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ABSTRACT
Motivation: With rapidly expanding protein structure databases, effi-
ciently retrieving structures similar to a given protein is an important
problem. It involves two major issues: (i) effective protein structure
representation that captures inherent relationship between fragments
and facilitates efficient comparison between the structures (ii) effe-
ctive framework to address different retrieval requirements. Recently,
researchers proposed vector space model of proteins using bag of
fragments representation (FragBag), which corresponds to the basic
information retrieval model.
Results: In this paper, we propose an improved representation of
protein structures using Latent Dirichlet Allocation (LDA) topic model.
Another important requirement is to retrieve proteins, whether they
are either close or remote homologs. In order to meet diverse obje-
ctives, we propose multi-viewpoint based framework that combines
multiple representations and retrieval techniques. We compare the
proposed representation and retrieval framework on the benchmark
dataset developed by Kolodny and co-workers. The results indicate
that the proposed techniques outperform state-of-the-art methods.
Availability: http://www.cse.iitm.ac.in/∼ashishvt/research/protein-lda/
Contact: ashishvt@cse.iitm.ac.in

1 INTRODUCTION
Following huge efforts from the structural genomics research com-
munity, protein structures databases are ever expanding. Whenever a
new protein structure is determined, an important step is to identify
its structural neighbours, which can provide important clues about
its function and evolutionary linkages. Since the protein structure
is relatively more robust than sequence during evolution, structure
comparison methods can discover remote homologous proteins for
a given protein. They also play a key role in understanding the diver-
sity of structure space by analyzing the existing structure databases.
In order to derive interesting scientific insights from the vast stru-
cture databases available now, more efficient methods for comparing
protein structures are required.

The success of structure comparison methods can be measu-
red based on their effectiveness in detecting closely and remotely
homologous proteins [19]. The closely homologous proteins have
similar structures with relatively less insertions and deletions. On
the other hand, remote homologs possess significantly different
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structures. The similarity in these cases can be inferred based on
similarity of structural fragments. Comparing protein structures at
the fragment level has been shown to work well in practice. The
first fragment based comparison method was proposed by Reming-
ton and Mathews, which performs rigid body superposition of
fixed length backbone fragments from individual proteins [13]. The
rigid body superposition was later used by Zuker and Somorjai to
define distance between backbone fragments while comparing them
using dynamic programming [22]. The fragment based structure
comparison was also used in identification and ranking of local fea-
tures [8]. For further details, the readers are referred to an excellent
review paper by Taylor et al [19]. Recently researchers proposed an
interesting vector space representation of protein structures using
fragments as the bases [2]. The method, fragbag, appears to per-
form the task of retrieving similar structures efficiently and is the
state-of-the-art method in fragment based structure comparison.

Fragbag represents each structure as a bag of fragments, which
is the most basic model of retrieval proposed in text literature.
The success of FragBag opens up many interesting avenues, where
advanced language modeling techniques proposed in Information
Retreival (IR)/Statistical Natural Language Processing (NLP) can
be adopted for representing protein structures to achieve better
performance in terms of efficiency and accuracy of identifying stru-
ctural homologs. The paper focuses on two important problems
in this context: (i) effective protein structure representation that
captures inherent relationship between fragments and facilitates effi-
cient comparison between the structures (ii) effective framework to
address different retrieval requirements. We propose a new repre-
sentation for protein structures based on latent dirichlet allocation
(LDA) [1]. LDA models a collection of discrete objects as a mixture
of latent topics, and has been shown to work remarkably well in
text and image retrieval domain. The success of LDA in text domain
is attributed to effective capturing of relationship between words.
Drawing a parallel, here we demonstrate that LDA indeed models
relationships between fragments in protein structures effectively and
achieves a competitive performance with state-of-the-art structural
methods at a fraction of the computation costs. Another impor-
tant contribution of this work is that we propose multi-viewpoint
homology detection framework to effectively find close, as well as,
remote homologous proteins for a query protein structure. This is
the first attempt to adopt advanced models from IR and statistical
NLP for addressing protein structure comparison problem.

c© Oxford University Press 2005. 1



Shivashankar et al

2 RELATED WORK
Several methods have been proposed in literature for protein stru-
ctue comparison. These methods compare a pair of protein structu-
res, compute a quantitative measure of similarity and most often
generate a structural alignment. Taylor et al [19] have compiled
a comprehensive review describing challenges in protein structure
comparison and its importance along with various proposed meth-
ods. The proposed methods differ on the following two broad points:
choosing appropriate representation and the algorithm for efficient
and accurate retrieval of homologous structures from the database.

