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ABSTRACT

KEYWORDS: Probabilistic inference; Markov logic; Visual routines; Graphical

models; Active vision; Object categorization.

Visual perception is a key function for an embodied agent to interact with its envi-

ronment for complex object manipulation tasks. The theory of visual routines suggests a

framework for employing perception to solve high-level vision tasks in a cognitively ori-

ented way. But a major challenge in building vision systems for embodied agents is that the

evidence obtained from sensors is uncertain and incomplete, i.e., the results of operation

of visual routines are not completely reliable. This is due to the inherent limitations of the

equipment in terms of field-of-view and resolution of the camera, which causes the input

image to be of low fidelity. Moreover, the application of visual operators may yield spuri-

ous or imprecise evidence and choosing the right parametersis hard. We propose a novel

approach for inference over uncertain and incomplete evidence, using Markov Logic Net-

works (MLN) and active vision in a hierarchical framework and evaluate it using an object

categorization task.

Markov Logic Networks belong to the class of Statistical Relational Learning (SRL)

methods that combine the expressiveness of first-order logic and the ability of probability

theory to handle uncertainty. MLNs extend Markov networks to a relational setting by

expressing the knowledge as a set of weighted formulas. We propose a layered MLN

design which performs stage-wise inference to allow for reasoning at multiple levels and

at varying levels of uncertainty. Given that the information is incomplete, active vision is

a mechanism for focused gathering of additional information. Our framework integrates

active vision with the layered MLN model to gather missing evidence, facilitating reliable

and tractable inference. Inspired by the ideas of active vision, in the event of missing
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evidence, our framework restricts the selective visual processing to specific regions of the

input image and further inference is carried out incorporating the new evidence.

We present a cognitively motivated, complete end-to-end system for object categoriza-

tion in a SRL framework. We use three different datasets for experimental evaluation: syn-

thetic images generated using OpenCV library, images obtained from the iCub humanoid

simulator and real images taken from Microsoft’s Kinect Xbox (R). The system is eval-

uated with different levels of incompleteness and noise on these datasets and empirically

prove its applicability to detect objects of complex structures.
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CHAPTER 1

INTRODUCTION

1.1 Embodied Vision

Embodied vision systems are those which exist as one of the several functionalities of an

embodied agent such as a robot or a human-being. Embodied agents have the property of

situatedness, i.e., their perception and reachability of their environment is constrained by

their physical location in the environment. But they have the ability to interact with their

environment, which is often necessary and advantageous forthe execution of their tasks.

Some example tasks include robot navigation, obstacle avoidance, grasping objects, game

playing, etc. In all these tasks the agent needs to continuously perceive its world in order

to act upon it. It can also utilize its current perception of the world to actively control the

next action to be taken or scene location to be perceived.

Vision based sensing and control is one of the several ways bywhich an agent can

perceive its environment, the other methods being sonar, infra-red sensors, etc. Visual

perception is the ability to identify and reason about objects in an agent’s environment.

Perception is one of the key requirements for cognitive behaviour. The tasks in which vi-

sual perception plays a major role in their execution are known as visually guided tasks.

Few examples of visually guided tasks are given in Figure 1.1. Unlike traditional vision

systems, embodied vision systems can provide vital information which can aid in the de-

cision making of the agent and can also actively control the agent’s actions.

Ullman (1984) proposed the theory of visual routines which states that visual percep-

tion requires the extraction of shape properties and spatial relations among objects and

object parts. Visual routines are a set of efficient operations assembled from a fixed set

of basic visual operators that can be used to extract high level concepts from the image.



(a) (b)

Figure 1.1: Examples of visually guided tasks: (a) an iCub robot trying to grasp an object,
(b) a RoboCup soccer match.

These visuo-spatial relations are useful for handling a variety of complex object manipu-

lation tasks, which can be performed efficiently by buildingthe routines in a modular way.

The visual routines theory is cognitively motivated and presents a model of how the vision

system of human beings (or embodied agents) could work to solve high level vision tasks.

Research on visual cognition (Singh and Hoffman, 2001) provides empirical evidence

that human vision system organizes shapes in terms of parts and their spatial relations.

Objects have part structures which form perceptual units. These parts are computed auto-

matically, quickly, and in parallel over the visual field. These part-based representations

also explain the allocation of visual attention to objects.

1.2 Challenges

A major challenge in building vision systems for embodied agents is that the evidence ob-

tained from the sensors is uncertain and incomplete. This isdue to the inherent limitations

of the equipment in terms of field-of-view and resolution of the camera, which causes the

input image to be of low fidelity. The application of visual operators on the image will not

yield all of the supportive evidence needed to determine an object category. The evidence
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may contain the typical imprecision associated with visionprocessing. For example, a

detected line may not lie between the exact corners of an object. Moreover, they may give

spurious evidence and choosing the right parameters for thevisual operators is hard. Other

factors which influence vision processing are lighting conditions, perspective of the cam-

era, etc. Thus, the evidence obtained is incomplete, inexact and inaccurate. Incomplete

evidence may also result from occlusion of objects or partial visibility of the environment

due to embodiment of the agent.

Hence, the result of the visual routines’ operation on an image is unreliable, and object

inference has to be performed over incomplete and uncertainevidence.

1.3 Motivation and Objective

Motivated by visual routines theory, we present a model for inference over uncertain and

incomplete information generated by visual routines and evaluate it using an object cate-

gorization task for embodied agents. Object categorization plays an important role (either

explicit or implicit) in all visually guided tasks involving embodied agents. The tasks re-

quire the agent to identify and act upon objects through continued interaction with its envi-

ronment. In Figure 1.1, (a) represents explicit object detection while in (b) object detection

is implicitly present in the various stages of the game, eg.,tracking the ball, goal-post, op-

ponent team, etc. We chose the object categorization task asit is an important step in all

visual guided tasks and for cognitive behaviour. It involves perceptual grouping of visual

information which can form an integral part of the decision making process of the agent. In

recent years, there has been a lot of interest in developingStatistical Relational Learning

(SRL) (Getoor and Taskar, 2007) methods that combine the expressiveness of first-order

logic and the ability of probability theory to handle uncertainty. They extend traditional

graphical models to a first-order representation, thus providing the ability to handle general

relations between objects using a single template. The advantage of these models is that

they can succinctly represent probabilistic dependenciesbetween the attributes of different

related objects, leading to sample-efficient learning and inference. These models allow for
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reasoning at multiple-levels under varying levels of uncertainty. Our proposed work is an

attempt at object categorization with incomplete evidenceusing basic visual features in a

SRL framework.

We propose a hierarchical framework for object categorization from uncertain and in-

complete evidence using SRL and active vision. Since the visual operators do not yield

complete evidence, the inference has to be performed over uncertain evidence. Moreover,

the object parts are inter-related and the spatial relationship among parts is a key feature for

object detection. The advantage of SRL models is the abilityto exploit such relationships

while reasoning under uncertainty.

Specifically, we use Markov Logic Networks (Domingos and Lowd, 2009) (MLNs) for

our design and implementation of the proposed system. MLNs extend traditional Markov

networks to a relational setting by representing the features as a set of weighted rules in

first-order logic. One of the nice features of MLNs is that they allow the user to write as

many rules as possible about the domain and then learn weights for the rules to perform

inference. This allows us to define the features associated with shapes and relations and

form a hierarchical MLN that can reason at multiple levels (i.e., first reason about lines and

circles, use the reasoning from that level to reason aboutl-shaped structures, then reason

about squares and so on). More details on SRL models and theirapplication in our work

are discussed further in the remaining chapters of this thesis.

For reliable detection of objects, we use active vision to gather missing evidence

whereby the visual processing is selectively applied to object parts from which more in-

formation is required to conclude their category. Active vision (Swain and Stricker, 1993)

refers to mechanisms by which new information can be acquired autonomously through

interaction with an agent’s environment. An active vision system consists of two major

components: (1)visual behaviour, which is a combination of primitive visual routines for

the execution of a task (eg., pick-up object/put-down object) (2) visual routines, which

forms a vocabulary of basic functions needed to build a vision system. The active vision

paradigm provides the ability to combine vision with behaviour, which is vital to achieving

robust execution of the agent’s tasks. It is more robust thantraditional vision techniques be-
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cause the agent can improve its initial guess of the object category by obtaining additional

evidence. It also helps in filtering irrelevant evidence through selective visual processing.

Active vision techniques were chosen because they are robust and conform to the cognitive

theory of vision. The inherent interactions of embodied agents makes it easily deployable

on them.

The objectives of our work include the following:

• To develop a probabilistic relational framework for object detection

• To build a system which can take multiple observations of animage to actively con-
trol the inference of objects

• To develop a framework for hybrid bottom-up and top-down reasoning

Thus the scope of this work will be restricted to cognitivelymotivated architectures

and not to compete with state of the art object detection algorithms.

1.4 Contributions of the Thesis

This thesis makes the following key contributions:

• A cognitively motivated, complete end-to-end system thattakes an image as input
and outputs the category and location of objects in the image. This system includes
a pre-processing step that extracts the basic visual features from the image, a hierar-
chical MLN inference engine which outputs a distribution over the shapes inferred
at each stage and an active vision component.

• The design of a hierarchical MLN model which performs stage-wise inference using
evidence from lower levels to reason at higher levels. The MLNs handle the uncer-
tainty in perception and inference of objects. To the best ofour knowledge, this is
the first work which explores MLNs in a layered architecture for any application.

• A method to integrate active vision with MLN inference facilitating reliable and
tractable inference of the object category from incompleteevidence.

• Finally, the system is evaluated with different levels of incompleteness and noise on
multiple datasets and the ability to identify complex shapes is established empiri-
cally.
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1.5 Organization

The purpose of this chapter was to present an overview of embodied vision, the concept of

visual routines and active vision and the need for reasoningwith uncertain evidence. The

objective of our work is also presented. The following chapters elaborate on our work and

are organized as given below:

Chapter 2 gives a brief overview about the three major concepts employed in our work:

visual routines, statistical relational models and activevision. The motivation for employ-

ing these methods in our work is also discussed. This is followed by an outline of the

related work present in the literature.

Chapter 3 discusses the proposed system and its implementation. A complete end-to-

end system for reasoning with incomplete and uncertain visual evidence is presented. The

evolution of the idea is presented followed by an explanation of the general architecture of

the system and its component modules. The chapter also describes the integration of active

vision with the hierarchical MLN model for the task of objectcategorization.

Chapter 4 presents the experimental evaluation of the proposed system for categoriza-

tion of objects with geometric regularities. The system is evaluated on on three different

datasets: synthetic images generated using OpenCV, imagesobtained from the iCub hu-

manoid simulator and real images taken from Microsoft’s Kinect. The performance of the

system for different levels of incomplete and noisy evidence is presented. The evaluation

of the system on embodied agents is presented through the experiments on iCub and Kinect

images. Comparison of the system with a baseline detector isalso presented.

Chapter 5 summarizes the work carried out and the conclusions drawn from the thesis

as a whole, followed by an outline of future research directions.

6



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we give an overview of the three major concepts involved in our work: the

theory of visual routines, relational models and active vision paradigm. We explain these

concepts from the perspective of object categorization andgive an intuition on why and

how they can be useful for an embodied vision system. Relatedwork on these topics are

also presented towards the end of this chapter.

2.1 Visual Routines Theory

Most vision related tasks require the extraction ofvisuo-spatialrelations, i.e., they require

the identification of entities (which may be persons, staticor dynamic objects, etc) in the

scene and the relationships between them. Few examples of tasks which require visuo-

spatial analysis are given in Figure 2.1. For example, in Figure 2.1, in order to answer the

query (a)How many cups are there in the scene?, one has to identify the entitiescupand

saucerand the relationon top of between them. The same reasoning applies to the other

tasks also. In (b) the fruit basket is expected to be on a table-top or a horizontal surface

as opposed to the ceiling, while in (c) the road-signs have tobe identified and the relation

between their directions have to be established.

The above tasks seem effortless for humans but it hides a complex array of processes.

(Ullman, 1984) proposed the visual routines theory as a way to compute visuo-spatial

relations efficiently and to explain intermediate vision inhuman-beings. He suggests that

visual perception requires the ability to extract shape properties and spatial relations. The

visual routines are defined as efficient sequences of basic visual operations which can

establish the visuo-spatial relations and can be used to build complex vision systems in a

modularized way. Ullman suggests the following stages for visual perception:



(a) (b) (c)

Figure 2.1: Examples of tasks that use visuo-spatial analysis: (a) How many cups are there
in the scene? (b) Where is the fruit basket? (c) Is the Opera House in the same
direction as the Youth Hostel?

• Development of base representations of the environment ina bottom-up, spatially
uniform way.

• Application of visual routines on the base representations to form incremental rep-
resentations.

• Application of costly or task-specific routines on the incremental representations.

