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ABSTRACT

KEYWORDS: Reinforcement learning, Exploration strategies, PAC-guarantees, Regret

guarantees, Finite-episode agent, Exploration bonus.

Reinforcement Learning (RL) is a collection of learning approaches that solve for

a behavior of an agent in a world maximizing some notion of payoff. Under certain

circumstances the agent’s world, described by a set of parameters, is essential to be

learnt for it to discover an optimal behavior. This paradigm of problems is studied

under the broad topic of model-based RL, and the class of algorithms that help an agent

in learning the model parameters are known as model learning algorithms. In this thesis,

we discuss exploration strategies in model-based RL from two different perspectives –

asymptotic agent, where early convergence to an optimal solution is desirable but not a

necessity, and finite-episode agent, which has a constraint on the number of episodes to

converge to an optimal behavior.

The first part of this thesis proposes a novel uncertainty based exploration strategy,

Thompson Sampling with Exploration Bonus (TSEB), for the asymptotic agent case.

This work draws insights from Thompson Sampling, a Bayesian approach to model-

based RL, and the homomorphism literature in RL. The proposed algorithm helps the

agent learn close to true model parameters of the world with lesser sample complexity

than the existing model learning algorithms. TSEB algorithm trades off the proposed

exploration bonus with the sampled reward estimate in Thompson Sampling algorithm.

This strategy, with the elegance of Bayesian approach, provides a better way to learn

model parameters and is validated theoretically and empirically in this thesis.

Despite having sound strategies for the asymptotic case, the finite-episode case in

RL has been seldom looked into. The other part of this thesis studies the exploration

strategies of finite-episode agents and proposes a novel framework, Structuring Finite-

Episode Exploration (SFEE) in Markov Decision Processes, that adapts an asymptotic

exploration strategy for finite-episode setting. This work justifies the need for such a

framework by showing that the asymptotic exploration strategies don’t suit the finite-
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episode setting which can be because of them not being conscious of the agent’s life-

time. Aiming to make good use of the sound strategies of asymptotic learning algo-

rithms, the proposed framework uses the policy of an asymptotic algorithm plugged

into the framework for a certain number of episodes and then appropriately switches to

a greedy policy. Further, this thesis shows, under some mild assumptions, that this is

indeed the optimal way to explore in a finite-episode setting using that exploration algo-

rithm. The framework also enables exporting theoretical guarantees from the plugged

asymptotic algorithm to the proposed framework.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

One of the primary objectives of Artificial Intelligence (AI) research is to build learn-

ing agents that surpass human intelligence. Reinforcement Learning (RL) (Sutton and

Barto, 1998), a branch of AI motivated by research in behavioral psychology, addresses

this intuitively and with mathematical sophistication. Reinforcement is a positive or

negative payoff that is provided to a learning agent. The RL problem is to maximize the

long-term or cumulative payoff.

1.1.1 Reinforcement Learning

A reinforcement learning problem is posed as a Markov Decision Process (MDP) <

S,A,R, P, γ > where

• S is a finite set of states

• A is a finite set of actions

• R : S × A → R is the reward function that provides the expected immediate
payoff for every state-action pair

• P : S × A × S → [0, 1] is the transition function and P (s, a, s′) defines the
probability of transitioning to s′ from s by taking action a, where s, s′ ∈ S and a
∈ A

• γ ∈ [0, 1] is the discount factor representing the importance of future and current
rewards

Given such an MDP, the objective of the agent is to learn an optimal behaviour

or policy π∗ : S → A that maximizes the cumulative reward over a finite or infinite

horizon, H .

The sequential nature of the problem makes it challenging for the agent since the

decision taken at a particular time step not only affects the current reward that the agent



Figure 1.1: Spectrum of RL approaches.

gets, but also the future rewards by determining what the subsequent state will be.

Hence, in such a sequential setup, it is useful for the agent to predict the cumulative

reward obtained by following a policy π from any state. This is exactly captured by the

value of a state under a policy.

1.1.2 Approaches in Solving an RL Problem

An RL problem posed as a reward maximization problem has traditionally been solved

by different approaches ( see Figure 1.1). Every approach has its significance in the

literature. We shall briefly go over the approaches in this subsection.

Policy Search Based Approaches

An RL problem posed as an MDP, needs to be solved for an optimal policy π∗. Policy

search approaches try to solve for the problem directly in the policy space, i.e., the

space of all possible policies. Techniques like policy gradient and actor-critic methods,

as discussed in (Barto et al., 1983), involve direct usage of policy and keep updating

the parameters that define the policy until the policy parameters converge to a local

optimum. By nature, these approaches are scalable as the policy can be represented

by a differentiable approximator like a neural network. Apart from the local minima
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problem, policy search based approaches also suffer from over-fitting. This is not a

problem per se, if the learning agent is able to explore the state space in full. In practice,

in a very large discrete space or a continuous space the probability of exploring the

entire state space is close to zero. Hence, the agent might learn only from a limited

sample that might skew the behaviour. Despite the policy search approaches’ inability

to converge to global optima, they have remained a favorite when it comes to large state

spaces.

Value Based Approaches

It is advantageous for a learning agent in an MDP, with its parameters known, to learn

value function to base its decision. A value function can be defined for a state (V π(s))

as the expected cumulative reward from a state s by following a policy π, or for a

state-action pair (Qπ(s, a)). In a small discrete world, value functions are stored us-

ing look-up tables. When the parameters of the world are known, the optimal value

function is computed using dynamic programming approaches like, Value Iteration or

Policy Iteration (Puterman, 1994). However, these approaches require the transition

and reward functions to be known a priori and hence cannot be scaled to larger do-

mains. But, these approaches can guarantee convergence to the global optimum in the

value function space, which is achieved using the Bellman operator (Puterman, 1994)

defined in Equation. 1.1,

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]
. (1.1)

The optimal value function obtained by using the following update equation,

Vi+1 = max
a

∑
s′

[R(s, a) + γP (s′|s, a)Vi(s
′)] (1.2)

Equation 1.2 will converge to the value function of the optimal policy. Despite the

disadvantages of being less scalable and requiring a model, this has the advantage of

converging to the global optimum.

The scalability issue has been tackled by using function approximators like CMAC

(Miller et al., 1990), Radial Basis Functions (RBF) (Anderson, 1992), Proto Value
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Functions (Mahadevan and Maggioni, 2007) and Artificial Neural Networks (Tesauro,

1995) to represent the value function. The approximators learn a parameterized rep-

resentation for value function, avoiding the need for using large look up tables. Such

approaches have been in use for more than two decades and, to an extent, have proven

effective in mitigating the scalability issue. The drawback of such approximation tech-

niques is that the approximation to the true value function learnt in certain complicated

domains can be way off affecting the agent from learning the optimal behaviour.

There is another class of techniques, model-free algorithms, that do not require the

agent to know the model but still learn estimates for the value functions like TD-learning

(Sutton, 1988), SARSA (Rummery and Niranjan, 1994) and Q-learning (Watkins and

Dayan, 1992). These approaches learn the estimates from the sample trajectories with-

out needing an explicit model to be specified. Though they are useful in practice, they

require a large number of sample trajectories for convergence.

Model Based Approaches

Most of the real world problems have unknown transitions and/or reward functions.

The unavailability of the model prevents an agent from using value-based approaches

in cases that require it to converge to an optimal behavior. Although model-free ap-

proaches help in learning an optimal policy without requiring an agent to learn the

model parameters, they do not effectively help in long term planning. Model-based ap-

proaches like Dyna and Real-Time Dynamic Programming (RTDP) (Barto et al., 1995)

help in mitigating this issue by aiding an agent to learn an estimate of the true model

and then use the estimated model to learn an optimal behavior. The optimality of the

behavior depends on the quality of the estimated model.

The lack of better trajectory generation in model based approaches mentioned above

warranted techniques that have effective exploration strategies. A good exploration

strategy aids an agent in generating sample trajectories that help the agent speed up the

model learning phase. One effective exploration strategy is to give an exploration bonus

– an incentive for the agent to explore – for effective sample generation. Earlier work

on exploration bonus based approaches for model-based RL include (Brafman and Ten-

nenholtz, 2003), (Kearns and Singh, 2002) and some of the recent ones are BEB (Kolter

and Ng, 2009), Approximate Bayesian Reinforcement Learning (Sorg et al., 2010) and
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UCRL (Sorg and Singh, 2009). The results of these works provide improved learn-

ing guarantees and have garnered reasonable attention in the RL community. One of

the major advantages of the exploration bonus based approaches is that they provide

greater control on an agent’s learning. The control on learning is established by im-

proved upper bounds on the expected number of samples for convergence, number of

mistakes, etc. Such guarantees are difficult to obtain in model-free approaches.

