
Efficiently Exploiting Symmetries in Real Time Dynamic Programming

Shravan Matthur Narayanamurthy and Balaraman Ravindran
Indian Institute of Technology, Madras

Computer Science Department
shravmn@cse.iitm.ernet.in and ravi@cs.iitm.ernet.in

Abstract

Current approaches to solving Markov De-
cision Processes (MDPs) are sensitive to the
size of the MDP. When applied to real world
problems though, MDPs exhibit considerable
implicit redundancy especially in the form
of symmetries. Existing model minimization
methods do not exploit the redundancy due
to symmetries well. In this work, given such
symmetries, we present a time-efficient algo-
rithm to construct a functionally equivalent re-
duced model of the MDP. Further we present a
Real Time Dynamic Programming (RTDP) al-
gorithm which obviates an explicit construc-
tion of the reduced model by integrating the
given symmetries into it. The RTDP algorithm
solves the reduced model, while working with
parameters of the original model and the given
symmetries. As RTDP uses its experience to
determine which states to backup, it focuses on
parts of the reduced state set that are most rel-
evant. This results in significantly faster learn-
ing and a reduced overall execution time. The
algorithms proposed are particularly effective
in the case of structured automorphisms even
when the reduced model does not have fewer
features. We demonstrate the results empiri-
cally on several domains.

1 Introduction

Markov Decision Processes (MDPs) are a popular way
to model stochastic sequential decision problems. But
most modeling and solution approaches to MDPs scale
poorly with the size of the problem. Real world prob-
lems often tend to be very large and hence do not yield
readily to the current solution techniques. However
models of real world problems exhibit redundancy that
can be eliminated, reducing the size of the problem.
One way of handling redundancy is to form abstrac-
tions, as we humans do, by ignoring details not needed
for performing the immediate task at hand. Researchers
in artificial intelligence and machine learning have long

recognized the importance of abstracting away redun-
dancy for operating in complex and real-world do-
mains [Amarel, 1968].
Identifying symmetrically equivalent situations fre-
quently results in useful abstraction. Informally, a sym-
metric system is one which is invariant under certain
transformations onto itself. An obvious class of sym-
metries is based on geometric transformations such as,
rotations, reflections and translations. Existing work on
model minimization of MDPs does not handle symme-
tries well. The MDP minimization algorithms analyzed
by [Givan et al., 2003] do not consider symmetries of
MDPs. While it is possible to extend these algorithms to
accommodate symmetric equivalence of states, without
considering state-action equivalence they cannot model
many interesting kinds of symmetry. [Zinkevich and
Balch, 2001] consider state-action equivalence, but do
not provide any minimization algorithms.

In this article we consider a notion of symmetries, in
the form of symmetry groups, as formalized in [Ravin-
dran and Barto, 2002]. Our objective here is to present
algorithms that provide a way of using the symme-
try information to solve MDPs thereby achieving enor-
mous gains over normal solution approaches. First, we
present a time-efficient algorithm (G-reduced Image Al-
gorithm) to construct a reduced model given the sym-
metry group. The reduced model obtained is function-
ally equivalent to the original model in that, it preserves
the dynamics of the original model and hence a solu-
tion of the reduced model will lead to a solution in the
original model. However the reduced model can be sig-
nificantly smaller when compared to the original model
depending on the amount symmetry information sup-
plied. Thus solving the reduced model can be a lot
easier and faster. Further, we identify that an explicit
construction of a reduced model is not essential to use
the symmetry information in solving the MDP. We use
the G-reduced Image Algorithm as a basis to present
the Reduced Real Time Dynamic Programming(RTDP)
algorithm which integrates the symmetry information
into the RTDP algorithm [Barto et al., 1995] used for solv-
ing MDPs. Though the algorithm works directly with
the original model it considers only a portion of the orig-
inal model that does not exhibit redundancy and is rel-

evant in achieving its goals. This focus on the relevance
of states results in significantly faster learning leading
to huge savings in overall execution time. To make the
algorithms more effective, especially in terms of space,
we advocate the use of certain structural assumptions
about MDPs. We use several domains to demonstrate
the improvement obtained by using the reduced RTDP
algorithm.

