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ABSTRACT

KEYWORDS: Probabilistic inference; Markov logic; Visuautines; Graphical

models; Active vision; Object categorization.

Visual perception is a key function for an embodied agennteract with its envi-
ronment for complex object manipulation tasks. The thednyisual routines suggests a
framework for employing perception to solve high-leveliotstasks in a cognitively ori-
ented way. But a major challenge in building vision systeangfmbodied agents is that the
evidence obtained from sensors is uncertain and incompletethe results of operation
of visual routines are not completely reliable. This is duéhe inherent limitations of the
equipment in terms of field-of-view and resolution of the eaa) which causes the input
image to be of low fidelity. Moreover, the application of v@dwperators may yield spuri-
ous or imprecise evidence and choosing the right paramisteesd. We propose a novel
approach for inference over uncertain and incomplete egeleusing Markov Logic Net-
works (MLN) and active vision in a hierarchical frameworldagvaluate it using an object

categorization task.

Markov Logic Networks belong to the class of Statistical&ieinal Learning (SRL)
methods that combine the expressiveness of first-ordec kgl the ability of probability
theory to handle uncertainty. MLNs extend Markov networkstrelational setting by
expressing the knowledge as a set of weighted formulas. \Weope a layered MLN
design which performs stage-wise inference to allow fosoeang at multiple levels and
at varying levels of uncertainty. Given that the informatie incomplete, active vision is
a mechanism for focused gathering of additional infornrati®ur framework integrates
active vision with the layered MLN model to gather missingdewce, facilitating reliable

and tractable inference. Inspired by the ideas of active@wjsn the event of missing



evidence, our framework restricts the selective visuat@ssing to specific regions of the

input image and further inference is carried out incorpogathe new evidence.

We present a cognitively motivated, complete end-to-eistesy for object categoriza-
tion in a SRL framework. We use three different datasetsX¥peamental evaluation: syn-
thetic images generated using OpenCV library, images médairom the iCub humanoid
simulator and real images taken from Microsoft’s Kinect Xi{&). The system is eval-
uated with different levels of incompleteness and noiseheiseé datasets and empirically

prove its applicability to detect objects of complex stuues.
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CHAPTER 1

INTRODUCTION

1.1 Embodied Vision

Embodied vision systems are those which exist as one of tlegadunctionalities of an
embodied agent such as a robot or a human-being. Embodiatsdge/e the property of
situatedness, i.e., their perception and reachabilitheir ttnvironment is constrained by
their physical location in the environment. But they have dhbility to interact with their
environment, which is often necessary and advantageoubdaxecution of their tasks.
Some example tasks include robot navigation, obstaclelawce, grasping objects, game
playing, etc. In all these tasks the agent needs to contsiy@erceive its world in order
to act upon it. It can also utilize its current perceptionhad tvorld to actively control the

next action to be taken or scene location to be perceived.

Vision based sensing and control is one of the several waysHigh an agent can
perceive its environment, the other methods being sonfig-ied sensors, etc. Visual
perception is the ability to identify and reason about digjée an agent’s environment.
Perception is one of the key requirements for cognitive ela The tasks in which vi-
sual perception plays a major role in their execution areaknas visually guided tasks.
Few examples of visually guided tasks are given in Figure Wdlike traditional vision
systems, embodied vision systems can provide vital infiomavhich can aid in the de-

cision making of the agent and can also actively control genés actions.

Ullman (1984) proposed the theory of visual routines whitettes that visual percep-
tion requires the extraction of shape properties and dpafi@ions among objects and
object parts. Visual routines are a set of efficient openati@assembled from a fixed set

of basic visual operators that can be used to extract highl tmncepts from the image.



(@) (b)

Figure 1.1: Examples of visually guided tasks: (a) an iClintarying to grasp an object,
(b) a RoboCup soccer match.

These visuo-spatial relations are useful for handling &tapf complex object manipu-
lation tasks, which can be performed efficiently by building routines in a modular way.
The visual routines theory is cognitively motivated andsgrés a model of how the vision

system of human beings (or embodied agents) could work t@ $ogh level vision tasks.

Research on visual cognition (Singh and Hoffman, 2001)ides/empirical evidence
that human vision system organizes shapes in terms of padtsh&ir spatial relations.
Objects have part structures which form perceptual unit®s€ parts are computed auto-
matically, quickly, and in parallel over the visual field. 83e part-based representations

also explain the allocation of visual attention to objects.

1.2 Challenges

A major challenge in building vision systems for embodiedr#g is that the evidence ob-
tained from the sensors is uncertain and incomplete. Thigsego the inherent limitations
of the equipment in terms of field-of-view and resolutiontod tamera, which causes the
input image to be of low fidelity. The application of visualesptors on the image will not

yield all of the supportive evidence needed to determinelgeco category. The evidence



may contain the typical imprecision associated with vismwacessing. For example, a
detected line may not lie between the exact corners of arcblbyoreover, they may give
spurious evidence and choosing the right parameters faishal operators is hard. Other
factors which influence vision processing are lighting gbads, perspective of the cam-
era, etc. Thus, the evidence obtained is incomplete, ineatinaccurate. Incomplete
evidence may also result from occlusion of objects or partgbility of the environment

due to embodiment of the agent.

Hence, the result of the visual routines’ operation on argiena unreliable, and object

inference has to be performed over incomplete and uncestadiience.

1.3 Motivation and Objective

Motivated by visual routines theory, we present a modelriéerence over uncertain and
incomplete information generated by visual routines araluate it using an object cate-
gorization task for embodied agents. Object categoringilays an important role (either
explicit or implicit) in all visually guided tasks involvipembodied agents. The tasks re-
quire the agent to identify and act upon objects throughisoat interaction with its envi-
ronment. In Figure 1.1, (a) represents explicit objectcteda while in (b) object detection
is implicitly present in the various stages of the game, tegcking the ball, goal-post, op-
ponent team, etc. We chose the object categorization tagksaan important step in all
visual guided tasks and for cognitive behaviour. It invelperceptual grouping of visual
information which can form an integral part of the decisioakmng process of the agent. In
recent years, there has been a lot of interest in develd&aistical Relational Learning
(SRL) (Getoor and Taskar, 2007) methods that combine theesgyeness of first-order
logic and the ability of probability theory to handle uneenty. They extend traditional
graphical models to a first-order representation, thusigiroy the ability to handle general
relations between objects using a single template. Thentalga of these models is that
they can succinctly represent probabilistic depender@éseen the attributes of different

related objects, leading to sample-efficient learning afetrénce. These models allow for



reasoning at multiple-levels under varying levels of utaiaty. Our proposed work is an
attempt at object categorization with incomplete evidamgiag basic visual features in a

SRL framework.

We propose a hierarchical framework for object categaornadrom uncertain and in-
complete evidence using SRL and active vision. Since theaVvisperators do not yield
complete evidence, the inference has to be performed overtain evidence. Moreover,
the object parts are inter-related and the spatial relghipramong parts is a key feature for
object detection. The advantage of SRL models is the albdigxploit such relationships

while reasoning under uncertainty.

Specifically, we use Markov Logic Networks (Domingos and do2009) (MLNs) for
our design and implementation of the proposed system. Miiimsnd traditional Markov
networks to a relational setting by representing the festas a set of weighted rules in
first-order logic. One of the nice features of MLNs is thatytladlow the user to write as
many rules as possible about the domain and then learn wdighthe rules to perform
inference. This allows us to define the features associaiddsivapes and relations and
form a hierarchical MLN that can reason at multiple levels.(ifirst reason about lines and
circles, use the reasoning from that level to reason abshéped structures, then reason
about squares and so on). More details on SRL models andaghyglication in our work

are discussed further in the remaining chapters of thisghes

For reliable detection of objects, we use active vision tthgamissing evidence
whereby the visual processing is selectively applied teaiparts from which more in-
formation is required to conclude their category. Activeien (Swain and Stricker, 1993)
refers to mechanisms by which new information can be acdwtgonomously through
interaction with an agent’s environment. An active visigstem consists of two major
components: (1yisual behaviourwhich is a combination of primitive visual routines for
the execution of a task (eg., pick-up object/put-down abjé2) visual routines which
forms a vocabulary of basic functions needed to build a awisigstem. The active vision
paradigm provides the ability to combine vision with beloavj which is vital to achieving

robust execution of the agent’s tasks. It is more robusttifzaitional vision techniques be-

4



cause the agent can improve its initial guess of the objeegoay by obtaining additional
evidence. It also helps in filtering irrelevant evidencetlgh selective visual processing.
Active vision techniques were chosen because they aretrabdsonform to the cognitive
theory of vision. The inherent interactions of embodiedragenakes it easily deployable

on them.
The objectives of our work include the following:

» To develop a probabilistic relational framework for olijdetection

* To build a system which can take multiple observations afrzange to actively con-
trol the inference of objects

» To develop a framework for hybrid bottom-up and top-doweamsi@ning

Thus the scope of this work will be restricted to cognitivaetptivated architectures

and not to compete with state of the art object detectionratgos.

1.4 Contributionsof the Thesis

This thesis makes the following key contributions:

» A cognitively motivated, complete end-to-end system thkes an image as input
and outputs the category and location of objects in the im&ges system includes
a pre-processing step that extracts the basic visual f=sattom the image, a hierar-
chical MLN inference engine which outputs a distributiorenthe shapes inferred
at each stage and an active vision component.

* The design of a hierarchical MLN model which performs stagse inference using
evidence from lower levels to reason at higher levels. Thé\Blbandle the uncer-
tainty in perception and inference of objects. To the bestusfknowledge, this is
the first work which explores MLNs in a layered architectwoedny application.

* A method to integrate active vision with MLN inference fi#eiting reliable and
tractable inference of the object category from incompéeidence.

* Finally, the system is evaluated with different levelsrafompleteness and noise on
multiple datasets and the ability to identify complex shgseestablished empiri-
cally.



1.5 Organization

The purpose of this chapter was to present an overview of drebwision, the concept of
visual routines and active vision and the need for reasonitiyuncertain evidence. The
objective of our work is also presented. The following cleapelaborate on our work and

are organized as given below:

Chapter 2 gives a brief overview about the three major caseapployed in our work:
visual routines, statistical relational models and actigeon. The motivation for employ-
ing these methods in our work is also discussed. This is@tbby an outline of the

related work present in the literature.

Chapter 3 discusses the proposed system and its implemoentatcomplete end-to-
end system for reasoning with incomplete and uncertairVisuidence is presented. The
evolution of the idea is presented followed by an explamaticthe general architecture of
the system and its component modules. The chapter alsdlaEstine integration of active

vision with the hierarchical MLN model for the task of obj@ettegorization.

Chapter 4 presents the experimental evaluation of the geapsystem for categoriza-
tion of objects with geometric regularities. The systemvialgated on on three different
datasets: synthetic images generated using OpenCV, invdgaised from the iCub hu-
manoid simulator and real images taken from Microsoft'sd€in The performance of the
system for different levels of incomplete and noisy evideiscpresented. The evaluation
of the system on embodied agents is presented through tkem@ents on iCub and Kinect

images. Comparison of the system with a baseline detectdsaspresented.

Chapter 5 summarizes the work carried out and the conclsisiawn from the thesis

as a whole, followed by an outline of future research dieti



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we give an overview of the three major cotggwolved in our work: the
theory of visual routines, relational models and activéovigparadigm. We explain these
concepts from the perspective of object categorizationgavel an intuition on why and
how they can be useful for an embodied vision system. Relatgll on these topics are

also presented towards the end of this chapter.

2.1 Visual Routines Theory

Most vision related tasks require the extractiowviglio-spatiarelations, i.e., they require
the identification of entities (which may be persons, statidynamic objects, etc) in the
scene and the relationships between them. Few examplesksf wich require visuo-
spatial analysis are given in Figure 2.1. For example, imfeé@.1, in order to answer the
guery (a)How many cups are there in the scenefie has to identify the entitiesp and
saucerand the relatioron top of between them. The same reasoning applies to the other
tasks also. In (b) the fruit basket is expected to be on a-aipl@r a horizontal surface

as opposed to the ceiling, while in (c) the road-signs havetmlentified and the relation

between their directions have to be established.

The above tasks seem effortless for humans but it hides alegrapay of processes.
(Ulliman, 1984) proposed the visual routines theory as a wagompute visuo-spatial
relations efficiently and to explain intermediate visiorhiiman-beings. He suggests that
visual perception requires the ability to extract shapgertes and spatial relations. The
visual routines are defined as efficient sequences of basi@ioperations which can
establish the visuo-spatial relations and can be used td toimplex vision systems in a

modularized way. Ullman suggests the following stages isual perception:



@) (b) (c)

Figure 2.1: Examples of tasks that use visuo-spatial aisal{es How many cups are there
in the scene? (b) Where is the fruit basket? (c) Is the Opetsélm the same
direction as the Youth Hostel?

» Development of base representations of the environmeathattom-up, spatially
uniform way.

» Application of visual routines on the base representattonform incremental rep-
resentations.

» Application of costly or task-specific routines on the ermental representations.