Different routines may share the same basic operations, thus building the system in a

modularized way. The same routine may be applied to different spatial locations in par-

allel. The initial vision processing is applied across the visual field to form the base rep-

resentation. It identifies regions of interest (salient regions) for focused visual processing

using visual routines, which forms subsequent incrementalrepresentations. An example

of perception through visual routines is shown in Figure 2.2. Inspired by this concept, we

define objects as being composed of sub-parts. For example, two linesintersect to form an

L-structure, two L’s intersect to form asquare, asquare-faceand anL-faceforms acube,

etc. At each layer of the proposed hierarchical model, we define visual routines which

are applied on object parts detected from lower layers to identify the shape and spatial

properties associated with that layer.

For applying visual routines, mechanisms are required for selecting the locations at

which they should be applied and sequencing of the operations to extract relevant infor-
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Figure 2.2: Example of visual perception with visual routines: the edge and color detec-
tors are applied across the entire image to identify salientregions. Higher-level
visual routines are applied only on these regions and are build systematically
to form wire-frame object models.

mation at minimum cost. The basic operations need to be identified and integrated into

meaningful visual routines and a control mechanism is needed to decide when and where

visual routines are to be applied.

2.1.1 Evidence from Cognitive Research

This sub-section discusses some of the research work in neuroscience which is supportive

of the visual routines theory. Vision processing has long been considered to be a bottom-up

process. (Marr, 1976) states that early vision processing generates a rich description of

primitive gray-level changes in an image, represented as a primal sketch. The description

is expressed asedge, line, blob, etc.Grouping operations on the primal sketch determines

higher level objects. (Biederman, 1987) suggests that visual information obtained from an

image is divided into simple geometric components known asgeonswhich is then matched

with the most similar object representation known. Recent research in neuroscience sup-

port the theory that human representation of visual shape ispart-based. (Singh and Hoff-

man, 2001) suggests that perceptual units occur not only at the object level but also at

the part level. The objects are represented using parts and their relationships. Empirical

evidence from (Baylis and Driver, 1994) suggests that partsare computed automatically,

quickly, and in parallel over the visual field. (Barenholtz and Feldman, 2001) and (Singh

and Scholl, 2000) provide evidence for attentional shifts within single objects (part based

attention). There is also empirical evidence for activation of human cortical regions by

stereoscopically defined object shapes (Gilaie-Dotanet al., 2001).
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2.2 Methods for Uncertain Reasoning

In the previous section, we discussed the concept of visual routines and how they can be

employed in perception. But, as discussed in Chapter 1, the result of operation of visual

routines on an image is not completely reliable. Hence we need to reason with uncertain

evidence to determine the objects present in an image. In this section, we present an

overview of the methods for uncertain reasoning:

• Probability: The basic statistical method for handling uncertainty is bythe axioms
of probability. The axioms help in restricting the set of beliefs that an agent can hold
in a domain. The Bayes’ theorem provides a formal way to find the conditional prob-
ability of a hypothesis being true given the evidence. The rule is stated as follows
for multi-valued variables:

P(Y |X) =
P(X|Y )P(Y )

P(X)
. (2.1)

The Naive Bayes’ classifier is based on the Bayes’ rule and provides a simplification
of the computation using the class-conditional independence. For example, let the
class variable to be determined beC which can take values in the range 0, 1, ...,j
and the evidence variableX be ad-dimensional vector (x1, x2, ..., xd). The classifier
assigns a data point to classCj such that

Cj = max
j

p(Cj|x1, x2, ..., xd) = max
j

p(x1, x2, ..., xd|Cj)p(Cj). (2.2)

The Naive Bayes’ classifier assumes that the dimensions of the input (evidence) are
independent of each other given the value of the class variable. Hence the above
equation can be simplified using the equation:

p(x1, x2, ..., xd|Cj) =
d
∏

k=1

p(xk|Cj). (2.3)

Thus probability theory provides a simple and principled mechanism to find un-
known probabilities of variables (hypothesis) given the values for other variables
(evidence).

• Belief Networks: The Naive Bayes’ assumption does not hold in many real do-
mains. For example, in image processing, the value of a pixelis best determined by
taking into account the values of the neighbouring pixels also because pixels with
spatial proximity are likely to have similar values. Beliefnetworks (also known as
Bayesian networks) model the causal influence between variables and removes the
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class-conditional independence assumption. They fall under the general category of
graphical modelswhich represent the dependencies between the input dimensions as
a graph and define factorizations of the joint probability distribution of variables by
exploiting the local structures within the graph. The graphmay be directed or undi-
rected depending on whether the relationship between variables is a causal relation-
ship or not. Thus they provide a more powerful and accurate inference mechanism
than Naive Bayes’ and are suitable for modeling real-world domains. A detailed
explanation of graphical models and inference mechanisms is given in the following
section.

• Dempster-Shafer Models: Dempster-Shafer models define a belief function to com-
pute the probability that the evidence supports a proposition than the probability of
the proposition itself. They address the problem of ignorance as opposed to uncer-
tainty. These models are based on obtaining degrees of beliefs for a query variable
based on subjective probabilities for a related variable. The Dempster’s rule provides
a means to combine such degrees of beliefs when they are basedon independent ev-
idence.

• Fuzzy Sets: Fuzzy set theory is a means of specifying the degree of vagueness of a
variable. For example,Tall can be considered as a fuzzy predicate withTall (Bob)
having a value between 0 and 1 to indicate the degree oftallnessthan justtrue or
false. Fuzzy logic is a method for reasoning with logical expressions describing
membership in fuzzy sets.

In our work, we use graphical models for uncertain reasoningsince they can model

the dependencies between variables. The label of a node is influenced by the labels and

attributes of its surrounding nodes. This is a key requirement for most real-world tasks

and especially in image processing. The following section explains graphical models in

general and the specific model used in our work.

2.3 Graphical Models

As explained in Section 1.2, the evidence extracted by the visual routines is not completely

reliable. This is due to the inherent limitations of the sensor equipment and the image pro-

cessing algorithms. Also, the task of object categorization can be naturally decomposed

into categorization of sub-parts and establishing the spatial relations between them. More-

over, the performance of object categorization can be improved significantly by consider-
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ing the relationship between other object parts as a featurethan using the features of the

object alone. Thus we need to:

• Reason from incomplete evidence

• Exploit relationship between object parts, i.e., model non-i.i.d. data

Various methods for reasoning with incomplete evidence were presented in Section 2.2.

Among them, probabilistic graphical models stand out as a suitable method that satisfies

both of the above requirements. They can reason about uncertain evidence in a princi-

pled way using probability theory and they inherently modelthe relationships between the

variables in a domain. Graphical models use a graph-based representation as the basis

for encoding complex distributions and to exploit the structure and interactions between

variables in a domain. Graphical models may be directed or undirected. Directed mod-

els represent causal relationships between variables using a directed graph representation.

Undirected models are suitable to represent interactions that are not necessarily causal in

nature. Some applications which need undirected graphicalmodels are vision related tasks

such as image de-noising, segmentation, text processing tasks, etc. For example, in im-

age de-noising and segmentation, the value of an image pixelis likely to be similar to the

values of its neighbouring pixels though a pixel does not cause another pixel to be of a par-

ticular value. Hence the relationship between pixels have to be modeled as an undirected

graph. The graph-based structure allows for efficient inference of the probabilities of the

variables in the domain. In the next section we describe Markov Random Fields (MRF),

an undirected graphical model as an example. We chose to givebrief description of MRF

(or Markov networks) since the relational model used in our work is an extension of this

model.

2.3.1 Markov Random Fields

Markov Random Fields models the joint distribution of a set of variablesX = (X1, X2, ...,

Xn). The nodes in the network represent variables in the domain. An example MRF with
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Figure 2.3: An example Markov Random Field

four variables in the domain is shown in Figure 2.3. The probabilistic interaction between

the variables are captured bypotential functions(Φ) defined over cliques in the graph.

According toHammersley-Clifford theorem, if the distribution is strictly positive, then

it can be factorized as a product of potential functions defined over cliques in the graph.

The joint distribution can then be represented as:

P (X) =
1

Z

∏

c

Φc(X). (2.4)

whereZ is a normalizing constant. The above equation can be represented in log-linear

form as:

P (x) =
1

Z
exp

(

∑

j

wjfj(x)

)

. (2.5)

wherej iterates over the cliques in the graph andfj is the feature defined over cliquej

comprising of the subset of variablesx from the setX.

The MRF also encodes conditional independences between variables for efficient in-

ference. Two variables are independent of each other if the nodes along the path between

them in the graph are marked as evidence. For example, in Figure 2.3,A is independent of

C or D givenB, i.e., the information aboutA does not add any more information aboutC or

D, if state ofB is known for sure. The set of nodes whose value when known makes a node

independent of other nodes in the network, is called theMarkov blanketof a node. For

an MRF, the Markov blanket of a node is the set of its immediateneighbours. Inference
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over MRFs can be done using a variety of algorithms such as variable elimination, belief

propagation, sampling methods, etc. We will be discussing belief propagation algorithm

in a further section.

2.3.2 Why Relational Model?

Many variants of graphical models have been proposed in literature such as (Conditional

Random Fields) CRFs, discriminative CRFs, etc. But there isa major drawback with these

traditional models: they have a rigid structure and cannot represent variable number of

objects and general relations between objects in a domain. As an example, consider the

task of detecting horizontal and vertical lines across an image as shown in Figure 2.4 (a).

One possible design of a traditional model such as MRF is shown in the figure, where the

image pixels are the evidence nodes which indicate whether the pixel is part of line or not.

The evidence are connected to a query node and potential functions are defined over the

binary cliques. But in order to detect lines across the image, this model has to be replicated

across the image. This makes it tedious and unattractive to model higher-level structures.

Instead, a relational model can detect objects across the image in parallel using a single

template.

As another example, consider using a non-relational model such as a CRF to find per-

pendicular lines that intersect to form `L´s. One CRF would be needed to infer each pos-

sible orientation of the lines. Note that the first line couldbe at any angle of rotation from

horizontal axis and the second line should be perpendicularto the first, as shown in Fig-

ure 2.4 (b). Also note that the lines need not be exactly perpendicular for visual perception.

If we are to represent all possible orientations of the linesthe number of parameters in the

CRF would become prohibitively high rendering inference intractable. On the other hand,

relational models allow the use of a single template to capture all possible orientations of

the lines due to their ability to succinctly capture generalizations of the rotation angles.

We use Markov Logic Networks (Domingos and Lowd, 2009) (MLNs) as the relational

model for our design and implementation of the proposed system. MLNs extend Markov
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(a) (b)

Figure 2.4: (a) Detection of lines across an image using a non-relational model (b) Differ-
ent orientations of perpendicular lines intersecting to form L’s. Note that the
lines need not be exactly perpendicular for visual perception (eg.,I00, I01).

networks to relational setting by expressing the knowledgeas a set of weighted formulas.

One of the nice features of MLNs is that they allow the user to write as many rules as

possible about the domain and then learn weights for the rules to perform inference. This

allows us to define the features associated with shapes and relations and form a hierarchical

MLN that can reason at multiple levels (i.e., first reason about lines and circles, use the

reasoning from that level to reason aboutl-shaped structures, then reason about squares

and so on). While we use MLNs in this work, the concepts can be extended to most SRL

systems such as PRISM (Sato and Kameya, 2001), Problog (Raedt et al., 2007), BLPs

(Kersting and Raedt, 2007), LBNs (Fierenset al., 2005), RBNs (Jaeger, 2007), etc. These

systems are mostly equivalent (Jaeger, 2008; Bruynoogheet al., 2009) for the application

that we are considering in this work.

Although we can use MLNs or any SRL models for our task, the issue is the size of

such an MLN (or any SRL model) and the complexity in inference. If a single monolithic

MLN is used to infer over the entire image (i.e., identify lines, circles, their intersections

and the more complex objects arising from their interactions), inference can become com-

putationally intractable easily. Also, learning of such a model requires exponentially many

examples. One of the important features of object recognition is that we can divide the

problem into tasks at different levels. i.e., we can performinference on parts of an object
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at lower levels and then use the results of the inference at lower level parts to reason about

higher level parts. For instance, it is quite natural that wecan infer about lines at lower

levels and use the result to infer about L-shapes and then to rectangles. In this work we

propose to exactly use this intuitive idea for performing inference in SRL models particu-

larly using MLNs. We give a brief overview of MLNs and the belief propagation algorithm

in the next section.

2.3.3 Markov Logic Networks

One of the most popular and general SRL representations isMarkov Logic Networks

(MLNs) (Domingos and Lowd, 2009). MLNs provide an efficient way of combining

probability and logic to handle uncertain and complex environments. An MLN consists of

a set of formulas in first-order logic and their real-valued weights,{(wi, fi)}. Each for-

mula, represented by a set of predicates and their connectives, specifies a constraint that

should hold over the evidence in a domain. The weight for the formula specifies how hard

the constraint is. From the perspective of object detection, each formula is a specification

of an object or an object part as being composed of its sub-parts through certain relational

operators. The constants are the set of objects and object parts in the domain.

