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ABSTRACT
A fundamental problem in behavioral analysis of human interac-
tions is to understand how communications unfold. In this paper,
we study this problem by mining Communication motifs from dy-
namic interaction networks. A communication motif is a recurring
subgraph that has a similar sequence of information flow. Min-
ing communication motifs requires us to explore the exponential
subgraph search space where existing techniques fail to scale. To
tackle this scalability bottleneck, we develop a technique called
COMMIT. COMMIT converts a dynamic graph into a database of
sequences. Through careful analysis in the sequence space, only a
small portion of the exponential search space is accessed to identify
regions embedding communication motifs. Extensive experiments
on three different social networks show COMMIT to be up to two
orders of magnitude faster than baseline techniques. Furthermore,
qualitative analysis demonstrate communication motifs to be effec-
tive in characterizing the recurring patterns of interactions while
also revealing the role that the underlying social network plays in
shaping human behavior.

1. INTRODUCTION
Interactions in social networks are typically studied using graphs

where users are represented as nodes and interactions between them
are represented as edges. A fundamental task in social network
analysis is to understand how communications unfold. Are there
patterns that recur time to time? What role does the underlying so-
cial network play in the progression of human communication? In
this paper, we study the behavioral aspects of interactions within
social networks by mining communication motifs from large dy-
namic networks.

To illustrate the concept of communication motifs in a dynamic
network, consider Fig. 1(a). In this dynamic network, an edge with
a timestamp t between nodes A and B represents an interaction
event between A and B at time t. Interaction events can be phone
calls, e-mails, Facebook wall posts, tweets, etc. Due to the intrin-
sic social nature of human beings, it is common for an interaction
between two individuals to spurt further communication activities.
For example, a person claiming Real Madrid to be the best soccer
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Figure 1: (a) A dynamic network denoting interactions between
its users (b) The two largest communication motifs at a fre-
quency threshold of 3 and ∆T = 1. Timestamp ti < tj if i < j.
Motif 1 involves nodes {A,B,C} {E,F,G}, and {G,H,F}.
Motif 2 involves {B,C,D, F} {C,D, F,H}, and {A,C,E,G}.

club in Facebook is likely to encourage further interactions from
Real Madrid fans supporting the claim and possibly, stiff opposition
from Barcelona fans. To capture this dependency between interac-
tions, we assume that two edges in a social network are related if
they involve a common user and the difference in their timestamps
is within some threshold ∆T . In Fig. 1(a), for example, A sends a
message to B and C simultaneously at time 400. This initiates an
interaction between C and B at time 401 and then subsequently,
B responding to A at time 402. At ∆T = 1, this sequence of in-
teractions are considered related. At the same time, the interaction
betweenA andE is not related to these since it occurs at timestamp
100, which is more than ∆T away from the other interactions ofA.
Now, notice that two other exact same sequences of related interac-
tions also exist between E, F , G, and G, H , F . These interactions
are explicitly shown in Fig. 4. In other words, this pattern of in-
teraction is frequent in the social network and characterizes one of
the common communication patterns. We call such a pattern as a
communication motif if its frequency is higher than a user-defined
threshold θ. At θ = 3, the two largest communication motifs are
shown in Fig. 1(b). While the first motif is likely capturing some
group discussion, the second motif is the structure that is typically
generated while wishing a person on a special occasion such as
birthday, marriage, etc.

Communication motifs provide a powerful mechanism to cap-
ture the dynamics of human interactions. A similar line of work
was first explored by Zhao et al. [39]. They show that communi-
cation motifs reveal how the functional behavioral patterns evolve
with time, how the structures of these patterns change with the so-
cial network, and finally, how the social network influences the
speed and amount of information exchanged in communications
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Figure 2: Running time comparison of GRAMI and COMMIT
against the support threshold on the Facebook dataset [35].
Note that GRAMI was terminated after 16 hours in all cases
without having completed the computation.

between individuals. However, no technique is proposed for min-
ing these motifs in a scalable manner. A communication motif is
essentially a frequent subgraph in a dynamic network with some
additional properties. First, the edges in each embedding of the
subgraph must form a chain of related interactions based on a user-
provided threshold ∆T . Second, the edges in each embedding of
the subgraph must have the same sequence of interactions. Mining
frequent subgraphs from large networks is a hard problem since
the number of subgraphs in a network grows exponentially with
the size of the network. In addition, to compute the frequency
of a subgraph, we need to perform subgraph isomorphism, which
is NP-complete [38]. Owing to its hardness, frequent subgraph
mining has received significant interest in the research community
with GRAMI [13] being the state-of-the-art technique in this space.
However, the following aspects of communication motifs render
the existing methods inapplicable to our problem.
•Incorporating temporal information: Existing frequent sub-

graph mining techniques ignore the temporal aspect. As a result,
the notion of edge relatedness cannot be enforced easily in such
techniques. To combat this weakness of existing techniques, one
could adopt the following two-stage approach. In the first stage,
all frequent subgraphs are mined. Then, in the second stage, each
of the frequent subgraphs are verified whether they satisfy the tem-
poral constraints of a communication motif. Unfortunately, this
approach does not scale due to the unimportance of node labels in
our problem.
• Unlabeled Nodes: As can be seen in Figs. 1(a) and 1(b), the

node labels denoting user IDs do not play any role in communica-
tion motifs; only the structure and the timestamps matter. Existing
frequent subgraph mining techniques rely heavily on the presence
of node labels to prune the search space. Consequently, they fail to
scale in our setting even if we ignore the temporal aspect. To em-
pirically establish the impact of unlabeled nodes, we run GRAMI
on an interaction network constructed from Facebook [35]. Fig. 2
presents the results. On this network, when the support threshold is
less than 30, 000, GRAMI fails to complete even after 16 hours.

To address the challenges outlined above, we design a new al-
gorithm called COMMIT (COMmunication Motifs in InTeraction
Networks) to mine communication motifs from large interaction
networks. In contrast to GRAMI, on the Facebook dataset in Fig. 2,
COMMIT takes around 20 minutes to complete. Fig. 3 presents the
pipeline of our algorithm. In the first step, each of the connected
components of the dynamic network is converted into a sequence
of its interactions. This results in the dynamic network being rep-
resented as a database of interaction sequences. Through a careful
analysis using graph invariants in this sequence space, we mine the
frequent subsequence patterns that could potentially represent com-

Figure 3: Pipeline of the COMMIT algorithm.

munication motifs. These patterns are then converted to the graph
space for verification and the final answer set is computed.

Our approach saves time in two accounts. First, COMMIT con-
structs a coarse-grained representation of the network by convert-
ing them to sequences. As we show later, the proposed graph-
invariant based conversion scheme is a many-to-one mapping where
identical subgraphs are guaranteed to have the same sequence rep-
resentation. Due to coarsening of the search space, its size is dras-
tically reduced. Second, most of our analysis happens in the se-
quence space. Thus, instead of enumerating subgraphs, we enu-
merate subsequences, which is computationally more tractable. In
addition, the expensive subgraph isomorphisms are performed only
on a minuscule portion that are considered candidates based on the
sequence analysis.

To summarize, the contributions of our work are as follows:

• We propose the idea of communication motifs to model the
frequent human interaction patterns in social networks.
• We develop a technique called COMMIT to mine commu-

nication motifs in a scalable manner. COMMIT achieves
scalability by mapping the interaction network into a more
coarse-grained space of interaction sequences.
• Extensive experiments on three social network datasets show

that COMMIT is more than an order of magnitude faster than
baseline techniques. In addition, COMMIT is accurate and
achieves F-scores in the range of [0.6,1] when compared to
the ground truth. Finally, a qualitative analysis reveals com-
munication motifs to be effective in characterizing the vari-
ous patterns of human interactions and the crucial role that
the underlying social network plays in its progression.

2. PROBLEM FORMULATION
In this section, we formalize the problem of mining communica-

tion motifs. We represent a dynamic interaction network as a graph
G = (V,E) where V is a set of nodes and E is a set of edges.1 An
edge ei is represented as (si, di, ti) where s and d are the source
and destination nodes, t is the time at which interaction happens.

To formalize the concept of communication motifs, first we de-
fine the idea of temporally related edges. Informally, two edges are
related if they involve a common user and are close in time. An
1More formally the interaction network is a multigraph since mul-
tiple interactions can take place between a pair of nodes. In order to
simplify exposition, we refer to the interaction network as a graph.



Figure 4: Embeddings of Motif 1 in Fig. 1(a)

example of such related interactions is users A and B wishing user
C on his/her birthday. Formally,

DEFINITION 1. TEMPORALLY RELATED EDGES. Two edges
ei = (si, di, ti) and ej = (sj , dj , tj) are temporally related if they
are adjacent, i.e., {si, di} ∩ {sj , dj} 6= ∅, and |ti − tj | ≤ ∆T .

DEFINITION 2. TEMPORALLY CONNECTED NODES. Two nodes
ni, nj in a graph G = (V,E) are temporally connected, if there
exists a sequence of edges P = {e1, · · · , em} ∈ E such that
s1 = ni, dm = nj , and ∀ei, ei+1 ∈ P, ei and ei+1 are tempo-
rally related.

DEFINITION 3. TEMPORALLY CONNECTED GRAPH. A con-
nected interaction graph G = (V,E) is temporally connected, if
any pair of nodes ni, nj in G is temporally connected.

In essence, a temporally connected graph represents a group of re-
lated interactions that are connected by a common event.

EXAMPLE 1. Consider Fig. 4, which shows the embeddings of
Motif 1 in Fig. 1(a). Let us focus on the first embedding involving
nodes {A,B,C}. It is easy to see that at ∆T = 1, all pairs of
nodes are temporally connected and hence, the graph is temporally
connected.

