
A Scalable Approach to Mining Communication Motifs

from Dynamic Networks

A THESIS

submitted by

GURUKAR SAKET GHANSHYAM

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MARCH 2015

THESIS CERTIFICATE

This is to certify that the thesis titled A Scalable Approach to Mining Communica-

tion Motifs from Dynamic Networks, submitted by Gurukar Saket Ghanshyam, to

the Indian Institute of Technology, Madras, for the award of the degree of Master of

Science, is a bonafide record of the research work done by him under our supervision.

The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. B Ravindran
Research Guide
Associate Professor
Dept. of CSE
IIT-Madras, 600 036

Dr. S Ranu
Research Guide
Assistant Professor
Dept. of CSE
IIT-Madras, 600 036

Place: Chennai

Date: July 4, 2015

ACKNOWLEDGEMENTS

Life is hard. This is what Ravindran sir says when you tell him it is difficult to manage

all the things in short time. I would rather say that "Life is fun, if you are working under

Ravindran sir". He is a perfect example of Lead by example. He always pushed me to

achieve whatever I was able to achieve and at the same time whenever I faced any issues

in insti he acted like a shield for me.

I was lucky enough to work under two talented guides. Sayan sir is the main reason

for the SIGMOD publication that came out of this thesis. Whenever I faced any diffi-

culties, he was available for me. It was not uncommon for me to receive a response mail

of my query on even weekend nights. Under him, I learnt to prioritize among problems.

He is a friend and guide to me.

I would like to thank my friend Renu Karule who supported me whenever I felt

low. She always has been a source of motivation for me. I studied together with Avijit

and Sai and they helped me clear lot of doubts in academics. Avijit and I shared same

classes, same hostel, same lab and same guide. I will always remember the time we

spent together studying, playing, dining, arguing and laughing.

This journey of IITM was pleasant because of my dear friends Karishma, Abhilash,

Mandeep, Priya and Raj. I will always cherish the moments we spent together. I am

glad that I met all of them. It is because of them I was able to enjoy my life both inside

and outside IIT.

I want to thank Sarath for his repeated attempts to teach me Tamil language. Dis-

cussions with Biswa during our tea sessions were funny and enjoyable. I also want to

i

thank Arpita for being a good and kind friend. Lastly, I would like to thank Ericsson

Research for funding my project.

Three years ago, I had a choice of either joining MS course in IITM or management

course in NITIE. I chose IITM and my parents supported my decision without asking

any questions. I want to dedicate this thesis to my parents for keeping faith in me.

ii

ABSTRACT

KEYWORDS: Data Mining ; Graph Mining ; Social Networks ; Communication

Motifs

Social networks have become an effective means of communication among people.

Recently, there is a trend to analyze these social networks to infer the dynamics of

human interaction. A fundamental problem in behavioral analysis of human interactions

is to understand how communications unfold. In this thesis, we propose and solve the

problem of mining Communication motifs from dynamic interaction networks. Simply

stated, a communication motif is a recurring subgraph that has a similar sequence of

information flow. Communication motifs provide a powerful mechanism to capture the

dynamics of human interactions.

Existing work show that communication motifs reveal how the functional behav-

ioral patterns evolve with time, how the structures of these patterns change with the

social network, and finally, how the social network influences the speed and amount

of information exchanged in communications between individuals. However, no tech-

nique is proposed for mining these motifs in a scalable manner. Mining communication

motifs requires us to explore the exponential subgraph search space where existing tech-

niques fail to scale. To tackle this scalability bottleneck, we develop a technique called

COMMIT. COMMIT converts a dynamic graph into a database of sequences. Through

careful analysis in the sequence space, only a small portion of the exponential search

space is accessed to identify regions embedding communication motifs. We also store

the pointers to these regions as a result costly subgraph enumeration step is avoided.

iii

We perform extensive experiments on three real world datasets and evaluate the pro-

posed COMMIT based on accuracy and scalabilty. We find that COMMIT is up to two

orders of magnitude faster than baseline techniques. COMMIT can also mine large size

communication motifs where existing algorithms fails. Furthermore, qualitative anal-

ysis demonstrate communication motifs to be effective in characterizing the recurring

patterns of interactions while also revealing the role that the underlying social network

plays in shaping human behavior.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES ix

LIST OF FIGURES xii

ABBREVIATIONS 1

1 Introduction 2

1.1 Importance of communication motifs 2

1.2 Issues in mining communication motifs 4

1.3 Outline of COMMIT . 6

1.4 Contributions of thesis . 7

1.5 Outline of thesis . 8

2 Background and Related Work 9

2.1 Network Motifs . 9

2.2 Static network motif detection algorithms 11

2.2.1 Exact algorithms . 11

2.2.2 Approximate algorithms . 11

2.3 Dynamic network motif detection algorithms 12

3 Problem Formulation 14

v

3.1 Temporally Connected Graph . 14

3.1.1 Weakness of the model proposed by Zhao et al 16

3.2 Temporal Isomorphism . 17

3.3 Support of subgraph . 17

3.3.1 Violation of apriori property 18

3.4 Communication Motif and Queries 18

4 Mapping graphs to sequences 20

4.1 Conversion conditions . 20

4.1.1 Temporal isomorphic condition 20

4.1.2 Temporal subgraph condition 22

5 Frequent subsequence mining 24

5.1 Temporal connected component . 24

5.2 Counting support of a subsequence 26

5.3 The sequence growth approach . 30

5.3.1 Identifying edge extension candidates 31

5.3.2 Computing the largest support set 35

6 COMMIT 39

6.1 MotifMine Algorithm . 41

6.2 Pseudocode of the GetSup Algorithm 44

6.3 Computational Complexity of COMMIT 44

7 Experiments 45

7.1 Experimental setup . 45

7.1.1 Datasets . 45

7.1.2 Benchmarking Setup: . 46

vi

7.1.3 Impact of temporally connected components 48

7.2 Accuracy of COMMIT . 49

7.3 Scalability of COMMIT . 54

7.3.1 Top-k queries . 55

7.3.2 Range query . 58

7.3.3 Distribution of motif sizes 60

7.3.4 Approximation factor . 62

7.4 Implications of communication motifs 63

7.4.1 Twitter mentions dataset . 63

7.4.2 Facebook wall-posts dataset 64

7.4.3 Enron . 65

7.5 Applications of communication motifs 65

8 Temporal Analysis of Telecom Call Graphs 67

8.1 Introduction . 67

8.2 Dataset . 68

8.2.1 DataSet Preparation . 69

8.3 Static Properties . 69

8.4 Temporal Properties . 70

8.4.1 Day Night Time Window . 70

8.4.2 Uniform Day Time Window 71

8.4.3 Weekday and Weekend Time Window 71

8.4.4 Cumulative Week Time Window 71

8.5 Results and Discussion . 72

8.5.1 Uniform Day time window 72

8.5.2 Day Night time window . 73

8.5.3 Weekday and Weekend time window 74

vii

8.5.4 Cumulative Week time window 77

8.6 Choice of time window . 78

9 Conclusions and Future Work 80

LIST OF TABLES

7.1 Summary of the datasets. 46

8.1 Static properties of Call graph . 69

ix

LIST OF FIGURES

1.1 (a) A dynamic network denoting interactions between its users (b) The
two largest communication motifs at a frequency threshold of 3 and
∆T = 1. Timestamp ti < tj if i < j. Motif 1 involves nodes
{A,B,C} {E,F,G}, and {G,H, F}. Motif 2 involves {B,C,D, F}
{C,D, F,H}, and {A,C,E,G}. 3

1.2 Running time comparison of GRAMI and COMMIT against the sup-
port threshold on the Facebook dataset[Viswanath et al., 2009]. Note
that GRAMI was terminated after 16 hours in all cases without having
completed the computation. 5

1.3 Pipeline of the COMMIT algorithm. 6

2.1 Graph and its subgraph enumeration of size 4. 10

3.1 Embeddings of Motif 1 in Fig. 1.1(a) 15

3.2 The scenario where two unrelated sets of interactions are clubbed to-
gether as related. 16

3.3 Violation of apriori property due to overlap. 18

4.1 Sequence representation of a graph. 21

5.1 The temporally connected components in Fig. 1.1(a). 24

5.2 The connected components of an interaction network and their corre-
sponding sequence representations. In each edge of the graph, along
with the timestamp, we also show its rank (or position in the sequence
representation) based on the total ordering. 26

5.3 Demonstrates the instance representation of subsequence P = (1, 3)(1, 3)(1, 3)
in S3. SeqDB(P) lists all instances of P in the sequence database. Fur-
thermore, two possible support sets of P are also listed. 28

5.4 Illustration of the need for EXTENSIONMINER. 31

x

5.5 A running example of EXTENSIONMINER. The closed edge extensions
from the given collection S of all edge labels correspond to the floors
in the non-leaf states. Specifically, (1, 4), (5, 5), (5, 6), and (1, 5). The
underlined dimension indicates the value of b in that state. 35

5.6 Illustration of sequence growth from (1, 3) to (1, 3)(1, 3)(1, 3). The sup-
port sets are maintained in right shift order, which allows polynomial-
time support counting. 36

6.1 Instance I = (3, < 2, 3, 4 >) of subsequence (1,3)(1,3)(1,3) corre-
sponds to temporal component G3 in Fig. 5.6. I represents an induced
subgraph of G3 (shown using the orange edges). For checking temporal
isomorphism, induced graphs are converted into temporal graphs and
the frequencies of temporal graphs are computed for final verification. 42

7.1 Growth rate of coverage with ∆T in (a) Twitter and (b) Facebook and
Enron. 47

7.2 (a-c) Number of temporally connected components in the three interac-
tion networks. (d) The distribution of the sizes of temporally connected
components in Twitter at ∆T = 120 seconds. 50

7.3 Analysis of F-score with k on (a) Twitter, (b) Facebook and (c) Enron. 52

7.4 k vs Spearman’s rank correlation on (a) Twitter (b) Facebook and, (c)
Enron. 53

7.5 Growth rate of running time with k in (a) Twitter and (b) Facebook and
(c) Enron. 56

7.6 Growth rate of running time with ∆T in (a) Twitter, (b) Facebook and
(c) Enron. 57

7.7 Growth rate of the running time against the size of the interaction net-
work in (a) Twitter and (b) Facebook. 59

7.8 Growth rate of running time against the support threshold in the range
query setting on (a) Twitter and (b) Facebook. 60

7.9 Distribution of motif sizes (a) and their supports on (b) Twitter and (c)
Facebook and Enron datasets. 61

7.10 Top-3 communication motifs. 63

xi

8.1 The temporal properties of call graph on uniform day time window. For
each day, a call graph is created by aggregating all calls on that day and
various properties of that call graph are analyzed. 73

8.2 The temporal properties of Call graph on uniform day time window. . 74

8.3 The number of unique calls with respect to days.In particular no day
dominates other days in terms of unique calls, as can be seen by different
top color for each days. Day 1 represents Sunday. 75

8.4 The temporal properties of Call graph on day and night time window.The
first data point represents night graph. 75

8.5 The temporal properties of Call graph on weekday and weekend time
window. For all weekdays in a specific week, a call graph is created by
aggregating all calls on that weekdays and various properties of that call
graph are analyzed. 76

8.6 The temporal properties of Call graph on weekday and weekend time
window. For all weekdays in a specific week, a call graph is created by
aggregating all calls on that weekdays and various properties of that call
graph are analyzed. 77

8.7 The temporal properties of Call graph on Consecutive week time win-
dow. For all calls initiated from week 0 to specific week are aggregated
and graph is created for that week. This graph shows saturation of calls,
implying people call same group of people again and again. 78

8.8 The temporal properties of Call graph on Consecutive week time win-
dow. For all calls initiated from week 0 to specific week are aggregated
and graph is created for that week. 79

xii

ABBREVIATIONS

COMMIT COMmunications Motifs in InTeraction networks

1

CHAPTER 1

Introduction

Interactions in social networks are typically studied using graphs where users are repre-

sented as nodes and interactions between them are represented as edges. A fundamental

task in social network analysis is to understand how communications unfold. Are there

patterns that recur time to time? What role does the underlying social network play in

the progression of human communication? In this thesis, we study the behavioral as-

pects of interactions within social networks by mining communication motifs from large

dynamic networks.

1.1 Importance of communication motifs

To illustrate the concept of communication motifs in a dynamic network, consider

Fig. 1.1(a). In this dynamic network, an edge with a timestamp t between nodes A

and B represents an interaction event between A and B at time t. Interaction events can

be phone calls, e-mails, Facebook wall posts, tweets, etc. Note that an individual can

interact with multiple individuals at same time. For example in Fig. 1.1(a), A interact

with B and C at time 400.

Due to the intrinsic social nature of human beings, it is common for an interac-

tion between two individuals to spurt further communication activities. For example,

a person claiming Real Madrid to be the best soccer club in Facebook is likely to en-

courage further interactions from Real Madrid fans supporting the claim and possibly,

stiff opposition from Barcelona fans. To capture this dependency between interactions,

(a) (b)

Figure 1.1: (a) A dynamic network denoting interactions between its users (b) The two
largest communication motifs at a frequency threshold of 3 and ∆T =
1. Timestamp ti < tj if i < j. Motif 1 involves nodes {A,B,C}
{E,F,G}, and {G,H, F}. Motif 2 involves {B,C,D, F} {C,D, F,H},
and {A,C,E,G}.

we assume that two edges in a social network are related if they involve a common user

and the difference in their timestamps is within some threshold ∆T . In Fig. 1.1(a), for

example, A sends a message to B and C simultaneously at time 400. This initiates an

interaction between C and B at time 401 and then subsequently, B responding to A at

time 402. At ∆T = 1, this sequence of interactions are considered related. At the same

time, the interaction betweenA andE is not related to these since it occurs at timestamp

100, which is more than ∆T away from the other interactions ofA. Now, notice that two

other exact same sequences of related interactions also exist between E, F , G, and G,

H , F . These interactions are explicitly shown in Fig. 3.1. In other words, this pattern of

interaction is frequent in the social network and characterizes one of the common com-

munication patterns. We call such a pattern as a communication motif if its frequency is

higher than a user-defined threshold θ. At θ = 3, the two largest communication motifs

are shown in Fig. 1.1(b). While the first motif is likely capturing some group discussion,

the second motif is the structure that is typically generated while wishing a person on a

special occasion such as birthday, marriage, etc.

3

Communication motifs provide a powerful mechanism to capture the dynamics of

human interactions. A similar line of work was explored by Zhao et al.[Zhao et al., 2010].

They show that communication motifs reveal how the functional behavioral patterns

evolve with time, how the structures of these patterns change with the social network,

and finally, how the social network influences the speed and amount of information ex-

changed in communications between individuals. However, no technique is proposed

for mining these motifs in a scalable manner. A communication motif is essentially

a frequent subgraph in a dynamic network with some additional properties. First, the

edges in each embedding of the subgraph must form a chain of related interactions based

on a user-provided threshold ∆T . Second, the edges in each embedding of the subgraph

must have the same sequence of interactions.

