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Abstract. An option is a policy fragment that represents a solution to
a frequent subproblem encountered in a domain. Options may be treated
as temporally extended actions thus allowing us to reuse that solution
in solving larger problems. Often, it is hard to find subproblems that are
exactly the same. These differences, however small, need to be accounted
for in the reused policy. In this paper, the notion of options with ex-
ceptions is introduced to address such scenarios. This is inspired by the
Ripple Down Rules approach used in data mining and knowledge repre-
sentation communities. The goal is to develop an option representation
so that small changes in the subproblem solutions can be accommodated
without losing the original solution. We empirically validate the proposed
framework on a simulated game domain.
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1 Introduction

One of the main advantages of Hierarchical Reinforcement Learning(HRL) is
that HRL frameworks allow us to learn skills required to solve a task and trans-
fer that knowledge to solving other related problems. This allows us to consider-
ably cut down on learning time and achieve better success rates in solving new
problems. But the main difficulty in such transfer is that a problem is seldom
encountered in exactly the same form. There are some changes in the task, such
as a different obstacle configuration, or minor changes in the dynamics of the
world. We need a framework where we can accommodate such changes without
compromising the quality of the solution of the original sub-task that the skill
was learned on. In fact we would like to cascadingly accommodate more such
changes, without degrading any of the solutions learned along the way.

The problem is exacerbated when we look at spatial abstractions that are
specific to the skill being learnt. There has been a lot of interest in recent times
on deriving skill specific representations (MAXQ[?], VISA [?] and Relativized
option [?]). Dietterich, while proposing the Max(Q framework for value func-
tion decomposition has discussed safe state abstraction conditions that would
minimally affect the quality of the sub-task policies that are being learned. Jon-
sson and Barto have looked at the problem of jointly determining spatial and
temporal abstractions in factored MDPs. Ravindran and Barto have proposed
relativized options that use the notion of partial homomorphisms to determine
lossless option specific state representations that satisfy some form of safe state
abstraction conditions.
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Such approaches yield more compact representations of the skills and allow
for greater transfer since they ignore all aspects of the state representation not
required for that sub-task. This also renders them more fragile since they can
fail if there are small changes to the system dynamics that require that different
spatial abstractions be used to represent the modified solutions. For example, in
the simulated game used in [?], the introduction of an additional obstacle might
require changing the policy only around the states with the obstacle. But this
would require us to represent the location of the obstacle as well as the original
information that we were considering.

In order to accommodate such scenarios we have proposed the notion of op-
tions with exceptions (OWE). The knowledge management community have long
dealt with the problem of incremental maintenance of rule bases using Ripple
Down Rule(RDR) [5]. Suppose that some new training instances contradict a
compact rule that was derived from the original training data, the traditional
approach would be to either accept the decreased performance or try to re-learn
the rule base from scratch. The ripple down rules representation allows us to
minimally modify the existing rule by adding exceptions that are derived from
only the contradicting instances. Taking inspiration from this concept, we pro-
pose a framework that allows us to modify an option’s policy only using instances
where the existing policy seems to fail.

There are several key challenges to address here. How to represent the policy
so that modifications can be made without affecting the base policy when we
add the exceptions? In a stochastic domain, how do we even detect that the old
policy has failed or does not perform up to expectations? In a deterministic envi-
ronment this is somewhat easy to address, since we can form models of expected
behavior of the world. How to compactly represent such models in stochastic en-
vironments? How to detect which of the new features of the state space should
we add to the option representation in order to trigger the exception?

Our framework has several components that extend and augment the tradi-
tional option representation. The first is a more structured representation of the
option policy that allows for easy addition of exceptions. The second is a network
of landmarks or way points that acts as a compact model of the environment
and quickly allows us to narrow down to the region where the option failed.
The third is a path model for the original policy that allows us to pinpoint the
features that we need to include in the exception representation.

We test the ability of the framework to identify exceptions and to learn
new policies to address the exceptions. We also show that when the option with
exception is applied to the task it was originally learnt on, there is no degradation
of performance.

The next section describes the necessary notations and background work.
Section 3 describes the landmark network and the transition time model, while
Section 4 describes the identification of the actual exceptions and presents our
experimental results. Section 5 concludes with some discussion and directions
for future work.
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2 Notation and Background

2.1 Notation

A trajectory is a sequence of states through which an agent moves. The length
of the trajectory is denoted by [. Let s; and a; be the state and action at time
t. Let ns be the total number of times that a state s has occurred in all the
trajectories. A transition instance is the tuple (s;, a;) and a transition chain is
an ordered sequence of transition instances.

2.2 Option

An option [?] is represented as (I, 7, §), where I is the initiation set of the option,
i.e., the set of states in which the option can be invoked, 7 is the policy according
to which option selects the actions and S is the termination function where 3(s)
gives the probability that the option terminates in state s. An option can be
thought of as representing a skill.