Note that our definition of a temporally connected graph is dif-
ferent from the formulation of Zhao et al [39] and rectifies a weak-
ness in their modeling. Interested readers are encouraged to refer
to Appendix A to know more.

Now, we define a partial ordering among edges ei = (si, di, ti)
and ej = (sj , dj , tj) as ei < ej if and only if (iff ) ti < tj . Based
on this ordering, we next define temporal isomorphism

DEFINITION 4. TEMPORAL ISOMORPHISM. A dynamic graph
S1 = (Vs1 , Es1) is temporally isomorphic to S2 = (Vs2 , Es2) if
and only if there exists a bijection f : Es1 → Es2 satisfying

(1) if (s, d, t) ∈ Es1 then f(s, d, t) ∈ Es2
(2) if ei, ej ∈ Es1 and ei < ej then f(e1) < f(e2).

It is easy to see that the embeddings in Fig. 4 are all temporally
isomorphic to each other. Analogous to this definition, a graph H
is a temporal subgraph ofG, ifG contains a subgraphG′, such that
G′ is temporally isomorphic to H .

The support sup(H) of a recurring temporal subgraph H is its
number of embeddings in the interaction network. As illustrated
earlier, Motif 1 in Fig. 1(a) has a support of 3. Note that two embed-
dings of a motif could overlap and may not necessarily be disjoint.
Due to such overlaps, the apriori property of a subgraph having a
support at least as large as any of its supergraph is violated. We
point interested readers to Appendix B for further discussion.

We now formally define communication motif as the following.

DEFINITION 5. COMMUNICATION MOTIF Given a dynamic
interaction network G, a minimum support threshold τ and a ∆T ,
a motif, or a recurring connected temporal subgraph of G, H , is a
communication motif if its support sup(H) ≥ τ .

Our goal is now to solve the following problems.

Figure 5: Sequence representation of a graph.

PROBLEM 1. RANGE QUERY. Mine all communication motifs
in the given interaction network for a user-specified ∆T and τ .

PROBLEM 2. TOP-k QUERY. Given a dynamic interaction net-
work G, a value k and a ∆T , mine the communication motifs with
the top-k highest supports.

COMMIT solves both the mining problems in a scalable manner.
For simplicity, our illustrative examples assume Problem 1.

3. MAPPING GRAPHS TO SEQUENCES.
As discussed earlier, mining communication motifs is hard since

the search space is exponential. In addition, counting support of a
subgraph requires us to perform subgraph isomorphism, which is
NP-complete [38]. To tackle this bottleneck, COMMIT first maps
the dynamic network from the graph space to a sequence space.

LetM : G → S be a function to map graph G to its sequence
space representation S. The goal in this conversion procedure is
to map the dynamic network into a contractive space, such that the
following conditions hold.

• If graphG is temporally isomorphic to graphG′, thenM(G) =
M(G′)
• If H is a temporal subgraph of G, then M(G) “contains”
M(H). Indeed, we need to define “contains” more formally.

If we discard the temporal constraints, then the first condition
can be satisfied using graph invariants.

DEFINITION 6. GRAPH INVARIANT. A graph invariant is a
function f , such that f(G1) = f(G2), whenever G1, and G2, are
isomorphic graphs.

Graph invariants are properties of graphs that are invariant under
graph isomorphisms. Examples of graph invariants are number of
nodes or edges, degree sequence, diameter, canonical labeling of
the adjacency matrix, etc. [21, 37]. To satisfy condition 1 in the
presence of temporal constraints, we generate a degree sequence as
our graph invariant. Specifically, we map a graph G to a sequence
in the following manner. First, we assign the degree of a node as
its label. Let l(n) denote the label of node n. Extending the same
procedure, for each edge e = (si, di, ti), we label l(e) =“l(si),
l(di)”. Now, we extend the partial ordering defined in Sec. 2 to a
total ordering. Specifically, if ti < tj , then ei < ej . Else, if ti =
tj , ei < ej , if l(ei) < l(ej), i.e., the label of ei is lexicographically
smaller (we break ties based on edge ids). Finally, the mapping
M(G) of a graph G containing edges {e1, · · · , em} where ei <
ei+1, is “l(e1) l(e2) · · · l(em).”

EXAMPLE 2. Fig. 5 shows the sequence representation of the
first graph in Fig. 4. It is easy to see, that since the other two
graphs in Fig. 4 are temporally isomorphic to the first graph, their
sequence representations are also identical.

We use the notation S[i] to denote the label of the ith edge in
sequence S.

After satisfying condition 1, we now focus on satisfying condi-
tion 2, which is to detect the presence of a subgraph just from a



sequence space analysis. Let us revisit the first graph in Fig. 4. We
denote this graph as G. If we remove the edge (B,A, 402) from
G to create graph H , thenM(H) = (2, 2) (2, 2) (2, 2). Clearly,
M(H) is not a sub-sequence of (3, 2) (3, 3) (2, 3) (3, 3) although
H is a temporal subgraph of G. Thus, the simple sub-sequence
relationship does not satisfy condition 2. The event H ⊆ G does
not guarantee that an edge label in H is also present in G. How-
ever, given that we use degree as node labels, for any edge label
l(e) = (a, b) inH , there must an edge e′ inG where l(e′) = (c, d)
and c ≥ a and d ≥ b. We formalize this intuition by defining the
notion of edge containment.

DEFINITION 7. EDGE CONTAINMENT. An edge ei with label
l(ei) = (ai, bi) is contained in edge ej with l(ej) = (aj , bj) if
ai ≤ aj and bi ≤ bj . This relationship is denoted as (ai, bi) v
(aj , bj).

In our definition, edge-containment is only dependent on the
node degrees. The semantic labels of edges and nodes, such as
node type, ID, etc., do not play any role. However, if required,
the proposed technique can easily be extended to incorporate such
semantic labels as well. Specifically, we not only need to look for
degree containment while comparing edges, but also ensure that the
edges being compared, and their constituent nodes, have the same
semantic labels.

Next, we define the notion of subsequence in the sequence space
as following.

DEFINITION 8. SUBSEQUENCE. A sequence α =< α1, α2,
..., αm > is subsequence of sequence β=< β1, β2, ..., βn > iff
∃i1, i2, . .., im such that 1 ≤ i1 < i2 < ... < im ≤ n and
α1 v βi1 , α2 v βi2 , ... αm v βim . This relationship is denoted
as α v β.

More simply, sequence α v β, if each of the edges in α is con-
tained in some edge in β, while also maintaining the ordering of
edges in α. The support of a subsequence S is defined analogously
to that of a subgraph and is also denoted as sup(S). A subsequence
S is frequent, if sup(S) ≥ τ

THEOREM 1. If graph H = (VH , EH) is a temporal sub-
graph of G = (VG, EG), thenM(H) vM(G)

PROOF: Let EG = {eg1 , · · · , egn} and EH = {eh1 , · · · , ehm}
where m ≤ n. We know EH ⊆ EG. Let function f : E(H) →
E(G) be the bijection. We have f(ehi) = egk , ∀i s.t. 1 ≤ i ≤ m
and 1 ≤ k ≤ n. Since H is also a temporal subgraph of G,
from the total ordering on edges, we can claim that if ehi < ehj
then f(ehi) < f(ehj ). As a result, in sequence space representa-
tionM(H), ∀ehi , ehj ∈ EH , if l(ehi) occurs before l(ehj ), then
l(f(ehi)) occurs before l(f(ehj )) inM(G). Let f(ehi) = egk ,
where l(ehi) = (l(shi), l(dhi)) and l(egk ) = (l(sgk ), l(dgk )).
Now, since H ⊆ G, it is guaranteed that the source and destination
degrees of ehi are less than or equal to that of egk in G. Hence
l(shi) < l(sgk ) and l(dhi) < l(dgk ) Consequently, ehi v egj .
Since this holds for any pair of edges in H ,M(H) vM(G). 2

COROLLARY 1. If the support of a graph H in dynamic net-
work G is larger than τ , then the support ofM(H) inM(G) is
also larger than τ .

From Theorem 1, the problem of mining temporal subgraphs
with support above τ translates to mining subsequences with sup-
port above τ . Indeed, there could be false positives where two dif-
ferent graphs are mapped to the same sequence. To prune out such
false positives, the frequent subsequences are mapped back to the

Figure 6: The temporally connected components in Fig. 1(a).

graph space to compute the true answer set. From Corollary 1,
false negatives are not possible. With this insight, we next focus on
frequent subsequence mining.

4. FREQUENT SUBSEQUENCE MINING
Given a dynamic interaction networkG = (V,E) and a ∆T , we

first identify the temporally connected components in G.

DEFINITION 9. TEMPORALLY CONNECTED COMPONENT.
Given an interaction network G and ∆T , let H be a temporally
connected subgraph of G. H is a temporally connected compo-
nent if no supergraph H ′ ⊇ H exists such that H ′ is temporally
connected and H ′ ⊆ G.

EXAMPLE 3. The temporally connected components of the net-
work in Fig. 1(a) at ∆T = 1 are shown in Fig. 6.

The pseudocode to identify the temporally connected compo-
nents is provided in Appendix. C. Identifying the temporally con-
nected components in a graph G = (V,E) can be computed in
O(E) time since no edge is processed more than once.