1.2 Issues in mining communication motifs

Mining frequent subgraphs from large networks is a hard problem since the number

of subgraphs in a network grows exponentially with the size of the network. In addi-

tion, to compute the frequency of a subgraph, we need to perform subgraph isomor-

phism, which is NP-complete [Zeng et al., 2009]. Owing to its hardness, frequent sub-

graph mining has received significant interest in the research community with GRAMI

[Elseidy et al., 2014] being the state-of-the-art technique in this space. However, the

following aspects of communication motifs render the existing methods inapplicable to

our problem.

•Incorporating temporal information: Existing frequent subgraph mining tech-

niques ignore the temporal aspect. As a result, the notion of edge relatedness cannot

be enforced easily in such techniques. To combat this weakness of existing techniques,

one could adopt the following two-stage approach. In the first stage, all frequent sub-

4

27 28 29 30
10

2

10
3

10
4

10
5

R
u

n
n

in
g

 t
im

e
 (

in
 s

e
c
s
)

Minimum support (X 10
3
)

COMMIT

GRAMI

Figure 1.2: Running time comparison of GRAMI and COMMIT against the sup-
port threshold on the Facebook dataset[Viswanath et al., 2009]. Note that
GRAMI was terminated after 16 hours in all cases without having com-
pleted the computation.

graphs are mined. Then, in the second stage, each of the frequent subgraphs are verified

whether they satisfy the temporal constraints of a communication motif. Unfortunately,

this approach does not scale due to the unimportance of node labels in our problem.

• Unlabeled Nodes: As can be seen in Figs. 1.1(a) and 1.1(b), the node labels

denoting user IDs do not play any role in communication motifs; only the structure and

the timestamps matter. Existing frequent subgraph mining techniques rely heavily on

the presence of node labels to prune the search space. Consequently, they fail to scale

in our setting even if we ignore the temporal aspect.

To empirically establish the impact of unlabeled nodes, we run GRAMI on an in-

teraction network constructed from Facebook[Viswanath et al., 2009]. Fig. 1.2 presents

the results. On this network, when the support threshold is less than 30, 000, GRAMI

fails to complete even after 16 hours.

5

Figure 1.3: Pipeline of the COMMIT algorithm.

1.3 Outline of COMMIT

To address the challenges outlined above, we design a new algorithm called COMMIT

(COMmunication Motifs in InTeraction networks) to mine communication motifs from

large interaction networks. In contrast to GRAMI, on the Facebook dataset in Fig. 1.2,

COMMIT takes around 20 minutes to complete. Fig. 1.3 presents the pipeline of pro-

posed algorithm. In the first step, each of the connected components of the dynamic

network is converted into a sequence of its interactions. This results in the dynamic net-

work being represented as a database of interaction sequences. Through a careful anal-

ysis using graph invariants in this sequence space, we mine the frequent subsequence

patterns that could potentially represent communication motifs. These patterns are then

6

converted to the graph space for verification and the final answer set is computed.

The proposed approach saves time in two accounts. First, COMMIT constructs a

coarse-grained representation of the network by converting them to sequences. As we

show later, the proposed graph-invariant based conversion scheme is a many-to-one

mapping where identical subgraphs are guaranteed to have the same sequence represen-

tation. Due to coarsening of the search space, its size is drastically reduced. Second,

most of the analysis happens in the sequence space. Thus, instead of enumerating sub-

graphs, we enumerate subsequences, which is computationally more tractable. In addi-

tion, the expensive subgraph isomorphisms are performed only on a minuscule portion

that are considered candidates based on the sequence analysis.

1.4 Contributions of thesis

To summarize, the contributions of this thesis are as follows:

• We propose the idea of communication motifs to model the frequent human inter-
action patterns in social networks.

• We develop a technique called COMMIT to mine communication motifs in a scal-
able manner. COMMIT achieves scalability by mapping the interaction network
into a more coarse-grained space of interaction sequences.

• Extensive experiments on three social network datasets show that COMMIT is
more than an order of magnitude faster than baseline techniques. In addition,
COMMIT is accurate and achieves F-scores in the range of [0.6,1] when com-
pared to the ground truth. Finally, a qualitative analysis reveals communication
motifs to be effective in characterizing the various patterns of human interactions
and the crucial role that the underlying social network plays in its progression.

7

1.5 Outline of thesis

Rest of the thesis is organized as follows

• Chapter 2 presents the background and related work of mining communication
motifs.

• Chapter 3 formalizes the problem definition of mining communication motifs.

• Chapter 4 explains the importance of moving from graph space to coarse grained
sequence representation.

• Chapter 5 explains the mining of communication motif candidates in sequence
space.

• Chapter 6 presents the COMMIT technique and connect the dots presented in
chapters 4 and 5.

• Chapter 7 talks about the experimental validation of COMMIT on real world net-
works.

• Chapter 9 concludes the thesis and presents the future work.

8

CHAPTER 2

Background and Related Work

In this chapter, we discuss about network motifs, static and dynamic network motif

detection algorithms and limitations of those existing algorithms.

2.1 Network Motifs

Generally, network motifs are statistically significant subgraphs that occur more fre-

quently in the original network as compared to randomized networks.

The network motif detection basically consists of three steps:

1. Enumerate subgraphs in the network.

2. Detect isomorphic subgraphs and maintain their counts.

3. Calculate the subgraph significance.

Significant work has been done on algorithms to enumerate subgraphs. We have in-

cluded few best algorithms in the related work. The second step of detecting isomorphic

subgraphs is done with software packages such as Nauty [McKay and others, 1981],

bliss [Junttila and Kaski, 2007]. The third step of calculating subgraph significance of

subgraph varies based on the application. In this aspect, the proposed formulation of

communication motifs and its scalability challenges have not been studied before.

For example, consider a small graph shown in Fig. 2.1 and its subgraph enumeration

of size 4. For detecting network motif from a given network, one should enumerate sub-

graphs of all sizes 3,4,5 till the maximum specified motif size. As the size the network

Figure 2.1: Graph and its subgraph enumeration of size 4.

increases, the number of possible subgraphs increases exponentially. Current state-of-

the-art subgraph enumeration algorithms can enumerate subgraphs upto size 9 in small

networks with number of nodes in order of hundreds of thousand.

Once the subgraph enumeration is done, the next step is detecting isomorphic graphs

irrespective of graph node labels. For example in Fig 2.1, the subgraphs 2.1.a and

2.1.b are isomorphic to each other. Nauty [McKay and others, 1981] software compute

canonical labels which is unique for a specific topology of graph. As a result, two

isomorphic graphs will have same canonical labels.

The last step in detection of network motifs is determining the significance of net-

work motifs. Quantifying the significance of motifs varies from application to applica-

tion [Ciriello and Guerra, 2008]. Some research work use motif frequency as the sig-

nificance factor while other work use z-score or p-value as significance factor. While

using z-score as significance factor, underlying distribution of subgraphs is assumed to

exhibit gaussian distribution.

Mining network motifs forms backbone of various applications such as spam detec-

tion [O’Callaghan et al., 2012], protein-protein link prediction [Albert and Albert, 2004],

analyzing human interactions in affiliation networks [Gallos et al., 2012], network clas-

sification [Allan et al., 2009, Ranu et al., 2013, Ranu and Singh, 2009, Ranu et al., 2011].

10

2.2 Static network motif detection algorithms

The problem of mining frequent subgraphs or motifs from single network is widely stud-

ied [Zhu et al., 2007, Yan and Han, 2002, Borgwardt et al., 2006, Elseidy et al., 2014,

Kuramochi and Karypis, 2001, Ketkar et al., 2005, Bringmann and Nijssen, 2008].

There are number of surveys [Ciriello and Guerra, 2008, Bruno et al., 2010] on static

network motif detection algorithms. Static network motif detection algorithms can be

roughly classified into two categories

2.2.1 Exact algorithms

Milo et al. [Milo et al., 2002] studied motifs in complex networks like gene regula-

tion,food webs,electronic circuits. The authors propose that network motifs might be the

evolutionary backbone of a network[Milo et al., 2002, Shen-Orr et al., 2002] and can

help understand basic information flow between local nodes. Milo et al. [Milo et al., 2004]

represent the structural and behavioral aspects of a network with significance profiles,

which is a normalized vector of z-scores of motifs in the network. Zahra Razaghi et al.

[Kashani et al., 2009] propose a method for enumerating subgraphs called kavosh.

2.2.2 Approximate algorithms

• Search algorithms based on sampling

Kashtan et al. [Kashtan et al., 2004] propose an edge sampling based algorithm,

mfinder, to estimate subgraph counts. Sebastian Wernicke et al. [Wernicke, 2006] de-

velop a sampling based motif detection algorithm, FANMOD, for estimating number of

subgraphs and does not suffer from sampling bias as in mfinder [Kashtan et al., 2004].

11

Since we have a dynamic interaction network, static motif detection techniques do not

apply to our problem.

• Apriori based motif detection algorithms

Kuramochi et al. [Kuramochi and Karypis, 2005] detects frequent subgraphs from

a single large sparse graph. The authors introduce apriori property with the help of

maximum independent set on overlap graph. The other metrics like minimum image

based support that are useful in introducing apriori property is reported by Bringmann

et al. [Bringmann and Nijssen, 2008]. The large graphs processed by kuramochi et

al. [Kuramochi and Karypis, 2005] posses number of edges in order of hundred of

thousands while current large graphs posses billions of edges. Also kuramochi et al.

[Kuramochi and Karypis, 2005] utilize node and edge labels to prune the search space

but as stated earlier node/edge labels do not play a role in mining communication mo-

tifs. Elseidy et al. proposes GRAMI [Elseidy et al., 2014] that models subgraph mining

problem as constraint satisfaction problem. GRAMI finds the minimal set of instances

to satisfy the frequency threshold and avoids the costly enumeration of all instances re-

quired by previous approaches. Again, GRAMI relies heavily on node labels as shown

in Fig. 1.2.

2.3 Dynamic network motif detection algorithms

In the domain of dynamic graphs, a straightforward approach is to create a set of graphs

H from the original dynamic network using time windows a certain length such as a

month [Braha and Bar-Yam, 2009]. Each graph in set H then represents the graphs

which consists of interactions between nodes occurring in a specific month time win-

dow. Motifs are then computed on each graph inH . Chechnik et al. [Chechik et al., 2008]

propose the idea of activity motifs to analyze transcription in yeast organism metabolism.

12

David Jurgens et al. [Jurgens and Lu, 2012] analyzed interactions of Wikipedia ed-

itors to identify significant patterns by constructing a temporal bipartite network. Kai

Liu et al. [Liu et al., 2012] proposed a finite mixture model to detect multiple stochastic

motifs in network data but does not consider exact edge times while detecting stochastic

motifs.

The closest works to our problem are proposed by Lauri Kovanen et al. [Kovanen et al., 2011]

and Zhao et al. [Zhao et al., 2010]. The model proposed in [Kovanen et al., 2011] fails

on network where a person can communicate simultaneously (time overlapping edges)

and hence fails to solve the proposed problem. The model in [Zhao et al., 2010] is simi-

lar to ours but has the weakness of joining unrelated motifs together. More importantly,

they do not propose any mining technique and the naive subgraph enumeration approach

fails to scale.

13

CHAPTER 3

Problem Formulation

In this chapter, we formalize the problem of mining communication motifs. We repre-

sent a dynamic interaction network as a graph G = (V,E) where V is a set of nodes

and E is a set of edges.1 An edge ei is represented as (si, di, ti) where s and d are the

source and destination nodes, t is the time at which interaction happens.

3.1 Temporally Connected Graph

To formalize the concept of communication motifs, we have to first understand tempo-

rally connected graph (TCG). TCG is defined with the help of temporally related edges.

Informally, two edges are related if they involve a common user and are close in time.

An example of such related interactions is users A and B wishing user C on his/her

birthday. Formally,

Definition 1. TEMPORALLY RELATED EDGES. Two edges ei = (si, di, ti) and ej =

(sj, dj, tj) are temporally related if they are adjacent, i.e., {si, di} ∩ {sj, dj} 6= ∅, and

|ti − tj| ≤ ∆T .

Definition 2. TEMPORALLY CONNECTED PATH. Given a time window ∆T within

which two adjacent interactions are considered related, a path {e1, · · · , em} in a graph

G is temporally connected, if the path is connected and ∀ei, ei+1, either 0 < ti − (tj +

δj) < ∆T or 0 < tj − (ti + δi) < ∆T .

1More formally the interaction network is a multigraph since multiple interactions can take place
between a pair of nodes. In order to simplify exposition, we refer to the interaction network as a graph.

Figure 3.1: Embeddings of Motif 1 in Fig. 1.1(a)

More simply, a path is temporally connected if each pair of adjacent edges in the

path are within ∆T of each other.

Definition 3. TEMPORALLY CONNECTED NODES. Two nodes ni, nj in a graph G =

(V,E) are temporally connected, if there exists a sequence of edges P = {e1, · · · , em} ∈

E such that s1 = ni, dm = nj , and ∀ei, ei+1 ∈ P, ei and ei+1 are temporally related.

Definition 4. TEMPORALLY CONNECTED GRAPH. A connected interaction graph

G = (V,E) is temporally connected, if any pair of nodes ni, nj in G is temporally

connected.

In essence, a temporally connected graph represents a group of related interactions

that are connected by a common event.

Example 1. Consider Fig. 3.1, which shows the embeddings of Motif 1 in Fig. 1.1(a).

Let us focus on the first embedding involving nodes {A,B,C}. It is easy to see that at

∆T = 1, all pairs of nodes are temporally connected and hence, the graph is temporally

connected.

Note that our definition of a temporally connected graph is different from the for-

mulation of Zhao et al[Zhao et al., 2010] and rectifies a weakness in their modeling.

15

3.1.1 Weakness of the model proposed by Zhao et al

Zhao et al.[Zhao et al., 2010] use the term communication graph to denote a group of

interactions that are related in their progression. In our work, we use the term temporally

connected graph to model this same event. Informally, a communication graphs contain

edges such that each edge ei has at least one other adjacent edge ej that is within ∆T

from ei. More formally, it is defined as follows.

Definition 5. COMMUNICATION GRAPH. Given a time window ∆T , a communication

graph is a collection of edges S = {e1, · · · , em} such that ∀ei ∈ S, there exists at least

one edge ej ∈ S, i 6= j, such that 1) |{si, di} ∩ {sj, dj}| > 0 and 2) |ti − tj| ≤ ∆T .

Figure 3.2: The scenario where two unrelated sets of interactions are clubbed together
as related.

By the above definition, Fig. 3.2 is a communication graph since all edges are ad-

jacent to at least one edge that is within ∆T . However, notice that the interactions

involving {A,B,C} are unrelated to those involving {D,E, F}. These two unrelated

groups are clubbed together as related due to the edge between C and E.

In our definition, each pair of node in a temporally connected graphs needs to be

temporally related. Fig .3.2 is not temporally connected since E is not temporally re-

lated to any of the nodes in {A,B,C}, which conforms with the general intuition.

16

3.2 Temporal Isomorphism

We first define a partial ordering among edges ei = (si, di, ti) and ej = (sj, dj, tj) as

ei < ej if and only if (iff) ti < tj . Based on this ordering, we next define temporal

isomorphism

Definition 6. TEMPORAL ISOMORPHISM.

A dynamic graph S1 = (Vs1 , Es1) is temporally isomorphic to S2 = (Vs2 , Es2) if and

only if there exists a bijection f : Es1 → Es2 satisfying

(1) if (s, d, t) ∈ Es1 then f(s, d, t) ∈ Es2

(2) if ei, ej ∈ Es1 and ei < ej then f(e1) < f(e2).