Different routines may share the same basic operations,ldbilding the system in a
modularized way. The same routine may be applied to diftespatial locations in par-
allel. The initial vision processing is applied across tisual field to form the base rep-
resentation. It identifies regions of interest (salientorg) for focused visual processing
using visual routines, which forms subsequent incremaefalesentations. An example
of perception through visual routines is shown in Figure M28pired by this concept, we
define objects as being composed of sub-parts. For examlénesintersect to form an
L-structure two L's intersect to form aquare asquare-faceand anL-faceforms acube
etc. At each layer of the proposed hierarchical model, wendefisual routines which
are applied on object parts detected from lower layers tatifyethe shape and spatial

properties associated with that layer.

For applying visual routines, mechanisms are required éggcsing the locations at

which they should be applied and sequencing of the opesatmextract relevant infor-



camera shape object
signals detector Basic shapes | detector -
g | Color/Edge maps p |  Wire -frame

A

| (incremental 1 Models
representations)

(base representations)

Figure 2.2: Example of visual perception with visual roenthe edge and color detec-
tors are applied across the entire image to identify salegnons. Higher-level
visual routines are applied only on these regions and atd bystematically
to form wire-frame object models.

mation at minimum cost. The basic operations need to beifahand integrated into
meaningful visual routines and a control mechanism is netéalélecide when and where

visual routines are to be applied.

2.1.1 Evidence from Cognitive Research

This sub-section discusses some of the research work ims&ance which is supportive
of the visual routines theory. Vision processing has lorgnionsidered to be a bottom-up
process. (Marr, 1976) states that early vision processamgigites a rich description of
primitive gray-level changes in an image, represented asvapsketch. The description
is expressed agdge, line, blob, etdGrouping operations on the primal sketch determines
higher level objects. (Biederman, 1987) suggests thatiatormation obtained from an
image is divided into simple geometric components knowgeassvhich is then matched
with the most similar object representation known. Receséarch in neuroscience sup-
port the theory that human representation of visual shaparisbased. (Singh and Hoff-
man, 2001) suggests that perceptual units occur not onligeabbject level but also at
the part level. The objects are represented using partshendrélationships. Empirical
evidence from (Baylis and Driver, 1994) suggests that gagscomputed automatically,
quickly, and in parallel over the visual field. (Barenholtdaeldman, 2001) and (Singh
and Scholl, 2000) provide evidence for attentional shifithiv single objects (part based
attention). There is also empirical evidence for activatd human cortical regions by

stereoscopically defined object shapes (Gilaie-Detaal., 2001).



2.2 Methodsfor Uncertain Reasoning

In the previous section, we discussed the concept of visudines and how they can be
employed in perception. But, as discussed in Chapter 1 ehdtrof operation of visual

routines on an image is not completely reliable. Hence wel h@eeason with uncertain
evidence to determine the objects present in an image. #$nst#ttion, we present an

overview of the methods for uncertain reasoning:

» Probability: The basic statistical method for handling uncertainty ishgyaxioms
of probability. The axioms help in restricting the set ofibfd that an agent can hold
in adomain. The Bayes’ theorem provides a formal way to fiecctinditional prob-
ability of a hypothesis being true given the evidence. The igistated as follows
for multi-valued variables:

P(X[Y)P(Y)

PIX) = =5

(2.1)
The Naive Bayes’ classifier is based on the Bayes’ rule andgee a simplification
of the computation using the class-conditional indepeodefror example, let the
class variable to be determined Bawhich can take values in the range O, 1,j...,
and the evidence variab}¥be ad-dimensional vectora(, xs, ..., x4). The classifier
assigns a data point to claSs such that

C; = mjaxp(C’j\a:l,xg, iy Tg) = mjaxp(xl,xg, oy 24| C5)p(Cy). (2.2)

The Naive Bayes’ classifier assumes that the dimensionsohgut (evidence) are
independent of each other given the value of the class \Varidence the above
equation can be simplified using the equation:

d

p(x1, xa, ..., x4|Cj) = Hp(xk\Cj). (2.3)

k=1

Thus probability theory provides a simple and principledchamism to find un-
known probabilities of variables (hypothesis) given théuga for other variables
(evidence).

* Belief Networks: The Naive Bayes’ assumption does not hold in many real do-
mains. For example, in image processing, the value of a @x®st determined by
taking into account the values of the neighbouring pixet® ddecause pixels with
spatial proximity are likely to have similar values. Belreftworks (also known as
Bayesian networks) model the causal influence betweenblesiand removes the
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class-conditional independence assumption. They fakutite general category of
graphical modelsvhich represent the dependencies between the input dioresss
a graph and define factorizations of the joint probabilitstidbution of variables by
exploiting the local structures within the graph. The grapdy be directed or undi-
rected depending on whether the relationship betweenblasas a causal relation-
ship or not. Thus they provide a more powerful and accurdezence mechanism
than Naive Bayes’ and are suitable for modeling real-wonddhdins. A detailed
explanation of graphical models and inference mechanismisen in the following
section.

Dempster-Shafer Models. Dempster-Shafer models define a belief function to com-
pute the probability that the evidence supports a promosthan the probability of
the proposition itself. They address the problem of ignoeaais opposed to uncer-
tainty. These models are based on obtaining degrees ofdbfdiea query variable
based on subjective probabilities for a related variablee Dempster’s rule provides

a means to combine such degrees of beliefs when they are tasedependent ev-
idence.

Fuzzy Sets. Fuzzy set theory is a means of specifying the degree of vagsenf a
variable. For exampléelall can be considered as a fuzzy predicate Wah (Bob)
having a value between 0 and 1 to indicate the degrdalliessthan justtrue or
false Fuzzy logic is a method for reasoning with logical expressidescribing
membership in fuzzy sets.

In our work, we use graphical models for uncertain reasosinge they can model

the dependencies between variables. The label of a nod#usnoed by the labels and

attributes of its surrounding nodes. This is a key requirgni@ most real-world tasks

and especially in image processing. The following sectiguians graphical models in

general and the specific model used in our work.

2.3 Graphical Models

As explained in Section 1.2, the evidence extracted by theavroutines is not completely

reliable. This is due to the inherent limitations of the serejuipment and the image pro-

cessing algorithms. Also, the task of object categoriratian be naturally decomposed

into categorization of sub-parts and establishing theapatations between them. More-

over, the performance of object categorization can be ingat@ignificantly by consider-
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ing the relationship between other object parts as a feéitare using the features of the

object alone. Thus we need to:

* Reason from incomplete evidence

» Exploit relationship between object parts, i.e., model-nod. data

Various methods for reasoning with incomplete evidenceeyweesented in Section 2.2.
Among them, probabilistic graphical models stand out asitalsle method that satisfies
both of the above requirements. They can reason about aicextidence in a princi-
pled way using probability theory and they inherently madtielrelationships between the
variables in a domain. Graphical models use a graph-bagedsentation as the basis
for encoding complex distributions and to exploit the stuwe and interactions between
variables in a domain. Graphical models may be directed directed. Directed mod-
els represent causal relationships between variableg adglirected graph representation.
Undirected models are suitable to represent interactimaisare not necessarily causal in
nature. Some applications which need undirected grapimodkls are vision related tasks
such as image de-noising, segmentation, text processskg,tatc. For example, in im-
age de-noising and segmentation, the value of an imageipilkély to be similar to the
values of its neighbouring pixels though a pixel does noseanother pixel to be of a par-
ticular value. Hence the relationship between pixels havgetmodeled as an undirected
graph. The graph-based structure allows for efficient exfee of the probabilities of the
variables in the domain. In the next section we describe Mafkandom Fields (MRF),
an undirected graphical model as an example. We chose tdgefedescription of MRF
(or Markov networks) since the relational model used in oarkws an extension of this

model.

2.3.1 Markov Random Fields

Markov Random Fields models the joint distribution of a detariablesX = (X, Xs,

X,). The nodes in the network represent variables in the darfairexample MRF with
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Figure 2.3: An example Markov Random Field

four variables in the domain is shown in Figure 2.3. The phbilsdic interaction between

the variables are captured pgtential functiong®) defined over cliques in the graph.

According toHammersley-Clifford theorenif the distribution is strictly positive, then
it can be factorized as a product of potential functions @efiaver cliques in the graph.

The joint distribution can then be represented as:

P(X) = % T 2.(%). (2.4)

whereZ is a normalizing constant. The above equation can be repezsa log-linear

form as:

P(z) = %GXD<Z wjfj(x)> - (2.5)

wherej iterates over the cliques in the graph afyds the feature defined over cliqyie

comprising of the subset of variable$rom the seiX.

The MRF also encodes conditional independences betwe&ables for efficient in-
ference. Two variables are independent of each other if ddesialong the path between
them in the graph are marked as evidence. For example, ind&Q38,A is independent of
CorD givenB, i.e., the information abowt does not add any more information abQubr
D, if state ofB is known for sure. The set of nodes whose value when known srexkede
independent of other nodes in the network, is calledMiaekov blanketof a node. For

an MRF, the Markov blanket of a node is the set of its immediaighbours. Inference
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over MRFs can be done using a variety of algorithms such aablarelimination, belief
propagation, sampling methods, etc. We will be discussaiggbpropagation algorithm

in a further section.

2.3.2 Why Relational Model?

Many variants of graphical models have been proposed iratitee such as (Conditional
Random Fields) CRFs, discriminative CRFs, etc. But thesengjor drawback with these
traditional models: they have a rigid structure and caneptesent variable number of
objects and general relations between objects in a domaranfexample, consider the
task of detecting horizontal and vertical lines across aagenas shown in Figure 2.4 (a).
One possible design of a traditional model such as MRF is showhe figure, where the

image pixels are the evidence nodes which indicate wheltlegpikel is part of line or not.

The evidence are connected to a query node and potentidldnaare defined over the
binary cliques. But in order to detect lines across the imtige model has to be replicated
across the image. This makes it tedious and unattractiveottehihigher-level structures.
Instead, a relational model can detect objects across thganm parallel using a single

template.

As another example, consider using a non-relational magdi as a CRF to find per-
pendicular lines that intersect to form "L’s. One CRF wowddchkeeded to infer each pos-
sible orientation of the lines. Note that the first line cob&lat any angle of rotation from
horizontal axis and the second line should be perpenditoltre first, as shown in Fig-
ure 2.4 (b). Also note that the lines need not be exactly peligalar for visual perception.
If we are to represent all possible orientations of the lthesnumber of parameters in the
CRF would become prohibitively high rendering inferendeaatable. On the other hand,
relational models allow the use of a single template to aapdll possible orientations of

the lines due to their ability to succinctly capture geneadions of the rotation angles.

We use Markov Logic Networks (Domingos and Lowd, 2009) (M)LBisthe relational

model for our design and implementation of the proposedeaysMLNs extend Markov
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(@) (b)

Figure 2.4: (a) Detection of lines across an image using aralational model (b) Differ-
ent orientations of perpendicular lines intersecting tonfd’'s. Note that the
lines need not be exactly perpendicular for visual peroedieg.,/oo, [o1)-

networks to relational setting by expressing the knowlesmigja set of weighted formulas.
One of the nice features of MLNs is that they allow the user tiienas many rules as
possible about the domain and then learn weights for the tolperform inference. This
allows us to define the features associated with shapes latidms and form a hierarchical
MLN that can reason at multiple levels (i.e., first reasonualbimes and circles, use the
reasoning from that level to reason abdshaped structures, then reason about squares
and so on). While we use MLNs in this work, the concepts canxbeneed to most SRL
systems such as PRISM (Sato and Kameya, 2001), Problog t(Raald 2007), BLPs
(Kersting and Raedt, 2007), LBNs (Fiereztsal,, 2005), RBNs (Jaeger, 2007), etc. These
systems are mostly equivalent (Jaeger, 2008; Bruynoegak 2009) for the application

that we are considering in this work.

Although we can use MLNs or any SRL models for our task, theags the size of
such an MLN (or any SRL model) and the complexity in inferen€a single monolithic
MLN is used to infer over the entire image (i.e., identifyds) circles, their intersections
and the more complex objects arising from their interadjpimference can become com-
putationally intractable easily. Also, learning of such adel requires exponentially many
examples. One of the important features of object recagni8 that we can divide the

problem into tasks at different levels. i.e., we can perfarfarence on parts of an object
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at lower levels and then use the results of the inferencenagdrltevel parts to reason about
higher level parts. For instance, it is quite natural thatoae infer about lines at lower
levels and use the result to infer about L-shapes and thegctarrgles. In this work we
propose to exactly use this intuitive idea for performinfgreance in SRL models particu-
larly using MLNs. We give a brief overview of MLNs and the l@flpropagation algorithm

in the next section.

2.3.3 Markov Logic Networks

One of the most popular and general SRL representatiohdarkov Logic Networks
(MLNs) (Domingos and Lowd, 2009). MLNs provide an efficient way ofdmning
probability and logic to handle uncertain and complex emwmnents. An MLN consists of
a set of formulas in first-order logic and their real-valueeights,{(w;, f;)}. Each for-
mula, represented by a set of predicates and their coneecBpecifies a constraint that
should hold over the evidence in a domain. The weight for tinebila specifies how hard
the constraint is. From the perspective of object detectanh formula is a specification
of an object or an object part as being composed of its suls-gaough certain relational

operators. The constants are the set of objects and objstipghe domain.