An MLN can be viewed as a template for constructing Markov networks. We can

instantiate an MLN as a Markov network with a node for each ground predicate (atom)

and a feature for each ground formula. The network generatedby assigning constants

to the predicate variables of MLN rules is called a ground network. The set of ground

predicates which occur together in an MLN formula form a clique in the ground network.

An example of a clause and its grounding from the point of viewof object detection is

shown in Figure 2.5.

All groundings of the same formula are assigned the same weight, leading to the fol-

lowing joint probability distribution over all atoms:
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Figure 2.5: An example Markov logic rule and its ground network for a domain with three
constants.

P (X = x) =
1

Z
exp

(

∑

i

wini(x)

)

. (2.6)

whereni(x) is the number of times theith formula is satisfied by possible worldx and

Z is a normalization constant (as in Markov networks). Intuitively, a possible world where

formulafi is true one more time than a different possible world isewi times as probable,

all other things being equal. For this thesis, we will assumea finite set of atoms, but MLNs

can also be defined over some infinite domains (Singla and Domingos, 2007).

In our framework, the object models composed of shape properties and spatial rela-

tions, are represented using first-order logic rules. The rules essentially represent the com-

position of visual routines needed to establish these properties in order to infer an object

or its sub-part. The inference of the object is split across multiple layers, with an MLN at

each layer to infer parts of objects. The object parts inferred at lower layers are combined

to form the whole object at a higher layer. Layering makes oursystem tractable, since

inference at higher layers occur only if supportive evidence is obtained from lower layers.

Note that the proposed hierarchical MLN is not equivalent toa single large MLN. The

17



MLNs at each layer performs independent inference in a sequential manner. We introduce

new predicates from the conclusion of one level to the next. For example, a square is

composed of two intersecting L’s and L’s are composed of two lines. The main advantage

of this design is that it separates the inference of lower level entities such as lines and circles

from higher-level complex shapes such as a train or a cube. The other advantage is that

this modular design makes it possible to perform tractable inference since the individual

layers are themselves significantly smaller than the original MLN.

Inference can be performed as a MAP estimate or by computing marginal probabilities.

In the next section, we describe the belief propagation algorithm over an MLN.

2.3.4 Belief Propagation

Belief propagation is an efficient algorithm for computing marginal probabilities of nodes,

i.e., the conditional probability of the query node is foundgiven the values of the evidence

nodes, by summing out over the other variables. The graph is first converted into a factor

graph over which the algorithm is applied. A factor graph is abipartite graph that expresses

the structure of the factorization of the joint distribution given in equation 2.2. It consists

of one variable node for each variable and a factor node for each local function over a

subset of variables. A factorgj is connected to a variable nodexi if and only if xi is an

argument of the local function corresponding to the factorgj. An example factor graph of

the ground network in Figure 2.5 is shown in Figure 2.6.

The belief propagation algorithm iteratively calculates the marginal probability of a

node by passingmessagesbetween factors and variables. Equations 2.7 and 2.8 describe

the messages passed for a non-relational graphical model. The message from a node to a

factor is given by:

µx→g(x) =
∏

h∈N(x)\{g}

µh→x(x). (2.7)

and the message from a factor to a node is:
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Figure 2.6: The factor graph of the ground network in Figure 2.5

µg→x(x) =
∑

∼{x}



g(x)
∏

y∈N(g)\{x}

µy→g(y)



 . (2.8)

where N(x) or N(g) is the set of neighbours of the variable or factor respectively. The

algorithm is iterated until convergence, i.e., until the messages passed between a factor and

a variable does not change. Convergence is guaranteed only for acyclic graphs, whereas

for graphs with loops,loopybelief propagation can give approximate results.

Belief propagation in MLNs: Belief propagation in MLNs proceeds in the same way

as described above, except that it is performed on aminimal graph. The minimal graph

represents the smallest network of nodes required to answera given query. The minimal

graph is obtained as follows: add the query node into the network. Subsequently add

its Markov blanket into the network and repeat this process until the node added is an

evidence node. For example, the minimal network of Figure 2.5 needed to infer the query

P (square(LS1,LS2)| l-struct (LS1), l-struct (LS2))is shown in Figure 2.7. This minimal

network can be converted to a factor graph and belief propagation carried out on it.

2.3.5 Weight Learning in MLN

In this section we give a brief overview of the MLN weight learning methods employed in

our work. As described earlier, MLNs can be described as a setof weighted formulae. The
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Figure 2.7: The minimal network (circled) to infer the queryP (square (LS1,LS2)| l-struct
(LS1), l-struct (LS2))

weight for a rule defines how hard the constraint is. Weight learning attempts to find the

maximuma posterioriweights, i.e., the weights that maximize the product of their prior

and likelihood from the data. But computation of the partition function of the likelihood

is generally intractable. Hence gradient descent techniques are employed for learning the

weights. The weight vector is updated at each step accordingto the formula:

wt+1 = wt − ηg (2.9)

whereη is the learning rate andg is the gradient.

We compare three weight learning methods in our work: Voted Perceptron, Diagonal

Newton and Scaled Conjugate Gradient. These methods compute the derivative of the

negative conditional log-likelihood (CLL) with respect toa weight. For MLNs, this turns

out to be the difference of the expected count of true groundings of a clause and the actual

count. Voted perceptron approximates the expectation as the counts in the most probable

explanation (MPE) state. In diagonal Newton method, the learning rate is replaced by the

diagonalized Hessian of the negative CLL for faster convergence to a global minimum.

Scaled conjugate gradient further speeds up the gradient descent by imposing a constraint

that at each step, the gradient along the previous directions remain zero. Thus the effect of

previous steps are not undone by the current step. More details on these methods can be
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found at (Lowd and Domingos, 2007).

2.4 Active Vision

The previous sections discussed models for probabilistic inference from visual evidence

in a systematic way. But a mechanism is needed for reliable inference in the presence of

uncertain and incomplete evidence. Moreover, processing of the entire visual field is not

efficient. Hence there should be a mechanism which can focus the visual processing to

relevant parts of the image. Active vision techniques resolve these problems efficiently.

Active vision (Swain and Stricker, 1993) provides mechanisms for an agent to per-

ceive its environment through continued interaction with it. It involves tight coupling of

the agent’s actions and perceptions of the world. The agent receives visual feedback which

may be used to direct its next action. The new information maybe obtained by changing

camera parameters like focus, vergence, orientation, or itmay involve selective sensing:

in space, resolution and time. For example, new informationmay be obtained by zoom-

ing in on a part of the scene or by getting a different perspective of an object by rotating

the object, shifting the view-point, etc. They may also involve features like spatially vari-

ant sensors (foveal sensors). Thus they help in removing theambiguity associated with

single shot images, which makes it more robust than traditional computer vision meth-

ods. Another characteristic of active vision systems is that they are naturally suited for

embodied agents. Selective attention, an active vision technique, greatly simplifies com-

putational costs by allowing processing at high resolutionat desired regions of the image.

In the active-vision paradigm, the main components of the vision system are termedvisual

behavioursandvisual routines. Visual behaviours are combinations of primitive visual

routines that help in executing a task (eg., pick-up object/put-down object) while visual

routines form a vocabulary of basic operators for building the vision system. An interest-

ing research area related to this is eye-hand co-ordination, where the visual system directs

the hand (motor system) to specific locations in the world. For example, the hand may

rotate an object to obtain a 3-D view and to increase the certainty of the object’s identity
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and affordance. They may also be implemented concurrently where the visual and motor

systems compete for execution. An arbitration mechanism selects the appropriate action,

which in turn may depend on visual feedback available from the previous execution of a

visual action.

2.4.1 Selective Attention

The camera signals contain far more information than what can be processed by a practical

vision system. This creates the need for attentional mechanisms to allocate computational

resources to relevant parts of an image. However, relevancyis not a static measure, but

depends on the context and task of the agent. The visual routines theory suggestsshift

of processing focusas an elemental operation where the processing shifts to indexable

locations (locations which are different from its surroundings in terms of shape, color,

disparity, texture, etc.).

Selective attention is analogous to the way human eyes process information. Given a

task such as visual search, the eyes perform quick jumps fromone location of the scene to

another, known assaccades, with short durations offixationat a given location. The sac-

cades occur through peripheral vision (low resolution) while fixations are done by foveal

vision (high resolution). The extraction of visual information occurs during the fixations.

Experimental results show that the eyes fixate on interesting and informative regions in the

scene (Henderson, 2003). An example of saccades and fixations for a visual search task

is given in Figure 2.8. Robot vision simulates this process by changing the resolution of

the camera and/or by moving the camera. Attentional processing saves computational time

and cost. It also performs data reduction by filtering the irrelevant parts of the scene.

In our work, we focus onmicro-saccadesaround object parts rather than saccades

across a scene. Based on the initial inference results, the system decides whether additional

evidence is required, and selects the image regions on whichfurther processing is needed.

The object parts detected so far act as indicators of where tolook for more evidence. Thus

the system can selectively target the vision processing to specific regions of the image. An
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Figure 2.8: Saccades (red lines) and fixations (yellow squares) during visual search.

Figure 2.9: An example of active vision as deployed in the proposed work.

example of how active vision is deployed in our work is shown in Figure 2.9.

In the next section we give an overview of the related works onthe topics discussed

previously, for vision applications.

2.5 Related Work

The concept of visual routines was first proposed by Ullman (1984) as a way of explain-

ing intermediate vision in human beings. The thesis suggests that visual perception for

high level vision tasks can occur in different stages: earlyvisual operators applied in par-

allel over the entire visual field forms the base representations, on which visual routines

(assembled from elementary visual operators) can be applied to generate the incremental

representations for the task at hand. This saves computational time and complexity and

helps in selective processing.

Following this, several work has been done using visual routines in cognitively oriented

tasks. (Agre and Chapman, 1987) and (Chapman, 1991), implements visual routines for

automated game playing in a simulated environment (PENGI and Sonja). These methods

use visual routines as a means to shift the processing focus or as attentional markers and
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bypass the early vision processing, whereas the hard part ofvisual routines is in modeling

the low-level vision processing and the uncertainty involved in their output. (Horswill,

1995) proposed an implementation of a visual routines processor for visual search on real

camera images. But it does not model the uncertainty in the results of visual operators.

Moreover, objects are identified using color cues and recognition is not addressed explic-

itly. Other work on visual routines are (Johnson, 1993) which assembles visual routines for

hand detection using genetic programming, (Balaet al., 1996) for eye detection using ge-

netic algorithms and (Rao, 1998) which proposes a language of attention to generate visual

routines. In this thesis, we address the problem of uncertainty and incompleteness in visual

routines through an explicit object categorization task inan SRL framework. While most

work on visual routines focus on visual attention, assemblyand learning of routines, we

present a formal approach for reasoning about them in the context of object categorization.

Research on the use of graphical models for vision applications focus on purely prob-

abilistic generative and discriminative approaches. An application of Markov Random

Fields (MRFs) for noisy object detection is proposed by (Cooper and Prokopowicz, 1991)

where an MRF is constructed for a line detector which is functionally equivalent to its

Hough transform parameter network. The image pixels are thenodes for the MRF and a

MAP estimate is used to determine the most probable state of the pixels as to whether the

pixels form part of a line or not.

With the advent of Conditional Random Fields (CRFs) (Lafferty et al., 2001), several

work has been done on image classification and segmentation using CRFs and are shown

to outperform MRFs since they allow to relax the conditionalindependence assumption on

observed data, giving them the ability to directly model theconditional probability. Re-

searchers have employed many variants of CRFs for vision applications such as Discrim-

inative Random Fields (Kumar and Herbert, 2003) and Tree-Structured CRFs (Awasthi

et al., 2007).

All of the above mentioned methods have a major drawback: they have a rigid structure

and cannot represent variable number of objects and generalrelations between objects. The

inference in these models are of a propositional nature and the models need to be replicated
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across the image to detect multiple objects.

There has been few other approaches, apart from graphical models, that exploit the

structure and interactions between objects in vision applications. (Sridharet al., 2008) and

(Dubbaet al., 2010) use spatio-temporal relations between objects for learning functional

object categories and event models respectively. Another work (Warden and Visser, 2011)

performs spatio-temporal analysis on dynamic scenes to improve the grounding situation

of autonomous agents in simulated physical domains. (Antanaset al., 2010) investigates

how simple logical generalization techniques can help in identifying known structures in

images. (Ijsselmuiden and Stiefelhagen, 2010) proposes a temporal logic framework for

high-level activity recognition from perceptual inputs. There has also been work on devel-

oping a visual grammar for object representations (Song-Chun and Mumford, 2005) and

on representing objects using deformable parts (Felzenszwalb et al., 2010).