From the construction of temporally connected components, it
is guaranteed that a communication motif cannot span across two
different components. However, it is possible for a communication
motif to be contained in multiple components. For example, Motif
1 in Fig. 1(b) occurs once in component 1 and twice in compo-
nent 2 with an overall support of 3. In COMMIT, we map each of
the connected components into the sequence space. Following this
transformation, our task is to mine the frequent subsequences with
support of at least τ . A subsequence may repeat across sequences
as well as within a sequence. Mining such frequent subsequences
in a sequence database has been studied, and CloGSgrow [12] is the
state-of-the-art technique for this purpose. CloGSgrow is an exten-
sion of PrefixSpan [28] and adopts a similar search space explo-
ration strategy. To give an overview of CloGSgrow, it starts from
frequent patterns of size one, and looks for extensions to grow one-
sized patterns to two-sized frequent patterns. This process contin-
ues iteratively to build larger frequent patterns till no more exten-
sions are possible. Unfortunately, due to altering the definition of
subsequence, CloGSgrow do not work in our scenario.

4.1 Counting support of a subsequence
Assume the graphs in Fig. 7 are the connected components of

the network we are mining. Their corresponding sequence repre-
sentations are shown in the Sequence DB table in Fig. 7. Now, let
P = l(e1) l(e2) · · · l(en) be a sequence over n edges. If P v Si
for some sequence Si in Sequence DB, then we represent this oc-
currence as (i, < l1, l2, · · · , lm >) where i is the ID of Si (or the
corresponding connected component of the network) and lj is the
position of the edge in Si that contains the jth edge of P . For
example, consider the sequence P = (1, 3)(1, 3)(1, 3). P occurs
thrice in S3 of Fig. 7. These three instances of P in S3 correspond
to the instances with ID 3 in the SeqDB(P ) table of Fig. 8. We use
the notation SeqDB(P ) to represent the set of all instances of P
in the sequence database.The first two rows in SeqDB(P ) corre-
spond to P ’s instances in S1 and S2. The instance (3, < 2, 3, 4 >),



Figure 7: The connected components of an interaction net-
work and their corresponding sequence representations. In
each edge of the graph, along with the timestamp, we also show
its rank (or position in the sequence representation) based on
the total ordering described in Sec. 3.

denotes that the first, second, and third edges of P are mapped to
the second, third and fourth edges in S3 (or G3). Since an instance
(i, < l1, l2, · · · , lm >) of a subsequence uniquely identifies its
mapped edges in component Gi, it is easy to derive the subgraph
that is induced by this instance.

Two instances of a sequence P in Si are called identically over-
lapping if there exists an edge in P that is mapped to the same edge
in Si in both instances. The formal definition is as follows.

DEFINITION 10. IDENTICALLY OVERLAPPING INSTANCES.
Let two instances of a sequenceP = l(e1) · · · l(m) in SeqDB(P )
be (i, < l1, · · · , lm >) and (i′, < l′1, · · · , l′m >). These two in-
stances are identically overlapping if (1) i = i′ and (2) ∃j, 1 ≤
j ≤ m such that lj = l′j

EXAMPLE 4. The third and fourth instances ofP in SeqDB(P )
in Fig. 8 are identically overlapping since they both correspond to
instances in S3 and the first two edges of P are mapped to the sec-
ond and third edge of S3 in both instances. On the other hand, the
third and the fifth instances are not identically overlapping. Note
that the third and the fifth instances also overlap. However, they do
not overlap in the same position and hence, they are non-identically
overlapping.

THEOREM 2. In the presence of identically overlapping in-
stances, computing sup(P ) = |SeqDB(P )| is NP-complete.

PROOF: See Appendix D.
Due to Theorem 2, counting all instances of a subsequence P is

not tractable. Hence, we only count those instances of P that are
not identically overlapping.

Hereon, any reference to an instance of a subsequence P is im-
plicitly assumed to be a non-identically overlapping instance and
the support set of P is defined analogously.

DEFINITION 11. SUPPORT SET. The support set of a sub-
sequence P with respect to a database of sequences contains only
those instances of P that are non-identically overlapping.

The support sets of P for the components in Fig. 7 are shown
in Fig. 8. Notice that for a given subsequence P , multiple support
sets can be computed. To best approximate SeqDB(P ), we need
to compute the largest support set support set SS∗, where

SS∗ = arg max
SS
{|SS| |SS ⊆ SeqDB(P ) is a support set of P}

The support of P is therefore sup(P ) = |SS∗|. We discuss how
to compute SS∗ in Sec. 4.2.2. Regardless of whether the support
set is the largest or not, it satisfies the apriori property.

THEOREM 3. APRIORI PROPERTY OF SUPPORT. Assume we
are given a database of sequences SeqDB corresponding to each
connected component of an interaction network. For any two se-
quences P and P ′, if P v P ′, then sup(P ) ≥ sup(P ′).

PROOF: We split the proof into two cases based on the different
ways a sequence P can be a subsequence of P ′

Case 1: ∀j, P [j] v P ′[j] and |P | = |P ′|
Let us represent
P ′ = l(e1), l(e2), · · · , l(em)
P = l(e1), l(e2), · · · , l(em).
Note that each instance I ′ = (x,< l1, · · · , lm >) of P ′ is also

an instance of P . Hence, for any given support set SS′ of P ′, we
can construct a support set SS of P containing all instances in SS′.
Hence, sup(P ) ≥ sup(P ′).

Case 2: |P | ≤ |P ′|
Let us assume

P ′ = l(e1), · · · , l(ei−1), l(ei), l(ei+1), · · · , l(em)
P = l(e1), · · · , l(ei−1), l(ei+1), · · · , l(em).

such that, ∀j 6= i, l(ej) v l(ej) and |P ′| − |P | = 1. Now for
any instance I ′ = (x,< l1, · · · , li−1, li, li+1, · · · , lm >) of P ′ in
its support set, we can create an instance I = (x,< l1, · · · , li−1,
li+1, · · · , lm > ofP inP ’s support set. Thus, sup(P ) ≥ sup(P ′).

It is easy to see that the same strategy can be generalized when
|P ′| − |P | > 1. More specifically, let |P | = m, |P |′ = n, and
m < n. Since, P v P ′, let I ′P = (P ′id, < p1, · · · , pm >) be
an instance of P in P ′. Recall from the definition of instance that
P ′ID denotes the ID of P ′ and pi denotes that the ith edge of P is
mapped to the pthi edge in P ′ . Therefore, for any instance, I ′ =
(x,< l1, l2, · · · , ln >) in the support set of P ′, we can create a
support set ofP containing instance I = (x,< lp1 , lp2 , · · · , lpm >).
Thus, sup(P ) ≥ sup(P ′). 2

Theorem 3 establishes apriori property of the support set when
only non-identically overlapping instances are recorded.

4.2 The sequence growth approach
Sequence growth is a popular strategy to search for sequences in

the presence of apriori property [12, 21, 28, 37].

DEFINITION 12. SEQUENCE GROWTH. Let a subsequence
P = l(e1), l(e2), · · · , l(em) be extended by the label of an edge
e as l(e1), l(e2), · · · , l(em), l(e). This extension is known as se-
quence growth. Sequence growth is denoted by P ◦ e. Through
apriori property, if sup(P ) < τ , then sup(P ◦ e) < τ . Similarly,
if sup(l(e)) < τ , sup(P ◦ e) < τ .

Sequence growth outlines the strategy that we can start with la-
bels of frequent edges and keep extending them to larger sequences

Figure 8: Demonstrates the instance representation of subse-
quence P = (1, 3)(1, 3)(1, 3) in S3. In addition, SeqDB(P )
lists all instances of P in the sequence database. Furthermore,
two possible support sets of P are also listed.



Figure 9: Illustration of the need for EXTENSIONMINER.

till the sequence becomes infrequent. The key question therefore is
how do we identify the extensions?

4.2.1 Identifying edge extension candidates
In traditional subsequence mining such as CloGSgrow, given a

subsequence P = l(e1) · · · l(em), first, the support set of P is
identified. Let S be the sequences in the database containing P .
The possible extensions of P here are those one-sized items (edge
labels in our case) that occur not less than τ times after P ’s in-
stances in the sequences in S. Since we also have the temporal con-
nectivity constraint based on ∆T , we need to look for only those
edges following P that are within ∆T from em. In our problem,
however, this strategy of CloGSgrow does not work.

To illustrate, let us revisit the components in Fig. 7. Let us
consider the subsequence P = (2, 2)(2, 3)(2, 3). P has support
3 because it occurs twice (non-identically) in SID 1 and once in
SID 3. At ∆T = 10, the possible extensions are (2, 3) in SID
1 and two (1, 4) labels in SID 3. At τ = 2, only (1, 4) is clas-
sified as frequent, and we would generate the subsequence P1 =
(2, 2)(2, 3)(2, 3)(1, 4). P1 has a support of 1; it has two instances
in S3, but they are identically overlapping. When any of these in-
stances is mapped to the graph space, P1 corresponds to graphH in
Fig. 9. Notice that H is also a temporal subgraph of G1, but we are
unable to detect it. Now, instead of extending P with (1, 4), if we
extend with (1, 3), we will generate P2 = (2, 2)(2, 3)(2, 3)(1, 3).
The instances of P2 in S3 is identical to that of P1. Furthermore,
P2 also has an instance in G1, and all these instances correspond
to H . In other words, P2 is more accurately able to discover the
common subgraph H and that is because P2 = M(H).

Clearly, we cannot overlook extensions such as (1, 3), which
would happen with the traditional sequence growth approach. The
traditional approach fails in our problem since we need to look for
edge label containment instead of edge label matching. Thus, the
possible edge extensions are not only the frequent edges follow-
ing P , but also any edge that is contained frequently in the edges
following P . Going back to our example, edge label (1, 3) is not
present explicitly in any of the edges following P . However, (1, 3)
is contained in the edges (1, 4) and (2, 3), and therefore, is a valid
candidate for expansion with support of 3. To formalize this intu-
ition, we define an edge extension candidate as follows.