An MLN can be viewed as a template for constructing Markowwoeks. We can
instantiate an MLN as a Markov network with a node for eactugtbpredicate (atom)
and a feature for each ground formula. The network genelayealssigning constants
to the predicate variables of MLN rules is called a groundvoek. The set of ground
predicates which occur together in an MLN formula form awéan the ground network.
An example of a clause and its grounding from the point of vigwabject detection is

shown in Figure 2.5.

All groundings of the same formula are assigned the samehtydanding to the fol-

lowing joint probability distribution over all atoms:
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Intersection of two “L“ structures form a square

I-struct(ls1)"l-struct(Is2) intersects(Is1,Is2) => square(Is1,Is2)

Constants: I-struct(LS1), I-struct(LS2), I-struct(LS3)

e m Lssq1Uir892
(LS1,LS3) w /( L52)

square
(LS2,LS3)

Figure 2.5: An example Markov logic rule and its ground netwfor a domain with three
constants.

P(X =1z)= %exp (Z w,n,(a:)) : (2.6)

wheren;(z) is the number of times th#gh formula is satisfied by possible worldand
Z is a normalization constant (as in Markov networks). Imeily, a possible world where
formula f; is true one more time than a different possible world“istimes as probable,
all other things being equal. For this thesis, we will assarfirite set of atoms, but MLNs

can also be defined over some infinite domains (Singla and Dgwsj 2007).

In our framework, the object models composed of shape ptiegesnd spatial rela-
tions, are represented using first-order logic rules. Thesressentially represent the com-
position of visual routines needed to establish these ptiegan order to infer an object
or its sub-part. The inference of the object is split acrosdtipie layers, with an MLN at
each layer to infer parts of objects. The object parts iefkat lower layers are combined
to form the whole object at a higher layer. Layering makessystem tractable, since

inference at higher layers occur only if supportive evideisoobtained from lower layers.

Note that the proposed hierarchical MLN is not equivalerd single large MLN. The

17



MLNSs at each layer performs independent inference in a sg@enanner. We introduce
new predicates from the conclusion of one level to the nexdr éxample, a square is
composed of two intersecting L's and L's are composed of inesl. The main advantage
of this design is that it separates the inference of lowedllewtities such as lines and circles
from higher-level complex shapes such as a train or a cube.oflier advantage is that
this modular design makes it possible to perform tractatfierénce since the individual

layers are themselves significantly smaller than the csigiiLN.

Inference can be performed as a MAP estimate or by computarginmal probabilities.

In the next section, we describe the belief propagationrétga over an MLN.

2.3.4 Bedlief Propagation

Belief propagation is an efficient algorithm for computingnginal probabilities of nodes,
i.e., the conditional probability of the query node is fougiden the values of the evidence
nodes, by summing out over the other variables. The graptstbnverted into a factor
graph over which the algorithm is applied. A factor graphlsggartite graph that expresses
the structure of the factorization of the joint distributigiven in equation 2.2. It consists
of one variable node for each variable and a factor node foln ézcal function over a
subset of variables. A factgy; is connected to a variable nodeif and only if z; is an
argument of the local function corresponding to the fagtorAn example factor graph of

the ground network in Figure 2.5 is shown in Figure 2.6.

The belief propagation algorithm iteratively calculathe marginal probability of a
node by passinghessagebetween factors and variables. Equations 2.7 and 2.8 descri
the messages passed for a non-relational graphical mobelmessage from a node to a

factor is given by:

[z—g(T) = H fth—sz (). (2.7)

heN (z)\{g}
and the message from a factor to a node is:
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square
(LS1,LS2)

square
(LS2,LS3)

Figure 2.6: The factor graph of the ground network in Figue 2

TEOESDY (9(95) 11 :uy—>g(y)> : (2.8)
~{z} yEN(g)\{z}
where N(x) or N(g) is the set of neighbours of the variableaatdr respectively. The
algorithm is iterated until convergence, i.e., until thesseges passed between a factor and
a variable does not change. Convergence is guaranteedayrdgyclic graphs, whereas

for graphs with loopdpopybelief propagation can give approximate results.

Belief propagation in MLNs: Belief propagation in MLNSs proceeds in the same way
as described above, except that it is performed omramal graph. The minimal graph
represents the smallest network of nodes required to arsg®en query. The minimal
graph is obtained as follows: add the query node into the ortwSubsequently add
its Markov blanket into the network and repeat this procedd the node added is an
evidence node. For example, the minimal network of Figusen2eded to infer the query
P (square(LS1,LS2}-struct (LS1), I-struct (LS2)js shown in Figure 2.7. This minimal

network can be converted to a factor graph and belief prdmagearried out on it.

2.3.5 Weight Learningin MLN

In this section we give a brief overview of the MLN weight learg methods employed in

our work. As described earlier, MLNs can be described as af setighted formulae. The
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intersects
(LS1,LS3)
square
{LS1,LS3)

intersects square
(LS2,LS3) (LS2,LS3)

square
(LS1,

Figure 2.7: The minimal network (circled) to infer the quérysquare (LS1,LSP)-struct
(LS1), I-struct (LS2))

weight for a rule defines how hard the constraint is. Weigatriang attempts to find the
maximuma posterioriweights, i.e., the weights that maximize the product ofrtpeior
and likelihood from the data. But computation of the pastitfunction of the likelihood
is generally intractable. Hence gradient descent teclesique employed for learning the

weights. The weight vector is updated at each step accotditige formula:

Wi = Wy —ng (2.9)

wheren is the learning rate anglis the gradient.

We compare three weight learning methods in our work: Votexdéptron, Diagonal
Newton and Scaled Conjugate Gradient. These methods centipeitderivative of the
negative conditional log-likelihood (CLL) with respectaoweight. For MLNs, this turns
out to be the difference of the expected count of true grawgwlof a clause and the actual
count. Voted perceptron approximates the expectationeasdtints in the most probable
explanation (MPE) state. In diagonal Newton method, thenieg rate is replaced by the
diagonalized Hessian of the negative CLL for faster cormecg to a global minimum.
Scaled conjugate gradient further speeds up the gradisnedeby imposing a constraint
that at each step, the gradient along the previous diresctEmain zero. Thus the effect of

previous steps are not undone by the current step. Morelsletathese methods can be
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found at (Lowd and Domingos, 2007).

2.4 ActiveVision

The previous sections discussed models for probabilisterénce from visual evidence
in a systematic way. But a mechanism is needed for relialideance in the presence of
uncertain and incomplete evidence. Moreover, procesditigecentire visual field is not

efficient. Hence there should be a mechanism which can fédmusisual processing to

relevant parts of the image. Active vision techniques restiese problems efficiently.

Active vision (Swain and Stricker, 1993) provides mecharsigor an agent to per-
ceive its environment through continued interaction withlt involves tight coupling of
the agent’s actions and perceptions of the world. The agesives visual feedback which
may be used to direct its next action. The new information m&pbtained by changing
camera parameters like focus, vergence, orientation, mait involve selective sensing:
in space, resolution and time. For example, new informatiay be obtained by zoom-
ing in on a part of the scene or by getting a different perspedf an object by rotating
the object, shifting the view-point, etc. They may also imedeatures like spatially vari-
ant sensors (foveal sensors). Thus they help in removingutit@guity associated with
single shot images, which makes it more robust than traditicomputer vision meth-
ods. Another characteristic of active vision systems i$ thay are naturally suited for
embodied agents. Selective attention, an active visidmigoe, greatly simplifies com-
putational costs by allowing processing at high resoluibdesired regions of the image.
In the active-vision paradigm, the main components of ts@nisystem are termedsual
behavioursandvisual routines Visual behaviours are combinations of primitive visual
routines that help in executing a task (eg., pick-up obpettdown object) while visual
routines form a vocabulary of basic operators for buildimg vision system. An interest-
ing research area related to this is eye-hand co-ordinatibere the visual system directs
the hand (motor system) to specific locations in the worldr é&@mple, the hand may

rotate an object to obtain a 3-D view and to increase theiogytaf the object’s identity
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and affordance. They may also be implemented concurrertgrevthe visual and motor
systems compete for execution. An arbitration mechanidettsethe appropriate action,
which in turn may depend on visual feedback available froenptevious execution of a

visual action.

2.4.1 Sdective Attention

The camera signals contain far more information than whabegprocessed by a practical
vision system. This creates the need for attentional mesimsto allocate computational
resources to relevant parts of an image. However, relevasnggt a static measure, but
depends on the context and task of the agent. The visuahesutheory suggesthift
of processing focuas an elemental operation where the processing shifts txaide
locations (locations which are different from its surroung$ in terms of shape, color,

disparity, texture, etc.).

Selective attention is analogous to the way human eyes ggaormation. Given a
task such as visual search, the eyes perform quick jumpsdreocation of the scene to
another, known asaccadeswith short durations ofixationat a given location. The sac-
cades occur through peripheral vision (low resolution)le/fikations are done by foveal
vision (high resolution). The extraction of visual infortizen occurs during the fixations.
Experimental results show that the eyes fixate on intergsind informative regions in the
scene (Henderson, 2003). An example of saccades and figdboa visual search task
is given in Figure 2.8. Robot vision simulates this processhmnging the resolution of
the camera and/or by moving the camera. Attentional praugssves computational time

and cost. It also performs data reduction by filtering thel@vant parts of the scene.

In our work, we focus ormicro-saccadesround object parts rather than saccades
across a scene. Based on the initial inference resultsysters decides whether additional
evidence is required, and selects the image regions on \Vidmttter processing is needed.
The object parts detected so far act as indicators of whdokofor more evidence. Thus

the system can selectively target the vision processingedoiic regions of the image. An
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active
vision

Figure 2.9: An example of active vision as deployed in theppsed work.

example of how active vision is deployed in our work is showirigure 2.9.

In the next section we give an overview of the related workshantopics discussed

previously, for vision applications.

2.5 Reated Work

The concept of visual routines was first proposed by Ulim&84) as a way of explain-
ing intermediate vision in human beings. The thesis suggdésit visual perception for
high level vision tasks can occur in different stages: eadyal operators applied in par-
allel over the entire visual field forms the base represmmst on which visual routines
(assembled from elementary visual operators) can be apfgligenerate the incremental
representations for the task at hand. This saves compuodtione and complexity and

helps in selective processing.

Following this, several work has been done using visuaimestin cognitively oriented
tasks. (Agre and Chapman, 1987) and (Chapman, 1991), inepismisual routines for
automated game playing in a simulated environment (PENGISonja). These methods

use visual routines as a means to shift the processing focas attentional markers and

23



bypass the early vision processing, whereas the hard paiduedl routines is in modeling
the low-level vision processing and the uncertainty inedhin their output. (Horswill,
1995) proposed an implementation of a visual routines @smefor visual search on real
camera images. But it does not model the uncertainty in theltseof visual operators.
Moreover, objects are identified using color cues and reitiogns not addressed explic-
itly. Other work on visual routines are (Johnson, 1993) Wwlaissembles visual routines for
hand detection using genetic programming, (Bzlal., 1996) for eye detection using ge-
netic algorithms and (Rao, 1998) which proposes a languiafgsmtion to generate visual
routines. In this thesis, we address the problem of unegytand incompleteness in visual
routines through an explicit object categorization tas&nnSRL framework. While most
work on visual routines focus on visual attention, assenallg learning of routines, we

present a formal approach for reasoning about them in thieexoof object categorization.

Research on the use of graphical models for vision apphicatiocus on purely prob-
abilistic generative and discriminative approaches. Apliagtion of Markov Random
Fields (MRFs) for noisy object detection is proposed by (@oa@nd Prokopowicz, 1991)
where an MRF is constructed for a line detector which is finmetlly equivalent to its
Hough transform parameter network. The image pixels aradldes for the MRF and a
MAP estimate is used to determine the most probable stateegdikels as to whether the

pixels form part of a line or not.

With the advent of Conditional Random Fields (CRFs) (Laffest al, 2001), several
work has been done on image classification and segmentating GRFs and are shown
to outperform MRFs since they allow to relax the conditiandependence assumption on
observed data, giving them the ability to directly model toaditional probability. Re-
searchers have employed many variants of CRFs for visiolicagipns such as Discrim-
inative Random Fields (Kumar and Herbert, 2003) and TregcBtred CRFs (Awasthi
et al, 2007).

All of the above mentioned methods have a major drawbaclytithee a rigid structure
and cannot represent variable number of objects and geetatbns between objects. The

inference in these models are of a propositional natureteohbdels need to be replicated
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across the image to detect multiple objects.