Bayesian Reinforcement Learning

A very early approach to model based setting, Thompson Sampling (TS) (Thompson,

1933), was proposed for non-sequential problems. Though the TS algorithm was pro-

posed in 1933, the learning guarantees for it have been proved very recently (Agrawal

and Goyal, 2012). This was also adopted for the MDP setting (Strens, 2000) and has

been used in solving different problems in model based RL setting. TS comes under

the broad category of Bayesian Reinforcement Learning (BRL) (Ghavamzadeh et al.,

2015). This represents a class of algorithms to solve model-based RL assuming only

the knowledge of the state space, S, and the action space, A. The agent starts with prior

beliefs over the transition function, P, and the reward function, R. For convenience,

the beliefs over transition and reward functions are often assumed to be Dirichlet and

Gaussian distributions respectively.

The description of Thompson Sampling is as follows. The algorithm assumes a

prior belief over the model parameters, be0. At any episode T , the agent samples an

MDP from beT−1
and solves for an optimal policy in the sampled MDP using any of the

dynamic programming (DP) methods. This policy is then used to generate trajectories

that look like st, at, st+1, rt+1, st+1, at+1, st+2, rt+2, .... A trajectory can be viewed as a

set of tuples where the ith tuple is represented as (si−1, ai−1, si, ri). A trajectory with

N time-steps has N such tuples that the agent uses to update the posterior belief, beT .

With increasing number of episodes, the belief over the model parameters converges to

the true parameters. Asymptotically the sampled MDP will converge to the true MDP,

solving which provides an optimal policy. This approach guarantees convergence to a

policy that has a near optimal regret (Auer and Ortner, 2006; Osband et al., 2013).
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1.2 Similarity Between Reinforcement Learning and Su-

pervised Learning

The problem of learning a mapping from states to discrete actions is similar to the

problems in supervised learning paradigm. In a supervised learning problem, a learning

agent is expected to learn a mapping function from the input space to the output symbols

minimizing on an error function. In RL, the state space, analogous to the input space,

is mapped to action symbols maximizing the cumulative reward. Despite the similarity

in the learning function, the learning process is different between the two paradigms.

A supervised learning approach has a labelled dataset, i.e., pairs of input vector and

output label, known as the training set (xi, yi)
N
i=1, where xi ∈ X , and yi ∈ Y and X

and Y are input and output spaces respectively. A learning function is provided with

this training set of N examples to learn a mapping function f̂ : X → Y .

On the other hand, in an RL approach, an agent has to generate experience from the

world in the form of trajectories. The agent uses the information in the trajectories to

learn an optimal policy, π∗. Unlike the supervised learning approach, an RL agent has

control over the training data it generates, similar to the active-learning (Bonwell and

Eison, 1991) set-up. Hence, the convergence to an optimal behavior using RL approach

is vastly affected by the samples generated by the learning agent.

1.3 Contributions of this Thesis

Exploration in RL aids an agent in generating sample trajectories that help in learning

more about the model parameters, thereby helping the agent improve its policy learning

from improved model parameters. The recent researches in model-based approaches

have shown that structured incentive for agents to explore is useful for better sample

generation. Along the lines of exploration based approaches for model based agents,

we propose and analyze a novel value-based exploration bonus for asymptotic model

based agents that provides a sample efficient way to learn the model parameters.

Further, the thesis also motivates and discusses model-based approaches from a

finite-episode agent’s perspective, which, to the best of our knowledge, is a novel con-
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tribution at least in a sequential learning set up. In regard to the finite-episode set up

problem proposed, the thesis proposes a simple framework that can adapt an asymp-

totic model-based strategy to learn a better policy in a finite episode sequential learning

problem. The two contributions of the thesis can be summarized as follows,

1. Proposing and analyzing a TS like sample efficient exploration strategy for

asymptotic model-based exploration agents.

2. Proposing and analyzing a exploration framework for finite-episode model-

based agents, which can be used to extend any of the existing asymptotic

strategies.

The organization of the thesis is as follows. Chapter 2 discusses the required math-

ematical background and a brief literature survey. In chapter 3, we address the problem

of exploration strategy of an asymptotic agent in model-based RL. Chapter 4 discusses

the finite-episode exploration strategy. In chapter 5, we conclude the thesis with a brief

discussion on the possible extensions and future work.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Background

2.1.1 Markov Decision Process

Reinforcement Learning problem is posed as a Markov Decision Process (MDP) <

S,A,R, P, γ > where

• S is a finite set of states

• A is a finite set of actions

• R : S × A → R is the reward function that provides the immediate payoff for
every state-action pair

• P : S × A × S → [0, 1] is the transition function that defines the probability of
transitioning to s′ from s by taking action a, where s, s′ ∈ S and a ∈ A

• γ ∈ [0, 1] is the discount factor representing the importance of future and current
rewards

Given such an MDP, the objective of the agent is to learn an optimal behaviour or

policy π∗ : S → A that maximizes the cumulative reward over a finite or infinite

horizon, H . With this notation, we define below the value of a state under a policy π,

V π(s) = Eπ

[
R(s, π(s)) + γP (s′|s, π(s))

∑
s′

V π(s′)

]
∀s ∈ S (2.1)

While reward captures the immediate payoff for a particular state-action pair, value

function with respect to a policy (V π) captures the expected cumulative payoff that the

agent would receive if it starts from that state and follows a policy π.



Algorithm 1: Thompson Sampling Algorithm (Strens, 2000)
Input: Prior distribution over all possible MDPs f , t=1.

Define: Mk . MDP sampled from f .
π∗k . Optimal Policy for Mk, obtained from an MDP solver.
at . action sampled from π∗k.
st . state at t.
rt . scalar reward obtained for taking at in st.

for episodes k =1,2,3,4,... do
Mk ∼ f(.|Htk)
Compute π∗k = solve(Mk)
for timesteps j=1,2,3,4,...τ do

at ∼ π∗k(st, j)
observe rt and transition to st+1

t← t+ 1
end

end

2.1.2 Thompson Sampling

Thompson Sampling, a Bayesian RL algorithm, is described in Algorithm 1.

For convenience, the prior distribution over the parameters is assumed to be Gaus-

sian and Dirichlet for reward and transition functions respectively. To be specific, when

the expected rewards are standardized, r ∈ [−1, 1], the distribution is usually a standard

Gaussian. An unbiased Dirichlet prior representing the transition function of a state

action pair will have a |S| length vector of ones (Dir(1, 1, 1..., )).

In Algorithm 1, the history of trajectories till episode k and time step t. π∗k represents

the optimal policy for the sampled MDP, Mk. The optimal policy, π∗k, is returned by

solve(), which can be any of the methods discussed in the previous chapter. The

obtained policy is used to generate trajectories, which is used to update the posterior

distribution over the model parameters. This is repeated until the agent’s performance

– cumulative reward of the max policy– in the true world converges.

2.1.3 Distance Between Two MDPs

The expression for the value function in Equation 2.1 is useful in understanding the

metric to bound the distance between two MDPs M1 and M2. Consider two MDPs M1

(S,A,R,P ) and M2 (S,A,R′,P ′) that have the same state and action spaces but different

reward and transition dynamics. Let the max norm over the difference in their rewards
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be Kr, similarly the differences in the transition be Kp and the difference between the

maximum reward and the minimum reward be δr. The following expression provides a

notion of upper bound on the distance between two MDPs in the value space (Ravindran

and Barto, 2004):

f(Kr, Kp, γ) =
2

1− γ

[
Kr +

γ

1− γ
δrKp

]
(2.2)

where,

Kr = max
s∈S,a∈A

|R(s, a)−R′(s, a)|

Kp = max
s∈S,a∈A

|
∑
s′

T (s, a, s′)− T ′(s, a, s′)|

δr = max
s∈S,a∈A

R(s, a)− min
s∈S,a∈A

R(s, a)

In the case of Bayesian Reinforcement Learning (see Algorithm 1), M1 and M2

can be associated with the true and sampled MDPs respectively. The true MDP is not

known in a Bayesian setting and M1 is approximated with the samples generated from

the MDP so far. Further, as the transition probabilities are generated by a Dirichlet

distribution, Kp can be upper-bounded by 1
n(s,a)

(Sorg et al., 2010), where n(s, a) is the

number of times the action a was taken in state s since the first episode. Equation 2.2

can be rewritten as follows,

f(Kr, γ) =
2

1− γ

Kr +
γ δr

(1− γ) min
s∈S,a∈A

n(s, a)

 (2.3)

In Equation 2.3, Kr is estimated as the maximum difference between the expected

reward sampled from the posterior reward distribution for state-action pairs in an episode

to the empirical mean of the rewards for state-action pairs that are computed based on

the samples obtained till that episode.

2.1.4 Learning Guarantees

A learning algorithm’s performance is indicated by the learning guarantees it provides.

Each learning guarantee uses a different setting to analyze an algorithm’s performance.

This thesis considers the following two notions of learning guarantees,

Definition 2.1.1. PAC-MDP: An algorithm A is said to be PAC-MDP (Probably Ap-
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proximately Correct - Markov Decision Process), if for any ε > 0 and 0 < δ < 1 the
number of sub-optimal steps, selection of an action other than the one chosen by an
optimal policy, is less than some polynomial in

(
S,A, 1/ε, 1/δ, 1

1−γ

)
with probability

at least (1-δ).