2.3 Policy representation

To explicitly represent the policies of the option, we choose a specific represen-
tation. Suppose, the policies are represented using Q values, reusing them in
another task would result in changes in the @ values. This could modify the
original policy adversely. Hence a representation is required in which changes in
these values do not alter the existing policy. For example, in order to accommo-
date exceptions, this can be achieved if the representation of the new policy is
conditioned on the feature that caused the exception. Also, the exception may
affect the policy in its neighboring states, hence requiring the use of a small
amount of history in representing the new policy. This can be achieved using a
suffix tree, which divides the history space.

Suffix trees are used to build a discrete internal state action representation
e.g. U-Tree. The internal nodes of the suffix tree are from the set { s;—1, ar_1,
St—2, G4—2 ... St—H, at—H }, where H is the history index. It denotes the number
of time steps in the past from the current time. The Suffix tree is trained using
a transition chain.

3 Transition Time model

One of the chief components of Option With Exceptions (OWE) framework is a
transition time model that records the time of transition between certain distin-
guished states or landmarks.

Landmarks are places that are visited often and are used to find the way back
or through an area. Using the same notion we define a landmark for a region as
a state that is visited on most of the paths (successful or unsuccessful) through
that region. A sub-goal may be a landmark whereas a landmark need not be
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a sub-goal. To build an efficient transition time model, landmarks need to be
uniformly distributed throughout the state space.

The landmark network is a weighted Directed Acyclic Graph(DAG), where
nodes are landmarks and an edge ¢ — j indicates that node j is followed by node
17 in a majority of the sampled trajectories, with the edge weight denoting average
transition time between i and j. The agent, constrained with the topology of the
landmark network has to follow a sequence of landmarks(lsequence) starting with
the start landmark and ending with the terminal landmark. If the landmark in
the lsoquence i not visited within the transition time stored in the time model
then a failure is ascertained. Failure leads to learning a new path between the
landmarks or learning a new average transition time between existing paths
of the landmarks. This new transition time is added as an element to already
existing set of average transition times.

3.1 Identification of landmark
We propose two heuristics to identify landmarks :

[] Spiked state: While traveling most of the people try to associate landmarks
with some junctions, where they want to leave the road and move onto an-
other road. Spiked state heuristic is based on this idea and the junction of
many trajectories is called a spiked state. Here the spiked state has high-
est frequency of visits across trajectories as compared to other neighboring
states. Once a policy is learnt, trajectories are sampled with random start
states. For a given trajectory let s;_i, s;, s;+1 be state that occurred at
successive time instances. If ns,_, < s, and ns, > 7n,,,, then s; is a spiked
state. If two states s and s’ spiked in the same trajectory, they are called
co-occurring spiked states. From this set of spiked states we choose the set of
states which spiked in maximum number of trajectories. Since we need land-
marks to be uniformly distributed in the domain, we define a lower bound
on the count i.e., number of times state spiked in all the trajectories. This
bound can be estimated empirically as it depends upon the domain.

One of the problems with this heuristic is that it requires the domain to be
highly connected so that there are various paths through the states which
enables us to find the pattern required to identify the spiked states.

[l Mean-to-variance ratio: This heuristic uses a simpler approach as compared
to the spiked state heuristic. Trajectories are sampled as in spiked state
heuristic, but here all trajectories start from the same state. A state is said
to have been accessed at time ¢t if it is encountered in the trajectory at
step count t. The time step at which each state is accessed in the trajectory
is extracted for all states in the trajectories and its mean and variance.
The states are sorted in decreasing order of mean-to-variance ratio. Here
variance is considered in order to avoid the effect of states closer to initial
states and the terminal states in the trajectory as these states will always
be accessed. The analysis is done for the states which appears to occur in
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maximum number of trajectories. Distance between the landmarks is defined
as the average number of time steps taken to traverse between the landmarks.
Landmarks are selected sequentially from the sorted list of states so that a
criteria of minimum distance between the landmarks is satisfied.

Fig. 1: Identification of exception landmark.
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3.2 Construction and updation of Transition Time model

Transition time model stores the transition time between the source and desti-
nation landmarks. This is estimated from sampled trajectories for all landmark
pairs of the landmark sequence(lsequence); if they are part of the same trajectory.
Here lsequence is a topological ordering of landmarks in the landmark network.
Let the old average transition time between the landmarks p and ¢ stored in the
transition model be called as 7]

In order to find a failure, a new instance of the transition time model is cre-
ated. It is populated with the average new transition time, extracted from the
new sampled trajectories. These new trajectories are sampled in batches using
the old policies. If there is no significant change in the transition probability of
the states in the batch, sampling is stopped. Let t24 be a new average transi-
tion time between the landmark p and g stored in the new instance of transition
model. Percentage increase in the average transition time between any two land-
mark, p and q is called Change In Transition Time(CITT).