It is easy to see that the embeddings in Fig. 3.1 are all temporally isomorphic to

each other. Analogous to this definition, a graph H is a temporal subgraph of G, if G

contains a subgraph G′, such that G′ is temporally isomorphic to H .

3.3 Support of subgraph

The support sup(H) of a recurring temporal subgraph H is its number of embeddings

in the interaction network. As illustrated earlier, Motif 1 in Fig. 1.1(a) has a support

of 3. Note that two embeddings of a motif could overlap and may not necessarily be

disjoint. Due to such overlaps, the apriori property of a subgraph having a support at

least as large as any of its supergraph is violated.

17

3.3.1 Violation of apriori property

The apriori property expresses a monotonic decrease of an evaluation criterion accom-

panying the progress of a sequential pattern. In the context of support counting for

graphs, the apriori property states that the support of a graph is at least as large as the

support of any of its supergraphs.

Now, consider the interaction network in Fig. 3.3. At ∆T = 2, Motif 1 has a support

of 1. However, Motif 2, in spite of being a supergraph of Motif 1, has a support of 3.

This violation of apriori property happens since the embeddings of Motif 2 overlap with

each other and share the triangular component involving nodes {A,B,C}.

Figure 3.3: Violation of apriori property due to overlap.

3.4 Communication Motif and Queries

We now formally define communication motif as the following.

Definition 7. COMMUNICATION MOTIF. Given a dynamic interaction network G, a

minimum support threshold τ and a ∆T , a motif, or a recurring connected temporal

subgraph of G, H , is a communication motif if its support sup(H) ≥ τ .

Our goal is now to solve the following problems.

18

Problem 1. RANGE QUERY. Mine all communication motifs in the given interaction

network for a user-specified ∆T and τ .

Problem 2. TOP-k QUERY. Given a dynamic interaction network G, a value k and a

∆T , mine the communication motifs with the top-k highest supports.

COMMIT solves both the mining problems in a scalable manner. For simplicity, our

illustrative examples assume Problem 1.

19

CHAPTER 4

Mapping graphs to sequences

In this chapter, we explain the need and process of conversion of graphs to sequences in

COMMIT technique.

As discussed earlier, mining communication motifs is hard since the search space

is exponential. In addition, counting support of a subgraph requires us to perform sub-

graph isomorphism, which is NP-complete[Zeng et al., 2009]. To tackle this bottleneck,

COMMIT first maps the dynamic network from the graph space to a sequence space.

4.1 Conversion conditions

LetM : G → S be a function to map graph G to its sequence space representation S.

The goal in this conversion procedure is to map the dynamic network into a contractive

space, such that the following conditions hold.

• If graph G is temporally isomorphic to graph G′, thenM(G) =M(G′)

• If H is a temporal subgraph of G, then M(G) “contains” M(H). Indeed, we
need to define “contains” more formally.

4.1.1 Temporal isomorphic condition

If we discard the temporal constraints, then the first condition can be satisfied using

graph invariants.

Figure 4.1: Sequence representation of a graph.

Definition 8. GRAPH INVARIANT. A graph invariant is a function f , such that f(G1) =

f(G2), whenever G1, and G2, are isomorphic graphs.

Graph invariants are properties of graphs that are invariant under graph isomor-

phisms. Examples of graph invariants are number of nodes or edges, degree sequence,

diameter, canonical labeling of the adjacency matrix, etc. [Yan and Han, 2002]. To sat-

isfy condition 1 in the presence of temporal constraints, we generate a degree sequence

as our graph invariant. Specifically, we map a graph G to a sequence in the follow-

ing manner. First, we assign the degree of a node as its label. Let l(n) denote the

label of node n. Extending the same procedure, for each edge e = (si, di, ti), we label

l(e) =“l(si), l(di)”. Now, we extend the partial ordering defined in Sec. 3.2 to a total

ordering. Specifically, if ti < tj , then ei < ej . Else, if ti = tj , ei < ej , if l(ei) < l(ej),

i.e., the label of ei is lexicographically smaller (we break ties based on edge ids). Fi-

nally, the mappingM(G) of a graphG containing edges {e1, · · · , em} where ei < ei+1,

is “l(e1) l(e2) · · · l(em).”

Example 2. Fig. 4.1 shows the sequence representation of the first graph in Fig. 3.1. It

is easy to see, that since the other two graphs in Fig. 3.1 are temporally isomorphic to

the first graph, their sequence representations are also identical.

We use the notation S[i] to denote the label of the ith edge in sequence S.

21

4.1.2 Temporal subgraph condition

After satisfying condition 1, we now focus on satisfying condition 2, which is to detect

the presence of a subgraph just from a sequence space analysis. Let us revisit the first

graph in Fig. 3.1. We denote this graph as G. If we remove the edge (B,A, 402) from

G to create graph H , thenM(H) = (2, 2) (2, 2) (2, 2). Clearly, M(H) is not a sub-

sequence of (3, 2) (3, 3) (2, 3) (3, 3) although H is a temporal subgraph of G. Thus, the

simple sub-sequence relationship does not satisfy condition 2. The event H ⊆ G does

not guarantee that an edge label in H is also present in G. However, given that we use

degree as node labels, for any edge label l(e) = (a, b) in H , there must an edge e′ in G

where l(e′) = (c, d) and c ≥ a and d ≥ b. We formalize this intuition by defining the

notion of edge containment.

Definition 9. EDGE CONTAINMENT. An edge ei with label l(ei) = (ai, bi) is contained

in edge ej with l(ej) = (aj, bj) if ai ≤ aj and bi ≤ bj . This relationship is denoted as

(ai, bi) v (aj, bj).

In our definition, edge-containment is only dependent on the node degrees. The

semantic labels of edges and nodes, such as node type, ID, etc., do not play any role.

However, if required, the proposed technique can easily be extended to incorporate such

semantic labels as well. Specifically, we not only need to look for degree containment

while comparing edges, but also ensure that the edges being compared, and their con-

stituent nodes, have the same semantic labels.

Next, we define the notion of subsequence in the sequence space as following.

Definition 10. SUBSEQUENCE. A sequence α =< α1, α2, ..., αm > is subsequence of

sequence β=< β1, β2, ..., βn > iff ∃i1, i2, . .., im such that 1 ≤ i1 < i2 < ... < im ≤ n

and α1 v βi1 , α2 v βi2 , ... αm v βim . This relationship is denoted as α v β.

22

More simply, sequence α v β, if each of the edges in α is contained in some edge in

β, while also maintaining the ordering of edges in α. The support of a subsequence S is

defined analogously to that of a subgraph and is also denoted as sup(S). A subsequence

S is frequent, if sup(S) ≥ τ

Theorem 1. If graph H = (VH , EH) is a temporal subgraph of G = (VG, EG), then

M(H) vM(G)

PROOF: Let EG = {eg1 , · · · , egn} and EH = {eh1 , · · · , ehm} where m ≤ n.

We know EH ⊆ EG. Let function f : E(H) → E(G) be the bijection. We have

f(ehi) = egk , ∀i s.t. 1 ≤ i ≤ m and 1 ≤ k ≤ n. Since H is also a temporal

subgraph of G, from the total ordering on edges, we can claim that if ehi < ehj then

f(ehi) < f(ehj). As a result, in sequence space representationM(H), ∀ehi , ehj ∈ EH ,

if l(ehi) occurs before l(ehj), then l(f(ehi)) occurs before l(f(ehj)) in M(G). Let

f(ehi) = egk , where l(ehi) = (l(shi), l(dhi)) and l(egk) = (l(sgk), l(dgk)). Now, since

H ⊆ G, it is guaranteed that the source and destination degrees of ehi are less than or

equal to that of egk in G. Hence l(shi) < l(sgk) and l(dhi) < l(dgk). Consequently,

ehi v egj . Since this holds for any pair of edges in H ,M(H) vM(G). �

Corollary 1. If the support of a graph H in dynamic network G is larger than τ , then

the support ofM(H) inM(G) is also larger than τ .

From Theorem 1, the problem of mining temporal subgraphs with support above τ

translates to mining subsequences with support above τ . Indeed, there could be false

positives where two different graphs are mapped to the same sequence. To prune out

such false positives, the frequent subsequences are mapped back to the graph space to

compute the true answer set. From Corollary 1, false negatives are not possible. With

this insight, we next focus on frequent subsequence mining.

23

CHAPTER 5

Frequent subsequence mining

In this chapter, we explain the algorithm of detecting temporally connected compo-

nents and propose frequent subsequence mining algorithms. The mined frequent sub-

sequences could potentially represent the embeddings of communication motifs in the

network.

5.1 Temporal connected component

Given a dynamic interaction network G = (V,E) and a ∆T , we first identify the tem-

porally connected components in G.

Definition 11. TEMPORALLY CONNECTED COMPONENT.

Given an interaction network G and ∆T , let H be a temporally connected subgraph of

G. H is a temporally connected component if no supergraph H ′ ⊇ H exists such that

H ′ is temporally connected and H ′ ⊆ G.

Example 3. The temporally connected components of the network in Fig. 1.1(a) at

∆T = 1 are shown in Fig. 5.1.

Figure 5.1: The temporally connected components in Fig. 1.1(a).

The pseudocode to identify the temporally connected components is shown in Alg.

1. Identifying the temporally connected components in a graph G = (V,E) can be

computed in O(E) time since no edge is processed more than once.

Algorithm 1 TCCDetect(N = (V,E), ∆T)
Require: An interaction network N , temporal threshold ∆T .

Ensure: Return all temporally connected networks in N at ∆T .

1: Mark all edges in E as not processed.

2: TCC ← ∅

3: while All edges are NOT processed do

4: Create an empty graph G.

5: Choose a random unprocessed edge e, push it on S.

6: while S is not empty do

7: Pop edge e from S.

8: Add edge e in Graph G.

9: Mark e as processed.

10: If the time difference between e and its adjacent edge e′ is within ∆T, then

push e′ on S.

11: TCC ← TCC ∪G

12: return TCC

From the construction of temporally connected components, it is guaranteed that a

communication motif cannot span across two different components. However, it is pos-

sible for a communication motif to be contained in multiple components. For example,

Motif 1 in Fig. 1.1(b) occurs once in component 1 and twice in component 2 with an

overall support of 3. In COMMIT, we map each of the connected components into the

sequence space. Following this transformation, our task is to mine the frequent sub-

sequences with support of at least τ . A subsequence may repeat across sequences as

25

Figure 5.2: The connected components of an interaction network and their correspond-
ing sequence representations. In each edge of the graph, along with the
timestamp, we also show its rank (or position in the sequence representa-
tion) based on the total ordering.

well as within a sequence. Mining such frequent subsequences in a sequence database

has been studied, and CloGSgrow [Ding et al., 2009] is the state-of-the-art technique

for this purpose. CloGSgrow is an extension of PrefixSpan[Pei et al., 2001] and adopts

a similar search space exploration strategy. To give an overview of CloGSgrow, it starts

from frequent patterns of size one, and looks for extensions to grow one-sized patterns

to two-sized frequent patterns. This process continues iteratively to build larger fre-

quent patterns till no more extensions are possible. Unfortunately, due to altering the

definition of subsequence, CloGSgrow do not work in our scenario.

5.2 Counting support of a subsequence

Assume the graphs in Fig. 5.2 are the connected components of the network we are

mining. Their corresponding sequence representations are shown in the Sequence DB

table in Fig. 5.2. Now, let P = l(e1) l(e2) · · · l(en) be a sequence over n edges. If

P v Si for some sequence Si in Sequence DB, then we represent this occurrence as (i, <

26

l1, l2, · · · , lm >) where i is the ID of Si (or the corresponding connected component of

the network) and lj is the position of the edge in Si that contains the jth edge of P .

For example, consider the sequence P = (1, 3)(1, 3)(1, 3). P occurs thrice in S3 of

Fig. 5.2. These three instances of P in S3 correspond to the instances with ID 3 in the

SeqDB(P) table of Fig. 5.3. We use the notation SeqDB(P) to represent the set of all

instances of P in the sequence database.The first two rows in SeqDB(P) correspond to

P ’s instances in S1 and S2. The instance (3, < 2, 3, 4 >), denotes that the first, second

and third edges of P are mapped to the second, third and fourth edges in S3 (or G3).

Since an instance (i, < l1, l2, · · · , lm >) of a subsequence uniquely identifies its mapped

edges in component Gi, it is easy to derive the subgraph that is induced by this instance.

Two instances of a sequence P in Si are called identically overlapping if there exists

an edge in P that is mapped to the same edge in Si in both instances. The formal

definition is as follows.

Definition 12. IDENTICALLY OVERLAPPING INSTANCES. Let two instances of a se-

quence P = l(e1) · · · l(m) in SeqDB(P) be (i, < l1, · · · , lm >) and (i′, < l′1, · · · , l′m >

). These two instances are identically overlapping if (1) i = i′ and (2) ∃j, 1 ≤ j ≤ m

such that lj = l′j

Example 4. The third and fourth instances of P in SeqDB(P) in Fig. 5.3 are identically

overlapping since they both correspond to instances in S3 and the first two edges of P

are mapped to the second and third edge of S3 in both instances. On the other hand,

the third and the fifth instances are not identically overlapping. Note that the third and

the fifth instances also overlap. However, they do not overlap in the same position and

hence, they are non-identically overlapping.

Theorem 2. In the presence of identically overlapping instances, computing SeqDB(P)

is NP-hard.

PROOF: [Ding et al., 2009] proves that when identically overlapping instances are

27

Figure 5.3: Demonstrates the instance representation of subsequence P =
(1, 3)(1, 3)(1, 3) in S3. SeqDB(P) lists all instances of P in the se-
quence database. Furthermore, two possible support sets of P are also
listed.

allowed in the “traditional” definition of subsequence, the problem is NP-hard. Now, if

sequence α is a “traditional” subsequence of β, then α v β by Definition 10 as well. �.

Due to Theorem 2, counting all instances of a subsequence P is not tractable. Hence,

we only count those instances of P that are not identically overlapping. Hereon, any

reference to an instance of a subsequence P is implicitly assumed to be a non-identically

overlapping instance and the support set of P is defined analogously.

Definition 13. SUPPORT SET. The support set of a subsequence P with respect to

a database of sequences contains only those instances of P that are non-identically

overlapping.

The support sets of P for the components in Fig. 5.2 are shown in Fig. 5.3. Notice

that for a given subsequence P , multiple support sets can be computed. To best approx-

imate SeqDB(P), we need to compute the largest support set support set SS∗, where

28

SS∗ = arg max
SS
{|SS| |SS ⊆ SeqDB(P) is a support set of P}

The support of P is therefore sup(P) = |SS∗|. We discuss how to compute SS∗

in Sec. 5.3.2. Regardless of whether the support set is the largest or not, it satisfies the

apriori property.

Theorem 3. APRIORI PROPERTY OF SUPPORT. Assume we are given a database of se-

quences SeqDB corresponding to each connected component of an interaction network.

For any two sequences P and P ′, if P v P ′, then sup(P) ≥ sup(P ′).