Definition 2.1.2. Regret: Let G∗ be the optimal discounted T-step cumulative reward
from any state s ∈ S. Total regret of algorithm, A, after T steps from a state s in an
MDP M is defined as,

∆(M,A, s, T ) = G∗ −G(M,A, s, T )

Where G(.) is the T step cumulative reward from state s.

2.2 Literature Survey

In standard Reinforcement Learning (RL) framework, the environment with which an

agent interacts is modeled as a Markov Decision Process (MDP). The goal of a learning

agent is to learn a policy such that the long term measure of a performance is maximized

over a finite or an infinite horizon. If the transition and reward parameters of the MDP

are known, then the learning process is straight forward, and the optimal policy can

be learnt with traditional DP-methods (Bertsekas and Tsitsiklis, 1996). However, in

most real life applications, the parameters of the MDP are not known a priori. In such

scenarios, the agent can try to directly learn a policy that maximizes the return (model-

free learning) or the agent can try to estimate the parameters of the MDP and learn a

policy based on the learnt MDP (model-based learning).

Recently, model-based learning approaches have been receiving increased attention

(e.g. (Brafman and Tennenholtz, 2003; Sutton and Barto, 1998; Strens, 2000; Kolter and

Ng, 2009; Sorg et al., 2010; Russo and Roy, 2014)). In model-based RL, the goal of an

agent is two-fold. First, it should estimate the true parameters of the model. Second, it

should not sacrifice too much on performance while trying to learn the model parame-

ters. The agent has to explore to learn the model parameters, but trying to over-explore

in improving the belief over the model parameters may increase the regret. Typically,

a Bayesian learning agent (Thompson, 1933) maintains a distribution (or a belief) over

the model parameters, and it gets updated as and when the agent receives a sample,

(st, at, st+1, rt+1), where st is the state the agent is at time t, at is the action the agent

took at time t and st+1 and rt+1 are next state and its corresponding reward respectively.

As the number of samples increases, the belief converges to the true parameters of the
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MDP.

Among the model based methods, Bayesian approaches are particularly attractive

due to their amenability for theoretical analysis, and for their convenient posterior up-

date rule. Much of the recent work has been focused on Thompson sampling (TS)

(Thompson, 1933) based approaches both in simpler bandit settings (Chapelle and Li,

2011; Agrawal and Goyal, 2012, 2013; Gopalan et al., 2013), as well as the full MDP

problem (Strens, 2000; Gopalan and Mannor, 2015; Russo and Roy, 2014). Ever since

(Chapelle and Li, 2011) discussed the efficacy of TS approaches for reinforcement

learning, there have been concerted attempts to achieve better understanding of such

approaches. Apart from the results in the bandit setting, TS approach for full RL has

been shown to work well in practice and has been shown to be regret optimal (Gopalan

and Mannor, 2015). However, there are no PAC guarantees in the literature for the TS

approach. To achieve better PAC guarantees an algorithm has to encourage more ag-

gressive exploration than enjoined by the basic TS approach and one way to do that is

to use an exploration bonus.

A widely applied strategy for exploration bonus comes under the broad technique

of Optimism in the face of uncertainty (Abbasi-Yadkori et al., 2011). This technique

illustrates that heuristically over-estimated state-value or action-value aids in the explo-

ration of an agent. In (Kaelbling, 1990), an algorithm proposed as Interval estimation

Q-learning (IEQ) for the non-sequential multi-arm bandit setting chooses the action

with the highest upper bound on the underlying Q-value. This approach also asserts

that the gradual decay of the over-estimation lets the agent converge to an optimal pol-

icy. This has been followed in approaches as early as UCB(Auer et al., 2002), where

the empirical mean, µ̂i, of an arm i is over-estimated by the confidence interval of the

estimated mean. UCRL (Auer and Ortner, 2006) takes an approach inspired by the

UCB technique for over estimation to aid exploration in MDPs.

Recent approaches to model learning in full RL setting have adopted exploration

bonus parameter from the multi-arm bandit setting. This has resulted in early conver-

gence to a better model and significant improvements in PAC bound of an algorithm.

There are quite a few algorithms proposed with different exploration strategies, for ex-

ample, R-max (Brafman and Tennenholtz, 2003) assumes that the belief over the model

parameters is improved by visiting a state large number of times, which is estimated as
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a function of (ε, δ) Definition 2.1.1. (Kearns and Singh, 2002) proposed a theoretical

framework that chooses exploration or exploitation based on the number of visits to the

state and an estimate over the expected cumulative reward from the state. (Kolter and

Ng, 2009) proposed Bayesian Exploration Bonus (BEB) algorithm which adds a con-

stant exploration bonus for every state/state-action pair whose parameter is unknown.

This algorithm improves on another exploration bonus approach, MBIE-EB (Strehl and

Littman, 2008), in terms of the PAC bounds. Though these algorithms have good strate-

gies, they have a weak assumption of uncertainty being uniform over the state space.

Recently, (Russo and Roy, 2014) highlighted an information-theoretic analysis of TS,

giving a better regret bound, considering the entropy in the action-distribution. (Sorg

et al., 2010) use the variance in the model parameters to derive an approach that is adap-

tive and more sophisticated than the earlier works. These methods provide an adaptive

exploration bonus thereby minimizing the number of samples needed to have a better

estimate. To reduce the variance in the sampled model Best of Sampled Sets (Asmuth

et al., 2009), BOSS, samples multiple MDPs and solves an MDP that is the average of

the sampled MDPs. Similar to R-max, the framework visits every state large number of

times to estimate the parameters with greater belief.

It is important for the model learning strategies to maintain a distribution over the

model parameters such that the probability mass over the true parameters is non-zero.

Approaches like (Sorg et al., 2010) and (Kolter and Ng, 2009) compute a point esti-

mate which makes it theoretically unlikely for the probability mass over the true model

parameters to be non-zero. Such approaches may converge to a very bad estimate in

certain cases. On the other hand, TS approaches can be appreciated for their Bayesian

update rule that doesn’t make the probability mass over the true parameters insignifi-

cant provided the prior is not too biased. But, TS approach can only guarantee a regret

optimal solution with a suboptimal PAC guarantee.

So far we have been looking at the unconstrained-time setting for learning model

parameters. A similar theme exist for finite-time setting of non-sequential learning

(stochastic multi-arm bandit problems). To name a few approaches in this setting, (Auer

and Ortner, 2010) provides an arm deletion strategy that deletes an arm after every fixed

number of time steps repeatedly, if the estimated reward of that arm is less than the

threshold until only single arm is left. Recent work like OFUL (Abbasi-Yadkori et al.,

2011), a parameterized bandit setting, uses a similar optimism in the face of uncertainty
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strategy to improve on the regret in a non-sequential setting. Another related work is

that of budgeted bandits, (Bubeck et al., 2009), where the goal is to use a finite budget

to discover what the best action is and then to repeatedly pick the action thereafter. The

budget can be spent purely on exploration. Most of the finite-time results pertain to a

non-sequential setting with no corresponding results for the sequential setting.
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CHAPTER 3

MORE EFFICIENT THOMPSON SAMPLING WITH
EXPLORATION BONUS

3.1 Introduction

In this chapter, we propose an asymptotic exploration algorithm, TSEB (Thompson

Sampling with Exploration Bonus), which is a modification over the traditional Thomp-

son Sampling algorithm with an exploration bonus for every state-action pair. TSEB

uses an uncertainty based exploration bonus that takes insights from the homomorphism

literature in RL.

The underlying principle of TSEB is similar to other model learning algorithms,

i.e., to provide incentive for an agent to explore new state-action pairs. But, the specific

form of the exploration bonus is what makes TSEB effective. The proposed exploration

bonus, for a state-action pair, is related to the uncertainty in its estimated transition and

reward functions. This dependence of exploration bonus on the estimated parameters

of a state-action pair makes TSEB adaptive.

The major contributions in this part of the thesis are,

• Introducing an uncertainty based exploration bonus.

• Providing a PAC guarantee for TSEB.

The organization of this chapter is as follows, Section 2 describes TSEB algorithm

followed by theoretical analysis in Section 3 and Section 4 provides the empirical vali-

dation of TSEB.

3.2 TSEB Algorithm

The core of the TSEB algorithm is TS, and it proceeds by first sampling a model from a

posterior distribution and then solving the sampled model. The crucial difference is that

the sampled MDP is augmented by an exploration bonus that is based on the statistics



of the posterior. The solution of this augmented MDP is then used to generate sample

trajectories with which the posterior is updated. Since the parameters of the MDP are

known, we use value iteration to solve for an optimal policy in the augmented MDP.

The key observation in deriving our exploration bonus is that the posterior distribu-

tion captures the uncertainty in the belief over the model parameters of the true MDP.

Hence, if we tailor our exploration bonus to drive us towards states where the uncer-

tainty is the highest, we will converge to the true estimate of the model.