The popular choices for representations include (i) complete three
dimensional coordinate information or partial coordinate informa-
tion of backbone atoms, (ii) representation of various elements using
their properties such as φ-ψ angle, solvent accessibility, etc. The
first type of representation preserves sequential and topological rela-
tionships between individual elements of the structure. The methods
developed to compare the first type of representation are partitio-
ned into two: the ones using dynamic programming (DP) [16, 18]
and others not using DP [7, 17]. These methods are computatio-
nally expensive and do not scale well for large number of structures.
Moreover, a large number of these comparisons do not yield results
since the structures are not related. To overcome these problems,
researchers proposed a two stage approach widely known as the fil-
ter and match paradigm. The first stage of this approach employs
very fast filtering algorithm to obtain a small set of proteins which
are most likely to be similar. These proteins are subjected to rigo-
rous and computationally expensive structure alignment methods in
the second stage. These methods achieve the desired speed in filte-
ring stage by representing proteins as vectors and comparing them in
the space spanned by appropriate descriptors or features. For insta-
nce, method proposed by Choi et al [3] and PRIDE makes use of
the distance matrix to represent the structure. Rogen and Fein repre-
sented protein with 30 topological features of backbone using knot
invariants [15]. Zotenko et al represented a protein structure as a
vector of the frequencies of structural models, each of which is a
spatial arrangement of triplets of secondary structure elements [21].
There are several other methods which proposed interesting and
novel feature based structure representation and comparisons such
as Friedberg et al [4], Tung et al[20], etc.

3 PROPOSED APPROACH
As mentioned in the introduction, the framework for protein stru-
cture comparison has two subproblems to be handled. In this
section, we elaborate the proposed framework to address these sub-
problems. The proposed techniques draw a huge motivation from
statistical NLP.

3.1 Representation of proteins in topic space
The key point of the proposed approach is to represent proteins as
probability distributions over latent topics. Note that the topic is an
abstract concept and is represented as a multinomial distribution
over fragments. Given this representation, a collection of protein
structures can be modeled using three-level hierarchical Bayesian
generative model known as latent dirichlet allocation (LDA) [1].
Intuitively, this formalism clusters similar fragments into topics,
which provides significant advantage over models that perform fra-
gment to fragment comparision (expect identity) while comparing

protein structures. We explain this concept with a simple example.
Suppose we are interested in comparing two documents, one contai-
ning words dog and cat and the other containing bark and mews.
Naive word level comparison of the two documents reveal that they
are unrelated, when they actually talk about semantically related
topics (dog-barking and cat-mews in this case). This example can
be extended to protein structures, where fragments are entities equi-
valent to words in the document. The fragments are grouped into a
topic in a probabilistic manner and the search for homologous pro-
teins can be performed more accurately in the topic space. Before
introducing formal aspects of the problem formulation, we describe
the key ingredients:

1. A fragment fi is the basic unit of protein structure. It is part of
the fragment library of choice F . F={f1, f2, . . . ,fL}, where L
is the size of fragment library F .

2. A Protein is a sequence of n fragments, denoted by S = { fi|fi
ε F}. The protein structure is converted into a sequence of
fragments using the method described in [2].