There has been few other approaches, apart from graphiadlmydhat exploit the
structure and interactions between objects in vision appbns. (Sridhaet al., 2008) and
(Dubbaet al., 2010) use spatio-temporal relations between objectefoning functional
object categories and event models respectively. Anotbek WVarden and Visser, 2011)
performs spatio-temporal analysis on dynamic scenes toowegghe grounding situation
of autonomous agents in simulated physical domains. (Astenal, 2010) investigates
how simple logical generalization techniques can help @nidying known structures in
images. (ljsselmuiden and Stiefelhagen, 2010) proposespdral logic framework for
high-level activity recognition from perceptual inputéfe has also been work on devel-
oping a visual grammar for object representations (SongrGmnd Mumford, 2005) and

on representing objects using deformable parts (Felzaalbatwal., 2010).

An attempt at combining logic with uncertain reasoning isgmsed by (Shanahan,
2005) which uses abductive inference for object detectiongawith an explanatory value
attached with the hypothesis. The explanatory value is eeéfirased on probability and
is a measure of the truthfulness of the hypothesis. A recenk (&Ehetet al, 2011) uses
first-order logic to parse image features and to detect thegnmce of different patterns of
interest for human detection and aerial object detectiorhahdles uncertainty in rules
and observations using bi-lattice structures. The aim eir tvork is to detect different
patterns of interest (object verification) and not objedegarization. SRL models (or
graphical models in general) encode the influence betwesaiblas directly whereas bi-
lattices encode them weakly in the rules themselves. Otlek @wn uncertain reasoning
can be found at (Chachoua and Pacholczyk, 2002), (Mtilgs., 2010), (Qinet al,, 2011)
and (Weng and Chen, 2010).

Purely probabilistic approaches are not flexible to modehglex environments and
purely logical approaches cannot handle noise and uncsrtai a principled way. SRL
models (Getoor and Taskar, 2007) provide an efficient im@enechanism by exploiting
the relational structure of data and capturing generabzatamong them, as discussed

earlier. One such model is the Markov logic network which bares the power of first-
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order logic to handle complex environments along with theaathges of probabilistic
models. For a detailed overview of MLNSs, please refer to tleekwoy Domingos and

Lowd (Domingos and Lowd, 2009).

There has been very few applications of MLNSs in vision reldtesks. One such appli-
cation is in visual event modeling and recognition (Tran Bxadis, 2008) where detected
primitive events are grouped into composite events usingadilistic inference. The do-
main knowledge is encoded using Markov logic. A recent warlobject detection in a
home environment (Wu and Aghajan, 2010) employs user ictierss on the objects as
features for the MLN to detect the objects. A hierarchicdivatly analysis is performed
using a camera network and the object-activity relatiomghencoded in the MLN for de-
tection. Another work on entity resolution in images (Chet&haet al, 2010) uses Markov
logic to represent the contextual information across irsage face recognition dataset.
But the aim of their work is different from the work proposedhis thesis in that they deal
with object-instance identification (associating facethvimdividuals across a database)
while we are looking at the problem of object class identifada Object class identifica-
tion is a harder problem as suitable features have to bepncated which can generalise
over objects within the same class while discriminatingeoty between different classes.
To the best of our knowledge, our work is the first approactpplyang MLNs as a layered
architecture for object categorization using basic visealures such as shape and spatial
relations. As far as we are aware, this is also the first workising relational models in

active vision.

2.6 Summary

In this chapter we discussed the theory of visual routineldhany it can be used for visual
perception of complex structures in a modular way. We prtesean overview of the
various methods for uncertain reasoning. We describedhgralpmodels as a tool for
probabilistic inference and mentioned the drawbacks diticmal models and the need for

relational models. We introduced Markov logic networks aslational model and gave an
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overview of belief propagation algorithm for inference.efdctive vision paradigm and its
advantages were discussed and the concept of selectimi@ttevas described. We also
gave an intuitive idea of the proposed work in relation to ML&hd active vision. The

chapter concluded with an overview of the related work irséhareas.
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CHAPTER 3

PROPOSED FRAMEWORK

In this chapter, we describe the design and implementatiagheoproposed hierarchical
MLN model and its integration with active vision. To the be$tour knowledge, this is
the first work employing Markov Logic Networks in a hierarcdli fashion for any vision
related tasks. The integration of the hierarchical modéh\active vision is also unique
to our work. Initially we explain the general architecturedahe major modules of the
framework. Towards the end of this chapter, we describentipdementation of the system

for the object categorization task.

3.1 Evolution of theldea

The problem which we address in this thesis is on reasonitig wvicertain and incom-
plete visual evidence. Our aim was to develop a robust sy&iewbject categorization,
specifically for embodied agents. This entailed that thealisnput to the agent would
be noisy and have an uncertainty associated with the obg¢etjory. But the agent could
modify its initial guess by trying to obtain finer details bétobject {ook harder’) through

interaction with it. Thus, we needed to model

* Noisy operators: noise in the results of the visual opesato
» Multiple shots at the same image: at different resoluts@msitivity, pose, etc.

» Objects of geometric regularities suitable for robotimgiation tasks

Bayesian modeling seemed to be a likely solution for theamiag system. Initially

we thought of modeling the system using MRFs as follows: atdiasic visual features



from pixel information at the base level and built higherdeMRFs over it in a hierarchi-
cal manner to model complex objects. But as explained in @n&p traditional graphical
models are cumbersome to model objects with multiple cordigans and to extend to
higher level structures due to their propositional natdr@ference. The following prob-
lems had to be addressed: (1) how to incorporate top-dowwledige (composition of
objects as lines, faces, etc.) in MRFs in an efficient wayh@®y to model getting another
observation of an object part (i.e., the decision to looklegr We chose active perception
as a method to obtain additional evidence since it was daitaline deployed on embodied
agents due to their ability to perceive as well as interath wieir world. But we needed
an efficient mechanism to detect multiple objects in parahé handle the general config-
urations of the objects. Statistical relational modelsanben chosen as a possible method
as they allowed for reasoning with uncertain evidence inasimilar to MRFs and could
also handle general relations between objects using aesiagiplate. We chose Markov
logic networks as the model because they provided a simplerdmitive representation
of the object features using first-order logic rules. Hena»uld be extended as a hier-
archy to reason at multiple levels of uncertainty. Morepitgarovided efficient inference
algorithms to detect objects in parallel. The object pagsanthen chosen as indicators of

where to look harder.

3.2 General Architecture

In this section, we present our novel framework for reaspmth uncertain and incom-
plete evidence generated by visual routines, using may inference and selective vi-
sual processing. We develop a complete end-to-end systethddask of object cate-
gorization in embodied vision systems. The general arctute of our system is shown
in Figure 3.1 and is divided into four key modules. We outlihe key ideas behind the

modules in this section and provide more implementatioait¥ein the next section.
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Figure 3.1: General architecture of the proposed framework

3.21 Pre-processing

This is essentially the base laydayer 0 of the inference module. It extracts the base
evidence from the image, consisting of lines, sectors amdecs using visual operators
such agCanny edge detector, Hough transform for lines and ciratesner detectorand
contour extractor This evidence is used as input to the inference module ivedkigher
level features and objects from it. This layer forms the brapeesentation on which high-

level visual routines are applied.

3.2.2 Multi-layer Inference

This module performs the initial categorization of objecising a set of MLNs organized
in a hierarchy. The system contains pre-defined models actdbps a composition of
object parts and their spatial relationships. The objetelgmy is inferred by matching the
extracted features against these models. The inferendeeadlject is performed across
multiple layers, where the MLN at each layer riedief propagatiorto perform inference

on the parts of objects associated with that layer. Theredeobject parts at lower layers,

along with their locations and beliefs on their categorg, jgropagated to the higher lay-
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ers, which extracts higher level features from them and d¢oesithe object parts to infer
complex structures. The MLNs at each layer runs indepehdant the supportive evi-
dence from the lower layers is passed upwards through adeéhted procedure explained

below. The abstraction at a layer is formally defined as Vadlo

Each layer has a set of nod@s;, O;).

Input at layer i

E, = <eZ ,€; (3.1)
lower-layer evidence:
{elLLu e§L7 s zLLl (32)
is the evidence propagated to layérom lower layers.
in-layer evidence:
e = vi(ef") (3.3)

is the set of features obtained by the application of visoatines associated with the layer,

v;, on the evidence propagated to the layer.

Output at layer1
is the set of query nodes at layigjobjects/object parts) along with their output probabili-

ties.

Let evd (O;;) be the subset of evidence available for inferring queat layeri, such
that
Ei = Uj@Ud(Oij). (35)

The inference for nodé@;; is given by the marginal probability X, |evd(O;;))

O; influencesE,,,, via an interface function that maps the probability disition over
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O; to a distribution over” as given below:

€LL = i,i—i—l(oz’)‘ (36)

)

The interface functiory; ., takes as input the set of query nodes and their associated

probabilities and produces a set of evidence nodes for tkidaeer.

The multi-layer inference can be viewed as a “gated” belmjppgation across the
layers. Each layer runs a belief propagation and once theflpebpagation alayer i has
converged, some evidence is propagated flayer i to layer i+1, which is a function of
layer i inference results anldyer i+1 query. In our work, a thresholding function along
with a typecast operator is used to determine which prextistirom the previous layer
are to be used as input for the current layer. More detaildiesd functions are given in

Section 3.3.

3.2.3 Visual Routines

Following the work of (Ullman, 1984), we define visual ro@mat each layer of the
hierarchy to extract the features associated with the lafach layer in the inference
module outputs subsequent incremental representatioreyaged by the application of
high level visual routines associated with the layer. Thgutrto a layer determines the
specific locations on which visual routines are to be appli€tese are essentially the
locations of the supportive evidence selected by interfacetions from lower layers. In
logic terminology, the high level visual routines are thegcates of the FOL rules. A
composition of visual routines through logical connediigused to establish the features

to be inferred at the layer.

As an example, consider the rule for inferring a cube at aJdygm L-face andSquare

face as evidence:

[-struct (s) A isSquaregq A isTranslatedl§,sg < cube (s,s0
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Here, the antecedent of the rule represents the composftiasual routines, while the
consequentis the object part to be inferred. In this exantipdevisual routinésTranslated
() checks if the corresponding corners and faces of L and squatmearly shifted, to infer
whether the shape propertybeholds among the evidence at the layer. This high level
visual routine is applied on the L and square faces aloneivwdre the evidence propagated
from the lower layers. Thus we build a hierarchy of visuaknoes using a formal grammar
(Markov logic). This helps in identifying the structure peat in an image in a systematic
way. The routines also help in generating structured reptasons of input and output

between the layers.

The visual routines are designedsast predicates. The output of the predicates (rou-
tines) is boolean but the decisianue/falsg is made using a tolerance range instead of an
exact match. For example, the routiméersectsOrdered(vhich checks for intersection
of two lines, allows the line end-points to be within a certeadius from each other. Thus
the uncertainty in the result of operation of visual rousiee handled in two ways: (1)
belief propagation in MLNs and (2) soft predicates that aaarate a certain amount of

imprecision.

At layer O the routines constitute the basic image processing fumetised to extract
lines, sectors, etcwhich are applied in parallel over the image. At higher lay¢he
routines are the predicates used in the MLN rules. The restat higher layers do not
perform explicit image processing, but they operate onatlparts propagated from its
previous layers, which eventually have been generated lgenprocessing dayer Q.
The complete set of routines employed in our work are giveGhapter 4. Apart from
these routines, we also use ta@ft of processing focusutine which is the active vision

control used tdook harderat certain regions of the image.

3.2.4 Decision Making

This module decides whether more information is requiredoadraw a conclusion on

the object category. The decision is made based on the ksuiterence and the prior
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(background) knowledge of the presence or location of dbjé&ased on the current belief
on the object category and the knowledge, selective visoagssing is applied to specific

regions of the input, to gather missing evidenckger 0, i.e.,lines, sectors,etc.

3.25 ActiveVision

This module helps in focusing on certain regions to gathesmg evidence which could
potentially improve the certainty of the object categoringanferred. It is analogous to
theshift of processing focugperator described by Ullman. Ithelps in making the infeeen
tractable because it removes the irrelevant predicateshwiould otherwise need to be
inferred if the detection was done jointly over all the poades in the domain. Since this
module provides the option of focusing closely on regiorthefimage that we are actually
interested in, we can carry out the initial visual procegswth low cost operators and with
strict thresholds to remove spurious/irrelevant evideBeesed on the object parts inferred
in the initial run, the “interesting” regions can be proagsat a relaxed threshold or with

complex operators to yield the finer details of the object.

Additional information can be obtained through variousmoels such as relaxing the
thresholds of visual operators, zooming in on a part of thieatlor by taking another
snapshot of the object from a different view point. Essdlgtithis can be understood as
the agent “looking harder” at certain parts of an object farenevidence, given some

initial evidence.

The initial inferencing is performed in a bottom-up mannaildayer N (the maximum
possible layer of inference according to the given datagacihed, where a decision on
whether to “look harder” is made. The control then flows badlayer Owhere additional
evidence is obtained. The additional evidence is combinddtive original evidence and
the inference is run again frotayer 1 onwards. Thus a hybrid of bottom-up and top-
down control strategy is followed between the layers umalffinference is made. In our
framework, active vision can also be viewed as trying tafyshe prior knowledge on the

presence of an object, by gathering more evidence aboubiketo Figure 3.2 shows the
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various stages in our framework as opposed to single-stagegsing.