As a surrogate to this measure, we use Equation 2.3 in Section 2.1.3, which provides

an upper bound to the difference of the value functions of two states. If for a particular

state-action pair in the sampled MDP, if this upper bound as measured from the expected

value function is large (as explained in Section 2.1.3), then it stands to reason that the

posterior is very uncertain about the parameters for that state-action pair. Hence, we

make the exploration bonus of a state-action pair proportional to the upper bound,

fs,a(Kr, γ) =
2

1− γ

[
Kr +

δr γ

(1− γ)n(s, a)

]
(3.1)

where n(s,a) is the number of times action a was taken in state s across all the

episodes in the true MDP. In a normalized reward setting, where R(s, a) ∈ [−1, 1], δr

can be upper bounded by 2.

The exploration bonus being dependent on Kr and number of visits (Equation 3.1)

illustrates its dependence on the uncertainty in the model parameters. This makes the

exploration bonus adaptive (exploration bonus can be computed for every state-action

pair individually) and dynamic (the exploration bonus for a state-action pair depends

on the samples used to update its estimated parameters). The modified Bellman update

to accommodate the exploration bonus is as follows,

Vt(s) = max
a∈A

[
λR(s, a) + (1− λ)ρt(s, a) + γ

∑
s′

P (s′|s, a)Vt−1(s′)

]
(3.2)

λ ∈ (0, 1]

ρt(s, a) =
(n(s, a)− 1)ρt−1(s, a) + fs,a(Kr, γ)

n(s, a)
(3.3)

As can be seen from Equation 3.1, the more uncertain the posterior about a state-
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action pair, the higher will be the exploration bonus for that pair. Further, from Equation

3.2 it can be inferred that the probability of visiting a state-action pair is directly depen-

dent on its exploration bonus, which decays linearly with the number of visits (Equation

3.3). Trajectories generated by TSEB agent, using the proposed exploration bonus, help

in deriving better estimates for the posterior model distribution.

As the exploration bonus is computed using the estimated model parameters, the

quality of the exploration bonus is affected by the number of samples used to estimate

it. This lets the initial values for exploration bonus to have high variance but it gets

better with the increase in the number of samples. The initial high variance doesn’t

affect the value function estimates, as TSEB uses a convex combination of the reward

estimated in the sampled world and the exploration bonus computed for that state-action

pair ρ(s, a) (Equation 3.2).

The pseudocode for TSEB is depicted in Algorithm 2. The algorithm uses value

iteration to solve for the optimal policy in an episode. The algorithm converges to an

optimal policy, as the exploration bonus for the state-action pairs become insignificant.

Hence, with the increasing number of samples generated with each episode, the esti-

mated model distribution grows closer to the true model distribution.

TSEB, unlike most other previous algorithms (with exception (Sorg et al., 2010)),

uses the uncertainty in the estimates to structure its exploration bonus. This gives a bet-

ter structure to exploration thereby providing better PAC guarantees for the algorithm.

Further theoretical analysis shows that the bound is indeed tighter than the PAC bound

obtained in earlier approaches. This can be attributed to the nature of the exploration

bonus that enables TSEB to identify and concentrate much of its exploration around

uncertain regions.

As with any Bayesian algorithm, in TSEB too, the initial beliefs over the model

parameters play a vital role in the convergence. If the priors are bad, and the true model

is assigned a low probability then the convergence maybe delayed. The effect of the

prior is evident in the sample complexity of TSEB, discussed later, that is directly pro-

portional to f0(Kr, γ) – the expected initial distance of the estimated model parameters

from the true parameters. TSEB can also be extended to provide a prior over explo-

ration bonus, which may help in learning the model faster. But, we don’t analyze a

priori exploration bonus in this work.
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Algorithm 2: Thompson Sampling with Exploration Bonus (TSEB)
Input: Parameter Space Θ, prior over Θ, action space A, state space S, and γ.
Define: E . Number of episodes.

Te . Number of time-steps in episode e.
ρt . Exploration Bonus in time-step t of an episode.
ret . reward at time step t in episode e.
r . reward obtained by taking an action.
Ve . Value function in episode e.
Re . Reward function sampled for episode e.
Pe . Transition function sampled for episode e.

Output: policy π
for e in range (E) do

Mθ ←Sample Re and Pe from posterior
Ve ← Value_Iteration(Mθ)
for t in range (Te) do

π(set )← argmaxa (λRe(s
e
t , a) + (1− λ)ρt(s

e
t , a)

+ γ
∑

s′ Pe(s
′|, a)Ve(s

′))
r←get_onestep_reward(π(set ))
n(set )← n(set )+1
n(set , a)← n(set , a)+1
r(set , a)←r(set , a)+ 1

n(set ,a)
[r − r(set , a)]

Kr ← 1
n(set ,a)

∑n(set ,a)−1
i=1 ri(s

e
t , a)−Re(s

e
t , a)

ρ(set , a)←
(n(set ,a)−1)ρ(set ,a)+fset ,a

(Kr,γ)

n(set ,a)

end
Update the posterior: πt+1(dθ) ∝ p(St, At, Rt, S

′
t)π(dθ)

end

3.3 Theoretical Analysis of TSEB

In this section, we derive PAC guarantee for the algorithm to upper bound the number

of steps that the agent takes before converging to an ε-optimal solution with probability

1 − δ. Existence of a PAC bound for TSEB, despite TS approach not having any, can

be attributed to the ability of TSEB to engage in more aggressive exploration than TS.

As the exploration bonus obtained using fs,a(Kr, γ) (Equation 3.1) provides an up-

per bound on the distance between the true and the sampled parameters, with increasing

samples obtained through the episodes this distance keeps decreasing. An upper bound

on the number of sub-optimal steps TSEB takes before it learns the true model param-

eters is discussed in Theorem 3.3.1.

Definition 3.3.1. Variance Bounds: Let X = X1 + X2 + ... + Xn, where Xi’s be
independent and Xi ∈ [0, 1] for each i ∈ n. Let E[X] = µ and V ar[X] = σ2. Then
for ε >0, which is defined as t

n
,
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P

(
X ≥ µ+

t

n

)
≤ e

−( tn)
2

4σ2 (3.4)

This is an extension of the Chernoff bounds (Herman, 1952) in a known variance
setting (Dubhashi and Panconesi, 2009). Variance-based concentration measure has a
slower decay rate than Bernstein inequality (Bernstein, 1924). Still we use this bound
to account for the moderate increase in sample size that may be caused by the variance
in the computation of exploration bonus.

Theorem 3.3.1. For a given value of ε > 0 and 0 ≤ δ ≤ 1, the number of sub-optimal
steps that TSEB takes is upper bounded by M = O

(
SAf0(Kr,γ)

ε2

)
with probability 1-δ.

Proof. Consider any state-action pair, (s, a) ∈ S × A. Let the rewards obtained over
the visits to state s by an agent and selecting action a in that state be represented by
a sequence, (R)i. Let E[(R)i] = R∗, and V ar[Ri] = σ2, using Definition 3.3.1 and
replacing t

n
with ε,

P

(
1

n

n∑
i=1

Ri ≥ R∗ + ε

)
≤ e

−ε2
4σ2 (3.5)

As we are interested in an upper-bound, δ, for the probability term in Equation 3.5, the
inequality in Equation 3.5 can be re-written with the inclusion of the upper bound as,

σ2 ≥ ε2

4 log 1
δ

(3.6)

The above equation expresses the relation between (ε, δ) and (σ2). The exploration
bonus ρ(s, a) (the subscript t is dropped for convenience of expression) computed as in
Equation 3.3 for a state-action pair in an episode can be understood as a cumulative sum
of differences between the sampled state parameters and an unbiased estimate of the ex-
pectation of parameters till that episode. This is because of the Kr factor in fs,a(Kr, γ)
which is the max norm difference between the reward functions of the sampled and the
expected MDP. Hence, the exploration bonus ρ(s, a) can also be expressed as follows,

ρ(s, a) =
1

n− 1

∑
i=1:n

||Êi[θs,a]− θis,a||∞ (3.7)

where, θis,a is the sampled parameter in an episode i and Êi[θs,a] is an unbiased
estimate of the mean computed from the samples collected till the episode i. By the
equivalence of norms in finite dimensional Euclidean spaces, ||.||∞ ≤

√
C||.||2 (for

some constant C), we justify the use of variance based measure (Definition 3.3.1) to
derive an upper bound on the number of samples. σ2 in Equation 3.6 is an unbiased
estimate of the summation of differences in value of states between the true and sampled
MDP, which is upper bounded by fs,a(Kr, γ). Hence,

f(Kr, γ)

ns,a
≥ ε2

4 log 1
δ

(3.8)

Where ns,a be the number of visits to a state-action pair (s, a).
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Let f0(Kr, γ) be the expected initial distance of the sampled MDP from the true
MDP with respect to the prior. In an uninformative prior setting, f0 assumes a uniform
prior over the models and in expectation is the maximum over the f-values computed in
the algorithm. Hence,

f0(Kr, γ)

ns,a
≥ ε2

4 log 1
δ

(3.9)

Further, it is important to factor in the effect of λ, the trade-off parameter, in the PAC
bound as it affects the actions taken. To understand the effect of λ, consider the ratio
between the action probabilities using the modified Bellman update with a non-zero λ
and λ=0. The ratio expresses the role of λ in action probabilities directly affecting the
action selection. Let η be the ratio quantifying the expected increase in samples with a
non-zero λ,

η =
e(λR+(1−λ)ρ+γP (s′|s)V (s′))

e(ρ+γP (s′|s)V (s′))
(3.10)

or
η = eλ(R−ρ) (3.11)

Lemma 3.3.1. Popoviciu’s inequality on variance (Popoviciu, 1935): LetX be a bounded
random variable such that X ∈ [a, b]. Then Popoviciu’s inequality on variance states,

σ2 ≤ 1

4
(b− a)2 (3.12)

where σ2 is the variance of the random variable X .