DEFINITION 13. EDGE EXTENSION CANDIDATE. Let E
be the set of all edge labels that occur within ∆T from the edge
em in subsequence P = l(e1), l(e2), · · · , l(em). An edge label
l = (s, d) is an edge extension candidate if sup(l) ≥ τ , where
sup(l) = |{l v e|e ∈ E}|.

One can immediately realize that at τ = 3, along with (1, 3),
(1, 2) and (1, 1) are also valid extensions since they occur in the
same edges where (1, 3) occurs. As a result, extension of P with
either (1, 3), (1, 2) or (1, 1) will generate a new subsequence with
the exact same support set. When support sets of two subsequences
are identical, the graphs represented by the subsequences are also
identical. More specifically, we claim the following.

Algorithm 1 ExtensionMiner (el, S, b, τ )
Input: S is support set of edge label el, b is starting position, τ is support threshold.
Output: E is set of all frequent edges labels.
1: E = E ∪ el
2: for i = b to 1 do
3: S′ ={ y |y ∈ S, yi > el[i] }.
4: if |S′| < τ then
5: continue
6: el′ = floor(S′)
7: if ∃j < i such that el′[j] > el[j] then
8: continue
9: ExtensionMiner(el′, S′, i, τ )

THEOREM 4. Let α v β be two subsequences with the same
support sets. When this occurs, any subgraph represented by sub-
sequence α will also be represented by subsequence β.

PROOF: Let the support sets of α and β be SSα = {i(k)α , < l
(k)
1α
,

· · · , l(k)nα >} and SSβ = {i(k)β , < l
(k)
1β
, · · · , l(k)nβ >} respectively

where 1 ≤ k ≤ sup(α) . Now, SSα = SSβ implies i(k)α = i
(k)
β

and l(k)jα
= l

(k)
jβ

for ∀j, 1 ≤ j ≤ n and ∀k, 1 ≤ k ≤ sup(α).
Since both the connected component IDs and the edge positions
within those components are identical for support sets of α and β,
any subgraph represented by an instance of support set of α will be
represented by β as well. Hence proved. 2

From Theorem 4, it becomes critical to prune out redundant ex-
tensions that generate duplicate support sets. If we are unable to de-
tect such redundant extensions, then we will not only be generating
subsequences pointing to same subgraphs, but also further expand
these subsequences using sequence growth creating an exponential
explosion in search space redundancy. To guard from these phe-
nomenon, we define the concept of closed edge extensions.

DEFINITION 14. CLOSED EDGE EXTENSION CANDIDATE.
An extension candidate with edge label l = (s, d) is closed if
sup(l) ≥ τ , and there does not exist another edge extension can-
didate with label l′ such that l v l′ and sup(l′) = sup(l).

It is easy to see, that when only closed edge extensions are al-
lowed, all extensions are non-redundant. Going back to our previ-
ous example, among extension candidates (1, 3), (1, 2) and (1, 1),
only (1, 3) is closed.

The above two observations significantly complicate the exten-
sion identification step. Not only do we need to search for the edges
that follow P frequently, but also look for all extensions that occur
within those edges. Furthermore, after finding all such possible ex-
tensions, we need to prune those that are not closed. To analyze the
computational burden of this task, assume the maximum degree of
a node is δ. Then, the highest possible edge label is (δ, δ). Such
an edge label contains δ2 other edge labels within it and therefore
creates an explosion in the extension search space. Now among
these δ2 possible extensions, we need to prune those that are not
closed, which makes the computation cost O(δ4). Clearly, a naive
algorithm to perform this task is not feasible. To overcome this
bottleneck, we design the ExtensionMiner algorithm.

To explain EXTENSIONMINER, we define floor of edge labels.

DEFINITION 15. FLOOR. Floor of a set of edge labels {l(e1),
· · · , l(en)} is an edge label l(e) = (s, d) such that s = min(l(s1),
· · · , l(sn)) and d = min(l(d1), · · · , l(dn)), where si and di are
the source and destination of edge ei.

For an edge label l(e) = (s, d), we use l(e)[0] to denote s and
l(e)[1] to denote d. Alg. 1 presents the EXTENSIONMINER algo-
rithm. Fig. 10 presents a running example of the algorithm. EX-



Figure 10: A running example of EXTENSIONMINER. The
closed edge extensions from the given collection S of all edge
labels correspond to the floors in the non-leaf states. Specifi-
cally, (1, 4), (5, 5), (5, 6), and (1, 6). The underlined dimension
indicates the value of b in that state.

TENSIONMINER identifies closed edge-label extensions in a bottom-
up, depth-first manner. For a subsequence P = l(e1) · · · l(em), we
compute the collection S of all edge labels occurring after the last
edge em ∈ P , but within ∆T from em. Note that S may contain
the same edge label multiple times. Such a scenario is shown in the
illustration of EXTENSIONMINER in Fig. 10.

At the start, floor of all edge labels e = floor(S) is calculated
and EXTENSIONMINER (e, S, 0, τ) is called. e represents the edge
label contained in all labels in S and has support |S|. If |S| ≥ τ ,
we store e as an extension candidate (line 1). In each of the subse-
quent steps, EXTENSIONMINER moves on to a state with a smaller
S and a larger floor e. Specifically, for all indices of e (line 2),
a new set S′ is created (line 3) containing all values greater than
e[i]. This process continues till we reach a state with |S| < τ
(lines 4-5). In addition, we do not expand on states that have al-
ready been visited in an earlier branch of the search tree (lines 7-8,
Ex. child (5, 5) on right branch of root in Fig. 10). Thus, EX-
TENSIONMINER is correct in identifying all possible closed edge
extensions, non-redundant in pruning out all duplicate states at the
earliest stage, and efficient since it performs the minimum number
of computations required to identify all closed extensions.

4.2.2 Computing the largest support set
ExtensionMiner allows us to employ the sequence growth ap-

proach. More specifically, given a frequent subsequence P , we
identify the possible extensions using EXTENSIONMINER and gen-
erate new subsequences of a larger size. The supports of these
new subsequences are then computed to verify if they are above
τ . Now, recall that in Sec. 4.1, we realized that a subsequence
can have multiple support sets, and we need to identify the largest
one. Towards that goal, we use the greedy polynomial-time support
counting strategy outlined in CloGSgrow [12]. Here, we briefly
summarize the algorithm. The correctness proofs are available in
CloGSgrow [12].

First, we define the concept of right shift order.

DEFINITION 16. RIGHT-SHIFT ORDER. Instances of a se-
quence P in its support set are said to be in right-shift order, if one
instance (i, < l1, · · · , lm >) is ordered before another instance
(i′, < l

′
1, · · · , l

′
m >) when (1) i < i′ or (2) i = i′ and lm < l

′
m.

For example, instance (3, < 2, 3, 4 >) followed by (3, < 3, 4, 5 >
) is in right-shift order.

To illustrate the greedy support counting algorithm, let us revisit
the sequences generated out of the temporally connected compo-
nents in Fig. 7 (also shown in Fig. 11). Now, consider the sub-
sequence P = (1, 3)(1, 3)(1, 3). With the sequence growth tech-
nique, the generation of this subsequence would start from the edge
label (1, 3).

Figure 11: Illustration of sequence growth from (1, 3) to
(1, 3)(1, 3)(1, 3). The support sets are maintained in right shift
order, which allows polynomial-time support counting.

1. Find all instances of subsequence (1, 3) in the sequence
database and store them in right-shift order. Since there is no scope
of overlap for single edge subsequences, the computation is triv-
ial. The first table in Fig. 11 denotes all instances of (1, 3). Next,
EXTENSIONMINER identifies all possible extensions and let us as-
sume that (1, 3) is one such extension.

2. Our goal is now to compute the largest support set of (1, 3)
(1, 3) from (1, 3). To locate the first instance of (1, 3)(1, 3), the
search starts from the first entry in support set of (1, 3). More
specifically, we extend instance (1, < 3 >) of subsequence (1, 3)
to instance (1, < 3, 4 >) of subsequence (1, 3)(1, 3). Next, we
move to the second instance of (1, 3), which is (1, < 4 >), to
identify the next instance of (1, 3)(1, 3). Now, note that due to
right shift order, we need to search for the extension (1, 3) only
from position 5 onwards in SID 1. This follows from the fact that
the preceding instance of (1, 3)(1, 3) ends at position 4 in SID 1.
As a result, any non-identically overlap instance can occur only be-
yond position 4. This observation lies at the core of obtaining a
polynomial time algorithm in identifying the largest support set.

3. From instance set of subsequence (1, 3)(1, 3), we follow the
same strategy to find non-identically overlapping instances of (1, 3)
(1, 3)(1, 3) in right-shift order.

The above example illustrates the intuition behind the greedy
strategy. Since this algorithm is not a core contribution of our work,
we present the formal pseudocode in Appendix E.

Revisiting the example in Fig. 11, one can see that the 4-node
graph G2 is described by (1, 3)(1, 3)(1, 3) in the sequence space.
In the graph space, sup(G2) = 5. The approximated support in
the sequence space is 4. In other words, we are able to achieve
a good approximation without performing any of the costly steps
such as subgraph enumeration and subgraph isomorphism. This
allows us to achieve scalability without compromising significantly
on quality. We verify this empirically in Sec. 6.