3.3 Implementation

3.3.1 Pre-processing Module

The image processing functions are implemented in this heagsing the OpenCV (Brad-
ski, 2000) library. The functions used are image smoottdilgtion, edge detection, corner
detection, Hough transform, and contour detection. Thesetions form the basic visual
operators which generate the base representations upach Wigh level visual routines
are applied. The line segments are extracted using Canreydstgctor and probabilistic
Hough transform. Ellipses are extracted by detecting aoston the image and fitting
the contour points onto an ellipse. Circles are extract@agudough transform. Corner
points are extracted by the following procedure: An eigdoevaorner detector and a con-
tour extractor are applied on the image. For each contouselect those corner points

which fall within a particular radius of the contour centieach contour is given a score

S = variance
“ numOfSelectedCorners

its centre. The optimized corner points are then selectettht@gholding based on their

based on the variance and density of corner points around

proximity to contour centres and the scores and momentgiassad with those contours.
We use two sets of parameter values for the image processmagydns: the first is a set
of strict thresholds for the initial processing of the imagel the second is a set of relaxed
thresholds for active vision. This module returns a set calmns of the extracted lines,

sectors and corner points.

3.3.2 Inference Module

Markov Logic: We chose MLNs for the underlying inference module sinceadtptes
a relatively simple and intuitive way for representing teattires, domain knowledge and

inference results based on first-order logic. The firstdordées form a single template
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OUR APPROACH

Large amount of data,
spurious evidence
INTRACTABLE
INFERENCE

SINGLE-STAGE PROCESSING

Figure 3.2: Our framework as opposed to single-stage v@iocessing. In the initial stage
of vision processing, strict thresholds are used which gige enough lines
(marked in green) on the cube to generate object parts tdlaler at. Active
vision is done on the selected region with relaxed threshdiihal inference
result is obtained combining the new evidence with the nabevidence. The
data required if entire processing is done using a singtestpresented in
the lower half of the figure. As can be seen, large amount oficps data is
generated, possibly making the inference intractable.
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for all possible configurations of the object. In our worke thredicates are the visual
routines which will check for the corresponding propertieghe input image. When
viewed as a factor graph, these predicates act as variablesrend the rules as factor
nodes. Those predicates which appear together in a ruleoarected to the same factor
node. Belief propagation is used for inferring the disttitn over the query predicates.
When a predicate has many arguments, the memory requirsrfa@nprocessing grows
rapidly. In order to keep the inference process tractabéelimited the number of object
parts combined to two at a time in each layer. With a single MoNan object type);;
we can infer the presence and location of object types oémfft configurations across

the image.

Features:. We use two classes of featureshapeproperties €-) and spatial relations
(e/1). The shape properties are propagated as evidence acedsyéins. The shape fea-
tures at a layer are essentially the object parts inferrelpmopagated from its lower
layers. The spatial relations are extracted at each lapen the shape features and are
not propagated between the layers explicitly. But the ap&gatures get embedded in the

representation of object parts inferred at each layer.

Interface function: The interface functiorf; ;,, is composed of thresholding function,
normalization and a type cast operator. We threshold tlezente results at a layer based
on their probability, in order to avoid too many combinasa object parts being inferred

at the higher layer. The thresholding operator for an oyppedicate Q,p) is given by:
(p > thresh) A (thresh > 0.5). (3.7)

where
> Pij
>,

thresh = 0.75 % (max p;; — ). (3.8)
J

In essence, this corresponds to propagating the belief$afhavithin the upper quar-

tile.
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The evidence at each layer is represented as a set of weilglctsd Hence, the prob-
abilities associated with the propagated evidence has tobeerted to weights in the
Markov logic network at the higher layer. We use min-max nalipation to convert the
probabilities in the range [0 1] to weights in the range [-w W]he value forw is cho-
sen empirically as the minimum weight needed to obtain theesaference results when
weights are set for evidence of probability 1 as comparedteeighted evidence. (Note
that according to the convention in Alchemy, unweightediente is considered as sure

evidence.) The value of 16 was found to be suitable for ouliegtmpon.

The shape properties at each layer are specified as typetantmsThe object parts
which are selected from the lower layer are converted ta dygpropriate type and are
passed on to the subsequent layer. The type cast operatwdgsdwo advantages: (1) It
helps in restricting the number of arguments per predi@aterhaximum of two, making
the inference tractable. (2) Since the types for query aitkace nodes of a rule have to be
compatible, it eliminates a lot of irrelevant nodes whichuebotherwise have been part of
the belief propagation network, thus producing savingsmetand memory requirement.
The evidence from the lower layers are also propagatedhélfinal layer of inference for
the object. The relative orientations of the object paffisrned at each layer are maintained

inherently by the predicates at the layer.

As an example, consider identifying a square
Layer 1:
isLine (1)A isLine (2)A isPerpendiculari(, I5)A intersectsOrdered;( [5)

A suitableSizel(, l5)< |-structure (3, l5)

Layer 2:

I-struct (s1)A I-struct (s2)A intersectsls,, ls2) < square {si, [s2)

The presence of a square is inferred in two laydrayer 1linfers the presence af-
structures from the base evidence where the features dhéakare the perpendicularity

of the combining lines, suitable length of lines and thetersection. Thd-structures
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inferred fromlayer lare type cast dsstructsand are passed on to the next layer, weighted
by the probability associated with their labehyer 2infers the presence of squares from
the evidence received by it from the lower layer. The featuierived at this layer are the

intersection properties dfstructuresto infer the presence of square in the image.

The layered inference helps in a more accurate categanizafi objects, since the
object parts itself are evaluated for existence at loweersy This allows for pruning
of the category of objects/object parts to be inferred atstifesequent layers. Pruning is
extremely important as an inference over all the possilddipates (both simple structures
and composite structures) would make the inference higiigictable. Layering also helps
in performing active vision and inference on selected pafrtie object, thereby reducing
the cost of “looking harder” at the entire object/scene. pbsitional information of object
parts are available from the inference results of lowerrdayehich may be of use where
the vision system is integrated with the motor system of timt for further tasks (eg.,
the positional information of the handle of a cup helps irsgrag it). It also provides the
common advantages of any hierarchical system, such as ardagand reuse of the lower

layers to model different higher level objects from the sédrase parts.

3.3.3 Decision Making Module

After the initial run of multi-layer inference, control refaes this module which decides
whether additional visual processing should be performreghether the object category
can be concluded. This module is driven by the prior knowdealgd the results of infer-
ence. In our work this knowledge is essentially the presafi@e particular category or
presence of objects at a particular quadrant (top-leftyigipt, bottom-left, bottom-right)
or both and is domain-specific. For eg., if the query is "Ig¢heny object in the scene?”,
the knowledge would be lesser as compared to “Pick up thesdalibe scene”. The latter
problem is more specific and provide better information iat th is clear that there are
some cubes in the scene and at least one of them has to bdigdkhti the algorithm.

The prior knowledge on location is provided as a probabit#jue for each of the four
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guadrants and the prior on category is given by specifyiegctass name of the object to
be searched for. By default, uniform prior is assumed fotdhations and categories. The
prior knowledge could be set depending on the given queris Miodule also targets the
visual processing to specific parts of the image. The modetedds to call active vision

in the following cases:

» There are object parts inferred from lower layers, whicbhldaot be described as
part of a complete object, and there is some prior knowledgée presence of
objects of a certain category and/or at a specific region.

» The object parts are successfully explained as part of @vhbjects, but there is
enough background knowledge that forces looking for objetta particular cate-
gory and/or at a specific region.

In the first case, a small region of interest around the olgaxtis examined for more
evidence. In the second case, if the quadrant to be searchetlavailable as prior knowl-
edge, the entire image has to be re-examined. Gatheringiaddievidence helps in

improving the quality of inference.

3.3.4 ActiveVision Module

This module gathers additional evidence about objects blingahe pre-processing mod-
ule with relaxed parameters for the visual operators. Thegeron which active vision is
performed is a cropped region of the original image. Theifpeaegion to be processed is
decided by the decision making module. Other methods byiwdmtive vision can be per-
formed are zooming in on a part of the scene or getting a diffieview of the object with

the help of a camera. Currently, we use static images ancehane the visual operators

atlayer O(“look harder”) to detect lines and sectors at a lower grantyl

Active vision essentially changes the belief of shapes asgbabject parts. This is
achieved by tuning the visual operators at the lowest laert it indirectly affects the
inference at higher layers due to the bottom-up nature ofrifezence. Of course, it is
possible to tune the visual operators at higher layers axmed the parameters of the

high-level visual routines, but this is quite hard and reggiextensive engineering. Active
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Table 3.1: An example set of clauses used to identify a tizaps.

Layer | Algorithm

isLine(1)A isLine(l2)A isPerpendiculat(, i2)A intersectsOrderedl( i) A suitableSizd(, [5)
& |-structure(y, 12)

L1 isSectorg;) AisSectorgs) AisParallelSectors(, ss)AisDifferentSectors(;, s2)A
suitableAsCylinderSectors(, so)AsuitableDistBwSectors(, s;)<-cylinderSectors(, s2)
L2 | I-struct(si)A I-struct(s2)A intersectslsy, ls2) < squarels, [sq)

L3 cubeface(fhisSquare(f)\cylinderSectors(cys)abutsWheel(f,cysptrainBody(f,cys)

L4 cubeface(fhisSquare(f\tbody(tbyrabutsFront(tb,BtrainBodyFront(tb,f)

L5 | cubeface(fhisSquare(f)tbfront(tbf)rabutsTop(tbf,B=train(tbf,f)

vision can also be viewed as justifying the prior knowledew an object category by
gathering more supportive evidence. An example for actisi®n processing can be found

in Figure 3.2.

Example. The MLN clauses used at various layers to infer a train obgegpresented
in Table A.3. As can be seen from the table, the rules at thedovevels are the ones
corresponding to primitive shapes such as |-structuresdreetls. The next level is about
a square, the third level is about a trainbody, the fourttbmuathe front of the body and
the final level reasons about the train. As can be seen, the ank progressively used to
infer objects at higher levels. We do not present the backgtdprior) knowledge here.
These are just the MLN clauses used for inference of the taj@ct. An example figure

for detection of train shape is given in Figure 4.4.

3.4 Summary

In this chapter we presented an SRL approach for reasonthgmweiomplete and uncertain
visual evidence. The implementation of the system for arealgategorization task for
embodied agents was provided. The result of operation o¥igweal routines could be
unreliable and noisy due to the limitations of the camera el @ the vision processing
methods. The hierarchical MLN model was proposed whichadoeason about object

parts at different levels and under varying levels of uraety. The framework provides
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the capability to build complex object structures as a hamain a systematic way, using
basic visual routines. The proposed model can recognizepleubbjects across the image
using a single template. It uses simple, intuitive rulesefaresent the features which are
obtained by the application of visual routines at the respedayers. The hierarchical
model helps in selective pruning of object classes, as wd neereason about objects

which do not have sufficient supportive evidence from thedolayers.

Our work is cognitively motivated and provides a way of imag the active vision
paradigm with the hierarchical model. The active visiorhtéques help in achieving a
robust and reliable detection of objects. It is advantagegowe deployed in embodied
vision due to their inherent interaction with the envirommelt also helps in filtering
irrelevant data thus producing efficient memory and timeiregnents due to the selective
processing. The combination of a hierarchical model witiivacsision helps in selective
pruning of object classes, as we need not reason about ®kjbath do not have sufficient

supportive evidence from the lower layers.

The implementation details describe the Markov logic raleg predicates used at each
layer. The basic visual features used and the interfacdiimibetween the layers are also
discussed. The rules are designed based on simple geoméiiy abjects. The hierar-
chical model provides a design for object categorizatiomfincomplete evidence using
basic visual features. The experimental evaluation of thegsed system is discussed in

the next chapter.
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CHAPTER 4

EXPERIMENTAL EVALUATION

This chapter discusses the experimental validation of ppraach. Brief description on
the datasets chosen, parameter settings, results andneapiation details are provided.
The comparison of the performance of our system for varieusl$ of incomplete and
noisy evidence is reported for synthetic images. The syssefurther evaluated on an
embodied agent and also on real images. Comparison of gaaigorithms implemented
in MLN is provided. A discussion on the use of texture oparatoa feature and related
experiments are provided towards the end of this chaptee chapter concludes with

comparison of our system with a baseline texture detector.

4.1 Experimental Setup

We use the Alchemy toolbox (Kot al., 2007) for implementation of the MLN inference.
Currently we have modeled seven classes: square, trianydieder, cone, sphere, cube
and train. Belief Propagation (BP) is used for inference ass found to work better than
other inference methods in MLN. We compared the performah&®P and another state-
of-the-art sampling algorithm in MLNs, namely MC-SAT (Poand Domingos, 2006),
through the various experiments explained in the sectioaymthetic images. Since the
domain mainly consists of Horn clauses (we convert the douhplication to a pair of
single implications), it appears that BP was more accuratbe predictions while MC-
SAT is still a sampling method and hence misses a lot of trséiges and introduces false
positives. Since the ground Markov network does not havertaoy cycles, BP converges
to the true distributions. In our experiments, MC-SAT gavietaof false positives on

examples where the labels could be potentially confused.