An attempt at combining logic with uncertain reasoning is proposed by (Shanahan,

2005) which uses abductive inference for object detection along with an explanatory value

attached with the hypothesis. The explanatory value is defined based on probability and

is a measure of the truthfulness of the hypothesis. A recent work (Shetet al., 2011) uses

first-order logic to parse image features and to detect the presence of different patterns of

interest for human detection and aerial object detection. It handles uncertainty in rules

and observations using bi-lattice structures. The aim of their work is to detect different

patterns of interest (object verification) and not object categorization. SRL models (or

graphical models in general) encode the influence between variables directly whereas bi-

lattices encode them weakly in the rules themselves. Other work on uncertain reasoning

can be found at (Chachoua and Pacholczyk, 2002), (Mailiset al., 2010), (Qinet al., 2011)

and (Weng and Chen, 2010).

Purely probabilistic approaches are not flexible to model complex environments and

purely logical approaches cannot handle noise and uncertainty in a principled way. SRL

models (Getoor and Taskar, 2007) provide an efficient inference mechanism by exploiting

the relational structure of data and capturing generalizations among them, as discussed

earlier. One such model is the Markov logic network which combines the power of first-
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order logic to handle complex environments along with the advantages of probabilistic

models. For a detailed overview of MLNs, please refer to the work by Domingos and

Lowd (Domingos and Lowd, 2009).

There has been very few applications of MLNs in vision related tasks. One such appli-

cation is in visual event modeling and recognition (Tran andDavis, 2008) where detected

primitive events are grouped into composite events using probabilistic inference. The do-

main knowledge is encoded using Markov logic. A recent work on object detection in a

home environment (Wu and Aghajan, 2010) employs user interactions on the objects as

features for the MLN to detect the objects. A hierarchical activity analysis is performed

using a camera network and the object-activity relationship is encoded in the MLN for de-

tection. Another work on entity resolution in images (Chechetkaet al., 2010) uses Markov

logic to represent the contextual information across images in a face recognition dataset.

But the aim of their work is different from the work proposed in this thesis in that they deal

with object-instance identification (associating faces with individuals across a database)

while we are looking at the problem of object class identification. Object class identifica-

tion is a harder problem as suitable features have to be incorporated which can generalise

over objects within the same class while discriminating objects between different classes.

To the best of our knowledge, our work is the first approach in applying MLNs as a layered

architecture for object categorization using basic visualfeatures such as shape and spatial

relations. As far as we are aware, this is also the first work onusing relational models in

active vision.

2.6 Summary

In this chapter we discussed the theory of visual routines and how it can be used for visual

perception of complex structures in a modular way. We presented an overview of the

various methods for uncertain reasoning. We described graphical models as a tool for

probabilistic inference and mentioned the drawbacks of traditional models and the need for

relational models. We introduced Markov logic networks as arelational model and gave an
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overview of belief propagation algorithm for inference. The active vision paradigm and its

advantages were discussed and the concept of selective attention was described. We also

gave an intuitive idea of the proposed work in relation to MLNs and active vision. The

chapter concluded with an overview of the related work in these areas.
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CHAPTER 3

PROPOSED FRAMEWORK

In this chapter, we describe the design and implementation of the proposed hierarchical

MLN model and its integration with active vision. To the bestof our knowledge, this is

the first work employing Markov Logic Networks in a hierarchical fashion for any vision

related tasks. The integration of the hierarchical model with active vision is also unique

to our work. Initially we explain the general architecture and the major modules of the

framework. Towards the end of this chapter, we describe the implementation of the system

for the object categorization task.

3.1 Evolution of the Idea

The problem which we address in this thesis is on reasoning with uncertain and incom-

plete visual evidence. Our aim was to develop a robust systemfor object categorization,

specifically for embodied agents. This entailed that the visual input to the agent would

be noisy and have an uncertainty associated with the object category. But the agent could

modify its initial guess by trying to obtain finer details of the object (’look harder’) through

interaction with it. Thus, we needed to model

• Noisy operators: noise in the results of the visual operators

• Multiple shots at the same image: at different resolution,sensitivity, pose, etc.

• Objects of geometric regularities suitable for robotic simulation tasks

Bayesian modeling seemed to be a likely solution for the reasoning system. Initially

we thought of modeling the system using MRFs as follows: detect basic visual features



from pixel information at the base level and built higher level MRFs over it in a hierarchi-

cal manner to model complex objects. But as explained in Chapter 2, traditional graphical

models are cumbersome to model objects with multiple configurations and to extend to

higher level structures due to their propositional nature of inference. The following prob-

lems had to be addressed: (1) how to incorporate top-down knowledge (composition of

objects as lines, faces, etc.) in MRFs in an efficient way, (2)how to model getting another

observation of an object part (i.e., the decision to look harder). We chose active perception

as a method to obtain additional evidence since it was suitable to be deployed on embodied

agents due to their ability to perceive as well as interact with their world. But we needed

an efficient mechanism to detect multiple objects in parallel and handle the general config-

urations of the objects. Statistical relational models were then chosen as a possible method

as they allowed for reasoning with uncertain evidence in a way similar to MRFs and could

also handle general relations between objects using a single template. We chose Markov

logic networks as the model because they provided a simple and intuitive representation

of the object features using first-order logic rules. Hence it could be extended as a hier-

archy to reason at multiple levels of uncertainty. Moreover, it provided efficient inference

algorithms to detect objects in parallel. The object parts were then chosen as indicators of

where to look harder.

3.2 General Architecture

In this section, we present our novel framework for reasoning with uncertain and incom-

plete evidence generated by visual routines, using multi-layer inference and selective vi-

sual processing. We develop a complete end-to-end system for the task of object cate-

gorization in embodied vision systems. The general architecture of our system is shown

in Figure 3.1 and is divided into four key modules. We outlinethe key ideas behind the

modules in this section and provide more implementation details in the next section.
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Figure 3.1: General architecture of the proposed framework.

3.2.1 Pre-processing

This is essentially the base layer (layer 0) of the inference module. It extracts the base

evidence from the image, consisting of lines, sectors and corners using visual operators

such asCanny edge detector, Hough transform for lines and circles,corner detector, and

contour extractor. This evidence is used as input to the inference module to derive higher

level features and objects from it. This layer forms the baserepresentation on which high-

level visual routines are applied.

3.2.2 Multi-layer Inference

This module performs the initial categorization of objects, using a set of MLNs organized

in a hierarchy. The system contains pre-defined models of objects as a composition of

object parts and their spatial relationships. The object category is inferred by matching the

extracted features against these models. The inference of the object is performed across

multiple layers, where the MLN at each layer runsbelief propagationto perform inference

on the parts of objects associated with that layer. The inferred object parts at lower layers,

along with their locations and beliefs on their category, are propagated to the higher lay-
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ers, which extracts higher level features from them and combines the object parts to infer

complex structures. The MLNs at each layer runs independently and the supportive evi-

dence from the lower layers is passed upwards through a well-defined procedure explained

below. The abstraction at a layer is formally defined as follows:

Each layer has a set of nodes〈Ei, Oi〉.

Input at layer i:

Ei =
〈

e
LL
i , eIL

i

〉

(3.1)

lower-layer evidence:

e
LL
i =

{

e
LL
1 , eLL

2 , ..., eLL
i−1

}

(3.2)

is the evidence propagated to layeri from lower layers.

in-layer evidence:

e
IL
i = vi(e

LL
i ) (3.3)

is the set of features obtained by the application of visual routines associated with the layer,

vi, on the evidence propagated to the layer.

Output at layer i:

Oi = ∪j 〈Oij, pij〉 (3.4)

is the set of query nodes at layeri (objects/object parts) along with their output probabili-

ties.

Let evd (Oij) be the subset of evidence available for inferring queryj at layer i, such

that

Ei = ∪jevd(Oij). (3.5)

The inference for nodeOij is given by the marginal probability P (Oij |evd(Oij))

Oi influencesEi+1, via an interface function that maps the probability distribution over
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Oi to a distribution overeLL
i as given below:

eLL
i = fi,i+1(Oi). (3.6)

The interface functionfi,i+1 takes as input the set of query nodes and their associated

probabilities and produces a set of evidence nodes for the next layer.

The multi-layer inference can be viewed as a “gated” belief propagation across the

layers. Each layer runs a belief propagation and once the belief propagation atlayer i has

converged, some evidence is propagated fromlayer i to layer i+1, which is a function of

layer i inference results andlayer i+1 query. In our work, a thresholding function along

with a typecast operator is used to determine which predictions from the previous layer

are to be used as input for the current layer. More details on these functions are given in

Section 3.3.

3.2.3 Visual Routines

Following the work of (Ullman, 1984), we define visual routines at each layer of the

hierarchy to extract the features associated with the layer. Each layer in the inference

module outputs subsequent incremental representations generated by the application of

high level visual routines associated with the layer. The input to a layer determines the

specific locations on which visual routines are to be applied. These are essentially the

locations of the supportive evidence selected by interfacefunctions from lower layers. In

logic terminology, the high level visual routines are the predicates of the FOL rules. A

composition of visual routines through logical connectives is used to establish the features

to be inferred at the layer.

As an example, consider the rule for inferring a cube at a layer, fromL-face andSquare-

face as evidence:

l-struct (ls) ∧ isSquare (sq) ∧ isTranslated (ls,sq) ⇔ cube (ls,sq)
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Here, the antecedent of the rule represents the compositionof visual routines, while the

consequent is the object part to be inferred. In this example, the visual routineisTranslated

() checks if the corresponding corners and faces of L and squareare linearly shifted, to infer

whether the shape propertycubeholds among the evidence at the layer. This high level

visual routine is applied on the L and square faces alone, which are the evidence propagated

from the lower layers. Thus we build a hierarchy of visual routines using a formal grammar

(Markov logic). This helps in identifying the structure present in an image in a systematic

way. The routines also help in generating structured representations of input and output

between the layers.

The visual routines are designed assoftpredicates. The output of the predicates (rou-

tines) is boolean but the decision (true/false) is made using a tolerance range instead of an

exact match. For example, the routineintersectsOrdered()which checks for intersection

of two lines, allows the line end-points to be within a certain radius from each other. Thus

the uncertainty in the result of operation of visual routines are handled in two ways: (1)

belief propagation in MLNs and (2) soft predicates that can tolerate a certain amount of

imprecision.

At layer 0, the routines constitute the basic image processing functions used to extract

lines, sectors, etc.which are applied in parallel over the image. At higher layers, the

routines are the predicates used in the MLN rules. The routines at higher layers do not

perform explicit image processing, but they operate on object parts propagated from its

previous layers, which eventually have been generated by image processing atlayer 0.

The complete set of routines employed in our work are given inChapter 4. Apart from

these routines, we also use theshift of processing focusroutine which is the active vision

control used tolook harderat certain regions of the image.

3.2.4 Decision Making

This module decides whether more information is required orto draw a conclusion on

the object category. The decision is made based on the resultof inference and the prior
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(background) knowledge of the presence or location of objects. Based on the current belief

on the object category and the knowledge, selective visual processing is applied to specific

regions of the input, to gather missing evidence atlayer 0, i.e., lines, sectors,etc.

3.2.5 Active Vision

This module helps in focusing on certain regions to gather missing evidence which could

potentially improve the certainty of the object category being inferred. It is analogous to

theshift of processing focusoperator described by Ullman. Ithelps in making the inference

tractable because it removes the irrelevant predicates which would otherwise need to be

inferred if the detection was done jointly over all the predicates in the domain. Since this

module provides the option of focusing closely on regions ofthe image that we are actually

interested in, we can carry out the initial visual processing with low cost operators and with

strict thresholds to remove spurious/irrelevant evidence. Based on the object parts inferred

in the initial run, the “interesting” regions can be processed at a relaxed threshold or with

complex operators to yield the finer details of the object.

Additional information can be obtained through various methods such as relaxing the

thresholds of visual operators, zooming in on a part of the object or by taking another

snapshot of the object from a different view point. Essentially, this can be understood as

the agent “looking harder” at certain parts of an object for more evidence, given some

initial evidence.

The initial inferencing is performed in a bottom-up manner until layer N(the maximum

possible layer of inference according to the given data) is reached, where a decision on

whether to “look harder” is made. The control then flows back to layer 0where additional

evidence is obtained. The additional evidence is combined with the original evidence and

the inference is run again fromlayer 1 onwards. Thus a hybrid of bottom-up and top-

down control strategy is followed between the layers until final inference is made. In our

framework, active vision can also be viewed as trying to justify the prior knowledge on the

presence of an object, by gathering more evidence about the object. Figure 3.2 shows the
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various stages in our framework as opposed to single-stage processing.