In a normalized reward setting, ρ, which is analogous to the variance of reward
(Equation 3.7 and the explanation followed) can be upper-bounded by 1 using Lemma
3.3.1 and R can be loosely upper bounded by 2. Using the earlier statements, η can be
upper bounded by eλ. Thus, a λ value closer to 1 indicates that the agent is following a
conservative policy that leads to a higher sample complexity.

Combining Equation 3.9 and Equation 3.11 we can derive the upper bound on the
visits as an effect of λ. The updated expression is as follows,

ns,a ≤ eλ
4f0(Kr, γ)

ε2
log

1

δ
(3.13)

The total sample complexity, M , for a given (ε, δ) pair on an MDP with |S| and |A|
being the cardinality of its state and action spaces is given by,

M ≤ eλ
4|S||A|f0(Kr, γ)

ε2
log

1

δ
(3.14)

M = O
(
|S||A|f0(Kr, γ)

ε2

)
(3.15)

Equation 3.15 provides an upper bound on the number of sub-optimal steps of TSEB
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algorithm. It is also interesting that this bound is dependent on the initial estimates,
prior, of the model parameters– f0(Kr, γ). �

Algorithm PAC- Bounds

MBIE O

(
S2AR5

maxln
3 SARmax

(1−γ)εδ
(1−γ)6ε3

)
BEB O

(
SAH6

ε2
log SA

δ

)
Variance Based O

(
γ2S4A2

δε2(1−γ)2

)
TSEB O

(
eλSAf0(Kr,γ)

ε2
log 1

δ

)
Table 3.1: The table shows the existing PAC bounds for a model based learning setting. The

cardinality of the sets of states and actions is defined by S and A in the table.

Table 3.1 shows a comparison of the PAC guarantee of TSEB against other existing

PAC guarantees. The f0(Kr, γ) can be upper bounded by Rmax
1−γ . A direct compari-

son of TSEB’s guarantee with the rest shows that it is at least SR4 times better than

MBIE’s, H5 times better than BEB’s and S3A2 times better than Variance based ap-

proach. Hence, TSEB’s PAC bound is tighter than the earlier known bounds for explo-

ration bonus approaches.

3.4 Empirical Analysis

In this section, we empirically analyze the performance of TSEB on two simulated

domains, Chain world (Kolter and Ng, 2009) and Queuing world (Gopalan and Man-

nor, 2015), with different values of the trade-off parameter, λ ∈ [0, 1] averaged for 50

experiments.

3.4.1 Chain World

The chain domain has five states and two actions a and b. The agent has access to both

the actions from every state. With probability 0.2 the agent ends up taking the other

action than the one selected. The transitions and rewards are as shown in Figure 3.1

except for the first state, which has a stochastic reward sampled from N (0.2, 0.5). We

fix γ as 0.8.

Figure 3.2a shows the evolution of the fs,a(Kr, γ) with number of episodes and

Figure 3.2b shows the evolution of the corresponding upper bound for different choices
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Figure 3.1: Chain World Domain. The arc labels denote expected reward and action.

of λ. As can be seen from Figure 3.2a, fs,a(Kr, γ) quickly converges to its minimal

value with fastest convergence being achieved for λ = 0.5. This indicates that the

trade-off parameter indeed makes a difference to the performance of the algorithm, and

settling on one extreme is not always the optimal choice. Figure 3.2b shows that the

estimated values of the parameters is closer to the true parameter values when λ = 0.5

as opposed to the two extreme values. The poor performance when λ = 0 can be

attributed to the high variance in the estimated exploration bonus and the agent’s total

reliance on it to guide its trajectories. In the case of λ = 1 (TSEB acts as TS), the

performance is poor due to the lack of useful samples owing to the conservative policy

chosen by TS. On the other hand, combining the two extremes with λ = 0.5 provides a

better performance than relying only on one of them.

Despite being aggressive in its exploration, TSEB agent managed to come very

close to the regret optimal performance of TS. Figure 3.2c shows a comparison plot of

the average reward in a time step for the three cases considered. This is partly because

of the environment and, hence, cannot be generalized across domains. The periodic

drop to a small value in Figure 3.2c is due to the reset to the initial state.

3.4.2 Queuing World

The description of the world is as follows. The states of the MDP is the number of

packets in the queue at any given time, i.e., S={0, 1, 2, ..., 50} and at each step the agent

receives a new packet with probability 0.7. At any given step, the agent has to take

one of the two actions: Action 1 (SLOW service) and Action 2 (FAST service), i.e.,

A={1, 2}. Applying SLOW (resp. FAST) service results in serving one packet from

the queue with probability 0.3 (resp. 0.8) if it is not empty, i.e., the service model is

Bernoulli(µi) where µi is the packet processing probability under service type i = 1, 2.
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(a) Convergence of fs,a(Kr, γ), for different λ values in Chain
world.

(b) Convergence of upper bound on fs,a(Kr, γ) for differ-
ent λ values in Chain world.

(c) Average reward in Chain world.

Figure 3.2: Experiment results on Chain World domain

Actions 1 and 2 incur a per-instant cost of 0 and −0.25 units respectively. In addition

to this cost, there is a holding cost of −0.1 per packet in the queue at all times. The
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system gains a reward of +1 units whenever a packet is served from the queue.

λ Queuing World Chain World
0.1 -5061 1963.74
0.2 -5038 1951.72
0.3 -5048 1944.65
0.4 -5051 1954.06
0.5 -5042 1956.22
0.6 -5040 1955.14
0.7 -5062 1953.99
0.8 -5038 1940.77
0.9 -5026 1934.99
1.0 -5023 1942.63

Table 3.2: Average cumulative reward for different λ in the test domains

We also experimented on this world with the same values of λ as used in the first

experiment. Table 3.2 shows that the maximum performance was achieved under differ-

ent λ values in the two worlds. We don’t evaluate the cumulative reward when λ = 0.

As seen from Figure 3.2c, the performance when λ = 0 is similar to random action

selection. This is because, in this case, the agent relies only on exploration bonus which

becomes insignificant as the number of visits becomes large. This leads to the agent

converging to a value function that is 0 for all state-action pairs. This uninformative

constant value function doesn’t show the effect of λ on the agent’s performance.

The results can be further interpreted considering the characteristics of the two

worlds. The Chain world doesn’t offer negative rewards to the agent and exploration

seem to pay off well for the agent. But relying only on exploration bonus, λ=0, doesn’t

let it converge to the optimal policy. On the other hand, in the Queuing world, the agent

receives negative rewards, which inhibits the agent from being explorative. Also the

lesser variance in the reward function in this case resulted in λ = 1 accumulating a

better cumulative reward than the other values. This explains the agent accumulating

better rewards in Queuing world despite the agent not being exploration centric. To

summarize, the results portray the need for tuning λ value for different domains (best

performance recorded for different λ values in the two worlds) justifying one of the

claims of having a tunable parameter. This could not be better justified had the maxi-

mum performance was achieved for any particular value of λ in both the worlds.
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CHAPTER 4

STRUCTURING FINITE-EPISODE EXPLORATIONS
IN MARKOV DECISION PROCESSES

4.1 Introduction

In the previous chapter we looked at explore-exploit dilemma in RL from an asymp-

totic agent’s perspective. In this chapter, we look at this dilemma from an RL agent

that can exist only for a finite number of episodes. We refer to such RL agents as

finite-episode agents. A finite-episode agent has the need to trade-off the amount of ex-

ploration it engages in versus exploiting the partial knowledge acquired thus far. Such

finite-episode agents have been studied reasonably well under the non-sequential setting

in the stochastic multi-arm bandits (MAB) literature (Budgeted bandits (Bubeck et al.,

2009)). But to the best of our knowledge, little has been done under the sequential MDP

setting.

The objective of such a finite-episode agent is to balance the need to learn new things

about the environment with the primary objective of maximizing the total cumulative

reward over its lifetime. To address this dilemma of model-based RL agents (Section

1.1.2) with finite episodes, in this chapter we propose an exploration framework, Struc-

turing Finite-Episode Exploration (SFEE). The model based RL problem has received

a great deal of attention from an asymptotic agent’s perspective that led to a number of

theoretical results for the agent’s performance.