411 Datasets

We use three different sets of images for experimental &abd:

» Synthetic images. This set consists of images generated using the OpenC\hlibra
and hand-drawn images. The images generated by OpenC\stonéobjects of
random category and position. The images are corruptedR@®B and white noise
for the purpose of evaluation. The hand-drawn images haggsting object bound-
aries which makes extraction of features hard and theretyige noisy and incom-
plete evidence.

* iCub images. The iCub (Mettaet al, 2008) is a humanoid robot developed for
studies on cognition. We use the iCub simulator to validatefamework on an
embodied agent. The simulator accurately replicates tlysipd and dynamics of
the real environment and is a popular tool for simulatiordi&s of robotic tasks.
The iCub images are obtained by systematically moving tha iSimulator head
over objects placed on a table and recording the images tnencamera mounted
on the iCub simulator head.

* Real images. This set consists of images of a Rubik’s cube obtained from Mi
crosoft’s Kinect Xbox (R), by rotating the Kinect in fixed pgeof five degrees. In
these images, the faces of the cube are not uniformly colanedthe images ob-
tained have significant variation in illumination due to tle¢ation of the Kinect.
These factors makes the task of detection and vision primgessmplicated.

Detailed explanation of the images used in each dataset\a®e glong with the de-
scription of the experiments conducted with the respectets. The object categories
considered for synthetic images are square, trianglenagti and cone, while the cate-
gories considered for iCub and Kinect images are cubes amefesp The details of the

experiments with these sets are explained in the followaagiens.

4.1.2 Parameters

The parameters to be tuned in our system are the vision thidsstthe thresholds for the
spatial features, and the weights used in the MLN rules.
The vision parameters are Canny thresholds, Hough thi@shmirner detection thresh-

olds, level of smoothing and zoom. Table 4.1 shows the paearmsettings for initial and

44



Table 4.1: Parameter settings of the visual operators.

Parameter Synthetic images iCub images Real images
Initial Active Initial Active Initial Active
Processing Vision | Processing Vision | Processing Vision
Canny low threshold 10 50 80 80 80 80
Canny high threshold 70 100 200 200 200 200
Canny aperture 3 5 3 3 3 3
Hough line accumulator threshold 120 120 10 10 10 10
Min Hough line length 50 50 10 10 10 10
Hough line link threshold 5 5 7 25 7 7
Num of Dilations 1 1 1 1 1 1
Corner quality level - - - 0.007 - 0.03
Eigen block size - - - 3 - 3
Min. distance b/w corners - - - 7 - 7
Gaussian smoothing kernel size 9 9 9 9 9 9
Zoom level 1 1 1 1 1 1

active vision processing, for the three datasets used. tNatéor iCub and Kinect images,

the corner detector is used for gathering evidence in theeadgsion stage.

The predicates are designed based on simple geometry ofbjhet® The spatial
predicates are soft predicates which allow for some totaf noise, i.e., intersection of
"L’s need not be an exact intersection, but a tolerance rasngsed. The thresholds for
all the predicates were set empirically, based on the trddase positives obtained in a
validation data set. Table 4.2 shows the spatial predicegted in our system. The shape

predicates are the query predicates at different layeraanpresented in bold in the table.

The prior knowledge can be specified with respect to labedgasuregions (top-left,
top-right, bottom-left, bottom-right quadrants). Redhlht the prior knowledge is essen-
tially an external bias and we use it in a heuristic fashiorthe absence of any knowledge,
all the inferred labels and regions are used for the next.|aye results presented in the

thesis do not assume any prior knowledge.
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Table 4.2: Spatial and Shape predicates used at each lafiershiape predicates are in
bold. The shapes at lower layers are reused to form partedifferent higher
level shapes

Layer | Spatial and Shape Predicates

L1 isPerpendicular(line, line), intersectsOrdered(lime), isDiff(line, line),
positivelntersection(line, line), suitableLength(ljitiae), angleGtThanFive(line, line),
isParallelLines(line, line), similarLength(line, linejuitableDistBwLines(line, line),
isParallelSectors(sector, sector), isDifferentSe¢serdor, sector), isRound(sector),
suitableSize(sector), fullCurve(sector), suitableAg@lerSectors(sector, sector)
sufficientGap(corner, cornet}structure(lingline), triangletwosides(ling, line),
sphere(sector), cyl-lines(line, line), cyl-sector s(sector, sector),
cornerpair (cor ner, corner)
L2 intersects(Istruct, Istruct), closedThreeSides(tri@ivgpsides, line),
closedObij(triangletwosides, sector), formsCylindel{mes, cyl-sectors)
isDiffCpairs(cpair, cpair), isPerpendicularCpairs(cpepair),
suitablelengthCpairs(cpair, cpair), intersectsOrde€padrs(cpair, cpair),
square(lstruct, Istruct), triangle(triangletwosides, line),
cone(triangletwosides, sector), cylinder (cyl-lines, cyl-sectors),
cpairlstructure(cpair, cpair)
L3 isSquare(cubeface), abutsWheel(cubeface, cyl-sectors)
cpairL-intersects(cpair-Istruct, cpair-Istruct),
squar ecor ner s(cpair-Istruct, cpair-Istruct)
L4 | abutsFront(trainbody, cubeface), isTranslated(sqoanecs, Istruct),
cube(squarecorners, Istruct),
L5 | abutsTop(trainbodyfront, cubefac&)ain(trainbodyfront, cubeface)

4.1.3 Weight learning

Initially, the weights of the rules were set empirically aading to the following heuristic:

P(y;=1)> P(y; = 1)Vy; € TP,y; € FP. (4.1)

, I.e., the probability of the labels for the true positivesignificantly higher than those
for the false positives. By performing a line search on thecsmf weights between 0 and
1, we determined.7 to be the optimal value for the weight. We do not use hard caim$
in our rules. The MLN gives a probability value for each condtion of parts (shapes) that
can potentially form an object queried for. The probalastare thresholded and a MAP

estimate is performed over labels on the same region ofsiteio infer the final category.

We also learned the weights for the rules using the scalepigate gradient (SCG)
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Table 4.3: Comparison of performance with learned and ftarad weights at 1% salt-
and-pepper noise.

Parameter  Without active vision With active vision
hand-| SCG| DN | VP | hand-| SCG| DN | VP
coded coded

Precision 1 1 1 - 1 1 1 -

Recall 0.26 | 0.26]0.13| 0 | 0.39 | 0.42]0.28| O

Table 4.4: Comparison of performance with learned and ftarad weights at 0.8% RGB

noise.

Parameter  Without active vision With active vision
hand-| SCG| DN | VP | hand-| SCG| DN | VP
coded coded

Precision | 0.98 | 0.99| 0.98| - 0.96 | 0.97 | 0.93| 0.94

Recall 0.34 1 0.35{0.22| O | 0.47 | 0.47 | 0.33] 0.09

method implemented in Alchemy. Each class has a set of Eauefined by the pred-
icates in first-order logic. The weights for rules of eaclsslas learned separately. For
the training data, the positive and negative examples vadentin the ratio 1:2 for each
predicate of a given class. They are labeled as positivegative based on the predicate
thresholds. The positive and negative examples are sdlsath that they fall slightly
above or below the predicate thresholel § respectively). We observed that the training
data constructed in this way was sufficient to learn suiteldghts for the rules. For test-
ing, we chose 95 synthetic images consisting of 190 objé¢keosarious classes with two
objects per image. The objects are in one of the followingekeg of rotation: 0, 30, 45,
60, 90 with approximately forty objects per rotation anglée images were treated with
different levels of noise. Table 4.3 and Table 4.4 compagepirformance of the system
for learned and hand-coded weights at 1% salt and peppee aai 0.8 % RGB noise

respectively. More results on noisy images are includetdemiext section.

We observe that the learned weights are as good as the hded-aeights. The tables
also show the comparison of SCG with two other weight legymrethods implemented

in Alchemy: diagonal Newton (DN) and voted perceptron (VBEG weight learning
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significantly outperforms the other two methods in recalbrddetails on these learning

methods can be found at (Lowd and Domingos, 2007).

4.2 Evaluation

We empirically validate our system on objects with geonseteigularities. Our frame-
work can incorporate real-world objects that are not nexrédgsegular, if suitable visual
properties such as color, histogram-based descriptorsaeg¢cincluded as features and the
MLN predicates are modified to handle grouping of non-geoimigatures. Currently, we
use geometric shapes, texture and their relationshipsgsrittmary features, which leads
to this restricted domain. We tested the framework on symh€ub, and real images.
We also compare the performance of the proposed hieratdyisgm with a baseline de-
tector comprising of a single level MLN, for real images. Thetrics used for evaluation
are precision, recall and detection accuracy. The runming (time per image) on these
datasets are- 12-15 sec for synthetic images (1% salt-and-pepper nomse)-e80-40 sec
for iCub and real images. We assume that better processnmeg ttan be achieved with an
optimized implementation of the system and evaluate thesy$or precision, recall and

accuracy.

As described earlier, the proposed system models the anmagrin visual routines by
combining active vision and inference in a hierarchical MitAmework. Since our work
IS unique, we provide comparisons for the different compsef our system through the
experiments described in the later sections, but we couldim®b a complete end-to-end
system which could be a fair comparison to the proposedmsysi&e experiments on all
these sets use the learned weights from SCG as described prdtious section. The
details of these datasets and the experiments done on tleeex@alained in the following

sections.
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4.3 Synthetic Images

This set consists of 95 images comprising of 190 objects tmithobjects per class. The
objects are generated with random position and categorycanslists of the following

classes: square, triangle, cone and cylinder. Each olsjacoine of the following degrees
of rotation: 0, 30, 45, 60, 90 with approximately forty olde@er rotation angle. The
dataset is generated using OpenCV. Apart from this set, seetakted on hand-drawn im-
ages treated with 0.8 % RGB noise as shown in Figure 4.3. krdoodest the effectiveness

of our framework on incomplete and noisy data, we condudteddllowing experiments:

4.3.1 Incompleteness

We tested the framework on various levels of incompleteaawe. For this experiment, we
bypassed intial image processing and assumed that all eighal evidence is available
initially. We removed some percentage of this evidence oarig to generate the input
evidence. The test set consisted of 190 objects of diffeckgses, but without noise
and rotations. Figure 4.1 compares the detection accuracgll) at various levels of

incompleteness and with active vision enabled/disablede flgure also compares the

performance of belief propagation and MC-SAT algorithms.

As seen in the figure, our framework can handle incompletdemde effectively and
depicts the power of the two main features of our framewayeted inference and active
vision. We are able to focus precisely on the necessary msgioe to the fact that we
employ MLNs. The object parts detected at lower layers adecators of where to look
for missing evidence. The active vision component help®taiaing the required missing
evidence and enables fair detection even with a high peagendf incomplete evidence.
Note that the use of active vision significantly improvesteall for both the algorithms.
It is also observed that BP has a consistently higher reoatipared to MC-SAT for both

cases.
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Comparison of detection accuracy for different levels of incompleteness
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Figure 4.1: Comparison of detection accuracy at variousl$enf incomplete evidence.

4.3.2 Noise

The test images consisted of 190 objects where the objedd d@uin one of the five
degrees of rotation described previously. The images wesded with different levels
of salt and pepper noise. Figure 4.2 compares the precisidnexall for BP and MC-
SAT at different noise levels with active vision enabledétiled. In this experiment, the
visual evidence is obtained from actual image processidgritial image processing is

not bypassed as done in our experiments with incompleteree

The results prove the capability of our framework to handisyand inexact data and
again emphasize the role played by the inference and agsi@wcomponents. There is
a decrease in precision when active vision is enabled as @@dpvith inference without
active vision. This is because the false evidence (and Hatszepositives) increases when
processing is done at a higher granularity, due to the poesefnoise in the images.
There is gradual decrease in recall values with increaseiserievel, which shows that
our system is fairly resilient to noisy evidence. It is aléiserved that the recall improves

in the initial few noise levels as compared to zero noise s Thbecause the presence of
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BP vs MC-SAT (without active vision)
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Figure 4.2: Comparison of performance at different noiselte (a) Active vision dis-
abled (b) Active vision enabled. The performance of MC-SAT/@ noise
level is not shown since it was took an unreasonably long tonexecution as
compared to BP.
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Figure 4.3: (a)-(b): Detection of squares and trianglesmsynimage. The lines compris-
ing the L's are shown in blue and green colors.The trianglesaperimposed
on the square on the top-left. The image does not highlightiject parts
which did not become part of a final object. (c)-(d) Detectdcylinders and
cones.

false evidence near the true edges causes the active visfonus on those regions and

thus helps in identifying the objects.

As explained previously, we chose BP as the inference dhgorsince it significantly

outperforms MC-SAT in precision and recall as shown by thgeexnents in this section.