After introducing some notation and background in-
formation in Sec. 2, we present the G-reduced Image
Algorithm in Sec. 3. We then present the reduced RTDP
algorithm in Sec. 4. The experiments done and results
achieved are presented in Sec. 5. Finally we conclude
the article by giving some directions for future work in
Sec. 6.

2 Notation and Background

2.1 Markov Decision Processes

A Markov Decision Process is a tuple 〈S,A,Ψ,P,R〉, where
S = {1, 2, . . . , n} is a set of states, A is a finite set of
actions, Ψ ⊆ S × A is the set of admissible state-action
pairs, P : Ψ × S → [0, 1] is the transition probability
function with P(s, a, s′) being the probability of transition
from state s to state s′ under action a, and R : Ψ → R

is the expected reward function, with R(s, a) being the
expected reward for performing action a in state s. Let
As = {a|(s, a) ∈ Ψ} ⊆ A denote the set actions admissible
in state s. We assume that ∀s ∈ S,As is non-empty.

A stochastic policy π is a mapping Ψ → [0, 1], s.t.,
∑

a∈As
π(s, a) = 1∀s ∈ S. The value of a state s under

policy π is the expected value of the discounted sum
of future rewards starting from state s and following
policy π thereafter. The value function Vπ corresponding
to a policy π is the mapping from states to their values
under π. It can be shown that Vπ satisfies the bellman
equation:

Vπ(s) =
∑

a∈As

π(s, a)
[

R(s, a) + γ
∑

s′∈S

P(s, a, s′)Vπ(s′)
]

(1)

where 0 ≤ γ < 1 is a discount factor.
The solution of an MDP is an optimal policy π∗ that

uniformly dominates all other policies for that MDP. In
other words Vπ

∗

(s) ≥ Vπ(s) for all s ∈ S and for all π.

2.2 Factored Markov Decision Processes

Factored MDPs are a popular way to model structure
in MDPs. A factored MDP is defined as a tuple
〈S,A,Ψ,P,R〉. The state set, given by M features or vari-

able, S ⊆
∏M

i=1 Si, where Si is the set of permissible values
for the feature i. A is a finite set of actions, Ψ ⊆ S × A
is the set of admissible state-action pairs. The transi-
tion probabilities P are often described by a two-slice
Temporal Bayesian Network (2-TBN). The state transition
probabilities can be factored as:

P(s, a, s′) =

M
∏

i=1

Prob(s′i |Pre(s′i , a)) (2)

where Pre(s′
i
, a) denotes the parents of node s′

i
in the 2-

TBN corresponding to action a and each of the probabil-
ities Prob(s′

i
|Pre(s′

i
, a)) is given by a conditional probabil-

itiy table associated with node s′
i
. The reward function

may be similarly represented.

2.3 Homomorphisms and Symmetry Groups

This section has been adapted from [Ravindran and
Barto, 2002].

Let B be a partition of a set X. For any x ∈ X, [x]B de-
notes the block of B to which x belongs. Any function f
from a set X to a set Y induces a partition (or equivalence
relation) on X, with [x] f = [x′] f if and only if f (x) = f (x′)
and x, x′ are f -equivalent written x ≡ f x′. Let B be a
partition of Z ⊆ X × Y, where X and Y are arbitrary
sets. The projection of B onto X is the partition B|X of X
such that for any x, x′ ∈ X, [x]B|X = [x′]B|X if and only if
every block containing a pair in which x is a component
also contains a pair in which x′ is a component or every
block containing a pair in which x′ is a component also
contains a pair in which x is a component.

Definition 1. An MDP homomorphism h from an MDP
M = 〈S,A,Ψ,P,R〉 to an MDP M′ = 〈S′,A′,Ψ′,P′,R′〉
is a surjection from Ψ to Ψ′, defined by a tuple of sur-
jections 〈 f , {gs|s ∈ S}〉, with h((s, a)) = (f (s), gs(a)), where
f : S → S′ and gs : As → A′

f (s)
for s ∈ S, such that:

∀s, s′ ∈ S, a ∈ As

P′(f (s), gs(a), f (s′)) =
∑

s”∈[s′] f

P(s, a, s”) (3)

R′(f (s), gs(a)) = R(s, a) (4)

We use the shorthand h(s, a) for h((s, a)).