3.3 Implementation

3.3.1 Pre-processing Module

The image processing functions are implemented in this module using the OpenCV (Brad-

ski, 2000) library. The functions used are image smoothing,dilation, edge detection, corner

detection, Hough transform, and contour detection. These functions form the basic visual

operators which generate the base representations upon which high level visual routines

are applied. The line segments are extracted using Canny edge detector and probabilistic

Hough transform. Ellipses are extracted by detecting contours on the image and fitting

the contour points onto an ellipse. Circles are extracted using Hough transform. Corner

points are extracted by the following procedure: An eigen value corner detector and a con-

tour extractor are applied on the image. For each contour, weselect those corner points

which fall within a particular radius of the contour centre.Each contour is given a score

S = variance
numOfSelectedCorners

based on the variance and density of corner points around

its centre. The optimized corner points are then selected bythresholding based on their

proximity to contour centres and the scores and moments associated with those contours.

We use two sets of parameter values for the image processing functions: the first is a set

of strict thresholds for the initial processing of the imageand the second is a set of relaxed

thresholds for active vision. This module returns a set of locations of the extracted lines,

sectors and corner points.

3.3.2 Inference Module

Markov Logic: We chose MLNs for the underlying inference module since it provides

a relatively simple and intuitive way for representing the features, domain knowledge and

inference results based on first-order logic. The first-order rules form a single template
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Figure 3.2: Our framework as opposed to single-stage visionprocessing. In the initial stage
of vision processing, strict thresholds are used which givejust enough lines
(marked in green) on the cube to generate object parts to lookharder at. Active
vision is done on the selected region with relaxed thresholds. Final inference
result is obtained combining the new evidence with the original evidence. The
data required if entire processing is done using a single stage is presented in
the lower half of the figure. As can be seen, large amount of spurious data is
generated, possibly making the inference intractable.
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for all possible configurations of the object. In our work, the predicates are the visual

routines which will check for the corresponding propertiesin the input image. When

viewed as a factor graph, these predicates act as variable nodes and the rules as factor

nodes. Those predicates which appear together in a rule are connected to the same factor

node. Belief propagation is used for inferring the distribution over the query predicates.

When a predicate has many arguments, the memory requirements for processing grows

rapidly. In order to keep the inference process tractable, we limited the number of object

parts combined to two at a time in each layer. With a single MLNfor an object typeOij

we can infer the presence and location of object types of different configurations across

the image.

Features: We use two classes of features:shapeproperties (eLL
i ) andspatial relations

(eIL
i ). The shape properties are propagated as evidence across the layers. The shape fea-

tures at a layer are essentially the object parts inferred and propagated from its lower

layers. The spatial relations are extracted at each layer from the shape features and are

not propagated between the layers explicitly. But the spatial features get embedded in the

representation of object parts inferred at each layer.

Interface function: The interface functionfi,i+1 is composed of thresholding function,

normalization and a type cast operator. We threshold the inference results at a layer based

on their probability, in order to avoid too many combinations of object parts being inferred

at the higher layer. The thresholding operator for an outputpredicate (O,p) is given by:

(p ≥ thresh) ∧ (thresh ≥ 0.5). (3.7)

where

thresh = 0.75 ∗ (max
j

pij −

∑

j pij
∑

j 1
). (3.8)

In essence, this corresponds to propagating the beliefs that fall within the upper quar-

tile.
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The evidence at each layer is represented as a set of weightedfacts. Hence, the prob-

abilities associated with the propagated evidence has to beconverted to weights in the

Markov logic network at the higher layer. We use min-max normalization to convert the

probabilities in the range [0 1] to weights in the range [-w w]. The value forw is cho-

sen empirically as the minimum weight needed to obtain the same inference results when

weights are set for evidence of probability 1 as compared to unweighted evidence. (Note

that according to the convention in Alchemy, unweighted evidence is considered as sure

evidence.) The value of 16 was found to be suitable for our application.

The shape properties at each layer are specified as typed constants. The object parts

which are selected from the lower layer are converted to their appropriate type and are

passed on to the subsequent layer. The type cast operator provides two advantages: (1) It

helps in restricting the number of arguments per predicate to a maximum of two, making

the inference tractable. (2) Since the types for query and evidence nodes of a rule have to be

compatible, it eliminates a lot of irrelevant nodes which would otherwise have been part of

the belief propagation network, thus producing savings in time and memory requirement.

The evidence from the lower layers are also propagated till the final layer of inference for

the object. The relative orientations of the object parts inferred at each layer are maintained

inherently by the predicates at the layer.

As an example, consider identifying a square

Layer 1:

isLine (l1)∧ isLine (l2)∧ isPerpendicular (l1, l2)∧ intersectsOrdered (l1, l2)

∧ suitableSize (l1, l2)⇔ l-structure (l1, l2)

Layer 2:

l-struct (ls1)∧ l-struct (ls2)∧ intersects (ls1, ls2) ⇔ square (ls1, ls2)

The presence of a square is inferred in two layers.Layer 1 infers the presence ofL-

structures from the base evidence where the features checked for are the perpendicularity

of the combining lines, suitable length of lines and their intersection. Thel-structures
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inferred fromlayer 1are type cast asl-structsand are passed on to the next layer, weighted

by the probability associated with their label.Layer 2infers the presence of squares from

the evidence received by it from the lower layer. The features derived at this layer are the

intersection properties ofl-structuresto infer the presence of square in the image.

The layered inference helps in a more accurate categorization of objects, since the

object parts itself are evaluated for existence at lower layers. This allows for pruning

of the category of objects/object parts to be inferred at thesubsequent layers. Pruning is

extremely important as an inference over all the possible predicates (both simple structures

and composite structures) would make the inference highly intractable. Layering also helps

in performing active vision and inference on selected partsof the object, thereby reducing

the cost of “looking harder” at the entire object/scene. Thepositional information of object

parts are available from the inference results of lower layers, which may be of use where

the vision system is integrated with the motor system of the robot for further tasks (eg.,

the positional information of the handle of a cup helps in grasping it). It also provides the

common advantages of any hierarchical system, such as modularity and reuse of the lower

layers to model different higher level objects from the samebase parts.

3.3.3 Decision Making Module

After the initial run of multi-layer inference, control reaches this module which decides

whether additional visual processing should be performed or whether the object category

can be concluded. This module is driven by the prior knowledge and the results of infer-

ence. In our work this knowledge is essentially the presenceof a particular category or

presence of objects at a particular quadrant (top-left, top-right, bottom-left, bottom-right)

or both and is domain-specific. For eg., if the query is ”Is there any object in the scene?”,

the knowledge would be lesser as compared to “Pick up the cubes in the scene”. The latter

problem is more specific and provide better information in that it is clear that there are

some cubes in the scene and at least one of them has to be identified by the algorithm.

The prior knowledge on location is provided as a probabilityvalue for each of the four
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quadrants and the prior on category is given by specifying the class name of the object to

be searched for. By default, uniform prior is assumed for thelocations and categories. The

prior knowledge could be set depending on the given query. This module also targets the

visual processing to specific parts of the image. The module decides to call active vision

in the following cases:

• There are object parts inferred from lower layers, which could not be described as
part of a complete object, and there is some prior knowledge on the presence of
objects of a certain category and/or at a specific region.

• The object parts are successfully explained as part of whole objects, but there is
enough background knowledge that forces looking for objects of a particular cate-
gory and/or at a specific region.

In the first case, a small region of interest around the objectpart is examined for more

evidence. In the second case, if the quadrant to be searched is not available as prior knowl-

edge, the entire image has to be re-examined. Gathering additional evidence helps in

improving the quality of inference.

3.3.4 Active Vision Module

This module gathers additional evidence about objects by calling the pre-processing mod-

ule with relaxed parameters for the visual operators. The image on which active vision is

performed is a cropped region of the original image. The specific region to be processed is

decided by the decision making module. Other methods by which active vision can be per-

formed are zooming in on a part of the scene or getting a different view of the object with

the help of a camera. Currently, we use static images and hence tune the visual operators

at layer 0(“look harder”) to detect lines and sectors at a lower granularity.

Active vision essentially changes the belief of shapes as being object parts. This is

achieved by tuning the visual operators at the lowest layer.But it indirectly affects the

inference at higher layers due to the bottom-up nature of theinference. Of course, it is

possible to tune the visual operators at higher layers by relaxing the parameters of the

high-level visual routines, but this is quite hard and requires extensive engineering. Active
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Table 3.1: An example set of clauses used to identify a train shape.

Layer Algorithm
isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)∧ suitableSize(l1, l2)
⇔ l-structure(l1, l2)

L1 isSector(s1)∧isSector(s2)∧isParallelSectors(s1, s2)∧isDifferentSectors(s1, s2)∧
suitableAsCylinderSectors(s1, s2)∧suitableDistBwSectors(s1, s2)⇔cylinderSectors(s1, s2)

L2 l-struct(ls1)∧ l-struct(ls2)∧ intersects(ls1, ls2) ⇔ square(ls1, ls2)
L3 cubeface(f)∧isSquare(f)∧cylinderSectors(cys)∧abutsWheel(f,cys)⇔trainBody(f,cys)
L4 cubeface(f)∧isSquare(f)∧tbody(tb)∧abutsFront(tb,f)⇔trainBodyFront(tb,f)
L5 cubeface(f)∧isSquare(f)∧tbfront(tbf)∧abutsTop(tbf,f)⇔train(tbf,f)

vision can also be viewed as justifying the prior knowledge about an object category by

gathering more supportive evidence. An example for active vision processing can be found

in Figure 3.2.

Example: The MLN clauses used at various layers to infer a train objectis presented

in Table A.3. As can be seen from the table, the rules at the lowest levels are the ones

corresponding to primitive shapes such as l-structures andwheels. The next level is about

a square, the third level is about a trainbody, the fourth is about the front of the body and

the final level reasons about the train. As can be seen, the rules are progressively used to

infer objects at higher levels. We do not present the background (prior) knowledge here.

These are just the MLN clauses used for inference of the trainobject. An example figure

for detection of train shape is given in Figure 4.4.

3.4 Summary

In this chapter we presented an SRL approach for reasoning with incomplete and uncertain

visual evidence. The implementation of the system for an object categorization task for

embodied agents was provided. The result of operation of thevisual routines could be

unreliable and noisy due to the limitations of the camera as well as the vision processing

methods. The hierarchical MLN model was proposed which could reason about object

parts at different levels and under varying levels of uncertainty. The framework provides
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the capability to build complex object structures as a hierarchy in a systematic way, using

basic visual routines. The proposed model can recognize multiple objects across the image

using a single template. It uses simple, intuitive rules to represent the features which are

obtained by the application of visual routines at the respective layers. The hierarchical

model helps in selective pruning of object classes, as we need not reason about objects

which do not have sufficient supportive evidence from the lower layers.

Our work is cognitively motivated and provides a way of integrating the active vision

paradigm with the hierarchical model. The active vision techniques help in achieving a

robust and reliable detection of objects. It is advantageous to be deployed in embodied

vision due to their inherent interaction with the environment. It also helps in filtering

irrelevant data thus producing efficient memory and time requirements due to the selective

processing. The combination of a hierarchical model with active vision helps in selective

pruning of object classes, as we need not reason about objects which do not have sufficient

supportive evidence from the lower layers.

The implementation details describe the Markov logic rulesand predicates used at each

layer. The basic visual features used and the interface function between the layers are also

discussed. The rules are designed based on simple geometry of the objects. The hierar-

chical model provides a design for object categorization from incomplete evidence using

basic visual features. The experimental evaluation of the proposed system is discussed in

the next chapter.
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CHAPTER 4

EXPERIMENTAL EVALUATION

This chapter discusses the experimental validation of our approach. Brief description on

the datasets chosen, parameter settings, results and implementation details are provided.

The comparison of the performance of our system for various levels of incomplete and

noisy evidence is reported for synthetic images. The systemis further evaluated on an

embodied agent and also on real images. Comparison of various algorithms implemented

in MLN is provided. A discussion on the use of texture operator as a feature and related

experiments are provided towards the end of this chapter. The chapter concludes with

comparison of our system with a baseline texture detector.

4.1 Experimental Setup

We use the Alchemy toolbox (Koket al., 2007) for implementation of the MLN inference.

Currently we have modeled seven classes: square, triangle,cylinder, cone, sphere, cube

and train. Belief Propagation (BP) is used for inference as it was found to work better than

other inference methods in MLN. We compared the performanceof BP and another state-

of-the-art sampling algorithm in MLNs, namely MC-SAT (Poonand Domingos, 2006),

through the various experiments explained in the section onsynthetic images. Since the

domain mainly consists of Horn clauses (we convert the double implication to a pair of

single implications), it appears that BP was more accurate in the predictions while MC-

SAT is still a sampling method and hence misses a lot of true positives and introduces false

positives. Since the ground Markov network does not have toomany cycles, BP converges

to the true distributions. In our experiments, MC-SAT gave alot of false positives on

examples where the labels could be potentially confused.