3. A Universe is a collection of N proteins, denoted by U={s1,
s2, . . . ,sN}.

The graphical model representation of LDA is provided in Figure
1. It models the protein structure collection according to the follow-
ing generative process:

1. Pick a multinomial distribution ϕz for each topic z from a
Dirichlet distribution with parameter β.

2. For each protein s, pick a multinomial distribution θs from a
Dirichlet distribution with parameter α.

3. For each fragment fi in protein structure s, pick a topic z ε
{1,. . . , K} with parameter θs.

4. Pick fragment fi from the multinomial distribution ϕz .

According to the model, each protein is a mixture of latent varia-
bles z (referred to as clusters/topics), and each latent variable zi is a
probability distribution over fragments. GivenN proteins,K topics,
L unique fragments in the collection, we can represent p(f |z) for
the fragment f , with a set of K multinomial distributions ϕ over
the L fragments, P (f |z = j) = ϕ

(j)
f . P (z) is modeled with a set

of N multinomial distributions θ over K topics. One way to achi-
eve is to use Expectation Maximization to find the estimates of ϕ,
and θ. It suffers from local maxima issues, and its hard to model an
unseen protein since it does not assume anything about θ. LDA ove-
rcomes these issues by assuming a prior distribution on θ and ϕ to
provide a complete generative model. It uses Dirichlet distribution 1

for choosing priors α for θ and β for ϕ.
The likelihood of generating a universe of protein structure colle-

ctions is
P (s1, s2, . . . , sN ) =

∫ ∫ K∏
z=1

P (ϕz|β)
N∏

s=1

P (θs|α)(
Np∏
i=1

K∑
zi=1

P (zi|θ)P (fi|z, ϕ)) dθdϕ

1 Dirichlet prior is a conjugate prior of multinomial distribution
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Exact inference is LDA model is intractable and hence a number
of approximate inference techniques such as variational methods
[1], expectation propagation [6], and Gibbs sampling [5, 6] have
been proposed in literature. We use Gibbs sampling based infere-
ncing to estimate ϕ and θ. From a sample, ϕ̂ and θ̂ are approximated
using following equations after a fixed number of iterations, which
is commonly known as burn in period.

ϕ̂ ≈ (n
(wi)
i,j + βwi)/

V∑
v=1

(n
(v)
i,j + βv) (1)

θ̂ ≈ (n
(si)
i,j + αzi)/

T∑
t=1

(n
(si)
i,j + αt) (2)

Here, ni,j is the number of instances of fragment fi, assigned to
topic z = j. α and β are hyper-parameters that determine the smoo-
thness of the distribution. n(si)

i,j is the number of fragments in protein
si that belong to topic z = j. Thus, the total number of fragments

assigned to topic z = j is given by
V∑

v=1

n
(v)
i,j . The total number of

fragments in protein si is given by
T∑

t=1

n
(si)
i,j . The terms,

V∑
v=1

n
(v)
i,j

and
T∑

t=1

n
(si)
i,j , are normalizing factors.

Fig. 1. Graphical representation of LDA; K is the number of topics; N is
the number of protein structures; Ns is the number of fragments in protein
structure s.

The workflow for building topic model is as follows:

1. We take collection of protein structures as an input. We pro-
cess each structure and obtain the corresponding fragment by
matching its substructures with the library. At the end of this
process, we obtain a bag of fragments for each protein. This
process is depicted in Figure 2.

2. We learn the topic model on the collection using the machinery
described earlier in this section.

3. Each protein is then represented as a probability distribution
over the latent topics discovered by LDA.

Fig. 2. Example protein structure with bag of fragments and topic space
representations; built for a given fragment library. (a) shows an example
protein structure and (b) shows a given fragment library. Each substructure
in protein is compared against the fragment library and the closest match-
ing fragment is used to represent the substructure. Thus, we obtain bag of
fragments representation for protein structure as shown in (c). We model the
structure as a probability distribution over latent topics. In (d) we have shown
a toy representation using three topics, which forms a simplex.