Unfortunately, these results are of little practical relevance to applications where the

agents must learn in finite time. In such cases the explore-exploit dilemma is significant

as the choice between the two can make a drastic difference in the total return. Ulti-

mately, we propose that the optimal behavior, under some moderate assumptions, for a

finite lifetime agent is achieved by stopping the exploration after a certain number of

episodes and adopt a possibly sub-optimal exploitation policy.

The major contributions of this chapter are as follows:

• Proposing a framework that can adapt asymptotic model learning algorithms for
a finite-episode setting.



• Proposing Gain value, which aids in deciding between explore and exploit.

• Providing PAC and regret guarantees for the proposed framework.

• Providing empirical analysis of performance of the proposed framework.

The rest of this chapter is structured as follows. Section 2 introduces SFEE frame-

work and defines gain parameter and a few other parameters of interest upon which

the decision to explore or exploit depends on. Section 3 discusses that the right pol-

icy for a finite-episode agent is to explore consecutively for some number of episodes

and permanently switching to exploitation. Section 4 discusses on importing the explo-

ration algorithm’s performance guarantees into SFEE and the regret guarantees of the

framework. Empirical demonstration of the framework in two grid worlds is provided

in Section 5.

4.2 Exploration for Finite-Episode Lifetime Agents

The SFEE agent is provided with two policies: an exploit policy, πx, and an explore pol-

icy, πe. In an episode, SFEE agent chooses either the exploit policy, which is a greedy

behavior with respect to the agent’s estimated belief over the model till that episode, or

the explore policy, which is the behavior directed by any of the existing model-based

exploration algorithm (like R-max (Brafman and Tennenholtz, 2003), BEB (Kolter and

Ng, 2009) etc.). The SFEE agent decides between the two policies at the beginning of

every episode. Once chosen, the per step action choices in that episode are governed

by the chosen policy. The goal of a SFEE agent, then, is to choose between the two

policies appropriately such that the total reward obtained over its lifetime of T episodes

is maximized.

We make the following assumptions about the problem:

• The MDP is ergodic i.e., each state in the MDP is visited infinitely often (recur-
rent) and without any systematic period (aperiodic).

• The size of the MDP is very large compared to the length of an episode.

• Every episode is of finite length.

• Each exploration episode results in the agent obtaining data for at least one un-
known state, if one exists.
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• An exploitation episode ends if the agent encounters a new state, as this will be a
rare event and the agent by then has a better knowledge (within the limits of its
lifetime) of the world to forgo learning a new state.

It is useful to familiarize with the following descriptions for the states to understand

the working of the framework. The states are initially assumed to be unknown – the

agent has no knowledge of the states. When the state is visited at least once, the state

becomes visited and once its parameters are estimated with high confidence the state

becomes known.

4.2.1 Gain Parameter

The agent’s decision to explore or exploit is defined by the gain parameter. The decision

of the agent in an episode, at a high-level, should be to explore when it may benefit

by improved return in the future episodes by exploring in that episode and to exploit

otherwise. The decision parameter, gain, depends on a few other parameters that are

defined below.

Let St be the set of start states in the MDP, I be the set of states that are known to

the agent, and Ω be the set of states that the agent will get to know by exploring in the

current episode.

Definition 4.2.1. The Expected Return Margin (ERM) is the increase in future per-
episode return obtained by the exploit policy, given one additional exploration episode:

ERM = Es0∼St
[
V πx

I∪Ω(s0)
]
.

ERM estimates the benefit of augmenting newly known states (Ω) after an explo-

ration episode to the states that the agent already knows (I) ; this benefit is expressed

as the expected change in the return of the subsequent exploit policy. The notation,

V πx

I∪Ω(s0), denotes the value of a state s0 by following policy πx over the set of states

already known(I) and the states the agent will know after a single explore episode (Ω)

– return of the subsequent exploit policy.

Definition 4.2.2. The Exploit Episode Return (EER) is the return obtained by executing
the exploit policy for a single episode, without further exploration:

EER = Es0∼St
[
V πx

I (s0)
]
.

EER is simply the value function of the exploit policy, averaged over the start states.
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Definition 4.2.3. The Exploration Loss (L) is the loss incurred by an agent by following
explore policy rather than the exploit policy:

L = Es0∼St
[
V πx

I (s0)
]
− Es0∼St

[
V πe

I∪Ω(s0)
]
.

L expresses the single-episode loss of the agent for opting to explore than to exploit.

We combine these quantities to define Gain:

Definition 4.2.4. Gain is the expected improvement in return over the agent’s remaining
Tr episodes, after exploring in the current episode and choosing to exploit from then on.

G = Tr × (ERM − EER)− L. (4.1)

Computing gain in an episode takes into account the improvement on future returns

by following πe in that episode, the return of πx in that episode and the loss due to

exploration in that episode. The gain parameter, taking these quantities into account,

helps in deciding between explore and exploit policies in an episode. SFEE chooses to

explore if gain is positive, and exploits otherwise.

4.2.2 Switching to Exploitation

The gain estimated in an episode only supports the explore/exploit decision made in that

episode. In this section, we show that under some mild assumptions the right policy for

a finite-episode agent is to explore consecutively for some number of episodes, before

permanently switching to exploitation and that can be achieved by acting according to

the gain parameter estimated in an episode.

This problem is closely related to the optimal stopping problem described in (Weber,

1975). The problem, hence, boils down to proving the existence of a stopping point

for the explore episodes. We prove the existence of the stopping point and also show

that gain parameter is a sufficient quantity to decide the stopping point for the explore

episodes.

As the number of states initially known to the agent is small and increases with the

number of exploration episodes, we make a mild assumption that the loss due to explo-

ration will be low initially (as the agent visits new states and improves its belief over

the model parameters) and then increases (with more number of exploration episodes

the agent has a reasonable belief over the parameters and the exploration episodes bring
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in less information with following a sub-optimal policy) as a function, α, that is weakly

monotonic in episode number. Hence the loss at step i+ 1 can be represented as:

li+1 = li + α(i+ 1), (4.2)

where li is the loss in the ith episode.

Similarly, we assume that the expected improvement over future returns following

exploration policy decreases with increasing episode number—explore policy shows

diminishing improvements in future returns with increase in episodes. Let (ERM −

EER) in an episode i be represented by gi. The additive function ω characterizes

the increase in future returns due to exploration. Hence the gain at step i + 1 can be

represented as :

gi+1 = gi + ω(i+ 1). (4.3)

This function should decrease with episodes, as the information gained in every

episode decreases. Gain at kth episode, gk, can also be represented as:

gk = g0 +
k∑
i=1

ω(i), (4.4)

and loss lk represented likewise as:

lk = l0 +
k∑
i=1

α(i), (4.5)

Considering that an agent behaves greedy with respect to the gain term defined in

Equation 4.1, we show in the following theorem that greedy selection between explore

and exploit policies will lead to a finite sequence of explore episodes and switching to

exploit from then on. We thus show that the Gain value computed is sufficient to decide

between explore and exploit policies.

Theorem 4.2.1. For an agent with a T -episode lifetime, if exploring at episode (k+ 1)
is useful, then so is exploring at episode k.
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Proof. We are given that exploration is useful at the (k+1)th episode, so we know that:

(T − k − 1)gk+1 − lk+1 ≥ 0 (4.6)
(T − k)gk+1 − gk+1 − lk − αk ≥ 0 (4.7)

(T − k)(gk + ωk)− gk+1 − lk − αk ≥ 0 (4.8)
(T − k)gk − lk ≥ gk+1 + αk − (T − k)ωk. (4.9)

To prove that exploration is also useful in step k, it is sufficient to prove that:

gk+1 + αk − (T − k)ωk ≥ 0, (4.10)

which can be re-written as:

g0 +
k∑
i=1

ωi + αk − (T − k)ωk ≥ 0 (4.11)

g0 + αk +
k−1∑
i=1

ωi ≥ (T − k − 1)ωk. (4.12)

By using induction on episodes, we show that Equation 4.12 holds at every episode.
Let k be any episode between 1 and T . For the base case, consider the (T − 1)th

episode was explore. Then, this should mean that (T −2)th episode was explore indeed.
Substitute k = T − 2 in Equation 4.12

g0 + αT−2 +
T−3∑
i=1

ωi ≥ (T − T + 2− 1)ωT−2 (4.13)

g0 + αT−2 +
T−3∑
i=1

ωi ≥ ωT−2 (4.14)

g0 + αT−2 +
T−3∑
i=1

ωi ≥ ωT−2. (4.15)

By assumption α and ω are monotonically increasing and decreasing functions re-
spectively and the statement holds for the base case.