Definition 2. An MDP homomorphism h = 〈 f , {gs|s ∈
S}〉 from MDP M = 〈S,A,Ψ,P,R〉 to MDP M′ =
〈S′,A′,Ψ′,P′,R′〉 is an MDP isomorphism fromM toM′

if and only if f and gs, are bijective. M is said to be
isomorphic toM′ and vice versa. An MDP isomorphism
from MDPM to itself is call an automorphism ofM.

Definition 3. The set of all automorphisms of an MDP
M, denoted by AutM, forms a group under composition
of homomorphisms. This group is the symmetry group
ofM.

Let G be a subgroup of AutM. The subgroup G in-
duces a partition BG of Ψ: [(s1, a1)]BG = [(s2, a2)]BG if
and only if there exists h ∈ G such that h(s1, a1) = (s2, a2)
and (s1, a1), (s2, a2) are said to be G equivalent written
(s1, a1) ≡G (s2, a2). Further if s1 ≡BG|S s2 then we write as
shorthand s1 ≡G|S s2. It can be proved that there exists
a homomorphism hG fromM to someM′, such that the
partition induced by hG, BhG , is the same BG. The image
ofM under hG is called the G-reduced image ofM.

Adding structure to the state space representation al-
lows us to consider morphisms that are structured, e.g.,
Projection homomorphisms (see sec. 5 of [Ravindran
and Barto, 2003]). It can be shown that symmetry groups
do not result in projection homomorphisms, except in a

few degenerate cases.
Another simple class of structured morphisms that do
lead to useful symmetry groups are those generated by
permutations of feature values. Let

∑

M be the set of
all possible permutations of {1, . . . ,M}. Given a struc-

tured set X ⊆
∏M

i=1 Xi and a permutation σ ∈
∑

M, we
can define a permutation on X by σ(〈x1, . . . , xM〉) =
〈xσ(1), . . . , xσ(M)〉, and it is a valid permutation on X if
xσ(i) ∈ Xi for all i and for all 〈x1, . . . , xM〉 ∈ X.

Definition 4. A permutation automorphism h on a struc-
tured MDPM = 〈S,A,Ψ,P,R〉 is a bijection on Ψ , de-
fined by a tuple of bijections 〈 f (s), gs(a)〉, with h((s, a)) =
(f (s), gs(a)), where f ∈

∑

M : S → S is a valid permu-
tation on S and gs : As → A′

f (s)
for s ∈ S, such that:

∀s, s′ ∈ S, a ∈ As

P′(f (s), gs(a), f (s′)) = P(s, a, s′)

=

M
∏

i=1

Prob(s′f (i)| f (Pre f (s)(s
′
f (i), a))) (5)

R′(f (s), gs(a)) = R(s, a) (6)

Here f (Pre f (s)(s
′
f (i)
, a)) = {s f (j)|s j ∈ Pre(s′

f (i)
, a)} with s f (j)

assigned according to f (s).

3 G-reduced Image Algorithm

3.1 Motivation

In a large family of tasks, the symmetry groups are known
beforehand or can be specified by the designer through
a superficial examination of the problem. A straight for-
ward approach to minimization using symmetry groups
would require us to enumerate all the state-action pairs
of the MDP. Even when the symmetry group, G, is given,
constructing the reduced MDP by explicit enumeration
takes time proportional to |Ψ|.|G|.

We present in Fig. 1, an efficient incremental algorithm
for building the reduced MDP given a symmetry group
or subgroup. This is an adaptation of an algorithm pro-
posed by [Emerson and Sistla, 1996] for constructing
reduced models for concurrent systems.

3.2 Comments

The algorithm does a breadth-first enumeration of states
skipping states and state-action pairs that are equivalent
to those already visited. On encountering a state-action
pair not equivalent to one already visited, it examines
the states reachable from it to compute the image MDP
parameters. The algorithm terminates when at least
one representative from each equivalence class of G has
been examined. For a proof that the transition proba-
bilities actually represent those for the reduced image,
see App. A. The algorithm as presented assumes that
all states are reachable from the initial state. It is easy,
however, to modify the algorithm suitably. Assuming
an explicit representation for the symmetry group and
that table look-up takes constant time, the algorithm will
run in time proportional to |Ψ|′.|G|. However an explicit