3.2 Multi-viewpoint based Retrieval
A simple framework for protein retrieval is given in Figure 3, where
the universe of proteins are modeled using the representationR cho-
sen. In order to rank the proteins based on the structural similarity
for a query protein, the query protein is modeled and transformed to
the same representation space R. Once the transformation is done,
the protein structures in the collection are ranked based on their stru-
ctural similarity with the query protein using a retrieval technique.
Most simplest technique would involve a boolean vector representa-
tion for each protein. Here, the fragments from the fragment library
are matched against the protein structure, and a vector of size of
the fragment library is built. The vector has 1 in the position of
fragments that are present and 0 in the place of fragments that are
absent. And retrieval can be based on Jaccard Coefficient [12]. It
can be replaced by other IR techniques such as term frequency
(TF), term frequency-inverse document frequency (TF-IDF), etc.
The similarity metrics must be chosen according to the choice of
representation [12]. We refer to this family of techniques as naive
vector space models.
As mentioned earlier, the retrieval might have different objectives
for different applications. For example, retrieving proteins that are
similar, whether they are close homologs or remote homologs. Text
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based IR researchers have shown that retrieval based on combi-
nation of multiple query representations, multiple representations
of text documents, or multiple IR techniques provide significantly
improved results compared to single representation based techni-
que, especially when there are multiple retrieval requirements across
users. These techniques are referred to as multi-viewpoint based IR
in literature [14]. Schema of multi-viewpoint IR is given in Figure
4. The intuition behind doing this is: retrieval information about an
author, publication or book would require exact keyword match, but
querying based on topics, for example “sports news”, must allow
more than just keyword match. Motivated by the success of multi-
viewpoint based text IR works, we propose a multi-viewpoint based
retrieval system for protein structure collection. Protein structure
similarity can be captured by not only matching fragments in the
protein structure, but similar fragments (not just identity) must also
be considered to help protein structure comparison. This is ach-
ieved by modeling the protein structure using LDA, which maps
the fragments to a topic space using their co-ocurrence information.
Protein structure comparison at topic space performs a soft matching
by considering similar fragments too.

Fig. 3. Typical IR model

The proposed model combines the plain vector (boolean or fre-
quency based) representation of fragments in protein structure and
topic space representation using LDA. Query protein and proteins in
the collection are transformed into a naive vector space model and
LDA representation. The retrieval techniques for both the modeling
methods are different. Let us assume a simple boolean representa-
tion and a cosine similarity metric for the naive vector space model.
Cosine similarity between two protein structures represented using
boolean vectors A, B is given below

FragSimilarity = cos(θ) = A.B
||A||||B||

We refer to the similarity based on naive vector representation as
FragSimilarity. LDA based representation uses the asymmetric
KL divergence measure to rank proteins. Asymmeric KL divergence
between two proteins represented by the topic distribution vector P
and Q is given below

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)

Fig. 4. Multi-viewpoint based IR

The ranking based on these two techniques are combined using a
weighted combination of similarity values. KL divergence captu-
res the distance and not similarity value as in the case of cosine
similarity. The range of values for cosine similarity(0, 1) and KL
divergence (−∞, 0) are different. KL divergence values are norma-
lized using min-max normalization to get normalized KL divergence
measure Dnorm

KL , and converted into similarity value by performing
1−Dnorm

KL . Finally, the values are combined as follows

Similarity = λ1 ∗ FragSimilarity + λ2 ∗ (1−Dnorm
KL )

λ1 and λ2 denote the relative weight for the retrieval schemes based
on vector representation and LDA respectively. The model can also
be extended to more representation schemes, where 0 ≤ λi ≤ 1,
and

∑
i

λi = 1. Comparison of various vector representations and

similarity metrics are given in the experimental results section.

4 EXPERIMENTAL RESULTS
The experiments are performed on the FragBag dataset [2]. Data-
set has 2,930 sequence-nonredundant structures, and we treat each
structure as a query. The gold-standard was built by [10, 2], by
using a best-of-six structural aligner (using SSAP [18], STRU-
CTAL, DALI [7], LSQMAN [9], CE [17], and SSM); structural
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neighbors of a query protein are the ones that are aligned to it with
a structural alignment score (SAS) below a threshold T (for T =2 Å,
3.5 Å, and 5 Å). We use area under the curve (AUC) of the ROC
curve to measure the performance of ranking, and we average the
AUC values across 2,930 queries. AUC ranges between 0 and 1,
and higher the AUC indicates better the ranking mechanism. The
protein structures from FragBag dataset are converted into BoW
representation by matching the structures against the given libra-
ries of fragments. We consider 7 libraries out of the 24 given by
Kolodny et al [10]. For each fragment size, the library which was
reported to have the best results are chosen for benchmarking in
this work. The final libaries chosen include 100(5), 300(6), 250(7),
600(9), 600(10), 400(11), and 400(12). LDA is built on the BoW
representation. The experimental results are given as follows