Let us assume that this holds for some k = t ≤ T − 2,

g0 + αt +
t−1∑
i=1

ωi − (T − t− 1)ωt ≥ 0. (4.16)

Then, for k = t− 1, the following equation has to be proven.

g0 + αt−1 +
t−2∑
i=1

ωi ≥ (T − t− 2)ωt−1 ≥ 0 (4.17)

By the initial assumption αt−1 = αt + c1 and ωt−1 = ωt − c2 where c1, c2 ∈ R+, we
rewrite Equation 4.17 as,
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g0 + αt + c1 +
t−2∑
i=1

+ωt−1 − (T − t− 1)(ωt − c2) ≥ 0 (4.18)

Re-arranging Equation 4.18

g0 + αt +
t−1∑
i=1

ωi − (T − t− 1)ωt ≥ −c1 − (T − t− 1)c2

From Equation 4.16, the LHS of the above equation is positive and RHS of the
equation is clearly negative.

Hence, this holds for any for all t between 1 and T .

�

Corollary: The proof of this theorem can be extended to a generic case of k − 1

explore episodes being useful if k explore episodes are useful. Had the k − 1th episode

been exploit and the kth episode is explore, then it would mean that the exploration

episode was not useful in k − 1th episode which is a contradiction with Theorem 4.2.1.

This shows that there exists an optimal stopping time for the explore episodes.

Since SFEE explores until a certain episode and exploits then on, it can be inferred

that SFEE avoids premature exploit episodes and chooses to exploit a mature knowledge

of the world to reap better pay offs. It should be noted that a finite stopping time in

exploration is possible with the agent exploring only a fraction of the large state space

and halting with the agent not knowing the entire state space. This helps in achieving

a behavior that is lifetime optimal and may not be the true optimal. We discuss more

on this in the theoretical guarantees section. Algorithm 3 describes the pseudocode of

SFEE framework.

4.3 Bounding the Loss in Estimated Gain

As the agent explores, it maintains estimates of the true model parameters (P ∗ and R∗).

The gain, G, is computed from estimates of the model parameters. The true gain, G∗,

can only be computed if the agent had access to the true model parameters. This results

in a loss in estimating gain, which can be attributed to the sum of individual losses in

estimating ERM and EER.
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Algorithm 3: Structuring Finite Time Exploration (SFEE)
Input: St, I , Ω, πe, πx, V πx

I , V πe

I , V πx

I∪Ω and V πe

I∪Ω.
Define: N . Total number of episodes.

Tr . Number of remaining episodes.
V πe

I . Value function over I by following πe

V πx

I . Value function over I by following πx

V πe

I∪Ω . Value function over I ∪ Ω by following πe

V πx

I∪Ω . Value function over I ∪ Ω by following πx

for e in range (N) do
if e > k then

ERM← Es0∼St
[
V πx

I∪Ω(s0)
]

EER← Es0∼St
[
V πx

I (s0)
]
.

L← Es0∼St
[
V πx

I (s0)
]
− Es0∼St

[
V πe

I∪Ω(s0)
]

G← Tr ∗ (ERM − EER)− L
end
if G > 0 and e > k then

Follow πx until an unknown state is reached
end
else

Follow πe

Collect samples (s, a, s’, r)
end
Construct Ω
Update the estimated model parameters
Compute πe, πx, V πx

I , V πe

I , V πx

I∪Ω and V πe

I∪Ω

end

Let the value function computed using the true model parameters (this is not known;

we are using this to get an upper bound on the loss) be V̂ .

G∗ −G = Tr ∗ [(EER∗ − EER) + (ERM∗ − ERM)] (4.19)

loss = Tr ∗ Es0∼St
[
|
(
V̂ πx

I (s0)− V πx

I (s0)
)

+
(
V̂ πx

I∪Ω(s0)− V πx

I∪Ω(s0)
)
|
]
. (4.20)

The bounding loss is different from the Exploration loss (L) discussed earlier.

Lemma 4.3.1. The gain estimation loss is directly proportional to the variance in the
model parameters, Kp and Kr.

Proof. Let the true MDP, M∗, be defined by < S ′, A, P ∗, R∗, γ > and the sampled
MDP, M , be defined by < S ′, A, P,R, γ >. M∗ is defined with the true parameters
of the model and the structure constructed from the states visited by the agent, S ′.
Considering the bijection between the state space of M∗ and M , the policy learnt in
the image M , when lifted to M∗ suffers a loss owing to the dissimilarities in the model
parameters.
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Let us define a few more parameters. In an episode i,

kir = max
s∈S′, a∈A

|R∗(f(s), a)−R(s, a)|, (4.21)

kip = max
s∈S′, a∈A

|P ∗(f(s), a, f(t))− P (f(s), a, f(t))| (4.22)

The maximum over N episodes for kp and kr are given by,

Kr =
N

max
i=1

kir (4.23)

Kp =
N

max
i=1

kip (4.24)

which provides an unbiased estimation of the expected variance of transition and
reward parameters respectively (ref. Theorem 3.3.1). The range of the rewards in the
image MDP M is defined as:

δr′ = max
s∈S a∈A

R(s, a)− min
s∈S a∈A

R(s, a). (4.25)

From the theorem in §4 in (Ravindran and Barto, 2004), the max norm difference
between the value functions learnt in M , V , and M∗, V ∗, is given by,

||V ∗ − V || ≤ 2

1− γ

[
Kr +

γ

1− γ
δr′Kp

]
. (4.26)

This can be extended to upper bound the loss expression in Equation 4.20. Let the
Kp, and Kr to estimate the difference between EER∗ and EER be KEER

p , and KEER
r .

Similarly, for ERM, let these parameters be KERM
p , and KERM

r . Upper bounding the
difference between the δ′r by C, Equation 4.20 can be rewritten as

loss ≤ 2

1− γ

[
ΘKr +

γ

1− γ
CΘKp

]
(4.27)

where, ΘKr = KEER
r +KERM

r and ΘKp = KEER
p +KERM

p .

The gain parameter computed in an episode biases an agent’s decision to explore or
exploit. Hence the loss is interesting to calculate, as it gives an upper bound on the loss
due to lifting of policy. From the expression it is clear that the loss is directly dependent
on the variance in the model parameters. One way to mitigate this loss in estimation
is to have informative prior on the model parameters. A good prior that has a small
variance and is closer to the true parameters will help in minimizing this error, which is
difficult to get in most of the real world problems. �

4.4 Importing PAC guarantees

PAC analysis provides an upper bound on the number of non ε-optimal steps an agent

takes before converging to an ε-optimal policy. PAC guarantees for SFEE is obtained
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by importing the guarantees of the asymptotic exploration algorithm accessed by the

framework. The decision made by the framework is dependent on the belief over the

estimated model parameters, which in-turn is dependent on the exploration algorithm

adopted in the framework. We provide a tool to estimate the framework’s PAC guaran-

tee using the PAC guarantee of the exploration algorithm.

Consider the scenario where an agent follows a sequence of k explore episodes in

its T-lifetime, and the episodes contain Nt-time-steps on average. Let an exploration

algorithm, AE adopted in the framework provide an (ε, δ) guarantee for N number of

samples. The guarantee states that for the converged solution to be ε-optimal with 1− δ

probability, the bound requires N samples. Now, the analysis forks into two. One,

where the number of samples collected during the explore episodes is more than N. i.e.

kNt ≥ N and the other, where the number of samples is less than N.

In the former case, the PAC guarantee of the exploration algorithm holds. By the

definition of PAC guarantee, the (ε, δ) guarantee is provided for the expected number of

samples. In the latter case, plug in the number of samples in the PAC expression to ob-

tain a (ε, δ) curve. As it is relatively costlier to improve on the ε, we pick a smaller value

of δ, δ1, from the curve, such that δ1 > δ. Now, by plugging the number of samples,

and δ in the guarantee of the algorithm, we get an ε1. This provides an (ε1, δ1) guarantee

in expectation for AE in the finite-episode setting with kNt number of samples.

4.5 Discussion on Regret Guarantees

The regret analysis in this section provides an upper bound on the total loss that an agent

accrues by following a policy that the framework has converged to. An asymptotic

agent will converge to the true MDP and will follow an optimal policy asymptotically.

As a finite-episode agent runs on a budget of episodes, it is not fair to estimate regret

with respect to the optimal policy. The finite-episode agent is inhibited by the setting

(very large state space) to converge to an optimal policy. But, it can try to approach

an optimum that can be achieved within its lifetime. The true optimal and the optimal

with respect to the agent’s lifetime differ depending on the cardinality of the states in

an MDP, and the lifetime of the agent. The optimal policy is always better or equal in

performance to a policy obtained in a bounded lifetime.
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Figure 4.1: Pictorial description of regret comparison. The true MDP that an agent can learn
asymptotically is M∗. The smaller lifetime prevents the agent from converging to
M∗ and at possible lets it learn M’. Often the stochasticity in transition hinders the
agent from learning M’ too and eventually the agent ends up only learning M. We
refer M’ as the lifetime optimal and M∗ as the true/optimal MDP.

Consider an MDP, M , < S,A,R, P, γ >, γ ∈ (0, 1) that the agent gets to know in

its lifetime. This is a small portion of the large MDP, which it may not get to explore

entirely given its finite lifetime. Let the largest possible MDP constructed in its lifetime

be M ′,< S,A,R, P ′, γ >. Let D and D′ be the diameters of MDPs M and M ′ re-

spectively, where the diameter of an MDP is defined as the maximum expected distance

(expectation considered over all possible policies) between any two states in that MDP.