4.1.1 Datasets

We use three different sets of images for experimental validation:

• Synthetic images: This set consists of images generated using the OpenCV library
and hand-drawn images. The images generated by OpenCV consists of objects of
random category and position. The images are corrupted withRGB and white noise
for the purpose of evaluation. The hand-drawn images have staggering object bound-
aries which makes extraction of features hard and thereby provide noisy and incom-
plete evidence.

• iCub images: The iCub (Mettaet al., 2008) is a humanoid robot developed for
studies on cognition. We use the iCub simulator to validate our framework on an
embodied agent. The simulator accurately replicates the physics and dynamics of
the real environment and is a popular tool for simulation studies of robotic tasks.
The iCub images are obtained by systematically moving the iCub simulator head
over objects placed on a table and recording the images from the camera mounted
on the iCub simulator head.

• Real images: This set consists of images of a Rubik’s cube obtained from Mi-
crosoft’s Kinect Xbox (R), by rotating the Kinect in fixed steps of five degrees. In
these images, the faces of the cube are not uniformly coloredand the images ob-
tained have significant variation in illumination due to therotation of the Kinect.
These factors makes the task of detection and vision processing complicated.

Detailed explanation of the images used in each dataset are given along with the de-

scription of the experiments conducted with the respectivesets. The object categories

considered for synthetic images are square, triangle, cylinder and cone, while the cate-

gories considered for iCub and Kinect images are cubes and spheres. The details of the

experiments with these sets are explained in the following sections.

4.1.2 Parameters

The parameters to be tuned in our system are the vision thresholds, the thresholds for the

spatial features, and the weights used in the MLN rules.

The vision parameters are Canny thresholds, Hough thresholds, corner detection thresh-

olds, level of smoothing and zoom. Table 4.1 shows the parameter settings for initial and
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Table 4.1: Parameter settings of the visual operators.

Parameter Synthetic images iCub images Real images
Initial Active Initial Active Initial Active

Processing Vision Processing Vision Processing Vision
Canny low threshold 10 50 80 80 80 80
Canny high threshold 70 100 200 200 200 200
Canny aperture 3 5 3 3 3 3
Hough line accumulator threshold 120 120 10 10 10 10
Min Hough line length 50 50 10 10 10 10
Hough line link threshold 5 5 7 25 7 7
Num of Dilations 1 1 1 1 1 1
Corner quality level - - - 0.007 - 0.03
Eigen block size - - - 3 - 3
Min. distance b/w corners - - - 7 - 7
Gaussian smoothing kernel size 9 9 9 9 9 9
Zoom level 1 1 1 1 1 1

active vision processing, for the three datasets used. Notethat for iCub and Kinect images,

the corner detector is used for gathering evidence in the active vision stage.

The predicates are designed based on simple geometry of the objects. The spatial

predicates are soft predicates which allow for some tolerance of noise, i.e., intersection of

`L´s need not be an exact intersection, but a tolerance rangeis used. The thresholds for

all the predicates were set empirically, based on the true and false positives obtained in a

validation data set. Table 4.2 shows the spatial predicatesused in our system. The shape

predicates are the query predicates at different layers andare presented in bold in the table.

The prior knowledge can be specified with respect to labels and/or regions (top-left,

top-right, bottom-left, bottom-right quadrants). Recallthat the prior knowledge is essen-

tially an external bias and we use it in a heuristic fashion. In the absence of any knowledge,

all the inferred labels and regions are used for the next layer. The results presented in the

thesis do not assume any prior knowledge.
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Table 4.2: Spatial and Shape predicates used at each layer. The shape predicates are in
bold. The shapes at lower layers are reused to form parts of the different higher
level shapes

Layer Spatial and Shape Predicates
L1 isPerpendicular(line, line), intersectsOrdered(line, line), isDiff(line, line),

positiveIntersection(line, line), suitableLength(line, line), angleGtThanFive(line, line),
isParallelLines(line, line), similarLength(line, line), suitableDistBwLines(line, line),
isParallelSectors(sector, sector), isDifferentSectors(sector, sector), isRound(sector),
suitableSize(sector), fullCurve(sector), suitableAsCylinderSectors(sector, sector)
sufficientGap(corner, corner),l-structure(line,line), triangletwosides(line, line),
sphere(sector), cyl-lines(line, line), cyl-sectors(sector, sector),
cornerpair(corner, corner)

L2 intersects(lstruct, lstruct), closedThreeSides(triangletwosides, line),
closedObj(triangletwosides, sector), formsCylinder(cyl-lines, cyl-sectors)
isDiffCpairs(cpair, cpair), isPerpendicularCpairs(cpair, cpair),
suitablelengthCpairs(cpair, cpair), intersectsOrderedCpairs(cpair, cpair),
square(lstruct, lstruct), triangle(triangletwosides, line),
cone(triangletwosides, sector), cylinder(cyl-lines, cyl-sectors),
cpairlstructure(cpair, cpair)

L3 isSquare(cubeface), abutsWheel(cubeface, cyl-sectors)
cpairL-intersects(cpair-lstruct, cpair-lstruct),
squarecorners(cpair-lstruct, cpair-lstruct)

L4 abutsFront(trainbody, cubeface), isTranslated(squarecorners, lstruct),
cube(squarecorners, lstruct),

L5 abutsTop(trainbodyfront, cubeface),train(trainbodyfront, cubeface)

4.1.3 Weight learning

Initially, the weights of the rules were set empirically according to the following heuristic:

P (yi = 1) > P (yj = 1)∀yi ∈ TP, yj ∈ FP. (4.1)

, i.e., the probability of the labels for the true positives is significantly higher than those

for the false positives. By performing a line search on the space of weights between 0 and

1, we determined0.7 to be the optimal value for the weight. We do not use hard constraints

in our rules. The MLN gives a probability value for each combination of parts (shapes) that

can potentially form an object queried for. The probabilities are thresholded and a MAP

estimate is performed over labels on the same region of interest, to infer the final category.

We also learned the weights for the rules using the scaled conjugate gradient (SCG)

46



Table 4.3: Comparison of performance with learned and hand-coded weights at 1% salt-
and-pepper noise.

Parameter Without active vision With active vision
hand- SCG DN VP hand- SCG DN VP
coded coded

Precision 1 1 1 - 1 1 1 -
Recall 0.26 0.26 0.13 0 0.39 0.42 0.28 0

Table 4.4: Comparison of performance with learned and hand-coded weights at 0.8% RGB
noise.

Parameter Without active vision With active vision
hand- SCG DN VP hand- SCG DN VP
coded coded

Precision 0.98 0.99 0.98 - 0.96 0.97 0.93 0.94
Recall 0.34 0.35 0.22 0 0.47 0.47 0.33 0.09

method implemented in Alchemy. Each class has a set of features defined by the pred-

icates in first-order logic. The weights for rules of each class is learned separately. For

the training data, the positive and negative examples were taken in the ratio 1:2 for each

predicate of a given class. They are labeled as positive or negative based on the predicate

thresholds. The positive and negative examples are selected such that they fall slightly

above or below the predicate threshold (± 5 respectively). We observed that the training

data constructed in this way was sufficient to learn suitableweights for the rules. For test-

ing, we chose 95 synthetic images consisting of 190 objects of the various classes with two

objects per image. The objects are in one of the following degrees of rotation: 0, 30, 45,

60, 90 with approximately forty objects per rotation angle.The images were treated with

different levels of noise. Table 4.3 and Table 4.4 compare the performance of the system

for learned and hand-coded weights at 1% salt and pepper noise and 0.8 % RGB noise

respectively. More results on noisy images are included in the next section.

We observe that the learned weights are as good as the hand-coded weights. The tables

also show the comparison of SCG with two other weight learning methods implemented

in Alchemy: diagonal Newton (DN) and voted perceptron (VP).SCG weight learning
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significantly outperforms the other two methods in recall. More details on these learning

methods can be found at (Lowd and Domingos, 2007).

4.2 Evaluation

We empirically validate our system on objects with geometric regularities. Our frame-

work can incorporate real-world objects that are not necessarily regular, if suitable visual

properties such as color, histogram-based descriptors etc., are included as features and the

MLN predicates are modified to handle grouping of non-geometric features. Currently, we

use geometric shapes, texture and their relationships as the primary features, which leads

to this restricted domain. We tested the framework on synthetic, iCub, and real images.

We also compare the performance of the proposed hierarchical system with a baseline de-

tector comprising of a single level MLN, for real images. Themetrics used for evaluation

are precision, recall and detection accuracy. The running time (time per image) on these

datasets are∼ 12-15 sec for synthetic images (1% salt-and-pepper noise) and∼ 30-40 sec

for iCub and real images. We assume that better processing times can be achieved with an

optimized implementation of the system and evaluate the system for precision, recall and

accuracy.

As described earlier, the proposed system models the uncertainty in visual routines by

combining active vision and inference in a hierarchical MLNframework. Since our work

is unique, we provide comparisons for the different components of our system through the

experiments described in the later sections, but we could not find a complete end-to-end

system which could be a fair comparison to the proposed system. The experiments on all

these sets use the learned weights from SCG as described in the previous section. The

details of these datasets and the experiments done on them are explained in the following

sections.

48



4.3 Synthetic Images

This set consists of 95 images comprising of 190 objects withtwo objects per class. The

objects are generated with random position and category andconsists of the following

classes: square, triangle, cone and cylinder. Each object is in one of the following degrees

of rotation: 0, 30, 45, 60, 90 with approximately forty objects per rotation angle. The

dataset is generated using OpenCV. Apart from this set, we also tested on hand-drawn im-

ages treated with 0.8 % RGB noise as shown in Figure 4.3. In order to test the effectiveness

of our framework on incomplete and noisy data, we conducted the following experiments:

4.3.1 Incompleteness

We tested the framework on various levels of incomplete evidence. For this experiment, we

bypassed intial image processing and assumed that all of thevisual evidence is available

initially. We removed some percentage of this evidence randomly to generate the input

evidence. The test set consisted of 190 objects of differentclasses, but without noise

and rotations. Figure 4.1 compares the detection accuracy (recall) at various levels of

incompleteness and with active vision enabled/disabled. The figure also compares the

performance of belief propagation and MC-SAT algorithms.

As seen in the figure, our framework can handle incomplete evidence effectively and

depicts the power of the two main features of our framework: layered inference and active

vision. We are able to focus precisely on the necessary regions due to the fact that we

employ MLNs. The object parts detected at lower layers are indicators of where to look

for missing evidence. The active vision component helps in obtaining the required missing

evidence and enables fair detection even with a high percentage of incomplete evidence.

Note that the use of active vision significantly improves therecall for both the algorithms.

It is also observed that BP has a consistently higher recall compared to MC-SAT for both

cases.
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Figure 4.1: Comparison of detection accuracy at various levels of incomplete evidence.

4.3.2 Noise

The test images consisted of 190 objects where the object could be in one of the five

degrees of rotation described previously. The images were treated with different levels

of salt and pepper noise. Figure 4.2 compares the precision and recall for BP and MC-

SAT at different noise levels with active vision enabled/disabled. In this experiment, the

visual evidence is obtained from actual image processing and initial image processing is

not bypassed as done in our experiments with incomplete evidence.

The results prove the capability of our framework to handle noisy and inexact data and

again emphasize the role played by the inference and active vision components. There is

a decrease in precision when active vision is enabled as compared with inference without

active vision. This is because the false evidence (and hencefalse positives) increases when

processing is done at a higher granularity, due to the presence of noise in the images.

There is gradual decrease in recall values with increase in noise level, which shows that

our system is fairly resilient to noisy evidence. It is also observed that the recall improves

in the initial few noise levels as compared to zero noise. This is because the presence of
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Figure 4.2: Comparison of performance at different noise levels: (a) Active vision dis-
abled (b) Active vision enabled. The performance of MC-SAT at 7% noise
level is not shown since it was took an unreasonably long timefor execution as
compared to BP.
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(a) (b) (c) (d)

Figure 4.3: (a)-(b): Detection of squares and triangles on noisy image. The lines compris-
ing the L’s are shown in blue and green colors.The triangles are superimposed
on the square on the top-left. The image does not highlight the object parts
which did not become part of a final object. (c)-(d) Detectionof cylinders and
cones.

false evidence near the true edges causes the active vision to focus on those regions and

thus helps in identifying the objects.

As explained previously, we chose BP as the inference algorithm since it significantly

outperforms MC-SAT in precision and recall as shown by the experiments in this section.

Figure 4.3 shows the detection results for various classes on hand-drawn synthetic

images. The images are corrupted by 0.8% RGB noise. As can be seen, our system

performs accurately on synthetic images.