CITT = B8kl 5 100

old
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Failure is ascertained if CITT exceeds the empirically estimated threshold
percentage. Since each source and destination landmark may store the set of
average transition times. This enforces computation of CITT between tP2  and
the set of t%l;s. Hence minimum CITT for each edge is compared with the
threshold percentage, leading to edges being labeled as shown in Figure ?77.
There are three types of scenarios which usually occur in the transition time
model. In the first scenario shown in Figure 77, one of the destination landmarks
is reached from the source landmark. If at least one of the CITT value is within
the threshold percentage, the edge is labeled as “RC” (Reached Correctly), else
it is labeled as “ER” (Error In Reaching). The rest of the edges leading to other
landmarks are labeled as “N R”(Path Not Taken). An edge is labeled as “NR”
only if the source and destination landmark pair does not occur simultaneously
within the specified threshold count of trajectories. There cannot be a node with
two out edges labeled as “RC” and “ER”.

The transition time model with the labeled edges is used to find the exception.
If the task is successfully completed then there exists a unique path consisting of
a sequence of edges labeled as “RC” between the start and terminal landmarks.
This indicates that an exception has not occurred. Failure is ascertained when
at least one of the outgoing edges from the current landmark is labeled as “ER”
or all the outgoing edges are labeled as “NR” as shown in second scenario
in Figure ?7?7. The current landmark is then called an exception landmark. For
example, in Figure 77, s,4 is the exception landmark in the sequence of landmarks
$1, 82, 83,84, S5 and Sg

Topological ordering of landmarks(lsequence) helps to identify a set of land-
marks called potential destination landmarks, that come topologically after the
exception landmark. A new path is learnt between the exception landmark and
some potential destination landmarks using Q-learning. The transition time
model is updated to include the new transition time between the landmarks.
While updating, the newly learnt path might add edges between landmarks
which were not connected earlier or it might add new task times to existing set
of task times between already connected landmarks. The landmark network is
topologically reordered to reflect the new ordering of the landmarks.

4 Identification of exception state

An exception happens when the policy fails. The state in the which failure first
happens is called the exception state. Failure can happen because of changes in
the dynamics of the domain. The reasons for this to happen is either introduction
of a new object in the domain and a change in the values that features of the
domain can take. In either case, there are some features of the exception state
which reflect the change in the domain. The new policy is represented in the
suffix tree by conditioning on these features.

In order to identify the exceptions, transition probabilities of all the state
action pairs need to be stored. But rather than storing it for all the actions, a
model called as minimum model can be used to store only the optimal policy



Options with exceptions 7

action for all the states. Exception state is found by comparing the minimum
model learnt before and after the failure is ascertained by the time model. Rather
than comparing for all the states in the trajectory, exception landmarks can be
used as reference point from where comparison could start. Exception landmark
is the landmark after which an exception occurs. Figure ?? shows basic types
of exceptions, which change the dynamics of the domain. These are self transi-
tions, transitions to random neighboring states and transitions to random non-
neighboring states . Other forms of exceptions that are possible are combinations
of these basic types of exceptions.

After the exception policy is learnt, the model is updated to reflect the
changes in transition probabilities of exception states.

Fig. 2: Different types of exceptions.
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5 Experiment and Results

In Figure 3, the agent’s goal is to collect the diamond(o) in every room by
occupying the same square as the diamond. Each of the rooms is a 11 by 11 grid
with certain obstacles in it. The actions available to the agent are N, S, E, W.
An action would result in transition to the expected state with probability 0.9. It
results in a transition in any one of the unintended directions with a probability
0.1.

The state is described by the following features: the room number the agent
is in, with 0 denoting the corridor, the x and y co-ordinates within the room
or corridor and boolean variables have(i), i = 1,..., 5, indicating possession of
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Fig.3: A simple room domain with different objects. The task is to collect the
diamond, o in the environment
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diamond in room i. The goal is any state of the form (0,..1,1,1,1,1), where o
indicates the corridor and 1 indicates possession of diamonds in the respective
rooms. The state abstraction for the option is (x, y, have). Exceptions are caused
by the objects C, F ( self transition) , D ( transition to random neighbor) and
E ( transition to random non-neighbor).