01 GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
02 ConstructM/BG = 〈S

′,A′,Ψ′,P′,R′〉.
03 Set Q to some initial state {s0}, S

′ ← {s0}
04 While Q is non-empty
05 s = dequeue{Q}
06 For all a ∈ As

07 If (s, a) .G (s′, a′) for some (s′, a′) ∈ Ψ′, then
08 Ψ′ ← Ψ′ ∪ (s, a)
09 A′ ← A′ ∪ a
10 R′(s, a) = R(s, a)
11 For all t ∈ S such that P(s, a, t) > 0
12 If t ≡G|S s′, for some s′ ∈ S′,
13 P′(s, a, s′)← P′(s, a, s′) + P(s, a, t)
14 else
15 S′ ← S′ ∪ t
16 P′(s, a, t) = P(s, a, t)
17 add t to Q.

Figure 1: Incremental algorithm for constructing the G-
reduced image given MDPM and some G ≤‘AutM. Q
is the queue of states to be examined. This algorithm
terminates when at least one representative from each
equivalence class of G has been examined.

representation of G demands exorbitant memory of the
order of |G|.|Ψ|.

Nevertheless many classes of problems modeled as
MDPs exhibit some inherent structure. To accommodate
these structures we can consider special forms of homo-
morphism on factored representations(see Sec. 2.2) such
as projection homomorphism. Similarly special forms of
automorphisms on factored representations like permu-
tation automorphisms (see Definition 4) can also be used
advantageously. The advantage here is that the mor-
phisms forming the symmetry group need not be stored
explicitly as they are defined on the features instead of
states.

For example, let us consider the case of permutation
automorphisms. To check for (s, a) ≡G (s′, a′), we need
to generate |G| states that are equivalent to (s′, a′) by
applying each h ∈ G. Each application of h incurs a
time linear in the number of features. Thus in this case
the time complexity of the algorithm presented is of the
order of |Ψ|′.|G|.M, where M is the number of features
whereas no space is needed for storing the G explicitly.

Thus by restricting the class of automorphisms to
functions that are defined on features instead of states,
we only incur additional time which is a function of
the number of features (significantly less than the num-
ber of states) along with a drastic decrease in the space
complexity. The use of factored representations leads to
further reduction in space needed for storing the tran-
sition probabilities and the reward function. Hence the
use of these representations and some special forms of
automorphisms makes the algorithm presented more
effective than its use in the generic case. Also as G is
just a subgroup, the algorithm can work with whatever
little symmetry information the designer might have.

4 Reduced RTDP Algorithm

4.1 Motivation

Given a real world problem modeled as an MDP, invari-
ably the state space consists of vast regions which are
not relevant in achieving the goals. The minimization
approach leads to a certain degree of abstraction which
reduces the extent of such regions. Nonetheless the
reduced image still contains regions which are not rele-
vant in achieving the goals even in the reduced model.
If one has to construct a reduced image then there is no
way to avoid these irrelevant regions. But our goal here
is to find a policy for acting in the original model. To
achieve this, using the algorithm presented in Fig. 1, the
following are the steps:

1. Construct the reduced image.

2. Solve the reduced image.

3. Lift the policy found in the previous step to the
original model.

Since it is this final policy that we want, we can forgo
the explicit construction of the reduced model by in-
tegrating the information in the symmetry group into
the algorithm which solves the original model. Though
there are a variety of ways to solve an MDP, we choose
to take up RTDP as it uses the experience of the agent
to focus on the relevant sections of the state space. This
saves the time spent on explicit construction of the re-
duced model.

Also the G-reduced Image algorithm as presented
doesn’t preserve any structure in the transition prob-
abilities or the reward function that might have existed
because of the use of factored representations. Con-
sequently the reduced image might take considerably
more space than the original model. The algorithm we
present in Fig. 2 tries to achieve the best of both worlds
as it not only works with the original model but also
includes the state space reduction by integrating the
symmetry group information into the RTDP algorithm.