PROOF: We split the proof into two cases based on the different ways a sequence

P can be a subsequence of P ′

Case 1: ∀j, P [j] v P ′[j] and |P | = |P ′|

Let us represent

P ′ = l(e1), l(e2), · · · , l(em)

P = l(e1), l(e2), · · · , l(em).

Note that each instance I ′ = (x,< l1, · · · , lm >) of P ′ is also an instance of P .

Hence, for any given support set SS ′ of P ′, we can construct a support set SS of P

containing all instances in SS ′. Hence, sup(P) ≥ sup(P ′).

Case 2: |P | ≤ |P ′|

Let us assume

P ′ = l(e1), · · · , l(ei−1), l(ei), l(ei+1), · · · , l(em)

P = l(e1), · · · , l(ei−1), l(ei+1), · · · , l(em).

such that, ∀j 6= i, l(ej) v l(ej) and |P ′| − |P | = 1. Now for any instance

I ′ = (x,< l1, · · · , li−1, li, li+1, · · · , lm >) of P ′ in its support set, we can create an in-

29

stance I = (x,< l1, · · · , li−1, li+1, · · · , lm > of P in P ’s support set. Thus, sup(P) ≥

sup(P ′).

It is easy to see that the same strategy can be generalized when |P ′| − |P | > 1.

More specifically, let |P | = m, |P |′ = n, and m < n. Since, P v P ′, let I ′P = (P ′id, <

p1, · · · , pm >) be an instance of P in P ′. Recall from the definition of instance that P ′ID

denotes the ID of P ′ and pi denotes that the ith edge of P is mapped to the pthi edge in

P ′ . Therefore, for any instance, I ′ = (x,< l1, l2, · · · , ln >) in the support set of P ′, we

can create a support set of P containing instance I = (x,< lp1 , lp2 , · · · , lpm >). Thus,

sup(P) ≥ sup(P ′). �

5.3 The sequence growth approach

Sequence growth is a popular strategy to search for sequences in the presence of apriori

property[Yan and Han, 2002, Ding et al., 2009, Pei et al., 2001].

Definition 14. SEQUENCE GROWTH. Let a subsequence P = l(e1), l(e2), · · · , l(em)

be extended by the label of an edge e as l(e1), l(e2), · · · , l(em), l(e). This extension is

known as sequence growth. Sequence growth is denoted by P ◦ e. Through apriori

property, if sup(P) < τ , then sup(P ◦e) < τ . Similarly, if sup(l(e)) < τ , sup(P ◦e) <

τ .

Sequence growth outlines the strategy that we can start with labels of frequent edges

and keep extending them to larger sequences till the sequence becomes infrequent. The

key question therefore is how do we identify the extensions?

30

Figure 5.4: Illustration of the need for EXTENSIONMINER.

5.3.1 Identifying edge extension candidates

In traditional subsequence mining such as CloGSgrow, given a subsequence P = l(e1) · · ·

l(em), first, the support set of P is identified. Let S be the sequences in the database

containing P . The possible extensions of P here are those one-sized items (edge labels

in our case) that occur not less than τ times after P ’s instances in the sequences in S.

Since we also have the temporal connectivity constraint based on ∆T , we need to look

for only those edges following P that are within ∆T from em. In our problem, however,

this strategy of CloGSgrow does not work.

To illustrate, let us revisit the components in Fig. 5.2. Let us consider the subse-

quence P = (2, 2)(2, 3)(2, 3). P has support 3 because it occurs twice (non-identically)

in SID 1 and once in SID 3. At ∆T = 10, the possible extensions are (2, 3) in SID 1 and

two (1, 4) labels in SID 3. At τ = 2, only (1, 4) is classified as frequent, and we would

generate the subsequence P1 = (2, 2)(2, 3)(2, 3)(1, 4). P1 has a support of 1; it has two

instances in S3, but they are identically overlapping. When any of these instances is

mapped to the graph space, P1 corresponds to graph H in Fig. 5.4. Notice that H is also

a temporal subgraph of G1, but we are unable to detect it. Now, instead of extending P

with (1, 4), if we extend with (1, 3), we will generate P2 = (2, 2)(2, 3)(2, 3)(1, 3). The

instances of P2 in S3 is identical to that of P1. Furthermore, P2 also has an instance in

G1, and all these instances correspond to H . In other words, P2 is more accurately able

to discover the common subgraph H and that is because P2 = M(H).

31

Clearly, we cannot overlook extensions such as (1, 3), which would happen with

the traditional sequence growth approach. The traditional approach fails in our problem

since we need to look for edge label containment instead of edge label matching. Thus,

the possible edge extensions are not only the frequent edges following P , but also any

edge that is contained frequently in the edges following P . Going back to our example,

edge label (1, 3) is not present explicitly in any of the edges following P . However,

(1, 3) is contained in the edges (1, 4) and (2, 3), and therefore, is a valid candidate for

expansion with support of 3. To formalize this intuition, we define an edge extension

candidate as follows.

Definition 15. EDGE EXTENSION CANDIDATE. Let E be the set of all edge labels

that occur within ∆T from the edge em in subsequence P = l(e1), l(e2), · · · , l(em). An

edge label l = (s, d) is an edge extension candidate if sup(l) ≥ τ , where sup(l) =

|{l v e|e ∈ E}|.

One can immediately realize that at τ = 3, along with (1, 3), (1, 2) and (1, 1) are

also valid extensions since they occur in the same edges where (1, 3) occurs. As a result,

extension of P with either (1, 3), (1, 2) or (1, 1) will generate a new subsequence with

the exact same support set. When support sets of two subsequences are identical, the

graphs represented by the subsequences are also identical. More specifically, we claim

the following.

Theorem 4. Let α v β be two subsequences with the same support sets. When this

occurs, any subgraph represented by subsequence α will also be represented by subse-

quence β.

PROOF: Let the support sets of α and β be SSα = {i(k)α , < l
(k)
1α , · · · , l

(k)
nα >}

and SSβ = {i(k)β , < l
(k)
1β
, · · · , l(k)nβ >} respectively where 1 ≤ k ≤ sup(α) . Now,

SSα = SSβ implies i(k)α = i
(k)
β and l(k)jα

= l
(k)
jβ

for ∀j, 1 ≤ j ≤ n and ∀k, 1 ≤ k ≤

32

Algorithm 2 ExtensionMiner (el,S, b, τ)
Require: S is support set of edge label el, b is starting position, τ is support threshold.
Ensure: E is set of all frequent edges labels.

1: E = E ∪ el
2: for i = b to 1 do
3: S′ ={ y |y ∈ S, yi > el[i] }.
4: if |S′| < τ then
5: continue
6: el′ = floor(S′)
7: if ∃j < i such that el′[j] > el[j] then
8: continue
9: ExtensionMiner(el′,S′, i, τ)

sup(α). Since both the connected component IDs and the edge positions within those

components are identical for support sets of α and β, any subgraph represented by an

instance of support set of α will be represented by β as well. �

From Theorem 4, it becomes critical to prune out redundant extensions that generate

duplicate support sets. If we are unable to detect such redundant extensions, then we

will not only be generating subsequences pointing to same subgraphs, but also further

expand these subsequences using sequence growth creating an exponential explosion in

search space redundancy. To guard the mining procedure from these spurious exten-

sions, we define the concept of closed edge extensions.

Definition 16. CLOSED EDGE EXTENSION CANDIDATE.

An extension candidate with edge label l = (s, d) is closed if sup(l) ≥ τ , and there does

not exist another edge extension candidate with label l′ such that l v l′ and sup(l′) =

sup(l).

It is easy to see, that when only closed edge extensions are allowed, all extensions

are non-redundant. Going back to our previous example, among extension candidates

(1, 3), (1, 2) and (1, 1), only (1, 3) is closed.

33

The above two observations significantly complicate the extension identification

step. Not only do we need to search for the edges that follow P frequently, but also

look for all extensions that occur within those edges. Furthermore, after finding all such

possible extensions, we need to prune those that are not closed. To analyze the computa-

tional burden of this task, assume the maximum degree of a node is δ. Then, the highest

possible edge label is (δ, δ). Such an edge label contains δ2 other edge labels within it

and therefore creates an explosion in the extension search space. Now among these δ2

possible extensions, we need to prune those that are not closed, which makes the com-

putation cost O(δ4). Clearly, a naive algorithm to perform this task is not feasible. To

overcome this bottleneck, we design the ExtensionMiner algorithm.

To explain EXTENSIONMINER, we first define the floor of edge labels.

Definition 17. FLOOR. Floor of a set of edge labels {l(e1), · · · , l(en)} is an edge label

l(e) = (s, d) such that s = min(l(s1), · · · , l(sn)) and d = min(l(d1), · · · , l(dn)),

where si and di are the source and destination of edge ei.

For an edge label l(e) = (s, d), we use l(e)[0] to denote s and l(e)[1] to denote d.

Alg. 2 presents the EXTENSIONMINER algorithm. Fig. 5.5 presents a running exam-

ple of the algorithm. EXTENSIONMINER identifies closed edge-label extensions in a

bottom-up, depth-first manner. For a subsequence P = l(e1) · · · l(em), we compute the

collection S of all edge labels occurring after the last edge em ∈ P , but within ∆T from

em. Note that S may contain the same edge label multiple times. Such a scenario is

shown in the illustration of EXTENSIONMINER in Fig. 5.5, where the labels of S1 and

S6 are identical.

At the start, floor of all edge labels e = floor(S) is calculated and EXTENSION-

MINER (e, S, 0, τ) is called. e represents the edge label contained in all labels in S and

has support |S|. If |S| ≥ τ , we store e as an extension candidate (line 1). In each of the

subsequent steps, EXTENSIONMINER moves on to a state with a smaller S and a larger

34

Figure 5.5: A running example of EXTENSIONMINER. The closed edge extensions
from the given collection S of all edge labels correspond to the floors in the
non-leaf states. Specifically, (1, 4), (5, 5), (5, 6), and (1, 5). The underlined
dimension indicates the value of b in that state.

floor e. Specifically, for all indices of e (line 2), a new set S′ is created (line 3) contain-

ing all values greater than e[i]. This process continues till we reach a state with |S| < τ

(lines 4-5). In addition, we do not expand on states that have already been visited in an

earlier branch of the search tree (lines 7-8, Ex. child (5, 5) on right branch of root in

Fig. 5.5). Thus, EXTENSIONMINER is correct in identifying all possible closed edge

extensions, non-redundant in pruning out all duplicate states at the earliest stage, and

efficient since it performs the minimum number of computations required to identify all

closed extensions.

5.3.2 Computing the largest support set

ExtensionMiner allows us to employ the sequence growth approach. More specifically,

given a frequent subsequence P , we identify the possible extensions using EXTENSION-

MINER and generate new subsequences of a larger size. The supports of these new sub-

sequences are then computed to verify if they are above τ . Now, recall that in Sec. 5.2,

35

Figure 5.6: Illustration of sequence growth from (1, 3) to (1, 3)(1, 3)(1, 3). The sup-
port sets are maintained in right shift order, which allows polynomial-time
support counting.

we realized that a subsequence can have multiple support sets, and we need to identify

the largest one. Towards that goal, we use the greedy polynomial-time support count-

ing strategy outlined in CloGSgrow[Ding et al., 2009]. Here, we briefly summarize the

algorithm. The correctness proofs are available in CloGSgrow[Ding et al., 2009].

First, we define the concept of right shift order.

Definition 18. RIGHT-SHIFT ORDER. Instances of a sequence P in its support set

are said to be in right-shift order, if one instance (i, < l1, · · · , lm >) is ordered before

another instance (i′, < l
′
1, · · · , l

′
m >) when (1) i < i′ or (2) i = i′ and lm < l

′
m.

For example, instance (3, < 2, 3, 4 >) followed by (3, < 3, 4, 5 >) is in right-shift

order.

To illustrate the greedy support counting algorithm, let us revisit the sequences gen-

erated out of the connected components in Fig. 5.2 (also shown in Fig. 5.6). Consider

the subsequence P = (1, 3)(1, 3)(1, 3). With the sequence growth technique, the gen-

36

eration of this subsequence would start from the edge label (1, 3).

1. Find all instances of subsequence (1, 3) in the sequence database and store them

in right-shift order. Since there is no scope of overlap for single edge subsequences, the

computation is trivial. The first table in Fig. 5.6 denotes all instances of (1, 3). Next,

EXTENSIONMINER identifies all possible extensions and let us assume that (1, 3) is one

such extension.

2. Our goal is now to compute the largest support set of (1, 3) (1, 3) from (1, 3). To

locate the first instance of (1, 3)(1, 3), the search starts from the first entry in support

set of (1, 3). More specifically, we extend instance (1, < 3 >) of subsequence (1, 3) to

instance (1, < 3, 4 >) of subsequence (1, 3)(1, 3). Next, we move to the second instance

of (1, 3), which is (1, < 4 >), to identify the next instance of (1, 3)(1, 3). Now, note that

due to right shift order, we need to search for the extension (1, 3) only from position 5

onwards in SID 1. This follows from the fact that the preceding instance of (1, 3)(1, 3)

ends at position 4 in SID 1. As a result, any non-identically overlap instance can occur

only beyond position 4. This observation lies at the core of obtaining a polynomial time

algorithm in identifying the largest support set.

3. From instance set of subsequence (1, 3)(1, 3), we follow the same strategy to find

non-identically overlapping instances of (1, 3) (1, 3)(1, 3) in right-shift order.

The above example illustrates the intuition behind the greedy strategy. Since this

algorithm is not a core contribution of our work, we present the formal pseudocode in

Appendix 6.2.

Revisiting the example in Fig. 5.6, one can see that the 4-node graph G2 is de-

scribed by (1, 3)(1, 3)(1, 3) in the sequence space. In the graph space, sup(G2) = 5.

The approximated support in the sequence space is 4. In other words, we are able to

achieve a good approximation without performing any of the costly steps such as sub-

37

graph enumeration and subgraph isomorphism. This allows us to achieve scalability

without compromising significantly on quality. We verify this empirically in Chapter

7.

38

CHAPTER 6

COMMIT

In this chapter, we merge all the pieces required to mine communication motifs in scal-

able manner. We next discuss the mining pipeline of COMMIT.

Algorithm 3 COMMIT (G, τ , ∆T)
Require: A dynamic interaction network G, support threshold τ , and temporal thresh-

old ∆T .

Ensure: Communication motifs with support no less than τ .

1: C← All temporally connected components in G.

2: SeqDB ← {M(c)|∀c ∈ C}

3: S← All edge labels in SeqDB.

4: f ← Floor(S)

5: E← ExtensionMiner(f, S, 0, τ)

6: for all edge label e ∈ E do

7: Pj ← e; SSj ← {(i, < l >) for some i, Si[l] v e}

8: P← Pj, SS← SSj

9: for all subsequence Pj ∈ P do

10: FreqP, FreqSS ← SeqGrow(SeqDB,Pj, SSj,∆T, τ)

11: for all I ∈ FreqSS do

12: A+ ←MotifMine(SeqDB, SS)

13: A←Remove false positives from A+.

14: return A

Alg. 3 presents the pseudocode. Given a dynamic network G, support threshold τ

and temporal threshold ∆T , first, all temporally connected components in the network

are identified (line 1 in Alg. 3). These connected components are then mapped to the

sequence space for frequent subsequence mining (line 2). In sequence space, the mining

starts by collecting all edge labels in S (line 3). Note that S is a collection and not a set

since an edge label e is present sup(e) times in S. EXTENSIONMINER is next executed

on S, which returns all closed edge labels E with supports no less than τ (line 5). For

each edge label in E, we calculate its largest support set using right-shit order. Next, we

extend each edge P ∈ E with the help of SEQGROW algorithm to larger subsequences.