1. In FragBag, it was shown that the BoW representation per-
forms best on 400(11) library. We use this library to choose the
best similarity measure for the LDA’s probability distribution
vector. The experiments are performed with different distance
measuresDist, such as Cosine distance (CO), Euclidean dista-
nce (EU) and KL divergence (KL). The results are shown for
SAS=2, SAS=3.5 and SAS=5 in Table 1. It can be seen that
KL and CO are the best for SAS=2, 5. KL is slightly better
than CO for SAS=3.5. Further analysis are carried out using
KL since it outperforms CO and EU in most choices of the
number of topics.

Topics
Dist 10 100 150 200 250 300 400 500 SAS
KL 0.85 0.89 0.9 0.9 0.9 0.9 0.9 0.9
EU 0.84 0.87 0.88 0.88 0.87 0.87 0.87 0.87 2
CO 0.85 0.89 0.89 0.89 0.9 0.9 0.9 0.9
KL 0.71 0.77 0.77 0.78 0.77 0.78 0.78 0.77
EU 0.69 0.71 0.73 0.73 0.73 0.73 0.72 0.72 3.5
CO 0.70 0.73 0.76 0.76 0.76 0.77 0.77 0.77
KL 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.67
EU 0.67 0.67 0.67 0.66 0.66 0.65 0.65 0.65 5
CO 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.68

Table 1. Comparison of average AUC for different similarity measures
using the LDA representation with 400(11) library.

2. Ideal number of topics was chosen based on the average AUC
obtained for the similar proteins retrieval task. Experimental
results for SAS threshold 2, 3.5 and 5 are given in Table 2.
Further analyses are performed using the best number of topics
for each library. It can be seen that 200-250 topics is the best
choice across libraries.

3. As mentioned in Section 3.2, multi-viewpoint IR combines
naive vector space model and LDA. In this section, we iden-
tify the best naive vector space model from the choices of term
frequency (TF), term frequency inverse document frequency
(TF-IDF) and boolean (Bool) vectors. Cosine similarity is cho-
sen as the similarity metric for vector space model, since it has
been shown to be the best in literature for these representati-
ons. The AUC score for different λ values are given in Table

Topics
Library 10 100 150 200 250 300 400 500 SAS
100(5) 0.83 0.85 0.86 0.88 0.88 0.87 0.86 0.84
300(6) 0.84 0.85 0.86 0.88 0.88 0.88 0.87 0.85
250(7) 0.85 0.87 0.88 0.89 0.9 0.89 0.89 0.89
600(9) 0.85 0.89 0.9 0.9 0.9 0.9 0.89 0.88 2
600(10) 0.85 0.88 0.9 0.9 0.9 0.9 0.9 0.88
400(11) 0.85 0.89 0.9 0.9 0.9 0.9 0.9 0.9
400(12) 0.84 0.89 0.9 0.9 0.9 0.89 0.89 0.87
100(5) 0.70 0.73 0.73 0.74 0.73 0.72 0.72 0.74
300(6) 0.71 0.74 0.75 0.76 0.76 0.76 0.75 0.75
250(7) 0.71 0.75 0.75 0.76 0.76 0.76 0.76 0.75
600(9) 0.72 0.77 0.77 0.78 0.78 0.78 0.77 0.77
600(10) 0.72 0.77 0.77 0.78 0.78 0.77 0.77 0.77 3.5
400(11) 0.71 0.77 0.77 0.78 0.77 0.78 0.77 0.77
400(12) 0.71 0.77 0.77 0.77 0.76 0.76 0.76 0.76
100(5) 0.67 0.68 0.68 0.68 0.67 0.67 0.67 0.67
300(6) 0.66 0.67 0.68 0.68 0.68 0.68 0.68 0.67
250(7) 0.66 0.69 0.69 0.68 0.68 0.68 0.67 0.67
600(9) 0.68 0.69 0.7 0.69 0.68 0.68 0.68 0.67
600(10) 0.67 0.69 0.69 0.69 0.68 0.68 0.68 0.66 5
400(11) 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.67
400(12) 0.69 0.7 0.7 0.7 0.69 0.69 0.69 0.67

