. The results show that the reward-
based strategy outperforms the other two strategies for both
grasp sensitivity thresholds. The difference between the three
strategies is clearer when the sensitivity is 1 cm. Here, the
information about the location of entities needs to be more
precise; some times it is necessary to fixate several times
on the same entity in order finish some action, something
that the reward-based strategy is able to handle but not
random and round robin. When the sensitivity is 2 cm
the performance of all strategies increases because fewer
fixations need to be made for actions to be successful.
Also, peripheral vision is important; any entity appearing
inside the field of view will be detected and updated, as
the sensitivity decreases it may not be necessary to fixate
on some entities because the information gathered in the
periphery might be enough to reach and grasp an object.
This is mainly the reason why the difference in performance
between the strategies is reduced. The decision time is an
important issue as well. In average, the reward-based strategy
takes 0.5 seconds or more (depending on the number of
entities in visual memory), whilst random and round robin
make a decision almost instantly. Even with this difference
the reward-based strategy performs better.

Unfortunately, with our current model, it is not possible
to compare our reward-based strategy against Sprague and
Ballard’s strategy. They model tasks with multiple concurrent
goals that share a single motor system. Our current system
models tasks with multiple motor systems, where each motor
system executes a single goal. Once we extend our system so
that each motor system is able to choose between multiple
goals, it will be possible to directly compare both strategies.

IV. CONCLUSIONS AND FUTURE WORK

The problem of how to coordinate gaze and actions in
a robot is formulated in terms of a reward-based decision

making framework, where camera movements are selected
such that they reduce the uncertainty and increase the ex-
pected return on the task achieved by the motor systems. By
controlling the direction of gaze, the robot should be able to
decide which information is relevant at any point in time.

The results show that our reward-based gaze strategy
outperforms a random and round robin strategies, whilst
varying the sensitivity of the grasp actions to positional
uncertainty. We identified two issues that should be taken
into account in the analysis of the results. First, entities
are detected and updated in the periphery of the field of
view. This means that depending on the grasp sensitivity
some entities might not be needed to be fixated at all, the
information gathered in the periphery is enough. Second, the
time to decide where to look. For round robin and random
the decision time is almost instantly, whilst our reward-
based strategy takes in average 0.5 seconds. This difference
increases the performance of the non-informed strategies
when the grasp sensitivity decreases.

Besides grasp sensitivity, we are investigating how our
system behaves with different levels of observation noise,
and also when the width of the field of view changes.
Furthermore, we plan to extend the system to take into
account concurrent motor systems. Another interesting ex-
tension would be to execute physical actions to help the
perception process. For instance, if the object of interest is
occluded by another object, it would be better to remove that
object to get a better view.

REFERENCES

[1] G. Metta et al., “The iCub humanoid robot: An open platform for
research in embodied cognition,” in Proc. ACM Performance Metrics
for Int. Sys., MD, USA, Aug. 2008, pp. 50–56.

[2] L. Itti et al., “A model of saliency-based visual attention for rapid
scene analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20,
no. 11, pp. 1254–1259, 1998.

[3] S. Frintrop, VOCUS: A Visual Attention System for Object Detection
and Goal-Directed Search. New York, NY: Springer-Verlag, 2006.

[4] M. Sridharan et al., “HiPPo: Hierarchical POMDPs for planning
information processing and sensing actions on a robot,” in Proc.
ICAPS, Sydney, Australia, Sept. 2008, pp. 346–354.

[5] N. Sprague, D. Ballard, and A. Robinson, “Modeling embodied visual
behaviors,” ACM Trans. Appl. Percept., vol. 4, 2007.

[6] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY: Wiley-Interscience, 1994.

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA: MIT Press Cambridge, 1998.

[8] L. P. Kaelbling et al., “Planning and acting in partially observable
stochastic domains,” AI Journal, vol. 101, no. 1-2, pp. 99–134, 1998.

[9] A. R. Cassandra, “Exact and approximate algorithms for partially
observable markov decision processes,” Ph.D. dissertation, Brown
Univ., Rhode Island, May 1998.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press Cambridge, 2008.

[11] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” AI Journal, vol. 112, no. 1, pp. 181–211, 1999.

[12] U. Pattacini et al., “An experimental evaluation of a novel minimum-
jerk cartesian controller for humanoid robots,” in IEEE/RSJ Int. Conf.
on Int. Robots, Sys., Taipei, Taiwan, Oct. 2010, pp. 1668–1674.

[13] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time Markov decision problems,” Adv. in Neural Inf. Proc.
Sys., vol. 8, pp. 393–400, 1995.

[14] S. Mahadevan, “Partially observable semi-Markov decision processes:
Theory and applications in engineering and cognitive science,” in AAAI
Symp. on Planning with POMDPs, FL, USA, May 1998, pp. 113–120.