5. COMMIT
Finally, we have all the pieces required to mine communication

motifs scalably. We next discuss the mining pipeline of COMMIT.
Alg. 2 presents the pseudocode. Given a sequence database dy-

namic networkG, support threshold τ and temporal threshold ∆T ,
first, all temporally connected components in the network are iden-
tified (line 1 in Alg. 2). These connected components are then
mapped to the sequence space for frequent subsequence mining
(line 2). In sequence space, the mining starts by collecting all edge
labels in S (line 3). Note that S is a collection and not a set since



Algorithm 2 COMMIT (G, τ , ∆T )
Input: A dynamic interaction network G, support threshold τ , and temporal thresh-

old ∆T .
Output: Communication motifs with support no less than τ .
1: C← All temporally connected components inG.
2: SeqDB ← {M(c)|∀c ∈ C}
3: S← All edge labels in SeqDB.
4: f ← Floor(S)
5: E← ExtensionMiner( f, S, 0, τ )
6: for each edge label e ∈ E do
7: Pj ← e; SSj ← {(i, < l >) for some i, Si[l] v e}
8: P← Pj , SS← SSj
9: for each subsequence Pj ∈ P do

10: FreqP, FreqSS ← SeqGrow( SeqDB,Pj , SSj ,∆T )
11: for each I ∈ FreqSS do
12: A+ ←MotifMine( SeqDB, SS)
13: A←Remove false positives from A+.
14: return A

an edge label e is present sup(e) times in S. EXTENSIONMINER
is next executed on S, which returns all closed edge labels E with
supports no less than τ (line 5). For each edge label in E, we cal-
culate its largest support set using right-shit order. Next, we extend
each edge P ∈ E with the help of SEQGROW algorithm to larger
subsequences.

Alg. 3 presents the SEQGROW algorithm. SEQGROW employs
the sequence growth approach and aggressively leverages the apri-
ori property. More specifically, given a subsequence P , SEQGROW
extends P to a larger subsequence only if sup(P )≥ τ (line 1) (re-
call Theorem 3). To extend a sequence P with edge e, first all edges
within ∆T from P are identified, and then filtered using EXTEN-
SIONMINER. The extensions provided by EXTENSIONMINER are
used to grow P till we reach a state where no extension e exists
such that sup(P ◦ e) ≥ τ . When SEQGROW terminates, it returns
the frequent subsequences.

The last step in COMMIT is to map the frequent subsequences to
the graph space. This is achieved using the MOTIFMINE algorithm.
In COMMIT, an instance I = (i, < l1, · · · , ln >) of a sequence
stores sequence id i, which corresponds to the ith component of
the network. In addition, each lj in I maps the location of the jth

edge in I to its location in component i. As a result, each instance
of subsequence uniquely identifies the subgraph it represents (lines
2-4 in Alg. 7). After identifying the corresponding subgraphs of all
instances of a frequent subsequence, we compute their supports in
the graph space using temporal subgraph isomorphism and check if
they are actually frequent (lines 11-13 in Alg. 2). The procedure to
check temporal subgraph isomorphism is detailed in Appendix F.

Algorithm 3 SeqGrow (SeqDB,P, SS,∆T, τ )
Input: A sequence database SeqDB = {S1, S2, ..., SN}, P is subsequence,

SS the support set of P .
Output: FreqP is a set of frequent sequences andFreqSS contains the associated

support sets.
1: if |SS| < τ then
2: return
3: FreqP ← P ; FreqSS ← SS
4: for each instance (i, < l1, l2, ..., lj >) ∈ SS do
5: S← {Si[lk] | lk > lj and | tl − tj | ≤ ∆T}
6: f ← Floor(S)
7: E← ExtensionMiner( f, S, 0, τ )
8: for each edge e ∈ E do
9: P+

i ← P ◦ e
10: SS+

i ← GetSup(SeqDB,P, SS, e) \\See Appendix E for GetSup()
11: P← P+

i , SS← SS+
i

12: for each P+
i , SS

+
i ∈ P, SS do

13: SeqGrow( SeqDB,P+
i , SS

+
i ,∆T, τ )

Algorithm 4 MotifMine (SeqDB, SS)
Input: A sequence database SeqDB = {S1, S2, ..., SN}, support set SS.
Output: Motif with their frequencies
1: for each instance (i, < l1, l2, ..., lj >) ∈ SS do
2: FindGi associated with Si.
3: Find edge ids< ea, eb, ..., ej > associated with< l1, l2, ..., lj >.
4: Form induced graph IG from graphGi and edges< ea, eb, ..., ej >.
5: if IG is temporally connected graph then
6: Create a temporal node for each edge.
7: Create link from temporal node A to B, if timeA < timeB and @C

such that timeA < timeC < timeB .
8: Count frequency of each temporal graph

6. EXPERIMENTS
In this section, we show that COMMIT is close to optimal in

terms of accuracy, up to two orders of magnitude faster than exist-
ing techniques, and effective in characterizing the recurring inter-
action patterns.

6.1 Experimental setup
All experiments are performed on a 64-bit Intel i7-2600 CPU

@ 3.40GHz machine with 32 GB RAM running on Ubuntu 14.04.
Proposed algorithms are written in C++ with -O3 flag.

6.1.1 Datasets
We evaluate our COMMIT on the three social network datasets

in Table 1. The Twitter dataset, which is the largest of the three,
contains all tweets in December, 2009. If a tweet for person A
“mentions” a set of persons P using the “@” operator, then it cre-
ates an edge fromA to each of the person in P . In Facebook, if user
X posts a message on wall of another user Y , then a directed edge
from node X is created to node Y . Finally, the Enron email net-
work contains around half a million emails. Edges from an email
are created in the same manner as in Twitter mentions.

6.1.2 Benchmarking Setup:
The baseline approach is to enumerate all possible subgraphs in

the given network, and verify if each of these subgraphs are fre-
quent and temporally connected. We call this approach the Naïve
approach. An alternative approach is to directly mine the frequent
subgraphs and then verify if they are communication motifs. The
state-of-the-art technique to mine frequent subgraphs is GRAMI
[13]. Thus, these two form constitute our baseline techniques.

In our experiments, we evaluate both top-k and range queries for
scalability. The range version is compared with GRAMI, and the
top-k version is benchmarked against Naïve since GRAMI does not
support top-k frequent subgraphs. To evaluate accuracy of COM-
MIT, we use the top-k version since the intuitive interpretation of
top-k is simpler. For top-k queries, we use the best-first search al-
gorithm, where the support threshold changes as more patterns are
mined. Specifically, at any stage, the support threshold τ is the sup-
port of the kth most frequent subsequence till that point. All other
aspects of the COMMIT algorithm in Alg. 2 remain the same. To
ensure that the top-k set is not overloaded with small motifs, we
consider motifs of size at least 3.

∆T is an important parameter in our model and controls whether

Dataset Number of Number of Duration
Nodes Edges (days)

Twitter [3] 4,978,421 26,526,180 30
Facebook [35] 45,813 855,539 1540

Enron Email Network [1] 10833 77050 349

Table 1: Summary of the datasets.



two interactions are related. To learn the appropriate ∆T , we pick
a sample of 1000 nodes proportional to their frequencies of inter-
actions. This is necessary since a large portion of the users are
dormant. For each selected node, we extract the subgraph of radius
∆T around it. Figs. 12(a)-12(b) present the average growth rate in
the subgraph sizes as ∆T is varied in a range [tmin, tmax], where

Coverage(∆T ) =
subgraph size at ∆T

subgraph size at tmax
(1)

In Facebook, the growth rate saturates at 30 minutes indicating
the lifeline of related interactions. In Enron, no clear pattern is
visible as the growth rate is linear. In Twitter, the coverage shows
two jumps at ∆T = 60 seconds and ∆T = 120 seconds. Thus,
a threshold between 60 to 120 secs is a reasonable value for ∆T .
In Twitter, we look at a much smaller time range, since the spread
of information flow is extremely high, but is limited within a short
time-window. This behavior stems from a combination of two its
properties. First, twitter has a large number of celebrities with fol-
lowers in millions. When such celebrities tweet, they generate a
high volume of responses from the followers. At the same time,
this bursty behavior exists for a small duration since a tweet is vis-
ible on the timeline only for a short period till it gets pushed down
by more recent tweets. Due to this property of twitter, we vary
the time window in the range of 15 seconds to 2 minutes. On the
other hand, interactions in Facebook and Emails remain active for
a much longer while since a Facebook wall or email inbox do not
receive content at the same express rate.

This analysis guides our choice of default parameter values. Un-
less explicitly specified, we set k = 500, and ∆T = 30 minutes for
Enron and Facebook and 30 seconds for Twitter. A detailed anal-
ysis on the impact of ∆T on temporally connected components in
interaction networks is provided in Appendix G.

6.2 Accuracy of COMMIT
In this section, we measure the accuracy of communication mo-

tifs mined by COMMIT. To construct the ground truth dataset,
we identify the top-k communication motifs using the Naïve algo-
rithm, which enumerates all possible subgraphs. Since, the sizes of
the datasets are too large for the naive approach, it invariably runs
out of main memory and crashes even on a machine with 32GB
main memory. We represent the size of communication motifs as
the number of interactions involved in it. This happens since Naïve
needs to enumerate all possible subgraphs and store them in mem-
ory for support counting. Due to this weakness of Naïve, we build
the ground truth dataset in a breadth-first manner. More specifi-
cally, we first generate all communication motifs of size 2 edges.
Then, we proceed to motifs of size 3 edges and so on. Thus, if
Naïve crashes while mining motifs of size m, then we know that
we have the ground truth for all motifs till size m − 1. To bench-
mark the accuracy of COMMIT, we compute the top-k list on only
those communication motifs that are within the size of m− 1.