Table 2. Comparison of the average AUC obtained with different number of
LDA topics

5. The values are computed on 400(11) library, which gives the
best results across different number of LDA topics (from Table
2). In Table 3, I refers to the multi-view model combining TF
and LDA, II refers to combining TF-IDF and LDA, and III
refers to combining Bool and LDA. Multi-viewpoint IR with
TF and TF-IDF as the naive vector space model perform better
than FragBag. Overall, combining TF and LDA gives the best
results. The experiments are repeated for other libraries using
the best model (TF and LDA). The results on other libraries are
given in Table 4, 5, 6 for SAS threshold 2, 3.5 and 5 respecti-
vely. λ1, the weight for LDA representation is shown in tables.
The weight for naive vector space model λ2, which is 1-λ1 is
not shown in tables.
Influence of the weights λ1 and λ2 on the retrieval performa-
nce is given in Figure 5. It can be seen that for SAS threshold
2 and 3.5, best performance is achieved with higher weight for
LDA representation (λ1). For SAS=5, best performance is ach-
ieved with higher weight for naive vector space model (or at
least equal to LDA representation). SAS threshold 2, are for
close homologs, and 5 denotes remote homologs. LDA based
representation works fine to identify close homologs better than
remote homologs. Since the fragment similarity is less as we
move up the parent tree for a protein structure, exact match
using naive vector space model performs well. Motivated by
the fact that the best results are spanning libraries, an ensemble
on ranking is attempted. For a query protein structure, simi-
larity produced by a model, say using library 400 (11), and
weights λ1 = 0.6, λ2 = 0.4 is treated as an independent hypo-
thesis. Output of each model (combination of libraries and λ1,
λ2 values) is treated as a hypothesis. The best 3 hypotheses
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are chosen and are combined using bucket of models stra-
tegy. For example, let model X and Y provide similarity values
between query protein q and a protein sd in database, deno-
ted by simX(q, sd) and simY (q, sd) respectively. Bucket of
model chooses the similarity between q and sd, usingX and Y
as given below

sim(q, sd) = max(simX(q, sd), simY (q, sd))

This is referred to as Combined Model. We tested it by com-
bining best models across SAS thresholds. The best models are
600(9) with weights (0.8, 0.2) for SAS=2; 400(11) with wei-
ghts (0.7, 0.3) for SAS=3.5; 400(11) with weights (0.4, 0.6) for
SAS=5. Results of theCombinedModel are given in the final
results table (Table 9).

SAS=2 SAS=3.5 SAS=5
λ1 I II III I II III I II III
0 0.89 0.87 0.8 0.77 0.72 0.64 0.75 0.73 0.68
0.1 0.89 0.87 0.81 0.78 0.73 0.65 0.75 0.73 0.69
0.2 0.9 0.88 0.81 0.78 0.74 0.66 0.75 0.73 0.69
0.3 0.9 0.88 0.82 0.79 0.75 0.67 0.75 0.74 0.7
0.4 0.91 0.89 0.83 0.79 0.76 0.69 0.77 0.74 0.7
0.5 0.91 0.9 0.85 0.8 0.77 0.7 0.75 0.74 0.71
0.6 0.91 0.9 0.86 0.8 0.78 0.72 0.75 0.73 0.71
0.7 0.91 0.9 0.88 0.8 0.78 0.75 0.75 0.73 0.71
0.8 0.91 0.91 0.89 0.8 0.79 0.77 0.74 0.72 0.71
0.9 0.91 0.9 0.9 0.8 0.78 0.77 0.72 0.7 0.7
1 0.9 0.9 0.9 0.78 0.78 0.78 0.68 0.68 0.68