4.3.3 Complex Structures

We empirically show that our system can systematically build objects of complex struc-

tures, as shown in Figure 4.4. The layer-wise clauses used toinfer the train shape is given

in Table A.3. A major advantage is the tractable inference across multiple layers as com-

pared to inference over a single MLN. Moreover, missing information can be gathered on

object parts at any of the layers of the hierarchy. This makesthe detection more robust and

reliable as we have more accurate information on the regionsto be considered for active

vision because the category of the object becomes more defined as the inference progresses

up the hierarchy. The hierarchy of object parts enables grouping and reuse of objects de-

tected from lower layers into multiple categories at higherlayers. For example, the square
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(a) (b)

Figure 4.4: Detection of a train from basic shapes. (a) Input(b) Detection results marked
in red. Active vision was not employed in this image.

object could be part of a train or a cube, parallel sectors could be part of a cylinder or the

wheels of a train, and so on. The hierarchical inference alsoallows for object class pruning

based on the evidence obtained from lower layers. More examples of detecting 3D objects

such as cubes are given in the following sections.

4.3.4 Common Visual Routines for Multiple Objects

Our system has the ability to re-use visual routines for detecting multiple objects. Due

to the layered architecture for the object model, basic shapes at lower layers become part

of different complex objects at higher layers. Thus the set of visual routines required for

detection of objects overlap. Moreover, the visual routines employed in our system check

for geometric constraints over object parts. Hence, the same routines can be used for

different objects with similar geometric features. Figure4.5 shows the set of overlapping

routines at any layer for the object classes of the syntheticimage dataset. The figure also

shows the relative degree of re-use of the routines. For example intersectsOrdered()has

the maximum re-use, being applied for detection ofsquare, triangle, coneandtrain. Due

to layering, the set of routines used to detect the two sides of a triangle (triangleTwoSides)

are also used in detecting the sides of a cone. Similarly, theset of routines used to detectl-

structure, squareandcyl-sectorsare applied for thetrain object also to detect its body and

wheels. The complete set of rules for the different classes are given in Appendix A. The
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Figure 4.5: Overlapping visual routines for different classes of the synthetic datset. The
figure shows the relative degree of re-use of the routines. The lines connecting
the routines and classes indicate which classes employ the same routine.

routines also overlap for object parts within a layer as inintersectsOrdered()(l-structure

andtriangletwoSides), isDiff() ( and ),closedObj()(triangleandcone).

4.4 iCub Images

In order to validate our framework on an embodied agent, we tested our system on the

iCub humanoid simulator. The iCub robot (Mettaet al., 2008) is a humanoid developed

for conducting studies on cognition. The simulator accurately replicates the working of

the iCub as well as the physics and dynamics of the robot’s environment. More details

on the simulator can be found at (Tikhanoffet al., 2008). This experiment is part of a

collaborative work1 aimed at concurrent execution of the robot’s gaze and motor systems

through visually guided control.

1 This experiment is part of a collaborative work done with University of Birmingham. The algorithms
for the co-ordination of gaze and motor systems of the robot were developed by researchers at University of
Birmingham, while the object detection part, developed by us, is explained in this thesis.
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Figure 4.6: Table-top setting of the iCub humanoid simulator. The task is to clear the
objects from the table and to place them in the containers present on the sides
of the table. Figure taken from (Nunez-Varelaet al., 2012).

4.4.1 The Task

The task is to clear the objects from the table and to place them in the containers present

on the sides of the table. The setting of the simulator for this experiment is depicted in

Figure 4.6. The perceptual actions are executed concurrently with the physical actions of

the robot. The robot has to decide where to direct its visual system and how to process

the visual information while the other actions are being executed. This involves object

recognition, gaze control to determine fixation points, motor actions (hands, in this case)

for pickup/put-down objects and a decision making process for concurrent execution of the

gaze and motor systems. The visual processing task here is tocategorize the objects found

in the region, for which a model for reasoning with uncertainvisual evidence for embodied

agents is proposed in this thesis. The algorithms developedfor the co-ordination of gaze

and motor systems of the robot can be found at (Nunez-Varelaet al., 2012).

4.4.2 Results

For this task, we tested our system to detect 3D objects on a finely textured table-top

setting. The object classes considered are sphere and cube.This dataset consists of 108

objects per class, with each object having a front, left and right view. An example for the
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Table 4.5: Performance of our framework on iCub images. The system was tested on 108
objects per class, with each object having three views (front, left and right).

Parameter Cube Sphere
Precision 0.98 0.95
Recall 0.81 0.74

different views of an object is shown in Figure 4.7.

(a) (b) (c)

Figure 4.7: Different views of an object: (a) front (b) left (c) right.

The images were taken from the simulator’s camera by moving the robot head system-

atically across the table, in fixed steps. The dataset is generated with the robot’s motor

system disabled and the object detection is done offline. Theprecision and recall for this

dataset is reported in Table 4.5.

The experiments depict the utility of our framework which combines probabilistic rea-

soning with active vision to give fairly accurate results. It helps in reducing the amount

of visual evidence to be processed by selective tuning to relevant regions of the image,

and also helps in reasoning about the object category in an incremental and modularized

way. For example, to detect cubes, we check for L-structuresin the initial run of inference

and fine tune the processing to regions where L’s have been detected. Complex operators

such as corner points are then applied on these regions and are grouped to form subsequent

higher level structures such as squares and cubes.

The sphere class has less precision than cube since it is inferred from only one object

partsectorin a single layer (layer 1), while cubes are inferred from multiple object parts

across four layers. As the inference progresses up the hierarchy, the category becomes
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Table 4.6: Comparison of detection accuracy for independent views and objects.

Accuracy Cube Sphere
detection-per-view 80.55% 74.38%
detection-per-object 98.14% 92.59%

(a) (b) (c) (d)

Figure 4.8: Detection on iCub images: (a)-(b) without motorsystem (c)-(d) with motor
system. The different sub-parts and their intersections are highlighted: pink
square-face, yellow L-face and red intersections.

more defined reducing false positives. This also explains the less recall for sphere. If the

sectors extracted are not well defined, then they may not be inferred as spheres, since there

are no other supportive object parts.

Shifted Views for Active Vision: We also conducted experiments using shifted views

of an object as an active vision mechanism, Table 4.6 reportsthe per class detection accu-

racy on the above mentioned dataset. Thedetection-per-viewdepicts the accuracy obtained

when each of the three views of an object are considered as independent images. It is com-

pared withdetection-per-objectwhere an object is considered to be detected if any of its

views get detected. As observed from the results, we can gainsignificant improvement in

accuracy if we leverage the different views of an object for detection. The embodied vision

system can exploit this advantage since the agent can interact with its environment.

Few examples of inference on 3D objects are shown in Figure 4.8. The figures depict

the robot’s view of the table at a given instant.

As can be seen from the results, our system is fairly resilient to noise. This is mainly

due to the two stage visual processing allowed by our framework. In the initial run of in-
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ference, we gather visual evidence at a fairly high threshold for the visual operators, which

rules out most of the noisy edges and sectors. Depending on object parts detected from the

initial run, active vision with a relaxed threshold is performed on regions around the object

parts. This is advantageous over doing a single stage visualprocessing with the relaxed

thresholds, which will create a lot of spurious detections.The use of active vision also

provides significant gain in time and memory over a single stage visual processing. The

input evidence obtained from iCub images are mostly inexactand inaccurate. In the pres-

ence of broken edges or faint lines, our system can perform fairly well since the predicates

which check for spatial features such asintersects, isPerpendicular, etc., are tolerant to

such errors to a certain extent. We are able to detect multiple categories of objects across

the image in parallel using MLNs as opposed to MRFs which would require replicating

the MRF for each category across the image. The objects in different orientations can be

detected using a single template, because the predicates are orientation invariant.

4.5 Real Images

In order to validate our system on real images, we also testedon a dataset consisting of

images of a Rubik’s cube, taken from Microsoft’s Kinect Xbox(R). The dataset consisted

of 55 images of cubes with different colored faces facing thecamera. Each such orientation

had 10-11 views (snapshots) taken by rotating the Kinect in fixed steps of five degrees.

4.5.1 Texture Operator

For this experiment, we used texture as the primary operatorin the active vision stage.

Initially we tested the system with the original set of visual operators reported in Table 4.1.

But this set of operators did not work well across all the images in the dataset. This is due

to uncontrolled lighting conditions and varying colors of the faces within a single object.

This led to the requirement of very low vision thresholds to obtain suitable evidence across

the images, which resulted in generation of a large amount ofvisual evidence. The texture
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Table 4.7: Visual routines used at each layer for cube detection using texture operator. The
shape properties detected at each layer are indicated in bold.

Layer Spatial and Shape Predicates
L1 isPerpendicular(line, line), intersectsOrdered(line, line), isDiff(line, line),

positiveIntersection(line, line), suitableLength(line, line), angleGtThanFive(line, line),
sufficientGap(corner, corner),lstruct(line,line), cornerpair(corner, corner)

L2 isDiffCpairs(cpair, cpair), isPerpendicularCpairs(cpair, cpair),
suitablelengthCpairs(cpair, cpair), intersectsOrderedCpairs(cpair, cpair),
cpairlstructure(cpair, cpair)

L3 isTexture(texture), formsCube(texture,cpair-lstruct), cube(texture, cpair-lstruct)

operator was introduced to overcome this difficulty. This operator is suitable when the

objects are characterized more by their texture than intensity, and the basic edge and corner

detection methods cannot be used effectively. The operatoris based on the gray-level co-

occurence matrix (Haralicket al., 1973) where statistical correlation between image pixels

are determined to extract features such as contrast, homogeneity, cluster tendency, entropy,

etc.

The detection using texture operator is as follows: in the initial run, we detect L-

structures from lines, which are indicators of where to perform active vision processing.

The texture and corner points are extracted in the active vision stage. The texture evidence

is extracted over contours which cross an area threshold. The corner points are grouped

together to form the end points of L-structures similar to the grouping of lines. The object

category is then determined based on the texture value and onwhether the L-structures

formed from corner points overlap with the contour containing the texture. The grouping

of corners into L’s as well as the texture and corners into a cube is done by the hierarchical

MLN. With texture, we do not look for intersections between squares and L’s and hence

obtain a bounding box over the object as the output. The set ofvisual routines used at each

layer of the MLN for this method is given in Table 4.7.
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4.5.2 Results

Few examples of detection on real images are shown in Figure 4.9. The two sets of images

show the results with the original set of operators (i.e., without texture) and with texture

as the primary visual operator, respectively. We report theprecision and recall obtained by

this method on the Kinect dataset in Table 4.8.

(a) (b) (c) (d)

Figure 4.9: Detection on images obtained from Microsoft’s Kinect Xbox (R) using (a)-
(b) corner points (c)-(d) texture, as the primary operator for active vision. (d)
shows the bounding box of the object detected using texture.

Experiments using texture operator on other datasets: Similar experiments were

conducted on synthetic and iCub image datasets, using texture as the primary operator

along with shapes. The precision and recall obtained on the datasets are also reported in

Table 4.8. In our experiments, we used texture operator as a replacement for one of the two

shape operators needed to infer a higher level structure. For example, instead of looking

for two L’s to form a square, we check for one L-structure and asuitable value of texture

to conclude a square. In this way, we could detect objects from inexact and incomplete

data without generating a large amount of evidence. The synthetic images were treated

with 1% salt-and-pepper noise.Detection-per-viewwas used for evaluating iCub images

and the class considered is cube alone since texture values were not well distinguished for

cubes and spheres of the iCub dataset.

The results of experiments with shape-only operators were reported in the previous

sections. On comparing those results with Table 4.8 it is observed that the recall improves

when texture is used along with shapes as features than when shape operators are used
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alone. This is because shape operators are more difficult to extract than texture. Generally,

the precision is observed to reduce when texture is used. This is because shape operators

are more discriminative among classes than texture and hence produce less false positives.

In our experiments, we replace one of the shape operators of ahigher-level structure by

texture operator. This causes precision to reduce.

4.5.3 Comparison with Baseline Detector

We compare the performance of the proposed hierarchical MLNsystem with a baseline

consisting of only the texture operator. The baseline detector uses a single level MLN to

detect cubes based on the texture value and the contour dimensions. The texture evidence

is obtained in the same way as described previously, except that it is now extracted in the

initial stage instead of lines and sectors. Thus the baseline detector does not run the active

vision stage. The comparison of performance of both methodson all the three datasets

is reported in Table 4.8. As seen from the results, the precision is less for the baseline

detector which uses texture as the only visual feature, whereas the hierarchical MLN is

able to combine multiple features in a systematic way, leading to accurate predictions. The

recall also reduces for the baseline detector. This is because the proposed system, which

uses active vision, is able to perform focused visual processing to generate more accurate

evidence than processing on the entire image.

4.6 Summary and Conclusions

In this chapter, we described the experimental evaluation of the proposed framework. The

parameters to be considered and the datasets chosen were discussed. The performance

of our system was reported for three different datasets: synthetic, iCub and real images.