Algorithm 4 SeqGrow (SeqDB,P, SS,∆T, τ)

Require: A sequence database SeqDB = {S1, S2, ..., SN}, P is subsequence, SS the

support set of P .

Ensure: FreqP is a set of frequent sequences and FreqSS contains the associated

support sets.

1: if |SS| < τ then

2: return

3: FreqP ← P ; FreqSS ← SS

4: for all instance (i, < l1, l2, ..., lj >) ∈ SS do

5: S← {Si[lk] | lk > lj and | tl − tj| ≤ ∆T}

6: f ← Floor(S)

7: E← ExtensionMiner(f, S, 0, τ)

8: for all edge e ∈ E do

9: P+
i ← P ◦ e

10: SS+
i ← GetSup(SeqDB,P, SS, e) \\See section 6.2 for GetSup()

11: P← P+
i ,SS← SS+

i

12: for all P+
i , SS

+
i ∈ P,SS do

13: SeqGrow(SeqDB,P+
i , SS

+
i ,∆T, τ)

40

Alg. 4 presents the SEQGROW algorithm. SEQGROW employs the sequence growth

approach and aggressively leverages the apriori property. More specifically, given a sub-

sequence P , SEQGROW extends P to a larger subsequence only if sup(P)≥ τ (line 1)

(recall Theorem 3). To extend a sequence P with edge e, first all edges within ∆T from

P are identified, and then filtered using EXTENSIONMINER. The extensions provided

by EXTENSIONMINER are used to grow P till we reach a state where no extension e

exists such that sup(P ◦ e) ≥ τ . When SEQGROW terminates, it returns the frequent

subsequences.

The last step in COMMIT is to map the frequent subsequences to the graph space.

This is achieved using the MOTIFMINE algorithm. In COMMIT, an instance I = (i, <

l1, · · · , ln >) of a sequence stores sequence id i, which corresponds to the ith component

of the network. In addition, each lj in I maps the location of the jth edge in I to its

location in component i. As a result, each instance of subsequence uniquely identifies

the subgraph it represents (lines 2-4 in Alg. 5). After identifying the corresponding

subgraphs of all instances of a frequent subsequence, we compute their supports in

the graph space using temporal subgraph isomorphism and check if they are actually

frequent (lines 11-13 in Alg. 3).

6.1 MotifMine Algorithm

In this section, we design the MotifMine algorithm in Alg. 5 to return to graphs from

the space of sequences.

An instance I = (i, < l1, · · · , ln >) of a sequence stores sequence id i, which

corresponds to the ith component of the network. In addition, each lj in I maps the

location of the jth edge in I to its location in component i. Recall that in Sec. 4.1.1 we

devised a mechanism to impose a total ordering on the edges of a given graph. Here, lj

41

maps to the edge ranked lj in component i. As a result, each instance of subsequence

uniquely identifies the subgraph it represents (lines 2-4 in Alg. 5).

Example 5. Consider one instance (3, < 2, 3, 4 >) of pattern P3 = (1, 3)(1, 3)(1, 3)

from Fig. 5.6. The induced graph and its corresponding matched edges are shown in

Fig. 6.1.

Figure 6.1: Instance I = (3, < 2, 3, 4 >) of subsequence (1,3)(1,3)(1,3) corresponds to
temporal component G3 in Fig. 5.6. I represents an induced subgraph of
G3 (shown using the orange edges). For checking temporal isomorphism,
induced graphs are converted into temporal graphs and the frequencies of
temporal graphs are computed for final verification.

Algorithm 5 MotifMine (SeqDB, SS)

Require: A sequence database SeqDB = {S1, S2, ..., SN}, support set SS.
Ensure: Motif with their frequencies

1: for all instance (i, < l1, l2, ..., lj >) ∈ SS do
2: Find Gi associated with Si.
3: Find edge ids < ea, eb, ..., ej > associated with < l1, l2, ..., lj >.
4: Form induced graph IG from graph Gi and edges < ea, eb, ..., ej >.
5: if IG is temporally connected graph then
6: Create a temporal node for each edge.
7: Create link from temporal node A to B, if timeA < timeB and @C such that

timeA < timeC < timeB.
8: Count frequency of each temporal graph

In a traditional setting, to compute the frequency of each unique subgraph, we need

to perform graph isomorphisms. In our problem, however, we need to check for tem-

poral isomorphism (Definition 3.2). Towards that goal, given an interaction graph, we

42

convert it into a “temporal” graph such that the interaction graphs are temporally isomor-

phic to each other if an only if their corresponding temporal graphs are also isomorphic.

The temporal graph is constructed in the following manner. On each edge e = (s, d)

of the interaction graph, we partition it into two edges (s, t), (t, d) by introducing a new

temporal node t. We refer to this temporal node as e′s temporal node. Let e′ be the

edge in interaction graph that is ordered immediately after e and t′ the temporal node in

e′. To impose the temporal constraints, we now add one more edge from t to t′. This

process is repeated for each edge in the original interaction graph (lines 4-7). Fig. 6.1

illustrates the correspondence between an interaction graph and its temporal graph.

Theorem 5. Let G1 and G2 be two interaction graphs and C1, C2 their corresponding

temporal graphs respectively. If G1 is temporally isomorphic to G2, then C1 is isomor-

phic to C2.

PROOF: Let us assume that the edges between the temporal nodes in C1, C2 are

absent. In this scenario, it is trivial to see that if G1 and G2 are isomorphic, then C1

and C2 are isomorphic as well. Now, because G1 and G2 are temporally isomorphic,

for any two edges ei, ej ∈ G1 such that ej is ordered immediately after ei, for edges

f(ei), f(ej) ∈ G2, f(ej) is also ordered immediately after f(ei), where f is the bijection

from edges in G1 to G2. Now, if we consider the edges between the temporal nodes

in C1, C2, due to the edge ordering preservation, whenever there is an edge from the

temporal node in ei to ej , there is also an edge from the temporal node in f(ei) to f(ej).

Thus, a bijection exists from edges in C1 to edges in C2. �

Based on Theorem 5, the final temporal graph frequencies are computed and re-

turned.

43

6.2 Pseudocode of the GetSup Algorithm

Alg. 6 presents the pseudocode of the GETSUP algorithm. We implement this following

the algorithm proposed in [Ding et al., 2009].

Algorithm 6 GetSup (SeqDB,P, SS, e)

Require: A sequence database SeqDB = {S1, S2, ..., SN}, subsequence P , support
set SS and edge e.

Ensure: A support set SS+ of subsequence P ◦ e,
1: for all Si ∈ SeqDB s.t. SSi = I ∩ Si(P) 6= φ (P has instances in Si, I is instance)

in the ascending order of i do
2: last_pos← 0, SS+

i ← φ.
3: for all (i, < l1, l2, ..., lj−1 >) ∈ SSi = I ∩ Si(P) in right-shift order do
4: pos← max{last_pos, lj−1}
5: lj ← min{l|Si[l] v e and l > pos}
6: if lj =∞ then
7: break
8: last_pos← lj
9: SS+

i ← SS+
i ∪ {(i, < l1, l2, ..., lj−1, lj >)}

10: return SS+ = ∪1≤i≤NSS+
i

6.3 Computational Complexity of COMMIT

The worst case complexity of COMMIT is exponential which is similar to that of all fre-

quent subgraph mining techniques, such as gSpan, Gaston, GRAMI. When the support

threshold is close to 0, the answer set is exponential. However, the existing frequent

subgraph mining techniques utilize the sparsity of the search space and in real world

networks, the running times are less than exponential. COMMIT falls in this category.

Theoretically, the worst case complexity of COMMIT is exponential, but in real world

networks, COMMIT mines communication motifs in a more tractable manner.

44

CHAPTER 7

Experiments

In this chapter, we show that COMMIT is close to optimal in terms of accuracy, up to

two orders of magnitude faster than existing techniques, and effective in characterizing

the recurring interaction patterns.

• Quality: The accuracy of the communication motifs mined by COMMIT is close
to optimal.

• Scalability: COMMIT is up to 2 orders of magnitude faster than existing tech-
niques.

• Impact: Communication motifs are effective in characterizing the evolution of
interactions.

7.1 Experimental setup

All experiments are performed on a 64-bit Intel i7-2600 CPU @ 3.40GHz machine with

32 GB RAM running on Ubuntu 14.04. All our algorithms are written and compiled in

C++ with -O3 flag.

7.1.1 Datasets

We evaluate our COMMIT on the three social network datasets in Table 7.1. The Twitter

dataset, which is the largest of the three, contains all tweets in December, 2009. If a

tweet for person A “mentions” a set of persons P using the “@” operator, then it creates

an edge from A to each of the person in P . In Facebook, if user X posts a message on

wall of another user Y , then a directed edge from node X is created to node Y . Finally,

the Enron email network contains around half a million emails. Edges from an email

are created in the same manner as in Twitter mentions.

7.1.2 Benchmarking Setup:

The baseline approach is to enumerate all possible subgraphs in the given network, and

verify if each of these subgraphs are frequent and temporally connected. We call this

approach the Naïve approach. An alternative approach is to directly mine the frequent

subgraphs and then verify if they are communication motifs. The state-of-the-art tech-

nique to mine frequent subgraphs is GRAMI[Elseidy et al., 2014]. Thus, these two form

constitute our baseline techniques.

In our experiments, we evaluate both top-k and range queries for scalability. The

range version is compared with GRAMI, and the top-k version is benchmarked against

Naïve since GRAMI does not support top-k frequent subgraphs. To evaluate accuracy of

COMMIT, we use the top-k version since the intuitive interpretation of top-k is simpler.

For top-k queries, we use the best-first search algorithm, where the support threshold

changes as more patterns are mined. Specifically, at any stage, the support threshold τ

is the support of the kth most frequent subsequence till that point. All other aspects of

the COMMIT algorithm in Alg. 3 remain the same. To ensure that the top-k set is not

Dataset Number of Number of Duration
Nodes Edges (days)

Twitter[sna,] 4,978,421 26,526,180 30
Facebook[Viswanath et al., 2009] 45,813 855,539 1540

Enron Email Network[enr,] 10833 77050 349

Table 7.1: Summary of the datasets.

46

0 50 100 150
0

0.2

0.4

0.6

0.8

1
C

o
v
e

ra
g

e
 (

%
)

 ∆ T (in secs)

Twitter

(a) Twitter

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

C
o

v
e

ra
g

e
 (

%
)

 ∆ T (in hours)

Facebook
Enron

(b) Facebook and Enron

Figure 7.1: Growth rate of coverage with ∆T in (a) Twitter and (b) Facebook and Enron.

overloaded with small motifs, we consider motifs of size at least 3.

∆T is an important parameter in our model and controls whether two interactions

are related. To learn the appropriate ∆T , we pick a sample of 1000 nodes proportional

to their frequencies of interactions. This is necessary since a large portion of the users

are dormant. For each selected node, we extract the subgraph of radius ∆T around it.

Figs. 7.1(a)-7.1(b) present the average growth rate in the subgraph sizes as ∆T is varied

in a range [tmin, tmax], where

Coverage(∆T) =
subgraph size at ∆T

subgraph size at tmax
(7.1)

In Facebook, the growth rate saturates at 30 minutes indicating the lifeline of related

interactions. In Enron, no clear pattern is visible as the growth rate is linear. In Twitter,

the coverage shows two jumps at ∆T = 60 seconds and ∆T = 120 seconds. Thus,

a threshold between 60 to 120 secs is a reasonable value for ∆T . In Twitter, we look

at a much smaller time range, since the spread of information flow is extremely high,

47

but is limited within a short time-window. This behavior stems from a combination of

two of its properties. First, twitter has a large number of celebrities with followers in

millions. When such celebrities tweet, they generate a high volume of responses from

the followers. At the same time, this bursty behavior exists for a small duration since a

tweet is visible on the timeline only for a short period till it gets pushed down by more

recent tweets. Due to this property of twitter, we vary the time window in the range

of 15 seconds to 2 minutes. On the other hand, interactions in Facebook and Emails

remain active for a much longer while since a Facebook wall or email inbox do not

receive content at the same express rate.

This analysis guides our choice of default parameter values. Unless explicitly speci-

fied, we set k = 500, and ∆T = 30 minutes for Enron and Facebook and 30 seconds for

Twitter. A detailed analysis on the impact of ∆T on temporally connected components

in interaction networks is provided in below section.

7.1.3 Impact of temporally connected components

In this section, we discuss how the properties of the temporally connected components

affect the running time. Figs. 7.2(a)-7.2(c) show how the number of temporally con-

nected components vary with ∆T . As can be seen, majority of the components contain

less than three interactions, while the remaining interactions in the network are dis-

tributed among a minority of large connected components. The size distribution of

temporally connected components in Twitter, which follows a power-law, is shown in

Fig. 7.2(d).

The running time is affected by two aspects: the number of temporally connected

components, and the sizes of the temporally connected components. For example, a

network with 20 million edges can split into 1 million components with 20 edges each,

48

or, in the extreme case, a single component containing 19 million edges and remaining

components containing an edge each. Although both cases have equal number of com-

ponents, the running times would vary significantly. As shown in Figs. 7.2(a)-7.2(c),

the real results tend to be more like the second case. This phenomenon stems from the

well documented scale-free property of social networks.

To illustrate the impact on running time, when the temporally connected compo-

nents are large in size, there is more scope of overlap among motifs and thus higher

supports for motifs of larger sizes. This drives up the running time since enumeration

of larger motifs is more expensive. On the other hand, when there are more temporally

connected components, the number of sequences is higher and consequently, small mo-

tifs become extremely frequent. In summary, both these factors are important. Both

the size and the number of connected components are dictated by ∆T . While the size

is directly proportional to ∆T , the number of components is inversely proportional to

∆T . Generally, with higher ∆T , the running time goes up (Figs. 7.6(a)-7.6(c)), which

indicates that larger components have more impact on the running time.

7.2 Accuracy of COMMIT

In this section, we measure the accuracy of communication motifs mined by COMMIT.

To construct the ground truth dataset, we identify the top-k communication motifs us-

ing the Naïve algorithm, which enumerates all possible subgraphs. Since, the sizes of

the datasets are too large for the naive approach, it invariably runs out of main memory

and crashes even on a machine with 32GB of main memory. This happens since Naïve

needs to enumerate all possible subgraphs and store them in memory for support count-

ing. Due to this weakness of Naïve, we build the ground truth dataset in a breadth-first

manner. More specifically, we first generate all communication motifs of size 2 edges.

49

15 30 45 60 120
0

0.5

1

1.5

2

2.5

3
x 10

7

∆ T (in secs)

N
o
.
o
f
c
o
m

p
o
n
e
n
ts

Size<3
Size>2

(a) Twitter

30 60 120 180
0

2

4

6

8

10
x 10

5

∆ T (in mins)

N
o
.
o
f
c
o
m

p
o
n
e
n
ts

Size<3
Size>2

(b) Facebook

30 60 120 180
0

1

2

3

4

5
x 10

4

∆ T (in mins)

N
o
.
o
f
c
o
m

p
o
n
e
n
ts

Size<3
Size>2

(c) Enron

1 10 100 1000 10000 100000
10

0

10
2

10
4

10
6

10
8

D
is

tr
ib

u
ti
o
n

Size

Twitter

(d) Twitter

Figure 7.2: (a-c) Number of temporally connected components in the three interaction
networks. (d) The distribution of the sizes of temporally connected compo-
nents in Twitter at ∆T = 120 seconds.