Figure 4.3 shows the detection results for various classelBamd-drawn synthetic
images. The images are corrupted by 0.8% RGB noise. As camedg sur system

performs accurately on synthetic images.

4.3.3 Complex Structures

We empirically show that our system can systematicallycdoabbjects of complex struc-
tures, as shown in Figure 4.4. The layer-wise clauses usefetathe train shape is given
in Table A.3. A major advantage is the tractable inferencesscmultiple layers as com-
pared to inference over a single MLN. Moreover, missingiinfation can be gathered on
object parts at any of the layers of the hierarchy. This mékesletection more robust and
reliable as we have more accurate information on the regmbg considered for active
vision because the category of the object becomes more defintbe inference progresses
up the hierarchy. The hierarchy of object parts enablesginguand reuse of objects de-

tected from lower layers into multiple categories at higagers. For example, the square
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Figure 4.4: Detection of a train from basic shapes. (a) lifpuDetection results marked
in red. Active vision was not employed in this image.

object could be part of a train or a cube, parallel sectorséddo@ part of a cylinder or the
wheels of a train, and so on. The hierarchical inferenceallswss for object class pruning
based on the evidence obtained from lower layers. More ebenop detecting 3D objects

such as cubes are given in the following sections.

4.3.4 Common Visual Routinesfor Multiple Objects

Our system has the ability to re-use visual routines for algtg multiple objects. Due
to the layered architecture for the object model, basic shap lower layers become part
of different complex objects at higher layers. Thus the $@isual routines required for
detection of objects overlap. Moreover, the visual rowgiemployed in our system check
for geometric constraints over object parts. Hence, theesgutines can be used for
different objects with similar geometric features. Figdrd shows the set of overlapping
routines at any layer for the object classes of the syntlwetge dataset. The figure also
shows the relative degree of re-use of the routines. For pbaimtersectsOrdered(has
the maximum re-use, being applied for detectios@fiare, triangle, conandtrain. Due
to layering, the set of routines used to detect the two siflagreangle (riangleTwoSides
are also used in detecting the sides of a cone. Similarlygehef routines used to detdet
structure squareandcyl-sectorsare applied for thérain object also to detect its body and

wheels. The complete set of rules for the different classegi@en in Appendix A. The
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intersectsOrdered

isDiff

intersects
isPerpendicular
suitableSize
positivelntersection
angleGtThanFive
isParallelSectors

isDifferentSectors

suitableAsCylinderSectors

suitableDistBwSectors
closedObj

Figure 4.5: Overlapping visual routines for different glas of the synthetic datset. The
figure shows the relative degree of re-use of the routines.lifibs connecting
the routines and classes indicate which classes employwthe sutine.

routines also overlap for object parts within a layer agtersectsOrdered({l-structure

andtriangletwoSide} isDiff() ( and ),closedObj(Xtriangle andcone.

4.4 1Cub Images

In order to validate our framework on an embodied agent, \steteour system on the
iICub humanoid simulator. The iCub robot (Me#tal,, 2008) is a humanoid developed
for conducting studies on cognition. The simulator ac@lyateplicates the working of
the iCub as well as the physics and dynamics of the robot'g@mwient. More details
on the simulator can be found at (Tikhaneff al, 2008). This experiment is part of a
collaborative work' aimed at concurrent execution of the robot’s gaze and mggiems

through visually guided control.

! This experiment is part of a collaborative work done with wmsity of Birmingham. The algorithms
for the co-ordination of gaze and motor systems of the rolmewdeveloped by researchers at University of
Birmingham, while the object detection part, developed &yisiexplained in this thesis.
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Figure 4.6: Table-top setting of the iCub humanoid simulatdhe task is to clear the
objects from the table and to place them in the containersepteon the sides
of the table. Figure taken from (Nunez-Varelzal.,, 2012).

441 The Task

The task is to clear the objects from the table and to plaga ihehe containers present
on the sides of the table. The setting of the simulator fas &xperiment is depicted in
Figure 4.6. The perceptual actions are executed conclynsith the physical actions of

the robot. The robot has to decide where to direct its visystlesn and how to process
the visual information while the other actions are beingcexed. This involves object

recognition, gaze control to determine fixation points, enetctions (hands, in this case)
for pickup/put-down objects and a decision making processdncurrent execution of the
gaze and motor systems. The visual processing task hereasagorize the objects found
in the region, for which a model for reasoning with uncertagsual evidence for embodied
agents is proposed in this thesis. The algorithms develtgétie co-ordination of gaze

and motor systems of the robot can be found at (Nunez-Vatedh, 2012).

442 Results

For this task, we tested our system to detect 3D objects onedy fiaxtured table-top
setting. The object classes considered are sphere and Thisedataset consists of 108

objects per class, with each object having a front, left aglat view. An example for the
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Table 4.5: Performance of our framework on iCub images. Tistesn was tested on 108
objects per class, with each object having three views {fteft and right).

Parameter Cube| Sphere
Precision | 0.98 | 0.95
Recall 0.81 | 0.74

different views of an object is shown in Figure 4.7.

(@) (b) (c)

Figure 4.7: Different views of an object: (a) front (b) le€) fight.

The images were taken from the simulator’s camera by mowiegdbot head system-
atically across the table, in fixed steps. The dataset isrgggtewith the robot’s motor
system disabled and the object detection is done offline.préeision and recall for this

dataset is reported in Table 4.5.

The experiments depict the utility of our framework whichmdmnes probabilistic rea-
soning with active vision to give fairly accurate results hélps in reducing the amount
of visual evidence to be processed by selective tuning evaelt regions of the image,
and also helps in reasoning about the object category in@arental and modularized
way. For example, to detect cubes, we check for L-structaréee initial run of inference
and fine tune the processing to regions where L's have beextddt Complex operators
such as corner points are then applied on these regions@agdoauped to form subsequent

higher level structures such as squares and cubes.

The sphere class has less precision than cube since it isedf'com only one object
partsectorin a single layerlgyer 1), while cubes are inferred from multiple object parts

across four layers. As the inference progresses up thertigrathe category becomes
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Table 4.6: Comparison of detection accuracy for indepetndews and objects.

Accuracy Cube | Sphere
detection-per-view | 80.55%| 74.38%
detection-per-object 98.14%| 92.59%

(@) () (c) (d)

Figure 4.8: Detection on iCub images: (a)-(b) without matgstem (c)-(d) with motor
system. The different sub-parts and their intersectioashaghlighted: pink
square-face, yellow L-face and red intersections.

more defined reducing false positives. This also explaiaddss recall for sphere. If the
sectors extracted are not well defined, then they may notfeeréa as spheres, since there

are no other supportive object parts.

Shifted Viewsfor Active Vision: We also conducted experiments using shifted views
of an object as an active vision mechanism, Table 4.6 refiugtper class detection accu-
racy on the above mentioned dataset. diaection-per-viewlepicts the accuracy obtained
when each of the three views of an object are considered ap@mdlent images. It is com-
pared withdetection-per-objectvhere an object is considered to be detected if any of its
views get detected. As observed from the results, we cansggmificant improvement in
accuracy if we leverage the different views of an object fetedtion. The embodied vision

system can exploit this advantage since the agent cancnigith its environment.

Few examples of inference on 3D objects are shown in Fig@&e¥®he figures depict

the robot’s view of the table at a given instant.

As can be seen from the results, our system is fairly resiteenoise. This is mainly

due to the two stage visual processing allowed by our framkewa the initial run of in-
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ference, we gather visual evidence at a fairly high thressfaslthe visual operators, which
rules out most of the noisy edges and sectors. Dependingjeat@arts detected from the
initial run, active vision with a relaxed threshold is perfeed on regions around the object
parts. This is advantageous over doing a single stage isaaéssing with the relaxed
thresholds, which will create a lot of spurious detectioiibe use of active vision also
provides significant gain in time and memory over a singlgetasual processing. The
input evidence obtained from iCub images are mostly ineaadtinaccurate. In the pres-
ence of broken edges or faint lines, our system can perfariy ¥eell since the predicates
which check for spatial features suchiatersectsisPerpendiculay etc., are tolerant to
such errors to a certain extent. We are able to detect mailtgtiegories of objects across
the image in parallel using MLNs as opposed to MRFs which daabuire replicating
the MRF for each category across the image. The objectsferelift orientations can be

detected using a single template, because the predicatesi@ntation invariant.

4.5 Real Images

In order to validate our system on real images, we also testesl dataset consisting of
images of a Rubik’s cube, taken from Microsoft’'s Kinect Xl{®). The dataset consisted
of 55 images of cubes with different colored faces facingimaera. Each such orientation

had 10-11 views (snapshots) taken by rotating the Kineckedfsteps of five degrees.

45.1 Texture Operator

For this experiment, we used texture as the primary opemattive active vision stage.
Initially we tested the system with the original set of visoperators reported in Table 4.1.
But this set of operators did not work well across all the igsm the dataset. This is due
to uncontrolled lighting conditions and varying colors bétfaces within a single object.
This led to the requirement of very low vision thresholdslttean suitable evidence across

the images, which resulted in generation of a large amouwnisagl evidence. The texture
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Table 4.7: Visual routines used at each layer for cube deteuasing texture operator. The
shape properties detected at each layer are indicateddn bol

Layer | Spatial and Shape Predicates

L1 | isPerpendicular(line, line), intersectsOrdered(linee), isDiff(line, line),
positivelntersection(line, line), suitableLength(litiee), angleGtThanFive(line, line
sufficientGap(corner, corneistruct(line,line), cornerpair (cor ner, corner)

L2 | isDiffCpairs(cpair, cpair), isPerpendicularCpairs(cpepair),
suitablelengthCpairs(cpair, cpair), intersectsOrd€padrs(cpair, cpair),
cpairlstructure(cpair, cpair)

L3 | isTexture(texture), formsCube(texture,cpair-Istruatipe(texture, cpair-Istruct)

operator was introduced to overcome this difficulty. Thigmgpor is suitable when the
objects are characterized more by their texture than iritgasd the basic edge and corner
detection methods cannot be used effectively. The opeiatmsed on the gray-level co-
occurence matrix (Haralicgt al., 1973) where statistical correlation between image pixels
are determined to extract features such as contrast, horaibgecluster tendency, entropy,

etc.

The detection using texture operator is as follows: in thgainrun, we detect L-
structures from lines, which are indicators of where to qenf active vision processing.
The texture and corner points are extracted in the activervigage. The texture evidence
is extracted over contours which cross an area threshold.c@mer points are grouped
together to form the end points of L-structures similar t ginouping of lines. The object
category is then determined based on the texture value an¢hether the L-structures
formed from corner points overlap with the contour contagrnthe texture. The grouping
of corners into L's as well as the texture and corners intoeeas done by the hierarchical
MLN. With texture, we do not look for intersections betweeuares and L's and hence
obtain a bounding box over the object as the output. The sasoél routines used at each

layer of the MLN for this method is given in Table 4.7.
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452 Results

Few examples of detection on real images are shown in Fig@rélhe two sets of images
show the results with the original set of operators (i.ethaut texture) and with texture
as the primary visual operator, respectively. We reporptieeision and recall obtained by

this method on the Kinect dataset in Table 4.8.

(@) (b) (€) (d)

Figure 4.9: Detection on images obtained from Microsoftind¢t Xbox (R) using (a)-
(b) corner points (c)-(d) texture, as the primary operaborakctive vision. (d)
shows the bounding box of the object detected using texture.

Experiments using texture operator on other datasets: Similar experiments were
conducted on synthetic and iCub image datasets, usingréeasithe primary operator
along with shapes. The precision and recall obtained on dkesdts are also reported in
Table 4.8. In our experiments, we used texture operatorgglaacement for one of the two
shape operators needed to infer a higher level structureexample, instead of looking
for two L's to form a square, we check for one L-structure arsdidable value of texture
to conclude a square. In this way, we could detect objecta frexact and incomplete
data without generating a large amount of evidence. Thehsyictimages were treated
with 1% salt-and-pepper nois®etection-per-viewvas used for evaluating iCub images
and the class considered is cube alone since texture vakresnwt well distinguished for

cubes and spheres of the iCub dataset.

The results of experiments with shape-only operators weperted in the previous
sections. On comparing those results with Table 4.8 it ieofesl that the recall improves

when texture is used along with shapes as features than wWiagre ®perators are used
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alone. This is because shape operators are more difficultri@moe than texture. Generally,
the precision is observed to reduce when texture is used. i ecause shape operators
are more discriminative among classes than texture ancel@nduce less false positives.
In our experiments, we replace one of the shape operatorigihar-level structure by

texture operator. This causes precision to reduce.

4.5.3 Comparison with Baseline Detector

We compare the performance of the proposed hierarchical gydtem with a baseline
consisting of only the texture operator. The baseline detecses a single level MLN to
detect cubes based on the texture value and the contour siionsn The texture evidence
is obtained in the same way as described previously, exbapittis now extracted in the
initial stage instead of lines and sectors. Thus the basdktector does not run the active
vision stage. The comparison of performance of both metloodall the three datasets
is reported in Table 4.8. As seen from the results, the poatis less for the baseline
detector which uses texture as the only visual feature, @dsethe hierarchical MLN is
able to combine multiple features in a systematic way, lggth accurate predictions. The
recall also reduces for the baseline detector. This is lsecthe proposed system, which
uses active vision, is able to perform focused visual prEioggo generate more accurate

evidence than processing on the entire image.