The accuracy of COMMIT is quantified using the F-score mea-
sure [2]. F-score can be visualized as a weighted average of the
precision and recall. An F -score of 1 corresponds to the best per-
formance, and 0 corresponds to the worst.

Figs. 12(c)-12(e) demonstrate the results on a range of ∆T s as k
is varied. On Twitter, which is the largest network with more than
26 million edges, the naive algorithm quickly runs out of memory.
Naïve is able to generate motifs only up to size 3, all of which also
occur in the top-k lists of COMMIT. Thus, Twitter is not a good
dataset for verification of accuracy. On Facebook and Enron, Naïve
scales better and its top-k lists contain motifs of larger sizes. On
Facebook, COMMIT generally achieves an F-score exceeding 0.8.

As k grows, the F -scores almost touch 1. A similar improvement
with k is also seen in Enron. This improvement of accuracy with
k is natural. At small ks, the difference in the support of the top
motif and the kth motif is normally very small. Here, if COMMIT
underestimates the frequency of a motif by a small amount δ, then
its impact on the top-k list is high. When k grows, a wider error
range is available for a communication motif to remain within the
top-k list and hence, the increase in accuracy. To put the value of
k in context, even Enron, the smallest network, contains millions
of subgraphs. Thus, k = 50 represents a very small portion of the
subgraph space, and even in this small region, COMMIT has an
accuracy 0.6, which improves to 0.8 at k > 500.

Except on the Facebook dataset, the accuracy is invariant with
∆T , specifically at higher ks where the ranking stabilizes. On
Facebook, the accuracies are slightly lower at ∆T = 15 mins and
∆T = 30 mins because at higher ∆T s, Naïve once again fails to
scale and mines a limited number of motifs, all of which are part
of COMMIT’s top-k answer set. Since ENRON is a much smaller
network, Naïve finishes within a manageable time limit at all ∆T s.

In addition to the F-Score of the top-k list, we also verify how
well the ranking within the top-k lists are preserved. To assess the
similarity of the top-k rankings, we compute the Spearman’s rank
correlation coefficient [34] between the ground truth and COM-
MIT’s top-k lists. Spearman’s rank correlation takes as input a list
of items and their ranks on each of the methods. In our case, the
top-k lists from Naïve and COMMIT may not overlap completely.
In such a situation, we create a list by taking the union of the two
top-k lists and their corresponding ranks. Figs. 12(f)-12(h) presents
the results against k on multiple ∆Ts. The trends are similar to that
of F -score. In Twitter, the correlation is above 0.9. However, this
is largely due to Naïve running out of memory and generating only
a small set of motifs. On Facebook, the correlation improves from
0.6 to 0.8 as k grows at ∆T = 15 mins and ∆T = 30 mins. As
discussed earlier, at higher ∆T , Naïve crashes before generating all
k patterns. Similar to Facebook, Enron and the correlation saturates
at 0.75 for k beyond 500. The reason behind this improvement is
the same as with k; the permissible error range increase with k.

To summarize, both the F -score and rank correlation improve
with k and saturate around 0.80 on Facebook and Enron. On Twit-
ter, Naïve fails to scale.

6.3 Scalability of COMMIT
After establishing the accuracy of COMMIT, we next focus on

its scalability. We evaluate COMMIT on both top-k and range
queries. In the top-k setting, we benchmark COMMIT against
Naïve since no other technique exists. In the range query setting,
where the input is a support threshold, we benchmark COMMIT
against GRAMI. While GRAMI does not solve the problem of
communication motif, it forms a part of the alternative pipeline
where frequent subgraphs are first mined, and they analyzes to
check if they satisfy the constraints of communication motifs. In
other words, GRAMI provides a lower bound on the running times
of the alternative communication motif discovery route. In the fol-
lowing experiments, unless specifically mentioned, we set k =
500, and ∆T = 30 minutes for Facebook and Enron, and ∆T =
30 seconds for Twitter.

6.3.1 Top-k queries
First, we benchmark the performance of COMMIT against k.

Figs. 12(i), 12(j),13(a) present the results. As we saw in the pre-
vious section, Naïve inevitably runs out of memory on Twitter and
Facebook, and thus it is not possible to compute its actual running
time. Thus, in these experiments we report the time Naïve takes
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Figure 12: Growth rate of coverage with ∆T in (a) Twitter and (b) Facebook and Enron. Analysis of F-score with k on (c) Twitter
(d) Facebook and (e) Enron. k vs Spearman’s rank correlation on (f) Twitter (g) Facebook and (h) Enron. Growth rate of running
time with k in (i) Twitter, (j) Facebook.

to mine all communications motifs of size 3 in Twitter and size 4
in Facebook. In other words, the experiments only provides loose
lower bounds on the actual running times of Naïve. Since Naïve
needs to enumerate all subgraphs regardless of the value of k, its
running time is constant with k. In COMMIT, there is a minor in-
crease in the running time with k. For top-k queries, we use the
best-first search algorithm, where the support threshold changes as
more patterns are mined. At any stage, the support threshold is the
support of the kth most frequent pattern till that point. When k is
large, this threshold is smaller and hence an increase in the running
time. Notice that the running times of Naïve on Twitter and Face-
book are similar although Twitter is significant larger. This results
from that fact that regardless of the dataset size, Naïve runs out of
memory around the same time.

We further study the scalability of top-k queries against ∆T ,
which controls when two interactions are classified as related. In
addition, we adopt a different strategy to estimate the running time
of Naïve on Twitter since Naïve is unable to scale beyond patterns
of size 3. To mine patterns of larger sizes on Twitter, we partition
Twitter into multiple smaller chunks of 50,000 edges each. Then
we let Naïve run on each of these partition in parallel. While Naïve
finished on some of the partitions, it could not finish mining all
chunks even after 20 hours across all values of ∆T . Thus, as vis-
ible in Fig. 13(b), the running time is a straight line. Fig. 13(c)
demonstrates the performance in Facebook. As can be seen, there
is an exponential growth in the running time of Naïve. At larger
∆T , the sizes of the communication motifs and their corresponding
subsequence representations are larger. Thus the sequence growth
algorithm runs longer, the support counting is more expensive, and
in the graph space, verification cost is higher. In addition, the sizes
of the temporally connected components grow with ∆T as well.
The impact on Naïve is much more drastic since the cost of sub-
graph isomorphism goes up. On the other hand, COMMIT is insu-
lated from such a drastic impact due to the bulk of the processing
happening in sequence space. A similar trend to Facebook is also
visible in Enron. Overall, COMMIT is up to two orders of magni-
tude faster than the Naïve algorithm

Finally, we look at the growth rate of running time against the
size of the interaction network. Figs 13(e)-13(f) presents the results
on a series of ∆T s. On both datasets, the growth rates resemble a
linear curve. On twitter the growth rate is higher since it is more
dense. We ignore the ENRON dataset for this experiment since it
is the smallest.

6.3.2 Range query
We now concentrate on the range query performance of COM-

MIT. For benchmarking purposes, we compare the running time of
COMMIT with GRAMI [13]. Note that the answer sets of GRAMI
and COMMIT are different. GRAMI mines frequent subgraphs.
However, as illustrated earlier, these frequent subgraphs can sub-
sequently be analyzed to extract the communication motifs. As
discussed earlier, without any metadata, it is non-intuitive to know
what an appropriate support threshold is since the number of sub-
graphs in the networks itself is unknown. We therefore follow the
strategy of GRAMI [13], where the threshold is set in proportion
to the number of nodes. In Twitter, we vary the support thresh-
old from τ = 1% of total number of nodes nodes to higher val-
ues. In this support range, GRAMI fails to complete even after 16
hours. Thus, the running time of GRAMI is shown as a straight
line in Fig. 13(g) and only indicates a lower bound of the actual.
GRAMI fails to scale since it relies heavily on node labels to prune
the search space. COMMIT, on the other hand, uses node degrees
as labels, which are subsequently used to mine communication mo-
tifs. As expected, the running time goes down with increase in the
minimum support threshold. To ease the setting an check the per-
formance at higher values of τ , in Facebook, we start growing τ
from 5% of the node set size. However, we again see a similar
result and GRAMI fails to complete within 16 hours. Fig. 13(h)
demonstrates the results. In contrast, COMMIT finishes within 30
minutes across all values of τ in Fig. 13(h). Overall, COMMIT is
more than 70 times faster than GRAMI.

6.3.3 Distribution of motif sizes
Secs. 6.3.1 and 6.3.2 show that Naïve can somewhat scale when

the motif sizes are small; specifically, motifs of size 3 in Twitter
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Figure 13: (a) Growth rate of running time with k in Enron. Growth rate of running time with ∆T in (b) Twitter, (c) Facebook
and (d) Enron. Growth rate of the running time against the size of the interaction network in (e) Twitter and (f) Facebook. Growth
rate of running time against the support threshold in the range query setting. Running time comparison of GRAMI and COMMIT
against the support threshold on (g) Twitter and (h) Facebook. Distribution of motif sizes (i) and their supports (j).

and size 4 in Facebook and Enron. In this section, we investi-
gate whether motifs of larger sizes occur in interaction networks.
Fig. 13(i) demonstrates the distribution of motifs with respect to
their sizes in the top-10000 set. Across all three networks, major-
ity of the motif sizes are above 4. This result highlights the need for
COMMIT. Next, we further study the size of communication motifs
with respect to their support levels. More specifically, we plot the
summation of supports of all motifs of a particular size. Fig. 13(j)
shows the result in Twitter, which is the largest interaction network
among the three. The support distributions in Facebook and Enron
are shown in Appendix H. In Twitter, the total support from size-4
motifs is the highest. Motifs of sizes between 5 to 7 are also very
frequent. An important observation that comes out from the results
in Figs. 13(i) and 13(j) is that although the number of size-10 motifs
is much higher than size-4 motifs, size-4 motifs are more frequent.
This is natural since it is possible to merge two or more size-4 mo-
tifs into a single larger motif. Due to this same reason, the top-3
most frequent motifs across all three datasets, shown in Fig. 14, are
of size 3. On the other hand, the number of larger motifs in the top-
10000 list, such as those of size 10, is higher since combinatorially,
the space of size-10 motifs is larger than size-4 motifs.