50

Then, we proceed to motifs of size 3 edges and so on. Thus, if Naïve crashes while

mining motifs of size m, then we know that we have the ground truth for all motifs

till size m − 1. The size of a communication motif is the number of interactions in

it. To benchmark the accuracy of COMMIT, we compute the top-k list on only those

communication motifs that are within the size of m − 1. The accuracy of COMMIT is

quantified using the F-score measure. F-score can be visualized as a weighted average

of the precision and recall. An F -score of 1 corresponds to the best performance, and 0

corresponds to the worst.

Figs. 7.3(a)-7.3(c) demonstrate the results on a range of ∆T s as k is varied. On

Twitter, which is the largest network with more than 26 million edges, the naive algo-

rithm quickly runs out of memory. Naïve is able to generate motifs only up to size 3, all

of which also occur in the top-k lists of COMMIT. Thus, Twitter is not a good dataset

for verification of accuracy. On Facebook and Enron, Naïve scales better and its top-k

lists contain motifs of larger sizes. On Facebook, COMMIT generally achieves an F-

score exceeding 0.8. As k grows, the F -scores almost touch 1. A similar improvement

with k is also seen in Enron. This improvement of accuracy with k is natural. At small

ks, the difference in the supports of the top motif and the kth motif is normally very

small. Here, if COMMIT underestimates the frequency of a motif by a small amount δ,

then its impact on the top-k list is high. When k grows, a wider error range is available

for a communication motif to remain within the top-k list and hence, the increase in

accuracy. To put the value of k in context, even Enron, the smallest network, contains

millions of subgraphs. Thus, k = 50 represents a very small portion of the subgraph

space, and even in this small region, COMMIT has an accuracy 0.6, which improves to

0.8 at k > 500.

Except on Facebook, the accuracy is invariant with ∆T , specifically at higher ks

where the ranking stabilizes. On Facebook, the accuracies are slightly lower at ∆T = 15

51

0 500 1000
0

0.5

1

F
−

s
c
o
r
e

k

∆ T=15 secs

∆ T=30 secs

∆ T=45 secs

∆ T=60 secs

(a) Twitter

0 500 1000
0

0.2

0.4

0.6

0.8

1

F
−

s
c
o
r
e

k

∆ T=15 mins

∆ T=30 mins

∆ T=60 mins

∆ T=120 mins

∆ T=180 mins

(b) Facebook

0 500 1000
0

0.2

0.4

0.6

0.8

1

F
−

s
c
o

re

k

∆T=15 mins,

 ∆T=30 mins,

 ∆T=60 mins,

 ∆T=120 mins,

 ∆T=180 mins

(c) Enron

Figure 7.3: Analysis of F-score with k on (a) Twitter, (b) Facebook and (c) Enron.

52

0 500 1000
0

0.2

0.4

0.6

0.8

1

R
a

n
k
 C

o
rr

e
la

ti
o

n

k

∆T=15 secs,

 ∆T=30 secs,

 ∆T=45 secs,

 ∆T=60 secs

(a) Twitter

0 500 1000
0

0.2

0.4

0.6

0.8

1

R
a

n
k
 C

o
rr

e
la

ti
o

n

k

∆ T=15 mins

∆ T=30 mins

∆ T=60 mins

∆ T=120 mins

∆ T=180 mins

(b) Facebook

0 500 1000
0

0.2

0.4

0.6

0.8

1

R
a

n
k
 C

o
rr

e
la

ti
o

n

k

∆T=15 mins,

 ∆T=30 mins,

 ∆T=60 mins,

 ∆T=120 mins,

 ∆T=180 mins

(c) Enron

Figure 7.4: k vs Spearman’s rank correlation on (a) Twitter (b) Facebook and, (c) Enron.

53

minutes and ∆T = 30 minutes because at higher ∆T s, Naïve once again fails to scale

and mines a limited number of motifs, all of which are part of COMMIT’s top-k answer

set. Since ENRON is a much smaller network, Naïve finishes within a manageable time

limit at all ∆T s.

In addition to the F-Score of the top-k list, we also verify how well the ranking

within the top-k lists are preserved. To assess the similarity of the top-k rankings,

we compute the Spearman’s rank correlation coefficient[Spearman, 1904] between the

ground truth and COMMIT’s top-k lists. Spearman’s rank correlation takes as input a

list of items and their ranks on each of the methods. In our case, the top-k lists from

Naïve and COMMIT may not overlap completely. In such a situation, we create a list

by taking the union of the two top-k lists and their corresponding ranks. Figs. 7.4(a),

7.4(b), 7.4(c) presents the results against k on multiple ∆Ts. The trends are similar to

that of F -score. In Twitter, the correlation is above 0.9. However, this is largely due to

Naïve running out of memory and generating only a small set of motifs. On Facebook,

the correlation improves from 0.6 to 0.8 as k grows at ∆T = 15 minutes and ∆T = 30

minutes. At higher ∆T , Naïve crashes before generating all k patterns. Similar to

Facebook, Enron and the correlation saturates at 0.75 for k beyond 500. The reason

behind this improvement is the same as with k; the permissible error range increases

with k.

To summarize, both the F -score and rank correlation improve with k and saturate

around 0.80 on Facebook and Enron. On Twitter, Naïve fails to scale.

7.3 Scalability of COMMIT

We evaluate COMMIT on both top-k and range queries. In the top-k setting, we bench-

mark COMMIT against Naïve since no other technique exists. In the range query set-

54

ting, where the input is a support threshold, we benchmark COMMIT against GRAMI.

While GRAMI does not solve the problem of communication motif, it forms a part of

the alternative pipeline where frequent subgraphs are first mined, and then analyzed to

check if they satisfy the constraints of communication motifs. In other words, GRAMI

provides a lower bound on the running times of the alternative communication motif

discovery route. In the following experiments, unless specifically mentioned, we set

k = 500, and ∆T = 30 minutes for Facebook and Enron, and ∆T = 30 seconds for

Twitter.

7.3.1 Top-k queries

First, we benchmark the performance of COMMIT against k. Figs. 7.5(a), 7.5(b),7.5(c)

present the results. As we saw in the previous section, Naïve inevitably runs out of

memory on Twitter and Facebook, and thus it is not possible to compute its actual

running time. Thus, in these experiments we report the time Naïve takes to mine all

communications motifs of size 3 in Twitter and size 4 in Facebook. In other words,

the experiments only provide loose lower bounds on the actual running times of Naïve.

Since Naïve needs to enumerate all subgraphs regardless of the value of k, its running

time is constant with k. In COMMIT, there is a minor increase in the running time with

k. For top-k queries, we use the best-first search algorithm, where the support threshold

changes as more patterns are mined. At any stage, the support threshold is the support

of the kth most frequent pattern till that point. When k is large, this threshold is smaller

and hence an increase in the running time. Notice that the running times of Naïve on

Twitter and Facebook are similar although Twitter is significant larger. This results from

that fact that regardless of the dataset size, Naïve runs out of memory around the same

time.

We further study the scalability of top-k queries against ∆T , which controls when

55

0 500 1000
0

2000

4000

6000

8000

10000

R
u
n
n
in

g
 t
im

e
 (

in
 s

e
c
s
)

k

COMMIT, ∆ T=30 mins

Naive, ∆T=30 mins

(a) Twitter

0 500 1000
0

1000

2000

3000

4000

5000

6000

R
u
n
n
in

g
 t
im

e
 (

in
 s

e
c
s
)

k

COMMIT, ∆ T=30 mins

Naive, ∆T=30 mins

(b) Facebook

0 500 1000
0

200

400

600

800

1000

R
u
n
n
in

g
 t
im

e
 (

in
 s

e
c
s
)

k

COMMIT, ∆ T=30 mins

Naive, ∆T=30 mins

(c) Enron

Figure 7.5: Growth rate of running time with k in (a) Twitter and (b) Facebook and (c)
Enron.

56

0 20 40 60

10
4

10
5

R
u
n
n
in

g
 T

im
e
 (

in
 s

e
c
s
)

∆ T (in secs)

COMMIT
Naive

(a) Twitter

0 50 100 150 200

10
3

10
4

10
5

R
u
n
n
in

g
 T

im
e
 (

in
 s

e
c
s
)

∆ T (in mins)

COMMIT
Naive

(b) Facebook

0 50 100 150 200

10
2

10
3

10
4

10
5

R
u
n
n
in

g
 T

im
e
 (

in
 s

e
c
s
)

 ∆ T (in mins)

COMMIT

Naive

(c) Enron

Figure 7.6: Growth rate of running time with ∆T in (a) Twitter, (b) Facebook and (c)
Enron.

57

two interactions are classified as related. In addition, we adopt a different strategy to

estimate the running time of Naïve on Twitter since Naïve is unable to scale beyond

patterns of size 3. To mine patterns of larger sizes on Twitter, we partition Twitter into

multiple smaller chunks of 50,000 edges each. Then we let Naïve run on each of these

partition in parallel. While Naïve finished on some of the partitions, it could not fin-

ish mining all chunks even after 20 hours across all values of ∆T . Thus, as visible in

Fig. 7.6(a), the running time is a straight line. Fig. 7.6(b) demonstrates the performance

in Facebook. As can be seen, there is an exponential growth in the running time of

Naïve. At a larger ∆T , the sizes of the communication motifs and their correspond-

ing subsequence representations are larger. Thus the sequence growth algorithm runs

longer, the support counting is more expensive, and in the graph space, verification cost

is higher. In addition, the sizes of the temporally connected components grow with ∆T

as well. The impact on Naïve is much more drastic since the cost of subgraph isomor-

phism goes up. On the other hand, COMMIT is insulated from such a drastic impact

since the bulk of the processing happens in sequence space. A similar trend to Facebook

is also visible in Enron. Overall, COMMIT is up to two orders of magnitude faster than

the Naïve algorithm.

Finally, we look at the growth rate of running time against the size of the interaction

network. Figs 7.7(a)-7.7(b) presents the results on a series of ∆T s. On both datasets,

the growth rates resemble a linear curve. On twitter, the growth rate is higher since it is

more dense. We ignore the ENRON dataset for this experiment since it is the smallest.

7.3.2 Range query

We compare the running time of COMMIT with GRAMI[Elseidy et al., 2014]. Note

that the answer sets of GRAMI and COMMIT are different. GRAMI mines frequent

subgraphs. However, as illustrated earlier, these frequent subgraphs can subsequently

58

0 1000 2000 3000
0

2000

4000

6000

8000
R

u
n
n
in

g
 T

im
e
 (

in
 s

e
c
s
)

No of Edges (X 10
4
)

∆ T=15 secs,

∆ T=30 secs,

∆ T=45 secs,

∆ T=60 secs,

(a) Twitter

0 5000 10000
0

2000

4000

6000

R
u
n
n
in

g
 T

im
e
 (

in
 s

e
c
s
)

No of Edges (X 10
3
)

∆ T=15 mins,

∆ T=30 mins,

∆ T=60 mins,

∆ T=120 mins,

∆ T=180 mins

(b) Facebook

Figure 7.7: Growth rate of the running time against the size of the interaction network
in (a) Twitter and (b) Facebook.

be analyzed to extract the communication motifs. As discussed earlier, without any

metadata, it is non-intuitive to know what an appropriate support threshold is since the

number of subgraphs in the networks itself is unknown. We therefore follow the strategy

of GRAMI[Elseidy et al., 2014], where the threshold is set in proportion to the number

of nodes. In Twitter, we vary the support threshold from τ = 1% of total number of

nodes to higher values. In this support range, GRAMI fails to complete even after 16

hours. Thus, the running time of GRAMI is shown as a straight line in Fig. 7.8(a)

and only indicates a lower bound of the actual. GRAMI fails to scale since it relies

heavily on node labels to prune the search space. COMMIT, on the other hand, uses

node degrees as labels, which are subsequently used to mine communication motifs. As

expected, the running time goes down with increase in the minimum support threshold.

To ease the setting and check the performance at higher values of τ , in Facebook, we

start growing τ from 5% of the node set size. However, we again see a similar result

and GRAMI fails to complete within 16 hours. Fig. 7.8(b) demonstrates the results.

59

50 60 70 80
0

5

10
x 10

4

R
u

n
n

in
g

 t
im

e
 (

in
 s

e
c
s
)

Minimum support (X 10
3
)

COMMIT

GRAMI

(a) Twitter

27 28 29 30
10

2

10
3

10
4

10
5

R
u
n
n
in

g
 t
im

e
 (

in
 s

e
c
s
)

Minimum support (X 10
3
)

COMMIT

GRAMI

(b) Facebook

Figure 7.8: Growth rate of running time against the support threshold in the range query
setting on (a) Twitter and (b) Facebook.

In contrast, COMMIT finishes within 30 minutes across all values of τ in Fig. 7.8(b).

Overall, COMMIT is more than 70 times faster than GRAMI.

7.3.3 Distribution of motif sizes

Secs. 7.3.1 and 7.3.2 show that Naïve can somewhat scale when the motif sizes are

small; specifically, motifs of size 3 in Twitter and size 4 in Facebook and Enron. In

this section, we investigate whether motifs of larger sizes occur in interaction networks.

Fig. 7.9(a) demonstrates the distribution of motifs with respect to their sizes in the top-

5000 set. Across all three networks, majority of the motif sizes are above 4. This result

highlights the need for COMMIT. Next, we further study the size of communication

motifs with respect to their support levels. More specifically, we plot the summation

of supports of all motifs of a particular size. Fig. 7.9(b) shows the result in Twitter,

which is the largest interaction network among the three. In Twitter, the total support

60

4 6 8 10
0

0.05

0.1

0.15

0.2

D
is

tr
ib

u
ti
o

n

Motif Size

Twitter

Facebook

Enron

(a)

4 6 8 10
0

0.5

1

1.5

2
x 10

6

S
u

p
p

o
rt

Motif Size

Twitter

(b) Twitter

4 6 8 10
0

5

10

15
x 10

4

S
u
p
p
o
rt

Motif Size

Facebook
Enron

(c) Twitter

Figure 7.9: Distribution of motif sizes (a) and their supports on (b) Twitter and (c) Face-
book and Enron datasets.

61

from size-4 motifs is the highest. Motifs of sizes between 5 to 7 are also very frequent.

An important observation that comes out from the results in Figs. 7.9(a) and 7.9(b) is

that although the number of size-10 motifs is much higher than size-4 motifs, size-4

motifs are more frequent. This is natural since it is possible to merge two or more size-

4 motifs into a single larger motif. Due to this same reason, the top-3 most frequent

motifs across all three datasets, shown in Fig. 7.10, are of size 3. On the other hand,

the number of larger motifs in the top-5000 list, such as those of size 10, is higher since

combinatorially, the space of size-10 motifs is larger than size-4 motifs.