Table 3. Comparing the average AUC for various Multi-viewpoint IR
methods

λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.88 0.88 0.88 0.87 0.85 0.86
0.1 0.89 0.89 0.89 0.88 0.86 0.86
0.2 0.89 0.89 0.89 0.88 0.86 0.86
0.3 0.9 0.9 0.9 0.88 0.86 0.86
0.4 0.9 0.9 0.9 0.89 0.87 0.86
0.5 0.9 0.91 0.91 0.89 0.88 0.87
0.6 0.91 0.91 0.91 0.89 0.88 0.87
0.7 0.91 0.91 0.91 0.9 0.89 0.87
0.8 0.91 0.91 0.91 0.9 0.89 0.87
0.9 0.9 0.91 0.91 0.9 0.89 0.87
1 0.89 0.9 0.9 0.89 0.88 0.87

Table 4. Comparison of models built on different libraries for SAS
threshold=2

4. In order to show the effectiveness of LDA based representation
over BoW representation [2], we compare their performance
on classification and clustering tasks. It can be seen that LDA

Fig. 5. Impact of weights in multi-viewpoint based IR model

λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.76 0.76 0.76 0.74 0.69 0.72
0.1 0.77 0.77 0.77 0.75 0.7 0.72
0.2 0.78 0.77 0.77 0.75 0.71 0.72
0.3 0.78 0.78 0.78 0.76 0.72 0.73
0.4 0.79 0.78 0.79 0.76 0.73 0.73
0.5 0.79 0.79 0.79 0.76 0.74 0.73
0.6 0.79 0.8 0.8 0.77 0.75 0.74
0.7 0.8 0.8 0.8 0.77 0.75 0.74
0.8 0.8 0.8 0.8 0.78 0.76 0.74
0.9 0.79 0.79 0.8 0.77 0.76 0.75
1 0.77 0.77 0.78 0.76 0.76 0.74

Table 5. Comparison of models built on different libraries for SAS
threshold=3.5

λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.76 0.75 0.75 0.75 0.71 0.73
0.1 0.76 0.75 0.75 0.75 0.72 0.73
0.2 0.76 0.75 0.75 0.75 0.72 0.73
0.3 0.76 0.76 0.76 0.76 0.72 0.73
0.4 0.76 0.76 0.76 0.76 0.73 0.73
0.5 0.76 0.76 0.76 0.76 0.73 0.73
0.6 0.76 0.76 0.76 0.76 0.72 0.73
0.7 0.76 0.75 0.75 0.75 0.72 0.72
0.8 0.75 0.74 0.74 0.74 0.71 0.72
0.9 0.73 0.73 0.73 0.73 0.7 0.71
1 0.69 0.69 0.69 0.69 0.68 0.68

Table 6. Comparison of models built on different libraries for SAS
threshold=5

representation performs better than the BoW for both the tasks,
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in terms of time taken and standard measures for the tasks.
Table 7 has the comparison results for classification at C level
classes in CATH hierarchy (4 classes). Since the dataset cho-
sen is sparse at other levels of CATH hierarchy (has less than 10
members for most classes at A, T, H levels), we perform classi-
fication only at C level. Radial Basis Function network (RBF)
and Naive Bayesian(NB) classifiers are used for comparison.
Results are compared in terms of RMSE (root mean squared
error), ROC, and accuracy. The values are obtained by ave-
raging results across 10 fold cross validation. Table 8 has the
comparison results in terms of SSE (sum of squared error) for
K Means algorithm using both BoW and LDA representations.