4.2 Convergence of Reduced RTDP

The algorithm is a modification of the RTDP algorithm
with steps from the previous algorithm integrated into
lines 7 to 17. If we assume that we have the reduced
MDP M′, then leaving out lines 7 to 9 and lines 12
to 17 leaves us with the normal RTDP algorithm be-
ing run on the reduced image since as explained below,
(s, a) ∈ Ψ′,R′(s, a) = R(s, a). Due to the equivalence tests
done at lines 7 and 13, the algorithm maintains a policy
for and considers only the reduced state space. From
App. A, lines 12 to 17 compute the transition probabil-
ities for the reduced image. From Eqn. 6, R(s, a) is the
expected reward under the reduced image. So for all
(s, a) ∈ Ψ′,R′(s, a) = R(s, a). Thus the update equation in
line 21 can be rewritten as,

Q(s, a) = R′(s, a) +
∑

s”∈S′

γ.P′(s, a, s”).max
a”∈As”

Q(s”, a”) (7)

01 GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
02 Hashtable Q← Nil is the action value function.
03 Repeat (for each episode)
04 Initialize s and S′ ← {s}
05 Choose a from s using policy derived from Q (e.g.

ε-greedy policy)
06 Repeat (for each step in the episode)
07 if (s, a) ≡G (s”, a”) for some (s”, a”) ∈ Q

where (s”, a”) , (s, a)
08 s← s”; a← a”
09 continue.
10 Take action a and observe reward r and

next state s′

11 Choose a’ from s’ using policy derived from Q
(e.g.ε-greedy policy)

12 For all t such that P(s, a, t) > 0
13 If t ≡G|S s”, for some s” ∈ S′,
14 P′(s, a, s”)← P′(s, a, s”) + P(s, a, t)
15 else
16 S′ ← S′ ∪ t
17 P′(s, a, t) = P(s, a, t)
18 if (s, a) < Q
19 add (s, a) to Q.
20 Q(s, a)← 0
21 Q(s, a)← R(s, a)

+
∑

s”∈S′

γ.P′(s, a, s”).max
a”∈As”

Q(s”, a”)

22 s← s′; a← a′

Figure 2: RTDP algorithm with integrated symmetries
which computes the Action Value function for the re-
duced MDP without explicitly constructing it.

which is nothing but the update equation for the re-
duced image. Thus it is exactly similar to running nor-
mal RTDP on the reduced image. As normal RTDP
converges to an optimal action value function, the re-
duced RTDP also converges, as long as it continues to
back up all states in the reduced image.

The complete construction of the reduced image can
take up considerable amount of time mapping all the ir-
relevant states into the reduced model whereas with the
use of this algorithm one can get near optimal policies
even before the construction of a reduced image is com-
plete. It is also faster than the normal RTDP algorithm
as its state space is reduced by the use of the symmetry
group information.

5 Experiments and Results

Experiments were done on three domains that are ex-
plained below. To show the effect of the degree of
symmetry considered in the domain we consider a 2-
fold symmetry for which G < AutM and full symmetry
G = AutM. We compare the reduced RTDP algorithm
using 2 degrees of symmetry with the normal RTDP al-
gorithm. We present learning curves representing the
decrease in the number of steps taken to finish each

episode. To show the time efficiency of the reduced
RTDP algorithm we present a bar chart of times taken
by the reduced RTDP algorithm using 2 degrees of sym-
metry and the normal RTDP algorithm for completing
200 episodes of each domain. All the algorithms used
a discount factor, γ = 0.9. An epsilon greedy policy
with ε = 0.1 was used to choose the actions at each step.
Due to lack of space we present one graph per domain
though experiments were done with different sizes of
each domain. The results are similar in other cases. We
note exceptions if any as is relevant.

5.1 Deterministic Grid-World

Two Grid-Worlds of sizes 10x10 and 25x25 with four
deterministic actions of going UP, DOWN, RIGHT and
LEFT were implemented. The initial state was (0,0) and
the goal states were {(0,9),(9,0)} and {(0,24),(24,0)} respec-
tively. For the 2-fold symmetry, states about NE-SW di-
agonal, i.e., (x,y) and (y,x) were equivalent. If the grid is
of size M ×N then let maxX =M − 1 and masY = N − 1.
For the full symmetry case, states (x,y), (y,x), (maxX-
x,maxY-y) and (maxY-y,maxX-x) were equivalent. State
action equivalence was defined accordingly.

0 50 100 150 200
0

500

1000

1500

2000

2500

Episodes

#
 S

te
p

s
 p

e
r

E
p

is
o

d
e

Reduced RTDP
2−fold symmetry

Reduced RTDP
full symmetry

Normal RTDP

Figure 3: Learning curves for the Deterministic Grid-
World domain with a 25x25 grid.