The system was evaluated on incomplete and noisy evidence, avisually guided task for

an embodied agent (iCub) and on real images. The experimentswith texture operator as

a feature were also presented towards the end of the chapter.Comparison of the proposed
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Table 4.8: Comparison of performance of the proposed systemwith a baseline detector
comprising of a single level MLN using texture alone as the feature. The evalu-
ation is on all the three datasets.

Method Precision Recall
Hierarchical (synthetic, shape-only) 1 0.42
Hierarchical (synthetic, texture and shape) 0.71 0.51
Baseline (synthetic, texture-only) 0.43 0.52
Hierarchical (iCub, shape-only) 0.98 0.81
Hierarchical (iCub, texture and shape) 0.93 0.87
Baseline (iCub, texture-only) 1 0.19
Hierarchical (real, texture and shape) 0.85 0.62
Baseline (real, texture-only) 0.59 0.24

hierarchical system with a baseline single level MLN was discussed.

The following conclusions can be made empirically from the experiments conducted:

• The proposed system is able to perform fairly well with incomplete and noisy evi-
dence, as shown in the experiments on synthetic images.

• The hierarchical MLN can systematically build and infer objects of complex struc-
tures. The detection is currently limited to objects with geometric regularities, but
real world objects can be detected by suitably modifying thefeatures and MLN rules.

• The experiments with iCub images demonstrate the suitability of the framework
as an embodied vision system. The advantages of combining active vision with
hierarchical MLN were brought forth through these experiments. The combination
helps in robust, reliable and tractable inference.

• The framework is suitable for detection on real images, even with non-uniform ob-
ject colors and varying lighting conditions.

• The combination of hierarchical MLN with active vision provides fairly high preci-
sion and recall, but an optimized implementation can resultin better processing time
than the current system.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we summarize our contributions and outlinesome potential directions for

future research.

5.1 Conclusion

In this thesis we proposed a hierarchical approach to handleuncertainty and incomplete-

ness in visual routines and to systematically build and infer complex structures from basic

visual operators. We discussed the concept of visual routines which enable visual per-

ception by identifying shape and spatial relations among objects and its sub-parts in an

image. The routines, composed of basic visual operators could be applied on the image

to form successive incremental representations which allow for focused visual processing

and for systematic development of complex vision systems. Following this approach, we

proposed a hierarchical architecture for object categorization. The objects were defined

as being composed of sub-parts and the spatial relations among the sub-parts. Each layer

in the hierarchy inferred the sub-parts associated with it,which were grouped into higher-

level structures at subsequent layers. While probabilistic inference could be performed

using traditional graphical models which can handle uncertainty and non-i.i.d. data in a

principled way, relational models offer a single template to handle generalizations of an

object category. We employed Markov logic networks, a statistical relational model for

object inference. We also presented a mechanism for targeting additional processing to

relevant regions of the input when the evidence is absent or incomplete. This was done

using active vision techniques which could process parts ofthe image at a higher granular-

ity to yield the missing evidence. We evaluated our system onthree different datasets and

established empirically that we are able to detect fairly complicated objects. As far as we



are aware, this is the first work to have employed MLNs as a hierarchical model for any

application.

The hierarchical modeling of objects helps in systematic inference of objects. It also

helps in pruning of object categories as the inference progresses up the hierarchy, since

only those objects with sufficient supportive evidence fromlower layers need to be inferred

at a particular layer. The active vision techniques facilitates tractable inference by filtering

irrelevant data which would otherwise have to be processed and would cause inefficiency

in processing time and memory. It also provides reliable andmore accurate prediction as

the agent can improve its initial guess of the object category by obtaining finer details of the

image. While the experimental results with our approach arequite promising, the current

processing time is not as efficient. This could be improved byan optimized implementation

of the system.

5.2 Future Directions

Potential future directions from our work include the following:

• Our framework could be employed for other applications such as visually guided
navigation of a robot. This could be done by integrating our framework with a
reinforcement learning (RL) algorithm. The current perception of the scene would
determine the state of the RL agent and influence the next action to be taken.

• The hierarchical MLN model could be applied in other domains like natural language
processing where structures of the text could be built and parsed systematically using
the model and the ambiguity associated with the words could be modeled through
uncertain reasoning.

• A rigorous formalization of the interaction between the different layers could be
done and could employ a feedback mechanism that can alter thebeliefs at lower-
levels based on the evidence at higher levels. Currently, our approach allows the
beliefs of object parts at higher layers to be influenced by the evidence passed from
lower layers. Active vision also changes the beliefs of object parts but only at the
bottom layer, which then indirectly influences the higher layers as the inference pro-
gresses up the hierarchy. In order to develop a rigorous formalization, methods
should be developed to pass information in a top-down mannerwithout breaking the
hierarchy.
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• We learned the weights for the MLN clauses. A further extension would be to allow
for learning the structure of the clauses themselves.

• Finally, it would be an interesting direction to try and integrate our object detection
system with the motor systems of a real robot for visual object manipulations. This
would require a real-time optimized implementation of the current system.

65



APPENDIX A

LIST OF MLN RULES

Complete list of MLN rules used for the experiments described in this thesis:

Synthetic Image Dataset:

Classes: Square, Triangle, Cone, Cylinder, Train

Table A.1: Rules used with synthetic image dataset.

Layer Weight Formula
1.02881 isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)∧ suitableSize(l1, l2)

⇒ l-structure(l1, l2)
8.64097 l-structure(l1, l2) ⇒ isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)

∧ suitableSize(l1, l2)
1.25939 isLine(l1)∧ isLine(l2)∧ isDiff( l1, l2)∧ intersectsOrdered(l1, l2)∧ positiveIntersection(l1, l2)

∧ angleGtThanFive(l1, l2) ⇒ triangletwosides(l1, l2)
8.95668 triangletwosides(l1, l2) ⇒ isLine(l1)∧ isLine(l2)∧ isDiff( l1, l2)

∧ intersectsOrdered(l1, l2)∧ positiveIntersection(l1, l2) ∧ angleGtThanFive(l1, l2)
L1 2.17363 isLine(l1)∧ isLine(l2)∧ isDiff( l1, l2)∧isParallelLines(l1, l2)∧similarLength(l1, l2)

∧suitableDistBwLines(l1, l2)⇒ cyl-lines(l1, l2)
11.1749 cyl-lines(l1, l2)⇒isLine(l1)∧ isLine(l2)∧ isDiff( l1, l2)∧isParallelLines(l1, l2)

∧similarLength(l1, l2)∧suitableDistBwLines(l1, l2)
1.52325 isSector(s1)∧isSector(s2)∧isParallelSectors(s1, s2)∧isDifferentSectors(s1, s2)

suitableAsCylinderSectors(s1, s2)∧suitableDistBwSectors(s1, s2) ⇒ cyl-sectors(s1, s2)
8.56806 cyl-sectors(s1, s2) ⇒ isSector(s1)∧isSector(s2)∧isParallelSectors(s1, s2)

isDifferentSectors(s1, s2)∧suitableAsCylinderSectors(s1, s2)∧suitableDistBwSectors(s1, s2)
1.31707 lstruct(ls1)∧ lstruct(ls2)∧ intersects(ls1, ls2) ⇒ square(ls1, ls2)
4.79728 square(ls1, ls2) ⇒ lstruct(ls1)∧ lstruct(ls2)∧ intersects(ls1, ls2)
1.05806 triangletwosides(ts)∧isLine(l)∧closedThreeSides(ts,l)∧closedObj(ts,l)⇒ triangle(ts,l)

L2 4.55805 triangle(ts,l)⇒ triangletwosides(ts)∧isLine(l)∧closedThreeSides(ts,l)∧closedObj(ts,l)
0.627196 triangletwosides(ts)∧isSector(s)∧closedObj(ts,s)∧fullCurve(s)⇒ cone(ts,s)
6.19496 cone(ts,s)⇒ triangletwosides(ts)∧isSector(s)∧closedObj(ts,s)∧fullCurve(s)
0.598444 cylinderLines(cyl)∧cylinderSectors(cys)∧formsCylinder(cyl,cys)⇒ cylinder(cyl,cys)
5.02635 cylinder(cyl,cys)⇒ cylinderLines(cyl)∧cylinderSectors(cys)∧formsCylinder(cyl,cys)

L3 1.10231 cubeface(f)∧isSquare(f)∧cylinderSectors(cys)∧abutsWheel(f,cys)⇒trainBody(f,cys)
4.96002 trainBody(f,cys)⇒ cubeface(f)∧isSquare(f)∧cylinderSectors(cys)∧abutsWheel(f,cys)

L4 0.0415759 cubeface(f)∧isSquare(f)∧tbody(tb)∧abutsFront(tb,f)⇒trainBodyFront(tb,f)
5.23914 trainbodyFront(tb,f)⇒ cubeface(f)∧isSquare(f)∧tbody(tb)∧abutsFront(tb,f)

L5 0.466811 cubeface(f)∧isSquare(f)∧tbfront(tbf)∧abutsTop(tbf,f)⇒train(tbf,f)
5.81873 train(tbf,f)⇒ cubeface(f)∧isSquare(f)∧tbfront(tbf)∧abutsTop(tbf,f)



iCub Dataset:

Classes: Cube, Sphere

Table A.2: Rules used with iCub image dataset.

Layer Weight Formula
0.500284 isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)∧ suitableLength(l1, l2)

⇒ l-structure(l1, l2)
8.66214 l-structure(l1, l2) ⇒ isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)

∧ suitableLength(l1, l2)
L1 0.500001 isCorner(c1)∧isCorner(c2)∧sufficientGap(c1, c2) ⇒ cornerpair(c1, c2)

4.1772 cornerpair(c1, c2) ⇒ isCorner(c1)∧isCorner(c2)∧sufficientGap(c1, c2)
0.470015 isSector(s)∧fullCurve(s)∧suitableSize(s)∧isRound(s)⇒sphere(s)
6.3587 sphere(s)⇒isSector(s)∧fullCurve(s)∧suitableSize(s)∧isRound(s)

0.500213 cornerpair(cp1)∧cornerpair(cp2)∧isDiffCpairs(cp1, cp2)∧isPerpendicularCpairs(cp1.cp2)
∧suitablelengthCpairs(cp1, cp2)∧intersectsOrderedCpairs(cp1, cp2) ⇒ cpairlstructure(cp1, cp2)

L2 8.06527 cpairlstructure(cp1, cp2)⇒ cornerpair(cp1)∧cornerpair(cp2)∧isDiffCpairs(cp1, cp2)
∧isPerpendicularCpairs(cp1.cp2) ∧suitablelengthCpairs(cp1, cp2)∧intersectsOrderedCpairs(cp1, cp2)

4.1772 cpairlstructure(cpls1)∧cpairlstructure(cp2)∧cpairL-intersects(cpls1, cpls2)⇒squarecorners(cpls1, cpls2)
L3 0.500001 squarecorners(cpls1, cpls2)⇒cpairlstructure(cpls1)∧cpairlstructure(cp2)∧cpairL-intersects(cpls1, cpls2)
L4 0.607206 squarecorners(cpsq)∧lstruct(ls)∧isTranslated(cpsq,ls)⇒cube(cpsq,ls)

5.03081 cube(cpsq,ls)⇒squarecorners(cpsq)∧lstruct(ls)∧isTranslated(cpsq,ls)
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Real Image Dataset:

Class: Cube

Table A.3: Rules used with real image dataset.

Layer Weight Formula
0.500284 isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)∧ suitableLength(l1, l2)

⇒ l-structure(l1, l2)
8.66214 l-structure(l1, l2) ⇒ isLine(l1)∧ isLine(l2)∧ isPerpendicular(l1, l2)∧ intersectsOrdered(l1, l2)

∧ suitableLength(l1, l2)
L1 0.500001 isCorner(c1)∧isCorner(c2)∧sufficientGap(c1, c2) ⇒ cornerpair(c1, c2)

4.1772 cornerpair(c1, c2) ⇒ isCorner(c1)∧isCorner(c2)∧sufficientGap(c1, c2)
0.500213 cornerpair(cp1)∧cornerpair(cp2)∧isDiffCpairs(cp1, cp2)∧isPerpendicularCpairs(cp1.cp2)

∧suitablelengthCpairs(cp1, cp2)∧intersectsOrderedCpairs(cp1, cp2) ⇒ cpairlstructure(cp1, cp2)
L2 8.06527 cpairlstructure(cp1, cp2)⇒ cornerpair(cp1)∧cornerpair(cp2)∧isDiffCpairs(cp1, cp2)

∧isPerpendicularCpairs(cp1.cp2) ∧suitablelengthCpairs(cp1, cp2)∧intersectsOrderedCpairs(cp1, cp2)
0.7 cpairlstructure(cpls)∧isTexture(tx)∧formsCube(cpls,tx)⇒textureCube(cpls,tx)

L3 3.81423 textureCube(cpls,tx))⇒cpairlstructure(cpls)∧isTexture(tx)∧formsCube(cpls,tx)
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