BoW LDA BoW LDA BoW LDA BoW LDA
RMSE ROC Accuracy Time (sec)

RBF 0.25 0.23 0.93 0.95 83.9 85.7 6.84 2.5
NB 0.33 0.31 0.9 0.922 78.6 80.6 0.58 0.19

Table 7. Comparing the performance of BoW and LDA on the classification
task

BoW LDA
K SSE
4 8556.336 3371.61
10 8531.03 3417.21
20 8154.35 3348.29
50 7872.79 3093.44
100 7455.93 2880.1

Table 8. Comparing BoW and LDA for the clustering task

The performance of LDA representation and retrieval based on
asymmetric KL, multi-view retrieval using TF and LDA (multi-view
model I) are compared against naive vector space model with cosine
similarity on the seven libraries chosen. For multi-view based retri-
eval, the best weight combination (λ1 and λ2) for each library is
chosen for the plot. The results are shown in Figure 6, 7, 8 for SAS
threshold 2, 3.5 and 5 respectively. Table 9 has the overall ranking of
structural and filter methods, which includes the relative positioning
of proposed techniques. ([11]). The speed is given as average CPU
minutes per query. If the processing time (after preprocessing of
protein structure) for a query is less than 0.1s, then it is mentioned
as fast. The proposed approaches are shown in bold. Multi-view
model I refers to using TF and LDA, Multi-view model II refers
to TF-IDF and LDA, and Multi-view model III refers to combining
Boolean vector and LDA. It is clear that our method outperforms
all the filter-and-match methods. We did a paired t-test, paired sign
test with AUC values of each query obtained using proposed models
and baseline state-of-the-art filter-and-match method (FragBag). We
found that the performance results summarized in Table 9 are stati-
stically valid with significance level above 95%. Our results are very

competitive even with state-of-the-art structure comparison methods
operating at the level of complete three dimensional representation.
It must be noted that our method is much faster than these methods.

Fig. 6. LDA and TF based multi-view model’s performance at SAS thresh-
old 2.0

Fig. 7. LDA and TF based multi-view model’s performance at SAS thresh-
old 3.5

5 CONCLUSION
We proposed a novel framework for representation and comparison
of protein structures. We demonstrated that our method outper-
forms most of the existing filter-and-match methods. Our results are
very competitive even with the state-of-the-art structure comparison
methods operating at the level of complete three dimensional repre-
sentation. Moreover, our method is much faster than these methods.
Kolodny and co-workers first proposed the use of IR techniques
in protein structure comparison [2]. In this work, we have shown
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Fig. 8. LDA and TF based multi-view model’s performance at SAS thresh-
old 5.0

significant improvements by adapting more detailed models from
statistical NLP literature to this task. We also take advantage of sim-
pler models through the proposed multi-view framework and built
a system that can be tuned to the retrieval objectives at hand. This
work has firmly established that such fragment based models can
be competitive with the structural methods. It also has opened the
doors for deeper analysis, using techniques from statistical NLP, of
the role that fragments play in determining the overall structure.
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Methods SAS=2 SAS=3.5 SAS=5 Average Rank Speed
SSM using SAS score 0.94 0.9 0.89 0.91 1 13
Structal using SAS score 0.9 0.81 0.84 0.85 2 39
Combined Model 0.92 0.82 0.75 0.83 3 Fast
Structal using native score 0.87 0.77 0.83 0.823 4 39
Multi-view model I (400,11) 0.91 0.8 0.76 0.823 4 Fast
CE using native score 0.9 0.79 0.74 0.81 6 54
Multi-view model II (400,11) 0.9 0.78 0.73 0.803 7 Fast
FragBag Cos distance (400,11) 0.89 0.77 0.75 0.803 7 Fast
Multi-view model III (400,11) 0.89 0.77 0.7 0.787 9 Fast
CE using SAS score 0.84 0.72 0.75 0.77 10 54
FragBag histogram intersection (600,11) 0.87 0.73 0.7 0.767 11 Fast
SGM 0.86 0.71 0.68 0.75 12 Fast
FragBag Euclidean distance (40,6) 0.86 0.71 0.64 0.737 13 Fast
Zotenko et al (18) 0.78 0.64 0.66 0.693 14 Fast
Sequence matching by BLAST e-value 0.76 0.57 0.5 0.61 15 Fast
PRIDE 0.72 0.54 0.51 0.59 16 Fast

Table 9. AUCs of ROC Curves Using Best-of-Six Gold Standard
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