Fig. 7.9(c) demonstrates the distribution of supports of communication motifs with

respect to their sizes in the Facebook and Enron datasets. Generally, the overall sup-

port decreases with motif size. However, Facebook shows a different behavior in one

aspect. While size-3 motifs are rare in Twitter and Enron, they are extremely frequent

in Facebook. As visible in Fig. 7.9(a), the number of size-3 motifs in the top-k set is

also relatively higher in Facebook than in Twitter or Enron. This behavior indicates

that people tend to interact in smaller groups in Facebook than in Twitter or emails in a

corporate setting, such as Enron.

7.3.4 Approximation factor

The mined communication motifs are the approximation of the true communication

motifs present in the network. But, as shown in section 1.2, no state-of-the-art frequent

subgraph mining can be utilized to mine communication motifs because of scalability

bottleneck. To solve this scalability bottleneck, we provide an approximation. As shown

in section 7.2, the accuracy measured with metrics F -score and rank correlation is

around 0.80 on the real world networks. The approximation factor will depend on the

underlying network and will improve with the value of k.

62

7.4 Implications of communication motifs

In this section, we analyze the top-3 communication motifs of size 3 from Twitter, Face-

book, and Enron and discuss how they reveal the patterns of communications in a social

network. The motifs are shown in Fig. 7.10.

Figure 7.10: Top-3 communication motifs.

7.4.1 Twitter mentions dataset

A distinct pattern in Twitter that is revealed through communication motifs is that peo-

ple tend to communicate more with celebrities or twitter handles of prominent events

that are in news. For example, the news that “Tiger Woods announcing that he will not

be attending his own charity golf tournament” lead to lot of tweets in which “@Tiger-

Woods” is mentioned. An identical pattern is again observed during the “movie release

63

of Avatar” generating to bursts of tweets to “@officialavatar”, which is the official ac-

count for Avatar movie.

The first communication motif in Twitter shows that node “A” is related to some

celebrity and the edge labels denote the temporal sequence of communication links. We

observe that often there is a sudden peak in the number of tweets to a specific person

within a short duration of time. This pattern is evident in the overlapping times stamps of

the first motif and even more prominently in the second communication motif in which

all three people mention the celebrity (or prominent event representative) node A at the

same time. The third communication motif shows people (node B) tend to mention

both the famous person A and second person (node C) in the same tweet. Overall, we

observe that people use Twitter as a medium to communicate with famous persons (or

organizations like a soccer club, or upcoming movie, etc.). Furthermore, the tweets are

often bursty in nature as evident from the first and second communication motifs. The

burstiness is explained from the design of Twitter where a tweet is continuously pushed

down from the timeline by more recent tweets and is therefore visible only for a limited

period.

7.4.2 Facebook wall-posts dataset

In Facebook, the patterns are distinctly different from Twitter. We observe with the help

of communication motifs that people tend to interact more with their friends. As evident

from the first communication motif, people (B) tend to post a message on the wall of

same friend (A) again and again. Another distinct pattern in Facebook shows that when

a person (A) has a birthday or anniversary, A’s friends wish him/her by writing on the

wall of A . This pattern is the second most frequent behavior as evident in the second

communication motifs. The third common behavior is people (B) interacting frequently

with multiple friends (A and C), with a distinct preference towards one of them (C).

64

7.4.3 Enron

The fact that Enron is an email network is clearly evident from the top-3 patterns in

Fig. 7.10. The communication motifs reveal emails being used as a broadcasting mech-

anism. This is expected since the Enron dataset contains data from about 150 users,

most of whom are senior managers in the company hierarchy[enr,]. A manager rou-

tinely needs to distribute information to employees working under him/her. Hence, it is

not surprising to see the top-2 motifs depicting this pattern. The third communication

motif is of similar nature as well, but shows multiple emails to the same user (C).

7.5 Applications of communication motifs

As clearly evident from our analysis on the three interaction networks, communication

motifs are effective in characterizing the common mode of interactions happening in a

network. These motifs can be used for a myriad of applications such as predicting trends

by mining the patterns that commonly precede the trend, and predicting the nature of

the communication taking place such as birthday wishes, group discussions, etc. Fur-

thermore, communication motifs reveal that the underlying social network has a strong

influence on how people interact. Similar observations are made in a previous study

by Kovanen et al. [Kovanen et al., 2013], who show the difference in communication

patterns in dense and sparse regions of electronic communication records. All in all,

these motifs can be used as features to characterize social networks itself.

Indeed, COMMIT is a heuristic and optimality cannot be guaranteed. We resort to

a heuristic since computing the optimal answer set is NP-hard. Therefore, an important

question arises: If communication motifs are used to characterize social networks, what

is the impact of a non-optimal answer set? The analysis in Sec. 7.2 shows that the F-

65

score and rank-correlation of COMMIT is generally around 0.8. Thus, the answer set is

close to optimal. More importantly, the non-optimal motifs in COMMIT’s answer sets

are also highly frequent; only, they are not in the top-k list. Thus, these small minority

of non-optimal motifs may not be the best k motifs to characterize, but they are still

informative and unlikely to lead to any inaccurate conclusions.

66

CHAPTER 8

Temporal Analysis of Telecom Call Graphs

Analysis of dynamic networks can lead to new insights such as densification laws and

shrinking diameters. We analyze temporal properties of Call Detail Records containing

more than 1 billion calls based on sliding windows at various time windows such as

day-night windows, weekday-weekend windows, etc.

8.1 Introduction

In most network analysis, the nodes and edges are considered static which implies graph

topology will not change with time. In interaction networks, the graph topology changes

with time since interaction between entities last for some time. Static analysis of such

network might lead to erroneous inferences. Graph generation models assumed that

average degree of nodes remains constant and diameter of graph increases as network

grows. This assumption was proved wrong by Leskovec et al. [Leskovec et al., 2005].

[Leskovec et al., 2005] proposes densification of graph i.e. increase in average de-

gree of nodes over time and shrinking diameter over time as graph grows based on

study of two temporal properties density and diameter. This result have implications

in graph sampling, prediction of next state of graph, graph generation models and

also abnormality detection. Analysis of temporal properties like degree distribution,

neighborhood distribution, cliques and strongly connected component over time of call

and SMS graphs is done in [Nanavati et al., 2008] which also proposes treasure hunt

model for mobile call graphs. The time window specified is Uniform day time window

for two operators, while we have explored other time windows. Gautier Krings et al.

[Krings et al., 2012] analyzed the effect of time window on telecom networks with fo-

cus on link dynamics. Although they analyzed the effect of time windows, their focus is

different from ours. The temporal properties which we analyzed are completely differ-

ent with the focus on patterns of those temporal properties on different time windows.

With 1 billion edges in call graph, performing temporal analysis on short time period

is computationally expensive. Hence we address this problem by proposing to study

graph generated by aggregating data over different time windows. The goal of the study

is to identify differences in calling patterns when windows range over different time

periods. We chose a day-night split, i.e., calls made during a single day were aggregated

together and calls made during a single night were aggregated together, a weekday-

weekend split, i.e., calls made during a given week and the subsequent weekend were

aggregated separately, a uniform time window, i.e., calls made during successive n days

were aggregated together; and cumulative weeks, i.e., calls made till the end of a certain

week starting from week 0 were accumulated.

8.2 Dataset

A Call Detail Record (CDR) of mobile telecom operator contains information related

to calls like caller number, called number, time at which call is initiated, duration of

call and many other details. CDR analysis is done by treating people as nodes and calls

between them as edges.

68

Properties Values
No of nodes 1771134
No of edges 20510811

No of weakly connected components (WCC) 18
Size of Maximum WCC 1766905

No of edges in Maximum WCC 20508042
Largest bi-connected component nodes 1465195
Largest bi-connected component edges 20199413

Clustering Coefficient 0.063308
Diameter 12

Reciprocity 0.4394683
Density 6.538532e-06

Transitivity 0.01247928

Table 8.1: Static properties of Call graph

8.2.1 DataSet Preparation

All calls are stored in structured text files and various details of a single call are recorded

in this files. Caller No, Called No , Time of Call and Duration of all calls were extracted

from more than 1 billion calls using Apache Pig Script. For a specific time window say

uniform day time window, multiple calls between two persons in a day were considered

as single call since considering multiple calls requires more computational power. We

performed our analysis on two 2.4GHz Quad-Core Intel Xeon processor, 6144kb L2

cache and 24Gb running main memory. The analysis of properties was done using

Stanford SNAP tool and igraph tool in R.

8.3 Static Properties

In static graph analysis, multiple calls from one person to other are considered as single

directed edge. Weights can be added to the edges [Onnela et al., 2007] depending upon

the duration of call between two persons but the properties we analyzed does not differ

69

for edge weighted graphs.

The values of properties of static call graph are shown in Table 8.1. The number of

nodes indicates the actual number of customers subscribed to our customer for a specific

region. The number of edges indicates the total number of unique calls in span of 90

days. Note that actual number of calls is more than 1 billion but number of unique calls

is near to 20 million. The ratio between number of unique calls to the total number of

calls is 0.02 signifies the existence of large number of calls between same two persons.

The number of weakly connected components are 18 of which the number of nodes

in maximum WCC is 99% of total number of nodes signifying the global connectivity

between persons. The diameter of the graph is 12 whereas the diameter reported in

[Nanavati et al., 2008] is 20 but the location of both operators varies continent wise.

The low value of density signifies the sparseness of the call graph.

8.4 Temporal Properties

The call detail records of our operator consists of 90 days of call records. The various

temporal time windows on which we performed our analysis, we call them as

8.4.1 Day Night Time Window

In this time window, all calls made in day light from 6 am to 5:59 pm are aggregated to

form a day time graph while calls made in night from 6:00 pm to 5:59 am are aggregated

to form a night time graph. So for 90 days, a total of 180 alternate day and night graphs

were created. This time window helps in analyzing call patterns and properties of call

graph in day and night time and also helps in anomaly detection.

70

8.4.2 Uniform Day Time Window

In this time window, for each day a graph is created by aggregating all calls from that

day. Some people may not even initiate a single call in a specific day, hence the number

of nodes across graphs varies from day to day. Since 90 days of CDR data is avail-

able, total 90 such graphs were created. This time window analyzes call patterns and

properties of graph on daily basis and may even help in anomaly detection.

8.4.3 Weekday and Weekend Time Window

In this time window, calls in weekday of a specific week are aggregated to form a graph

and same procedure is followed for weekend of that specific week. For 90 days, a total

of 25 weekday and weekend graphs were created. This time window helps in analyzing

patterns and properties of calls across weekdays and weekends since calling patterns

might be different because of holidays in weekends.

8.4.4 Cumulative Week Time Window

In this time window, all calls in each week are aggregated from day 0 till that week. For

instance, time snapshot of graph for 3th week would contain all calls made from week 0

to week 3. So for 90 days, total of 13 such cumulative week graphs were created. This

time window represents the network growth phase and helps in inference about network

growth.

The temporal properties analyzed for mentioned time windows are number of nodes,

number of edges, number of bidirectional edges, number of closed triads, number of

open triads, clustering coefficient, effective and full diameter. The number of nodes

across a time window say uniform day time window signifies the number of people

71

initiating atleast a single call on that day. The number of edges across a time window

signifies the total number of unique calls between people in that time window. The

number of bidirectional edges signifies reciprocity in the call graph for a time window.

The number of open triads signifies number of people who are at a distance of one

hop while number of closed triads signifies effect of triadic closure. The full diameter

is maximum distance between two nodes while effective diameter of graph is the 90th

percentile distance between two nodes. The clustering coefficient of graph is 3 ∗ number

of closed triads/ number of open triads.

8.5 Results and Discussion

The results of experiments on the four time window as mentioned in section 8.4 is

discussed here . The call details records contains calls from 31st Jan 2010, 4 pm onwards

to 30th April 2010 till 11:59 pm (90 days).

8.5.1 Uniform Day time window

The temporal properties results of uniform day time window is shown in Figure 8.1.

For the first day, since CDR contains calls from 4 pm, the total number of calls on

first day is very less and hence the properties of graph on first day varies significantly

from the other day graphs. The diameter and effective diameter of first day graph is

significantly high due to less number of calls but the number of people initiating the call

are comparatively high resulting in increase of diameter. The clustering coefficient of

first day is significantly low compared to other days. In Figure 8.2, all the five properties

have a significant drop in values in first day. The number of edges for latter days seems

to regular interval peaks. So, to verify if any day say Sunday dominates all other days in

72

Figure 8.1: The temporal properties of call graph on uniform day time window. For
each day, a call graph is created by aggregating all calls on that day and
various properties of that call graph are analyzed.

terms of number of unique calls, we found the number of calls with respect to specific

day. As shown in Figure 8.3 , we found that no particular day dominates other with

respect to unique number of calls. A simple check can be done by verifying different

color points at the top of each day. For fairness, we removed week one data since

Sunday of week 1 was not completely recorded.

8.5.2 Day Night time window

The temporal properties results of day and night time window are shown in Figure 8.4.

Since for first day, calls are recorded from 4 pm, we discard calls from 4 pm to 5:59 pm

73

Figure 8.2: The temporal properties of Call graph on uniform day time window.

and hence the first data point is night point. The full diameter and effective diameter

of this time window graphs increases in night graph compared to day time graph while

clustering coefficient decreases.

8.5.3 Weekday and Weekend time window

The temporal properties results of weekday and weekend time window is shown in

Figure 8.6 . Since first day was Sunday and calls from 4 pm were recorded, we removed

first weekend datapoint from Figure 8.6 for good visualization. The full diameter of

74

Figure 8.3: The number of unique calls with respect to days.In particular no day dom-
inates other days in terms of unique calls, as can be seen by different top
color for each days. Day 1 represents Sunday.

Figure 8.4: The temporal properties of Call graph on day and night time window.The
first data point represents night graph.

75

Figure 8.5: The temporal properties of Call graph on weekday and weekend time win-
dow. For all weekdays in a specific week, a call graph is created by aggre-
gating all calls on that weekdays and various properties of that call graph
are analyzed.

first 6 datapoints are same which is 11. The full diameter is calculated on the sampled

graph in Stanford SNAP tool. The clustering coefficient also varies minutely across each

weekdays and also for weekends. As with Uniform Day time window, the number of

open triads are in orders of magnitude higher than closed triads. The values of number

of edges, nodes and bidirectional are also roughly equal across each weekdays and for

weekends signifying same level of macroscopic interactions occurring among people

for each weekdays and each weekends.

76

Figure 8.6: The temporal properties of Call graph on weekday and weekend time win-
dow. For all weekdays in a specific week, a call graph is created by aggre-
gating all calls on that weekdays and various properties of that call graph
are analyzed.

8.5.4 Cumulative Week time window

The temporal properties results of weekday and weekend time window is shown in

Figure 8.8. The graph shows that calls gets saturated over two weeks period of time

which implies people tend to call same group of people again and again. One such

study [Onnela et al., 2007] also reports saturation but over a period of two months.The

change in full diameter and effective diameter is due to calculation of those values in

sampled graph.

77

Figure 8.7: The temporal properties of Call graph on Consecutive week time window.
For all calls initiated from week 0 to specific week are aggregated and graph
is created for that week. This graph shows saturation of calls, implying
people call same group of people again and again.