The agent used a learning rate of .05, discount rate of 1.0 and e- greedy
exploration, with an € of 0.1. The result were averaged over 25 independent runs.
The trials were terminated either on completion of the task or after 1000 steps.
The landmarks were selected by the mean to variance ratio. States that occur in
more than 80% of the trials only were considered as candidate landmarks. Three
sets of experiments were performed with different desired minimum distance (in
time) between the landmarks, resulting in a different number of landmarks for
each experiment. The distance between the landmarks is 18 steps in experiment
1, 8 steps for experiment 2 and 4 steps for experiment 3. The selected landmarks
are shown in table 1. To compare the transition time between the landmarks,
threshold value is taken as 25% for experiment 1, 30% for experiment and 35%
for experiment 3. A landmark is considered as not reachable( “NR”) if the number
of trajectories is less than 75%.

The objects were introduced in the domain in the order C, D, E and F.
These objects can be introduced randomly in the domain but for the purpose
of learning nested OWE, they were introduced in the specific order. Exception
caused by the object “D” is not identified in most of the experiments because
the maximum change in the number of steps caused by the exception is not
more than 1.5 on an average. If the threshold value is adjusted to account for
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Table 1: Selected Landmarks

Experiment
1 2 3
(10, 5, 0), (0, 3, 1), (10, 5, 1)|(10, 5, 0),(5, 5, 0),(1, 2, 0)[(10 ,5, 0),(7 ,7 ,0),(3 ,5, 0)
(4, 5, 1),(10, 5, 1) (1, 3, 0),(0, 3, 1),(1, 5, 1)
(4, 5,1),(5,7,1),(9,7, 1)
(10, 5, 1)

this small change, it leads to detection of exceptions caused by the stochasticity
of the environment. Hence exception caused due to D in the domain remains
unidentified. Whereas, if the same object is placed in the grid (8,7), exception
is identified because the most of trajectories do not go through (8,6).

Old policy

Average steps per trail(in hundreds)

New policy |

Q-Learning
0 1 2 3 4 5 6 7 8 9 10
No of trails(in thousands)

Fig.4: Comparison of old policy, new policy and policy learnt using Q-learning
where the exception is caused by the object C.

In Figure 4,5 and 6, the new policies are plotted for various obstacles. The
new policy is a concatenation of the path given by the suffix tree from the
start state to exception state or terminal state, followed by the path given by
Q-learning from exception state to potential terminal landmarks, followed by a
path given by the suffix tree from potential terminal landmark to terminal state.
Graphs have been plotted for Experiment 3. Due to lack of space, we have not
plotted the graphs for other experiments although the results agree with our
expectations.



10 Munu Sairamesh and Balaraman Ravindran

7 Old policy

Average steps per trail(in hundreds)

Q-Learning
0 1 2 3 4 5 6 7 8 9 10
No of trails(in thousands)

Fig.5: Comparison of old policy, new policy and policy learnt using Q-learning
where the exception is caused by the object E.
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Fig. 6: Comparison of old policy, new policy and policy learnt using Q-learning
where the exception is caused by the object F.
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When the OWE policies were used in the old domain, i.e., without excep-
tions, the average number of steps taken to complete the task does not change
appreciably, as shown in Table 2. The average was taken over 1000 trails. In Ta-
ble 2, the rows indicate transfer of policies to old domain after particular object
was introduced in the domain and columns indicate different objects present in
the domain at that time.

In the column “Object C,D,E”, the average number of steps for experiment
3 is higher than the others because the new policy is constrained to go through
extra landmarks which requires 3 extra steps in comparison to that required for
experiment 1 and experiment 2. Therefore for experiment 3, all the values under
the columns are greater than corresponding values of the other experiments.

Table 2: Transfer back of the policy to old domain(Avg No of steps)
No Object|Object C|Object C,D|Object C,D,E
No Object 44.43
After Object C|44.07 52
After Object D|44.32 52.29 55.12
After Object E |44.55 52.71 55.02 63.12
After Object F|44.58 52.36 55.21 63.87
No Object 44.45
After Object C|44.23 52.16
Experiment 2|After Object D|44.14 52.30 54.42
After Object E|43.90 52.40 54.84 63.4

After Object F|43.62 52.55 54.69 63.54
No Object 44.33
After Object C|44.39 53.19
Experiment3 |After Object D|43.86 53.20 55.30
After Object E|44.76 53.78 55.17 66.56
After Object F|44.27 53.19 55.60 66.24

Experiment 1

6 Conclusion

In this work we draw attention to the problem of efficient incremental mainte-
nance of library of skills. We propose a framework in which exceptions can be
added to already learnt options without disturbing the original policies. While
the framework succeeds in identifying small changes required to the options,
we still have some distance to go before building a complete skill management
system. We are currently working on the problem of automatically deriving the
minimal set of features required to represent exceptions. We also want to au-
tomatically identify when an exception would suffice and when a new option is
warranted. While we can think of several heuristics, based on the size of the
suffix tree for instance, we would like a more principled approach.
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