The efficiency of an exploration strategy is quantified by the diameter of the estimated

MDP. In general, smaller the diameter poorer is the exploration strategy.

The agent’s regret with respect to the lifetime optimal policy, max policy in M ′, is

estimated by the difference between the expected return of an episode of length cor-

responding to the diameter of the MDP, M , and the expected return of an episode of

length corresponding to the diameter of the MDP, M ′.

Assume the reward is distributed in [0,Rmax]. Let G ′ and Ĝ be the maximum pos-

sible return from M ′ and M respectively by following a policy as described earlier in

both the MDPs. Let the expected lifetime of an agent be T episodes.

∆ = G ′ − Ĝ. (4.28)

Let the discount factor be γ ∈ (0, 1). Then,

G ′ ≤ Rmax(1 + γ + γ2 + ...+ γD
′−1).
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Ĝ ≤ Rmax(1 + γ + γ2 + ...+ γD−1).

Updating Equation 4.28,

∆ ≤ Rmax(1 + γ + γ2 + ...+ γD
′−1)−Rmax(1 + γ + γ2 + ...+ γD−1) (4.29)

≤ Rmaxγ
D−1(1− γ)−1. (4.30)

The diameter D of the known MDP can be loosely upper bounded as D ≤ 2L, where L

is the expected length of a trajectory.

∆ ≤ Rmaxγ
2L−1

(1− γ)
. (4.31)

With T as the expected lifetime of the agent,

E(Regret) ≤ T ×∆ (4.32)

E(Regret) ≤ T ×Rmaxγ
2L

(1− γ)
, (4.33)

Equation 4.33 provides an expression for the notion of upper bound on the regret of

a finite-episode agent with respect to its lifetime.

Equation 4.33 shows that the expected regret of a finite lifetime agent is upper

bounded by a function of the length of an episode, which is a loose upper bound on

the diameter of the MDP that the agent has constructed in its lifetime. As γ ∈ (0, 1),

the regret decays with increase in episode length. It is interesting to see the effect of

increase in the number of episodes and the time-steps on the regret expression. As the

episode length increases and reaches a very large number, the ergodicity of the MDP

will lead to the convergence to the true MDP. But, the increase in number of episodes is

going to be of little use when the number of time steps per episode is limited and fixed.

This will still inhibit exploring large number of states in an episode. By Equation 4.33,

the expected performance of an agent that learns a larger MDP is better than an agent

that converges to a smaller MDP.

4.6 Empirical Results

To analyze the framework we conducted experiments in two 7 × 7 grid worlds (shown

in Figure 4.2) with the center of each grid as the start state (S). The agent can move
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North, South, East, or West, and after each action receives a reward sampled from a

Gaussian with the mean indicated in each grid, and a variance of 1.0. The results are

averaged over 50 trials.

(a) World 1 (b) World 2

Figure 4.2: The two gridworlds used in our experiments.

We conducted three experiments as part of analyzing the framework. The first ex-

periment compares the performance of SFEE (Algorithm 3) framework with various

exploration algorithms adopted as the exploration component, πe, against the same ex-

ploration algorithm applied directly on the world. In the second experiment we analyze

the exploration pattern of SFEE agent. In the third experiment we analyze the total

return after limited exploration to understand the need for switching to exploit policy in

a finite-episode setting.

4.6.1 Experiment 1

The objective of this experiment is to compare the performance of various asymptotic

algorithms when used directly, and the same algorithms when used as the exploration

component in SFEE. An experiment has 200 episodes with 10 time-steps each. The

exploration algorithms used are BEB (Kolter and Ng, 2009), R-max (Brafman and Ten-

nenholtz, 2003), and TSEB. The results of the experiment are shown in Table 4.1.

World
Rmax BEB TSEB

Pure SFEE Pure SFEE Pure SFEE

World 1 2.00 6.69 2.01 2.57 1.99 2.61
World 2 3.58 6.82 3.94 6.69 3.96 6.68

Table 4.1: Comparison of average episodic return in the two worlds, for various exploration
algorithms, when used as-is or as the exploration component of SFEE. The results
are averaged over 50 experiments.
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Table 4.1 shows a comparison of pure asymptotic algorithms against itself adopted

in SFEE framework. It can be seen from the table that irrespective of the worlds and

algorithms, an algorithm performed better when it is adopted in the framework. This

highlights two things, one, the asymptotic algorithms cannot manage finite-episode ex-

ploration and two, the proposed framework indeed adapts the asymptotic algorithms to

obtain better returns in finite-episode setting. The following two experiments help in

strengthening this result.

4.6.2 Experiment 2

This experiment shows the exploration pattern of an algorithm in a MDP to understand

the working of the framework. Though the exploration pattern may differ with the

algorithm adopted in the framework, the working of the framework can be explained

considering the exploration pattern of any of these algorithm. We ran this experiment

with TSEB.

Figure 4.3 shows that the agent, after 10 episodes, got to know only a few states

(shaded states) above the start state. The notion of known differs with each algorithm.

In R-max, a state is considered to be known, if it is visited a polynomial number of

times, B. In the case of TSEB, a state is known if the exploration bonus is close to 0.

After getting to know a few states and having visited a few others, the agent explores

and learns a few more states in the episodes. This can be seen in Figure 4.3. The

exploration saturates after 40 episodes and the agent follows a greedy policy. Though

there is a reward 10 available in the bottom left corner, the lifetime of the agent inhibits

it from learning a better policy to reach there. Given that the gain value is computed by

factoring in the lifetime of the agent, the agent sticks to the greedy policy and exploits

the known region of the state space.

It is acceptable for a finite-time agent to converge to a policy before exploring a

large portion of the state space.

4.6.3 Experiment 3

We argue that the prolonged exploration might not be useful for a finite-time agent.

This is because, the agent’s lifetime and episode length are finite and the diameter of
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(a) After 10 episodes (b) After 35 episodes

(c) After 40 episodes (d) Saturated known
states

Figure 4.3: Exploration pattern of Finite-Episode agent in World 2.

the MDP learnt by the agent is smaller compared to the size of the actual MDP. Such a

scenario demands an agent to explore and converge to a max policy sooner in its finite-

lifetime. The longer it takes, lesser will be the total return from the episodes following

greedy policy.

An agent explores for i episodes and exploits thereafter. The graphs are shown in

Figure 4.4 in which the Y-axis represent the average total return of exploit policy till

the end of an agent’s lifetime and X-axis shows the episode till which an agent was

exploring with a strategy and started following the exploit policy then on. The curve

gradually decays in the values of Y-axis showing that a finite-episode agent after a

certain number of episodes is not going to be helpful for the total return. We observed a

similar pattern with all the three algorithms. As for the experiments in World 1 (Figure

4.2a) with the adopted exploration algorithms, an average of 10 − 12 explore episodes

seemed to be the optimal point to terminate the exploration with a 200-episode lifetime.

However, the optimal number of explore episodes may vary with a different exploration

strategy depending on the world.

This experiment provides the reason for the SFEE algorithms outperforming in Ex-

periment 4.6.1. The SFEE algorithms followed a greedy policy early on, whereas their

pure counterparts kept exploring without factoring in the agent’s lifetime.
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(a) TSEB (b) BEB

(c) Rmax

Figure 4.4: The graphs shows greedy policy’s cumulative return after exploring for a certain
number of episodes in World 1.
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CHAPTER 5

CONCLUSION

This thesis elaborately discussed on two important aspects in model-learning approaches

for RL. First, an asymptotic approach to model-learning which proposes a novel explo-

ration bonus to accelerate model learning. We showed that the proposed exploration

bonus provides a better learning guarantee than the earlier exploration bonus based ap-

proaches. We also use a trade-off parameter – a hyper-parameter – in TSEB to balance

between explorative and exploitative policies. The approach, though, is at a certain

level of maturity but can be improved in several ways. One possible improvement can

be to establish a theory of "useful" exploration bonus to address safe exploration in RL.

Further, the model estimation can be extended to a non-parameterized setting that will

be useful for a wider range of problems.

Second, to address finite-episode exploration strategy for model based RL, we pro-

pose a framework (SFEE) to adapt asymptotic algorithms for the finite-episode setting.

We theoretically show that the optimal behavior of a finite-episode agent is to stop ex-

ploring after a finite number of episodes and exploit thereafter. Though the proposed

framework provides a better way to adapt asymptotic exploration algorithms for a finite-

episode setting, there are a few challenges in the model learning approaches themselves.

One of the primary issues is the dependence of sample trajectories on the prior of the

model. This is primarily because of the lack of amenable ways to provide informative

priors on model parameters and on exploration bonus over the states in a MDP. Pro-

viding informative priors will enhance the performance of exploration strategies and

may help in early convergence. The informative priors will also improve the loss in

gain value estimation as is clear from the established relation between the loss in gain

estimation and parameter variance.
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