4.6 Summary and Conclusions

In this chapter, we described the experimental evaluatidineoproposed framework. The
parameters to be considered and the datasets chosen wausseid. The performance
of our system was reported for three different datasetsthsyic, iCub and real images.
The system was evaluated on incomplete and noisy evidendsually guided task for

an embodied agent (iCub) and on real images. The experimathitsexture operator as

a feature were also presented towards the end of the ch@uterparison of the proposed
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Table 4.8: Comparison of performance of the proposed syst#ima baseline detector

comprising of a single level MLN using texture alone as ttegdee. The evalu-
ation is on all the three datasets.

Method Precision| Recall
Hierarchical (synthetic, shape-only) 1 0.42
Hierarchical (synthetic, texture and shape) 0.71 0.51
Baseline (synthetic, texture-only) 0.43 0.52
Hierarchical (iCub, shape-only) 0.98 0.81
Hierarchical (iCub, texture and shape) 0.93 0.87
Baseline (iCub, texture-only) 1 0.19
Hierarchical (real, texture and shape) 0.85 0.62
Baseline (real, texture-only) 0.59 0.24

hierarchical system with a baseline single level MLN wasdésed.

The following conclusions can be made empirically from thpeximents conducted:

The proposed system is able to perform fairly well with imgdete and noisy evi-
dence, as shown in the experiments on synthetic images.

The hierarchical MLN can systematically build and infejemtts of complex struc-
tures. The detection is currently limited to objects witlogpetric regularities, but
real world objects can be detected by suitably modifyingéla¢ures and MLN rules.

The experiments with iCub images demonstrate the suitalof the framework
as an embodied vision system. The advantages of combining agsion with
hierarchical MLN were brought forth through these expentse The combination
helps in robust, reliable and tractable inference.

The framework is suitable for detection on real imagesnevith non-uniform ob-
ject colors and varying lighting conditions.

The combination of hierarchical MLN with active vision pides fairly high preci-
sion and recall, but an optimized implementation can resudetter processing time
than the current system.
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CHAPTERS

CONCLUSIONSAND FUTURE DIRECTIONS

In this chapter, we summarize our contributions and ousioime potential directions for

future research.

5.1 Conclusion

In this thesis we proposed a hierarchical approach to hamdiertainty and incomplete-
ness in visual routines and to systematically build andricéenplex structures from basic
visual operators. We discussed the concept of visual resitwhich enable visual per-
ception by identifying shape and spatial relations amongate and its sub-parts in an
image. The routines, composed of basic visual operatorisl cmiapplied on the image
to form successive incremental representations whichvetho focused visual processing
and for systematic development of complex vision systemfiowing this approach, we

proposed a hierarchical architecture for object categbdn. The objects were defined
as being composed of sub-parts and the spatial relationa@the sub-parts. Each layer
in the hierarchy inferred the sub-parts associated withhtch were grouped into higher-
level structures at subsequent layers. While probalalisfierence could be performed
using traditional graphical models which can handle umdety and non-i.i.d. data in a
principled way, relational models offer a single templatéandle generalizations of an
object category. We employed Markov logic networks, a stigal relational model for

object inference. We also presented a mechanism for taggatiditional processing to
relevant regions of the input when the evidence is absemaamplete. This was done
using active vision techniques which could process partiseoimage at a higher granular-
ity to yield the missing evidence. We evaluated our systerthoge different datasets and

established empirically that we are able to detect fairijplbicated objects. As far as we



are aware, this is the first work to have employed MLNs as algbical model for any

application.

The hierarchical modeling of objects helps in systematierence of objects. It also
helps in pruning of object categories as the inference pssgs up the hierarchy, since
only those objects with sufficient supportive evidence fiomwer layers need to be inferred
at a particular layer. The active vision techniques faaiidis tractable inference by filtering
irrelevant data which would otherwise have to be proceseddwuld cause inefficiency
in processing time and memory. It also provides reliablermode accurate prediction as
the agent can improve its initial guess of the object catelgpiobtaining finer details of the
image. While the experimental results with our approachgaree promising, the current
processing time is not as efficient. This could be improvedrbgptimized implementation

of the system.

5.2 FutureDirections

Potential future directions from our work include the foliog:

» Our framework could be employed for other applicationshsas visually guided
navigation of a robot. This could be done by integrating aamfework with a
reinforcement learning (RL) algorithm. The current peta@pof the scene would
determine the state of the RL agent and influence the nextretdibe taken.

* The hierarchical MLN model could be applied in other dorsdiike natural language
processing where structures of the text could be built ansboissystematically using
the model and the ambiguity associated with the words coelthbdeled through
uncertain reasoning.

» A rigorous formalization of the interaction between th&edent layers could be
done and could employ a feedback mechanism that can altdrelieds at lower-
levels based on the evidence at higher levels. Currentlyapproach allows the
beliefs of object parts at higher layers to be influenced kyetridence passed from
lower layers. Active vision also changes the beliefs of cbparts but only at the
bottom layer, which then indirectly influences the highgels as the inference pro-
gresses up the hierarchy. In order to develop a rigorousdiation, methods
should be developed to pass information in a top-down manitkout breaking the
hierarchy.
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* We learned the weights for the MLN clauses. A further extamgvould be to allow
for learning the structure of the clauses themselves.

* Finally, it would be an interesting direction to try andegtate our object detection
system with the motor systems of a real robot for visual dbjye@nipulations. This
would require a real-time optimized implementation of therent system.
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APPENDIX A

LIST OF MLN RULES

Complete list of MLN rules used for the experiments descriinethis thesis:

Synthetic | mage Dataset:

Classes: Square, Triangle, Cone, Cylinder, Train

Table A.1: Rules used with synthetic image dataset.

Layer| Weight | Formula
1.02881 | isLine(l1)A isLine(l2)A isPerpendiculat(, I2)A intersectsOrderetl( 2) A suitableSizd(, I-)
= |-structure(y, l2)
8.64097 | I|-structure(y, l2) = isLine(;)A isLine(2)A isPerpendiculat(, [2) A intersectsOrderedy( I2)
A suitableSizd(, [5)
1.25939 | isLine(l1)A isLine(l2)A isDiff(i1, o)A intersectsOrdered( i2) A positivelntersectiori(, I5)
A angleGtThanFivé(, [5) = triangletwosides(, l2)
8.95668 | triangletwosides(, [2) = isLine(l1)A isLine(2)A isDiff(l1, l2)
A intersectsOrdereti(, [2) A positivelntersectiori(, l2) A angleGtThanFivé(, [5)
L1 2.17363 | isLine(l1)A isLine(2)A isDiff(ly, l2)AisParallelLined(, [)AsimilarLength(y, [2)
AsuitableDistBwLined(, lo)= cyl-lines(y, )
11.1749 | cyl-lines(y, ls)=-isLine(;)A isLine(2)A isDiff(ly, l2)AisParallelLined(, [2)
AsimilarLength(y, Is)AsuitableDistBwLined(, I-)
1.52325 | isSectorgi)AisSectorgs) AisParallelSectors(, so)AisDifferentSectors(, s2)
suitableAsCylinderSectors(, s2)/AsuitableDistBwSectors(, s;) = cyl-sectors§y, s2)
8.56806 | cyl-sectorsf;, so) = isSector§;)AisSectorgo)AisParallelSectors(, ss2)
isDifferentSectors(;, so)AsuitableAsCylinderSectors(, s2)AsuitableDistBwSectors(, s2)
1.31707 | Istruct(si)A Istruct(s2)A intersects(s, [s2) = squarelsy, [s2)
4.79728 | squarelsy, lso) = Istruct(si)A Istruct(s2)A intersectssy, Ls2)
1.05806 | triangletwosides(tg)isLine(l)AclosedThreeSides(ts)\glosedObj(ts,l}= triangle(ts,l)
L2 4.55805 | triangle(ts,l)= triangletwosides(tg)isLine(l)AclosedThreeSides(tsiglosedObij(ts,l)
0.627196 | triangletwosides(tg)isSector(s)closedObij(ts,s)fullCurve(s)=- cone(ts,s)
6.19496 | cone(ts,s)= triangletwosides(tg)isSector(s)closedObj(ts,s)fullCurve(s)
0.598444 | cylinderLines(cyl)cylinderSectors(cyg)formsCylinder(cyl,cys¥- cylinder(cyl,cys)
5.02635 | cylinder(cyl,cys)= cylinderLines(cyl)cylinderSectors(cyg)formsCylinder(cyl,cys)
L3 1.10231 | cubeface(fhisSquare(f)cylinderSectors(cyg)abutsWheel(f,cysytrainBody(f,cys)
4.96002 | trainBody(f,cys)= cubeface(f)isSquare(f)cylinderSectors(cyg)abutsWheel(f,cys)
L4 | 0.0415759| cubeface(fhisSquare(f\tbody(tbyr\abutsFront(th,E>trainBodyFront(tb,f)
5.23914 | trainbodyFront(tb,f}= cubeface(f)isSquare(f\tbody(tbynabutsFront(tb,f)
L5 0.466811 | cubeface(f)hisSquare(f)tbfront(tbf)rabutsTop(tbf,B=-train(tbf,f)
5.81873 | train(tbf,f) = cubeface(fhisSquare(f)tbfront(tbf)rabutsTop(tbf,f)




iCub Dataset:

Classes: Cube, Sphere

Table A.2: Rules used with iCub image dataset.

Layer

Weight

Formula

L1

0.500284

8.66214

0.500001
41772
0.470015
6.3587

isLine(1)A isLine(2)A isPerpendiculat(, i) A intersectsOrderet( I2) A suitableLengthi, I5)
= |-structure(y, l2)

I-structure(y, I2) = isLine(;)A isLine(l2)A isPerpendiculat(, l) A intersectsOrdereti( I-)

A suitableLengthg, I5)

isCorner¢;) AisCornerga) AsufficientGapé, , co) = cornerpairéy, c2)

cornerpairéy, c2) = isCorner¢;)AisCornergs) AsufficientGapé , c2)
isSector(s)fullCurve(sy\suitableSize(s)isRound(s}>sphere(s)
sphere(syisSector(s)fullCurve(s)\suitableSize(s)isRound(s)

L2

0.500213

8.06527

cornerpairép;) Acornerpairép2) AisDiffCpairs(cp:, cp2) AisPerpendicularCpairgt; .cps)
AsuitablelengthCpairgpy, cps) AintersectsOrderedCpairs(, cp2) = cpairlstructuredp,, cps)
cpairlstructurefp, cp2)=- cornerpairfp;) Acornerpair{p2) AisDiffCpairs(cp: , cp2)
AisPerpendicularCpairgt; .cp2) AsuitablelengthCpairsf, cp2) AintersectsOrderedCpaits( , cp2)

L3

41772
0.500001

cpairlstructuredpl s;)Acpairlstructuredp.) AcpairL-intersects{pl sy, cplse)=-squarecornergplsy, cplss)
squarecornerspl s, cplss)=-cpairlstructuredpls;) Acpairlstructuredps) AcpairL-intersects{pl sy, cplss)

L4

0.607206
5.03081

squarecorners(cpsglstruct(Isy\isTranslated(cpsq,ls)cube(cpsq,ls)
cube(cpsq,lsysquarecorners(cpsgstruct(IshisTranslated(cpsq,ls)
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Real Image Dataset:

Class: Cube
Table A.3: Rules used with real image dataset.
Layer | Weight | Formula
0.500284| isLine(l1)A isLine(l2)A isPerpendiculat(, [>)A intersectsOrderedi( [2) A suitableLength(, I-)
= |-structure(y, l2)
8.66214 | I-structure(y, I2) = isLine(l;)A isLine(l2)A isPerpendiculat(, l2)A intersectsOrdereti( I-)
A suitableLengthg, I5)
L1 0.500001| isCornerg;)AisCornerga)AsufficientGapfs, c2) = cornerpairy, co)
4.1772 | cornerpairy, co) = isCornerg;)AisCornerga) AsufficientGapds, co)
0.500213| cornerpair{p;)Acornerpairép2) AisDiffCpairs(cp; , cp2)NisPerpendicularCpairgg; .cp2)
AsuitablelengthCpairgp,, cps) AintersectsOrderedCpairs(, cp2) = cpairlstructuredp:, cps)
L2 8.06527 | cpairlstructuredp,, cp2)= cornerpairép;)Acornerpairép2) AisDiffCpairs(cp: , cp2)
AisPerpendicularCpairg; .cp2) AsuitablelengthCpairsgfy, cp2) AintersectsOrderedCpaits( , cp2)
0.7 cpairlstructure(cpls)isTexture(tx\formsCube(cpls,teg-textureCube(cpls,tx)
L3 3.81423 | textureCube(cpls,tx3-cpairlstructure(cplgjisTexture(tx)formsCube(cpls,tx)
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