6.4 Implications of communication motifs
In this section, we analyze the top-3 communication motifs of

size 3 from Twitter, Facebook, and Enron and discuss how they
reveal the patterns of communications in a social network. The
motifs are shown in Fig. 14. We restrict the discussion to motifs of
size 3 just for the sake of simplicity.

6.4.1 Twitter mentions dataset
A distinct pattern in Twitter that is revealed through communica-

tion motifs is that people tend to communicate more with celebri-
ties or twitter handles of prominent events that are in news. For
example, the news that “Tiger Woods announcing that he will not
be attending his own charity golf tournament” lead to lot of tweets
in which “@TigerWoods” is mentioned. An identical pattern is

again observed during the “movie release of Avatar” generating to
bursts of tweets to “@officialavatar”, which is the official account
for Avatar movie.

The first communication motif in Twitter shows that node “A” is
related to some celebrity and the edge labels denotes the temporal
sequence of communication links. We observe that often there is
a sudden peak in the number of tweets to a specific person within
a short duration of time. This pattern is evident in the overlapping
times stamps of the first motif and even more prominently in the
second communication motif in which all three people mention the
celebrity or (prominent event representative) node A at the same
time. The third communication motif shows people (node B) tend
to mention both the famous person A and second person (node C)
in the same tweet. Overall, we observe that people use Twitter
as a medium to communicate with famous persons (or organiza-
tions like a soccer club, or upcoming movie, etc.). Furthermore,
the tweets are often bursty in nature as evident from the first and
second communication motifs. The burstiness is explained from
the design of Twitter where a tweet is continuously pushed down
from the timeline by more recent tweets and is therefore visible
only for a limited period.

6.4.2 Facebook wall-posts dataset
In Facebook, the patterns are distinctly different from Twitter.

We observe with the help of communication motifs that people tend
to interact more with their friends. As evident from the first com-
munication motif, people (B) tend to post a message on the wall
of same friend (A) again and again. Another distinct pattern in
Facebook shows that when a person (A) has a birthday or anniver-
sary, A’s friends wish him/her by writing on the wall of A . This
pattern is the second most frequent behavior as evident in the sec-
ond communication motifs. The third common behavior is people
(B) interacting frequently with multiple friends (A and C), with a
distinct preference towards one of them (C).

6.4.3 Enron



Figure 14: Top-3 communication motifs.

The fact that Enron is an email network is clearly evident from
the top-3 patterns in Fig. 14. The communication motifs reveal
emails being used as a broadcasting mechanism. This is expected
since the Enron dataset contains data from about 150 users, most of
whom are senior managers in the company hierarchy [1]. A man-
ager routinely needs to distribute information to employees work-
ing under him/her. Hence, it is not surprising to see the top-2 motifs
depicting this pattern. The third communication motif is of similar
nature as well, but shows multiple emails to the same user (C).

6.4.4 Applications of communication motifs
As clearly evident from our analysis on the three interaction net-

works, communication motifs are effective in characterizing the
common mode of interactions happening in a network. These mo-
tifs can be used for a myriad of applications such as predicting
trends by mining the patterns that commonly precede the trend,
predicting the nature of communication taking place such as birth-
day wish, group discussion etc. Furthermore, communication mo-
tifs reveal that the underlying social network has a strong influence
on how people interact. In a previous study, Kovanen et al. [20],
showed difference in communication patterns in dense and sparse
regions of electronic communication records. All in all, these mo-
tifs can be used as features to characterize social networks itself.

Indeed, COMMIT is a heuristic and optimality cannot be guar-
anteed. We resort to a heuristic since computing the optimal an-
swer set is NP-complete. Therefore, an important question arises:
If communication motifs are used to characterize social networks,
what is the impact of a non-optimal answer set? The analysis in
Sec. 6.2 shows that the F-score and rank-correlation of COMMIT
is generally around 0.8. Thus, the answer set is close to optimal.
More importantly however, the non-optimal motifs in COMMIT’s
answer sets are also highly frequent; only, they are not in the top-k
list. Thus, these small minority of non-optimal motifs may not be
the best k motifs to characterize, but they are still informative and
unlikely to lead to any inaccurate conclusions.

7. RELATED WORK
Generally, network motifs are statistically significant subgraphs

that occur more frequently in the original network as compared to
randomized networks. Quantifying the significance of motifs varies
from application to application [11, 31]. Nonetheless, mining net-
work motifs forms the backbone of various applications such as
spam detection [27], protein-protein link prediction [4], analyzing
human interactions [14], network classification [5, 29, 30, 32].

Mining frequent subgraphs from single network is widely stud-
ied [6,8,13,18,21,22,37,40]. Milo et al. [26] proposed that network

motifs might be the evolutionary backbone of a network [26, 33].
Milo et al. [25] represent the structural and behavioral aspects of a
network with significance profiles, which is a normalized vector of
z-scores of motifs in the network.

The network motif detection basically consists of three steps: 1)
Enumerate subgraphs of a given size in the network. 2) Detect iso-
morphic subgraphs and maintain their counts. 3) Calculate the sub-
graph significance. Significant work has been done on algorithms
to enumerate subgraphs. We have included few best algorithms in
the related work. The second step of detecting isomorphic sub-
graphs is done with software packages such as Nauty [24]. The
third step of calculating subgraph significance of subgraph varies
based on the application. In this aspect, the proposed formula-
tion of communication motifs and its scalability challenges have
not been studied before.

In literature, there are a number of surveys [9, 11] on static net-
work motif detection algorithms. Kashtan et al. [17] propose an
edge sampling based algorithm, mfinder, to estimate subgraph counts.
Sebastian Wernicke et al. [36] develop a sampling based motif de-
tection algorithm, FANMOD, for estimating number of subgraphs
and does not suffer from sampling bias as in mfinder [17]. Zahra
Razaghi et al. [16] propose a method for enumerating subgraphs
called kavosh. Since we have a dynamic interaction network, static
motif detection techniques do not apply to our problem.

In the domain of dynamic graphs, a straightforward approach is
to create a set of graphs H from the original dynamic network us-
ing time windows a certain length such as a month [7]. Each graph
in set H then represents the graphs which consists of interactions
between nodes occurring in a specific month time window. Mo-
tifs are then computed on each graph in H . Chechnik et al. [10]
propose the idea of activity motifs to analyze transcription in yeast
organism metabolism. David Jurgens et al. [15] analyzed interac-
tions of Wikipedia editors to identify significant patterns by con-
structing a temporal bipartite network. Kai Liu et al. [23] proposed
a finite mixture model to detect multiple stochastic motifs in net-
work data but does not consider exact edge times while detecting
stochastic motifs. The closest works to our problem are proposed
by Lauri Kovanen et al. [19] and Zhao et al. [39]. The model pro-
posed in [19] fails on network where a person can communicate
simultaneously (time overlapping edges) and hence fails to solve
the proposed problem. The model in [39] is similar to ours but
has the weakness of joining unrelated motifs together. More im-
portantly, they do not propose any mining technique and the naive
subgraph enumeration approach fails to scale.

8. CONCLUSION
In this paper, we studied an increasingly important problem of

mining communication motifs from large dynamic interaction net-
works. Since each communication motif corresponds to a recurring
subgraph with a similar sequence of information flow, it required
us to venture into the exponential subgraph search space of the in-
teraction network. To scale the mining framework, we proposed
an algorithm called COMMIT (COMmunication Motifs in InTerac-
tion networks). COMMIT derives its pruning power from mapping
the interaction network to a contractive sequence space. Extensive
experiments on three social networks demonstrated COMMIT to
be accurate and efficient. COMMIT is up to 2 orders of magnitude
faster than existing techniques. In addition, a qualitative analysis of
the communicative patterns reveal their unmatched power in distin-
guishing between social network through the role they play in the
progression of interactions of their users. Overall, COMMIT opens
up a new direction in motif mining by unleashing the potential of
communication motifs.
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APPENDIX
A Weakness of the model proposed by Zhao

et al [39]

Figure 15: The scenario where two unrelated sets of interac-
tions are clubbed together as related.

Zhao et al. [39] use the term communication graph to denote a
group of interactions that are related in their progression. In our
work, we use the term temporally connected graph to model this
same event. Informally, a communication graphs contain edges
such that each edge ei has at least one other adjacent edge ej that
is within ∆T from ei. More formally, it is defined as follows.

DEFINITION 17. COMMUNICATION GRAPH. Given a time
window ∆T , a communication graph is a collection of edges S =
{e1, · · · , em} such that ∀ei ∈ S, there exists at least one edge
ej ∈ S, i 6= j, such that 1) |{si, di} ∩ {sj , dj}| > 0 and 2)
|ti − tj | ≤ ∆T .