5.2 Probabilistic Grid-World

Two Grid-Worlds of sizes 10x10 and 25x25 with four
actions of going UP, DOWN, RIGHT and LEFT were
implemented. Unlike the deterministic domain, here
actions led to the relevant grid only with a probability
of 0.9 and left the state unchanged with a probability of
0.1. The initial state was (0,0) and the goal states were
{(0,9),(9,0)}and {(0,24),(24,0)} respectively. For the 2-fold
symmetry, states about NE-SW diagonal, i.e., (x,y) and
(y,x) were equivalent. For the full symmetry case, states
(x,y), (y,x), (maxX-x,maxY-y) and (maxY-y,maxX-x) were
equivalent. State action equivalence was defined ac-
cordingly.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

Episodes

#
 S

te
p

s
 p

e
r

E
p

is
o

d
e

Reduced RTDP
2−fold symmetry

Reduced RTDP
full symmetry

Normal RTDP

Figure 4: Learning curves for the Probabilistic Grid-
World domain with a 25x25 grid.

5.3 Probabilistic Towers of Hanoi

The towers of Hanoi domain as implemented had 3
pegs. Two domains, one with 3 and the other with
5 disks were implemented. Actions that allowed the
transfer of a smaller disk onto a larger disk or to an
empty peg were permitted. The actions did the transfer
of disk with a probability of 0.9 and left the state un-
changed with a probability of 0.1. The initial state in the
case of 3 disks was {(1,3), (2), ()} and {(4), (1,2), (3,5)} in
the 5 disk case. The goal states were designed to allow
various degrees of symmetry. For a 2-fold symmetry, the
goal states considered were states where, all disks were
either on peg 1 or 2. Equivalent states were those that
have disk positions of pegs 1 and 2 interchanged. For
the full symmetry case, the goal states considered were
states where, all disks were on any one peg. Equivalent
states were those that have disk positions interchanged
by any possible permutation of the pegs. State action
equivalence was defined accordingly.

0 50 100 150 200
0

1000

2000

3000

4000

5000

Episodes

#
 S

te
p

s
 p

e
r

E
p

is
o

d
e

Reduced RTDP
2−fold symmetry

Reduced RTDP
full symmetry

Normal RTDP

Figure 5: Learning curves for the Probabilistic Towers
of Hanoi domain with 5 disks.

5.4 Time efficiency

The bar-graph in Fig. 6 shows the running times (scaled
to even the graph) of the normal RTDP, reduced RTDP
with a 2-fold symmetry and reduced RTDP with full
symmetry. The first cluster is on the Deterministic Grid-
World domain with a 25x25 grid, the second cluster is
on Probabilistic Grid-World with a 25x25 grid and the
third on Probabilistic Towers of Hanoi with 5 disks.1

1 2 3
0

50

100

150

Different Domains

T
im

e
(s

c
a

le
d

)
ta

k
e

n
 f

o
r

2
0

0
 e

p
is

o
d

e
s

Figure 6: Comparison of running times(scaled).

5.5 Discussion

The results are as expected. The comparisons show that
the reduced RTDP algorithm learns faster than the nor-
mal RTDP both in the full symmetry case as well as in
the 2-fold symmetry case. Further among the reduced
RTDP algorithms, the one using more symmetry is bet-
ter than the one with lesser symmetry. The same is
reflected in the running times of algorithms. The full
symmetry case is at least 5 times faster than the nor-
mal RTDP. The 2-fold symmetry is also faster than the
normal RTDP.

One observation contrary to graph shown in the bar
graph of Fig. 6 is that when reduced RTDP algorithms
are used for very small domains like 3-disk Towers of
Hanoi, the overhead involved in checking equivalence
of states outweighs the benefit from the reduction due
to symmetry. Though we have not been able to quantify
the exact extent of the trade-offs involved, we feel that
when the expected length of a trajectory to the goal state
from the initial state is small in comparison with the
state space, the benefits obtained by using the symmetry
group information are masked by the overhead involved
in doing the equivalence comparisons. However this is
true only in case of very small domains. In any domain
of reasonable size the agent implementing normal RTDP
has to explore vast spaces before arriving at the correct
trajectory. But for an agent implementing reduced RTDP
the symmetry reduces this space that has to be explored.