8.6 Choice of time window

The properties like clustering coefficient, diameter of call graph changes with the choice

of time window. This leads to the question what is the right choice of time window for a

graph? Our analysis showed in short size time window Day Night time window, anoma-

lies can be easily detected but then weekly patterns and weak links between communi-

ties cannot be effectively captured. When size of time window is large, the anomalies

seen in Day Night time window cannot be easily detected in Weekday Weekend time

window. Hence the appropriate choice of size of time window depends on the study.

78

Figure 8.8: The temporal properties of Call graph on Consecutive week time window.
For all calls initiated from week 0 to specific week are aggregated and graph
is created for that week.

79

CHAPTER 9

Conclusions and Future Work

In this thesis, we studied an increasingly important problem of mining communication

motifs from large dynamic interaction networks. Since each communication motif corre-

sponds to a recurring subgraph with a similar sequence of information flow, it required

us to venture into the exponential subgraph search space of the interaction network.

To scale the mining framework, we proposed an algorithm called COMMIT (COMmu-

nication Motifs in InTeraction networks). COMMIT derives its pruning power from

mapping the interaction network to a contractive sequence space. Following analysis in

the sequence space, only a small set of subsequences are identified as likely candidates

to represent communication motifs in the graphs. Thus, the expensive subgraphs enu-

meration and subgraph isomorphism tasks are performed only on a small set of likely

candidates.

Extensive experiments on three social networks demonstrated COMMIT to be ac-

curate and efficient. COMMIT is up to 2 orders of magnitude faster than existing tech-

niques. Also, COMMIT can mine communication motifs of larger size with large time

threshold whereas Naïve fails to mine large size motifs. In addition, a qualitative anal-

ysis of the communicative patterns reveal their unmatched power in distinguishing be-

tween social network through the role they play in the progression of interactions of

their users.

The few areas in which COMMIT technique can be enhanced are as follows

• Similar communication motifs:

The COMMIT technique calculates the frequency of temporally connected sub-

graphs based on temporal isomorphism. So any two temporally connected subgraphs

with a slight contrast in structure or temporal edge sequence will be considered as dif-

ferent subgraphs. A better way to capture interaction dynamics would be to mine repre-

sentative communication motif. For this purpose, one has to come up with a similarity

measure among temporally connected subgraphs.

• Dynamic ∆T update

In the proposed COMMIT technique, we require a time threshold parameter ∆T

that determines the relatedness of two linked interactions. The ∆T is considered fixed

for all the interactions. But, the relatedness of interactions depend heavily on the event,

time period, people involved in interactions and many other factors. Also, in COMMIT,

for determination of ∆T we define coverage metric but after choosing a specific value

of ∆T we have to start the mining process from the initial stage. Hence, a dynamic way

of updating ∆T would be good addition.

We also studied call detail records containing more than 1 billion calls using four

different time window. The summary of inferences for specified four time windows are

• Day and Night time window study lead to anomaly detection in the number of
calls on a specific day which might be due to holiday on that day.

• Uniform Day time window study lead to inference that no day dominates other
day in terms of number of calls, number of nodes.

• Weekday and Weekend time window study lead to inference that macroscopic
level properties recur with respect to weekdays and weekends.

• Cumulative Week time window study lead to inference about the saturation of
graph over consecutive weeks.

81

We addressed the problem of mining recurring patterns of interactions which we

call communication motifs and propose COMMIT technique to mine them. With no

other scalable technique present in literature for mining communication motifs in large

networks, COMMIT opens up a new direction in motif mining.

82

REFERENCES

[Albert and Albert, 2004] IstvÃąn Albert and RÃl’ka Albert. Conserved network mo-

tifs allow protein-protein interaction prediction. Bioinformatics, 20(18):3346–3352,

2004.

[Allan et al., 2009] E.G. Allan, W.H. Turkett, and E.W. Fulp. Using network motifs

to identify application protocols. In Global Telecommunications Conference, 2009.

GLOBECOM 2009. IEEE, pages 1–7, Nov 2009.

[Borgwardt et al., 2006] K.M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern

mining in frequent dynamic subgraphs. In ICDM, pages 818–822, 2006.

[Braha and Bar-Yam, 2009] Dan Braha and Yaneer Bar-Yam. Time-dependent complex

networks: Dynamic centrality, dynamic motifs, and cycles of social interactions. In

Adaptive Networks, pages 39–50. Springer, 2009.

[Bringmann and Nijssen, 2008] Björn Bringmann and Siegfried Nijssen. What is fre-

quent in a single graph? In Proceedings of the 12th Pacific-Asia Conference on

Advances in Knowledge Discovery and Data Mining, PAKDD’08, pages 858–863,

Berlin, Heidelberg, 2008. Springer-Verlag.

[Bruno et al., 2010] Francesco Bruno, Luigi Palopoli, and Simona E Rombo. New

trends in graph mining: Structural and node-colored network motifs. International

Journal of Knowledge Discovery in Bioinformatics (IJKDB), 1(1):81–99, 2010.

[Chechik et al., 2008] Gal Chechik, Eugene Oh, Oliver Rando, Jonathan Weissman,

Aviv Regev, and Daphne Koller. Activity motifs reveal principles of timing in

83

transcriptional control of the yeast metabolic network. Nature biotechnology,

26(11):1251–1259, 2008.

[Ciriello and Guerra, 2008] Giovanni Ciriello and Concettina Guerra. A review on

models and algorithms for motif discovery in protein–protein interaction networks.

Briefings in functional genomics & proteomics, 7(2):147–156, 2008.

[Ding et al., 2009] Bolin Ding, David Lo, Jiawei Han, and Siau-Cheng Khoo. Efficient

mining of closed repetitive gapped subsequences from a sequence database. In Data

Engineering, 2009. ICDE’09. IEEE 25th International Conference on, pages 1024–

1035. IEEE, 2009.

[Elseidy et al., 2014] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos,

and Panos Kalnis. Grami: Frequent subgraph and pattern mining in a single large

graph. Proceedings of the VLDB Endowment, 7(7), 2014.

[enr,] ENRON, http://www.cs.cmu.edu/˜enron/.

[Gallos et al., 2012] Lazaros K. Gallos, Diego Rybski, Fredrik Liljeros, Shlomo

Havlin, and Hernán A. Makse. How people interact in evolving online affiliation

networks. Phys. Rev. X, 2:031014, Aug 2012.

[Junttila and Kaski, 2007] Tommi Junttila and Petteri Kaski. Engineering an efficient

canonical labeling tool for large and sparse graphs. In David Applegate, Gerth Stølt-

ing Brodal, Daniel Panario, and Robert Sedgewick, editors, Proceedings of the Ninth

Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on

Analytic Algorithms and Combinatorics, pages 135–149. SIAM, 2007.

[Jurgens and Lu, 2012] David Jurgens and Tsai-Ching Lu. Temporal motifs reveal the

dynamics of editor interactions in wikipedia. In ICWSM, 2012.

84

[Kashani et al., 2009] Zahra RM Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas

Nowzari-Dalini, Elnaz S Ansari, Sahar Asadi, Shahin Mohammadi, Falk Schreiber,

and Ali Masoudi-Nejad. Kavosh: a new algorithm for finding network motifs. BMC

bioinformatics, 10(1):318, 2009.

[Kashtan et al., 2004] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Ef-

ficient sampling algorithm for estimating subgraph concentrations and detecting net-

work motifs. Bioinformatics, 20(11):1746–1758, 2004.

[Ketkar et al., 2005] Nikhil S. Ketkar, Lawrence B. Holder, and Diane J. Cook. Subdue:

Compression-based frequent pattern discovery in graph data. In Proceedings of the

1st International Workshop on Open Source Data Mining: Frequent Pattern Mining

Implementations, OSDM ’05, pages 71–76, New York, NY, USA, 2005. ACM.

[Kovanen et al., 2011] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész,

and Jari Saramäki. Temporal motifs in time-dependent networks. Journal of Statis-

tical Mechanics: Theory and Experiment, 2011(11):P11005, 2011.

[Kovanen et al., 2013] Lauri Kovanen, Kimmo Kaski, János Kertész, and Jari

Saramäki. Temporal motifs reveal homophily, gender-specific patterns, and group

talk in call sequences. Proceedings of the National Academy of Sciences,

110(45):18070–18075, 2013.

[Krings et al., 2012] Gautier Krings, Márton Karsai, Sebastian Bernhardsson, Vin-

cent D Blondel, and Jari Saramäki. Effects of time window size and placement on

the structure of an aggregated communication network. EPJ Data Science, 1(1):4,

May 2012.

[Kuramochi and Karypis, 2001] Michihiro Kuramochi and George Karypis. Frequent

subgraph discovery. In ICDM, pages 313–320, 2001.

85

[Kuramochi and Karypis, 2005] Michihiro Kuramochi and George Karypis. Finding

frequent patterns in a large sparse graph. Data mining and knowledge discovery,

11(3):243–271, 2005.

[Leskovec et al., 2005] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs

over time: Densification laws, shrinking diameters and possible explanations. In

Proc. of KDD’05, 2005.

[Liu et al., 2012] Kai Liu, William K Cheung, and Jiming Liu. Detecting multiple

stochastic network motifs in network data. In Advances in Knowledge Discovery

and Data Mining, pages 205–217. Springer, 2012.

[McKay and others, 1981] Brendan D McKay et al. Practical graph isomorphism. De-

partment of Computer Science, Vanderbilt University, 1981.

[Milo et al., 2002] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon. Network motifs: Simple building blocks of complex networks. Science,

298(5594):824–827, 2002.

[Milo et al., 2004] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai

Shen-Orr, Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved

and designed networks. Science, 303(5663):1538–1542, 2004.

[Nanavati et al., 2008] Amit Anil Nanavati, Rahul Singh, Dipanjan Chakraborty, Kous-

tuv Dasgupta, Sougata Mukherjea, Gautam Das, Siva Gurumurthy, and Anupam

Joshi. Analyzing the structure and evolution of massive telecom graphs. IEEE Trans.

Knowl. Data Eng., 20(5):703–718, 2008.

[O’Callaghan et al., 2012] Derek O’Callaghan, Martin Harrigan, Joe Carthy, and

PÃądraig Cunningham. Network analysis of recurring youtube spam campaigns.

CoRR, abs/1201.3783, 2012.

86

[Onnela et al., 2007] J.-P. Onnela, J. SaramÃd’ki, J. HyvÃűnen, G. SzabÃş, D. Lazer,

K. Kaski, J. KertÃl’sz, and A.-L. BarabÃąsi. Structure and tie strengths in mo-

bile communication networks. Proceedings of the National Academy of Sciences,

104(18):7332–7336, 2007.

[Pei et al., 2001] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming

Chen, Umeshwar Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential patterns

efficiently by prefix-projected pattern growth. In 2013 IEEE 29th International Con-

ference on Data Engineering (ICDE), pages 0215–0215. IEEE Computer Society,

2001.

[Ranu and Singh, 2009] Sayan Ranu and Ambuj K Singh. Mining statistically signifi-

cant molecular substructures for efficient molecular classification. Journal of chemi-

cal information and modeling, 49(11):2537–2550, 2009.

[Ranu et al., 2011] Sayan Ranu, Bradley T Calhoun, Ambuj K Singh, and S Joshua

Swamidass. Probabilistic substructure mining from small-molecule screens. Molec-

ular Informatics, 30(9):809–815, 2011.

[Ranu et al., 2013] Sayan Ranu, Minh Hoang, and Ambuj Singh. Mining discrimina-

tive subgraphs from global-state networks. In SIGKDD, pages 509–517, 2013.

[Shen-Orr et al., 2002] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon.

Network motifs in the transcriptional regulation network of escherichia coli. Nature

genetics, 31(1):64–68, 2002.

[sna,] SNAP, http://snap.stanford.edu/.

[Spearman, 1904] Charles Spearman. The proof and measurement of association be-

tween two things. The American journal of psychology, 15(1):72–101, 1904.

87

[Viswanath et al., 2009] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Kr-

ishna P. Gummadi. On the evolution of user interaction in facebook. In Proceed-

ings of the 2nd ACM SIGCOMM Workshop on Social Networks (WOSN’09), August

2009.

[Wernicke, 2006] Sebastian Wernicke. Efficient detection of network motifs.

IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),

3(4):347–359, 2006.

[Yan and Han, 2002] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure

pattern mining. In ICDM, pages 721–724, 2002.

[Zeng et al., 2009] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng,

and Lizhu Zhou. Comparing stars: On approximating graph edit distance. PVLDB,

2(1), 2009.

[Zhao et al., 2010] Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and

Wang-Chien Lee. Communication motifs: a tool to characterize social communica-

tions. In CIKM, pages 1645–1648. ACM, 2010.

[Zhu et al., 2007] Feida Zhu, Xifeng Yan, Jiawei Han, and Philip S. Yu. gprune: A

constraint pushing framework for graph pattern mining. In Proceedings of the 11th

Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,

PAKDD’07, pages 388–400, Berlin, Heidelberg, 2007. Springer-Verlag.

88

Publications and Patents

Publication

1. S. Gurukar, S. Ranu and B. Ravindran, “COMMIT : A Scalable Approach to
Mining Communication Motifs from Dynamic Networks”, SIGMOD, 2015.

2. S. Gurukar and B. Ravindran, “Temporal Analysis of Telecom Graphs”, Proceed-
ings of the Social Networking Workshop at COMSNETS, 2014.

Patent

1. S. Gurukar, S. Ranu, B. Ravindran, S. Subramanian and A. Dauneria. "Tempo-
ral Motif Based Approach To Analyze Devices Reconnection Patterns". United
States PCT/SE2014/051303 (Application Number), 2014

89

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Importance of communication motifs
	Issues in mining communication motifs
	Outline of COMMIT
	Contributions of thesis
	Outline of thesis

	Background and Related Work
	Network Motifs
	Static network motif detection algorithms
	 Exact algorithms
	Approximate algorithms

	Dynamic network motif detection algorithms

	Problem Formulation
	Temporally Connected Graph
	 Weakness of the model proposed by Zhao et al

	Temporal Isomorphism
	Support of subgraph
	Violation of apriori property

	Communication Motif and Queries

	Mapping graphs to sequences
	Conversion conditions
	Temporal isomorphic condition
	Temporal subgraph condition

	Frequent subsequence mining
	Temporal connected component
	Counting support of a subsequence
	The sequence growth approach
	Identifying edge extension candidates
	Computing the largest support set

	COMMIT
	MotifMine Algorithm
	Pseudocode of the GetSup Algorithm
	Computational Complexity of COMMIT

	Experiments
	Experimental setup
	Datasets
	Benchmarking Setup:
	Impact of temporally connected components

	Accuracy of COMMIT
	Scalability of COMMIT
	Top-k queries
	Range query
	Distribution of motif sizes
	Approximation factor

	Implications of communication motifs
	Twitter mentions dataset
	Facebook wall-posts dataset
	Enron

	Applications of communication motifs

	Temporal Analysis of Telecom Call Graphs
	Introduction
	Dataset
	DataSet Preparation

	Static Properties
	Temporal Properties
	Day Night Time Window
	 Uniform Day Time Window
	Weekday and Weekend Time Window
	Cumulative Week Time Window

	Results and Discussion
	Uniform Day time window
	Day Night time window
	 Weekday and Weekend time window
	Cumulative Week time window

	Choice of time window

	Conclusions and Future Work