By the above definition, Fig. 15 is a communication graph since
all edges are adjacent to at least one edge that is within ∆T . How-
ever, notice that the interactions involving {A,B,C} are unrelated
to those involving {D,E, F}. These two unrelated groups are
clubbed together as related due to the edge between C and E.

In our definition, each pair of node in a temporally connected
graphs needs to be temporally related. Fig .15 is not temporally
connected since E is not temporally related to any of the nodes in
{A,B,C}, which conforms with the general intuition.

B Violation of apriori property

Figure 16: Violation of apriori property due to overlap.

The apriori property expresses a monotonic decrease of an eval-
uation criterion accompanying the progress of a sequential pattern.
In the context of support counting for graphs, the apriori property
states that the support of a graph is at least as large as the support
of any of its supergraphs.

Now, consider the interaction network in Fig. 16. At ∆T = 2,
Motif 1 has a support of 1. However, Motif 2, in spite of being
a supergraph of Motif 1, has a support of 3. This violation of
apriori property happens since the embeddings of Motif 2 over-
lap with each other and share the triangular component involving
nodes {A,B,C}.



C Identifying temporally connected components

Algorithm 5 TCCDetect(N = (V,E), ∆T )
Input: An interaction networkN , temporal threshold ∆T .
Output: Return all temporally connected networks inN at ∆T .
1: Mark all edges inE as not processed.
2: TCC ← ∅
3: while All edges are NOT processed do
4: Create an empty graphG.
5: Choose a random unprocessed edge e, push it on S.
6: while S is not empty do
7: Pop edge e from S.
8: Add edge e in GraphG.
9: Mark e as processed.
10: If the time difference between e and its adjacent edge e′ is within ∆T,

then push e′ on S.
11: TCC ← TCC ∪G
12: return TCC

D Computing support of a subsequence is NP-
complete

THEOREM 5. In the presence of identically overlapping in-
stances, computing sup(P ) = |SeqDB(P )| is NP-complete.

PROOF: [12] proves that when identically overlapping instances are
allowed in the “traditional” definition of subsequence, the problem
is NP-complete. Now, if sequence α is a “traditional” subsequence
of β, then α v β by Definition 8 as well. 2.

E Pseudocode of the GetSup Algorithm
Alg. 6 presents the pseudocode of the GETSUP algorithm. We

implement this following the algorithm proposed in [12].

Algorithm 6 GetSup (SeqDB,P, SS, e)
Input: A sequence database SeqDB = {S1, S2, ..., SN}, subsequence P , sup-

port set SS and edge e.
Output: A support set SS+ of subsequence P ◦ e,
1: for each Si ∈ SeqDB s.t. SSi = I ∩ Si(P ) 6= φ (P has instances in Si, I

is instance) in the ascending order of i do
2: last_pos← 0, SS+

i ← φ.

3: for each (i, < l1, l2, ..., lj−1 >) ∈ SSi = I ∩ Si(P ) in right-shift
order do

4: pos← max{last_pos, lj−1}
5: lj ← min{l|Si[l] v e and l > pos}
6: if lj =∞ then
7: break
8: last_pos← lj
9: SS+

i ← SS+
i ∪ {(i, < l1, l2, ..., lj−1, lj >)}

10: return SS+ = ∪1≤i≤NSS
+
i

F Returning to graph space

Algorithm 7 MotifMine (SeqDB, SS)
Input: A sequence database SeqDB = {S1, S2, ..., SN}, support set SS.
Output: Motif with their frequencies
1: for each instance (i, < l1, l2, ..., lj >) ∈ SS do
2: FindGi associated with Si.
3: Find edge ids< ea, eb, ..., ej > associated with< l1, l2, ..., lj >.
4: Form induced graph IG from graphGi and edges< ea, eb, ..., ej >.
5: if IG is temporally connected graph then
6: Create a temporal node for each edge.
7: Create link from temporal node A to B, if timeA < timeB and @C

such that timeA < timeC < timeB .
8: Count frequency of each temporal graph

With the formalization of the frequent subsequence mining frame-
work under the altered definition of “subsequence” in Definition 8,

Figure 17: Instance I = (3, < 2, 3, 4 >) of subse-
quence (1,3)(1,3)(1,3) corresponds to temporal component G3

in Fig. 11. I represents an induced subgraph of G3 (shown us-
ing the orange edges). For checking temporal isomorphism, in-
duced graphs are converted into temporal graphs and the fre-
quencies of temporal graphs are computed for final verification.

the last remaining piece in the COMMIT algorithm is the procedure
to return to graphs from the space of sequences. In this section, we
design the MOTIFMINE algorithm in Alg. 7 to fill this gap.

An instance I = (i, < l1, · · · , ln >) of a sequence stores se-
quence id i, which corresponds to the ith component of the net-
work. In addition, each lj in I maps the location of the jth edge in
I to its location in component i. Recall that in Sec. 3 we devised
a mechanism to impose a total ordering on the edges of a given
graph. Here, lj maps to the edge ranked lj in component i. As a re-
sult, each instance of subsequence uniquely identifies the subgraph
it represents (lines 2-4 in Alg. 7).

EXAMPLE 5. Consider one instance (3, < 2, 3, 4 >) of pat-
tern P3 = (1, 3)(1, 3)(1, 3) from Fig. 11. The induced graph and
its corresponding matched edges are shown in Fig. 17.

In a traditional setting, to compute the frequency of each unique
subgraph, we need to perform graph isomorphisms. In our prob-
lem, however, we need to check for temporal isomorphism (Defini-
tion 4). Towards that goal, given an interaction graph, we convert
it into a “temporal” graph such that the interaction graphs are tem-
porally isomorphic to each other if an only if their corresponding
temporal graphs are also isomorphic. The temporal graph is con-
structed in the following manner. On each edge e = (s, d) of the
interaction graph, we partition it into two edges (s, t), (t, d) by in-
troducing a new temporal node t. We refer to this temporal node as
e′s temporal node. Let e′ be the edge in interaction graph that is
ordered immediately after e and t′ the temporal node in e′. To im-
pose the temporal constraints, we now add one more edge from t to
t′. This process is repeated for each edge in the original interaction
graph (lines 4-7). Fig. 17 illustrates the correspondence between
an interaction graph and its temporal graph.

THEOREM 6. Let G1 and G2 be two interaction graphs and
C1, C2 their corresponding temporal graphs respectively. If G1 is
temporally isomorphic to G2, then C1 is isomorphic to C2.

PROOF: Let us assume that the edges between the temporal nodes
in C1, C2 are absent. In this scenario, it is trivial to see that if G1

and G2 are isomorphic, then C1 and C2 are isomorphic as well.
Now, because G1 and G2 are temporally isomorphic, for any two
edges ei, ej ∈ G1 such that ej is ordered immediately after ei, for
edges f(ei), f(ej) ∈ G2, f(ej) is also ordered immediately after
f(ei), where f is the bijection from edges inG1 toG2. Now, if we
consider the edges between the temporal nodes in C1, C2, due to
the edge ordering preservation, whenever there is an edge from the
temporal node in ei to ej , there is also an edge from the temporal
node in f(ei) to f(ej). Thus, a bijection exists from edges in C1

to edges in C2. 2
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Figure 18: (a-c) Number of temporally connected components in the three interaction networks. (d) The distribution of the sizes
of temporally connected components in Twitter at ∆T = 120 seconds (e) Distribution of communication motif sizes against their
supports in Facebook and Enron datasets.

G Impact of temporally connected components
on running time

Based on Theorem 6, the final temporal graph frequencies are
computed using subgraph isomorphism tests and returned. In this
section, we discuss how the properties of the temporally connected
components affect the running time. Figs. 18(a)-18(c) show how
the number of temporally connected components vary with ∆T .
As can be seen, majority of the components contain just one in-
teraction, while the remaining interactions in the network are dis-
tributed among a minority of large connected components. The size
distribution of temporally connected components in Twitter, which
follows a power-law, is shown in Fig. 18(d).

The running time is affected by two aspects: the number of tem-
porally connected components, and the sizes of the temporally con-
nected components. For example, a network with 20 million edges
can split into 1 million components with 20 edges each, or, in the
extreme case, a single component containing 19 million edges and
remaining components containing an edge each. Although both
cases have equal number of components, the running times would
vary significantly. As shown in Figs. 18(a)-18(c), the real results
tend to be more like the second case. This phenomenon stems from
the well documented scale-free property of social networks.

To illustrate the impact on running time, when the temporally
connected components are large in size, there is more scope of
overlap among motifs and thus higher supports for motifs of larger
sizes. This drives up the running time since enumeration of larger
motifs is more expensive. On the other hand, when there are more
temporally connected components, the number of sequences is higher
and consequently, small motifs become extremely frequent. In
summary, both these factors are important. Both the size and the
number of connected components is dictated by ∆T . While the
size is directly proportional to ∆T , the number of components is
inversely proportional to ∆T . Generally, with higher ∆T , the run-
ning time goes up (Figs. 13(b)-13(d)), which indicates that larger
components have more impact on the running time.

H Support and size distribution of communi-
cation motifs

Fig. 18(e) demonstrates the distribution of supports of communi-
cation motifs with respect to their sizes in the Facebook and Enron
datasets. The behaviors are similar to that of Twitter (Fig. 13(j)).
Generally, the overall support decreases with motif size. However,
Facebook shows a different behavior in one aspect. While size-3
motifs are rare in Twitter and Enron, they are extremely frequent in
Facebook. As visible in Fig. 13(i), the number of size-3 motifs in
the top-k set is also relatively higher in Facebook than in Twitter

or Enron. This behavior indicates that people tend to interact in
smaller groups in Facebook than in Twitter or emails in a corporate
setting, such as Enron.
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