1Running times for domains of lesser size does not follow
the pattern indicated by the graphs. See Sec. 5.5

Also greater the symmetry used lesser the space that has
to be explored. This explains the better performance of
the reduced RTDP algorithm.

6 Conclusions and Future Work

The algorithms presented in this article provide an ef-
ficient way of exploiting varying amounts of symmetry
present in a domain resulting in faster learning and re-
duced execution times. With the use of structured mor-
phisms on factored representations the algorithms are
even more effective, especially in terms of space.

The notion of equivalence used here is very strict. One
direction for future work, that we perceive, is to include
notions of approximate equivalence. Another possibil-
ity will be to quantify the exact trade-offs involved due
to overheads of checking equivalence and the perfor-
mance gained by the use of symmetries.

A Transition probabilities computed for
the reduced model

LetM = 〈S,A,Ψ,P,R〉 be an MDP andG the given sym-
metry group. Let BG be the partition induced by G. Let
M/BG = 〈S

′,A′,Ψ′,P′,R′〉 be the reduced image. Let
ρ(s, a) denote the set of states reachable from state s by

doing action a. Let BG|S = {[s]BG|S | [s]BG|S ∩ ρ(s, a) =
∅}. When (s, a) is used with P′, they represent blocks
whereas when used with P, (s, a) ∈ S and are represen-
tatives for [s, a]BG From Def. 1 the transition probabilities,
P′, satisfy,

∀(s, a) ∈ Ψ′, ∀[s′]BG|S ∈ BG|S

P′(s, a, [s′]BG|S) =
∑

s”∈[s′]BG|S

P(s, a, s”) (8)

By the definition of BG|S,

∀(s, a) ∈ Ψ′, ∀[s′]BG|S ∈ BG|S

P′(s, a, [s′]BG|S) = 0 (9)

As
∑

s”∈([s′]BG|S
−ρ(s,a)) P(s, a, s”) = 0

∀(s, a) ∈ Ψ′, ∀[s′]BG|S ∈ BG|S − BG|S,

P′(s, a, [s′]BG|S) =
∑

s”∈([s′]BG|S
∩ρ(s,a))

P(s, a, s”) (10)

As BG|S is a partition of S,∀t ∈ ρ(s, a), there exists exactly

one [s′]BG |S ∈
(

BG|S − BG|S
)

such that t ∈ [s′]BG|S.

Hence Eqn. 10 can be rewritten as

∀(s, a) ∈ Ψ′, ∀t ∈ ρ(s, a)

P′(s, a, [t]BG|S) =
∑

s”∈(ρ(s,a)∩[s′]BG|S
)

P(s, a, s”) (11)

It is evident that lines 12 to 17 of Fig. 1 implement Eqn. 9
and Eqn. 11.

References
[Amarel, 1968] Saul Amarel. On representations of

problems of reasoning about actions. In Donald
Michie, editor, Machine Intelligence 3, volume 3, pages
131–171. Elsevier/North-Holland, Amsterdam, Lon-
don, New York, 1968. Amarel, S.

[Barto et al., 1995] A. G. Barto, S. J. Bradtke, and S. P.
Singh. Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72:81–138, 1995.

[Emerson and Sistla, 1996] F. Allen Emerson and
A. Prasad Sistla. Symmetry and model checking.
Formal Methods in System Design: An International
Journal, 9(1/2):105–131, August 1996.

[Givan et al., 2003] R. Givan, T. Dean, and M. Greig.
Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence,
147(1-2):163–223, 2003.

[Ravindran and Barto, 2002] Balaraman Ravindran and
Andrew G. Barto. Model minimization in hierarchi-
cal reinforcement learning. Lecture Notes on Computer
Science, 2371:196–211, 2002.

[Ravindran and Barto, 2003] Balaraman Ravindran and
Andrew G. Barto. Smdp homomorphisms: An alge-
braic approach to abstraction in semi markov deci-
sion processes. In IJCAI 03, pages 1011–1016. AAAI,
August 2003.

[Zinkevich and Balch, 2001] M. Zinkevich and T. Balch.
Symmetry in markov decision processes and its im-
plications for single agent and multiagent learning. In
ICML 2001, pages 632–640. Morgan Kaufmann, 2001.

