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ABSTRACT

KEYWORDS: Reinforcement Learning, Stochastic Bandits, UCB, UCBV, EU-

CBV, Thresholding Bandits, APT, AugUCB

This thesis studies the following topics in the area of Reinforcement Learning: classic

Multi-armed bandits in stationary distribution with the goal of cumulative regret mini-

mization using variance estimates and Thresholding bandits in pure exploration fixed-

budget setting with the goal of instantaneous regret minimization also using variance

estimates. The common underlying theme is the study of bandit theory and its applica-

tion in various types of environments. In the first part of the thesis, we study the classic

multi-armed bandit problem with a stationary distribution, one of the first settings stud-

ied by the bandit community and which successively gave rise to several new directions

in bandit theory. We propose a novel algorithm in this setting and compare both theoret-

ically and empirically its performance against the available algorithms. Our proposed

algorithm termed as Efficient-UCB-Variance (EUCBV) is the first arm-elimination al-

gorithm which uses variance estimation to eliminate arms as well as achieve an order

optimal regret bound. Empirically, we show that EUCBV outperforms most of the

state-of-the-art algorithms in the considered environments. In the next part, we study

a specific type of stochastic multi-armed bandit setup called the thresholding bandit

problem and discuss its usage, available state-of-the-art algorithms on this setting and

our solution to this problem. We propose the Augmented-UCB (AugUCB) algorithm

which again uses variance and mean estimation along with arm elimination technique

to conduct exploration. We give theoretical guarantees on the expected loss of our algo-

rithm and also analyze its performance against state-of-the-art algorithms in numerical

simulations in multiple synthetic environments.
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Chapter 1

Introduction to Bandits

1.1 Reinforcement Learning

In today’s world, artificial intelligence has proved to be a game-changer in design-

ing agents that interact with an evolving environment and make decisions on the fly.

The main goal of artificial intelligence is to design artificial agents that make dynamic

decisions in an evolving environment. In pursuit of these, the agent can be thought

of as making a series of sequential decisions by interacting with the dynamic envi-

ronment which provides it with some sort of feedback after every decision which the

agent incorporates into its decision-making strategy to formulate the next decision to be

made. A large number of problems in science and engineering, robotics and game play-

ing, resource management, financial portfolio management, medical treatment design,

ad placement, website optimization and packet routing can be modeled as sequential

decision-making under uncertainty. Many of these real-world interesting sequential

decision-making problems can be formulated as reinforcement learning (RL) problems

((Bertsekas and Tsitsiklis, 1996), (Sutton and Barto, 1998)). In an RL problem, an

agent interacts with a dynamic, stochastic, and unknown environment, with the goal

of finding an action-selection strategy or policy that optimizes some long-term perfor-

mance measure. Every time when the agent interacts with the environment it receives

a signal/reward from the environment based on which it modifies its policy. The agent

learns to optimize the choice of actions over several time steps which is learned from

the sequences of data that it receives from the environment. This is the crux of online

sequential learning.

This is in contrast to supervised learning methods that deal with labeled data which

are independently and identically distributed (i.i.d.) samples from the considered do-

main and train some classifier on the entire training dataset to learn the pattern of this

distribution to predict the labels of future samples (test dataset) with the assumption
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that it is sampled from the same domain. In contrast to this, an RL agent learns from

the samples that are collected from the trajectories generated by its sequential interac-

tion with the system. For an RL agent, the trajectory consists of a series of sequential

interactions whereby it transitions from one state to another following some dynamics

intrinsic to the environment while collecting the reward till some stopping condition is

reached. This is known as an episode. Here, for an action it taken by the agent at the

t-th timestep, the agent transitions from its current state denoted by Si,t to state Si,t+1

and observes the rewardXi,t. An illustrative image depicting the reinforcement learning

scenario is shown in Figure 1.1.

Figure 1.1: Reinforcement Learning

1.2 Connection between Reinforcement Learning and

Bandits

As defined in the previous section, an episode consists of a series of sequential in-

teraction whereas agent transitions from one state to another based on some intrinsic

dynamics of the environment while collecting the rewards and choosing actions based

on some action-selecting strategy. The MAB model can be considered as a special case

where there is a single looping state and the agent after taking an action and observ-

ing the reward transitions back to the same state. That single looping state consists of

several finite number of actions which are called as arms.

The name bandit originated from the concept of casino slot machine where there

are levers which are called as arms and the learner can pull one lever and observe the

2



reward associated with that arm which is sampled from a distribution associated with the

specific arm. This game is repeated T times and the goal of the learner is to maximize

its profit.

1.3 Why study Bandits?

There are multiple reasons to study the interesting area of bandits. First of all, bandits

are the cornerstone of understanding the general reinforcement learning area. In fact,

bandits help us to understand the idea of exploration-exploitation dilemma which is the

basis to build full, multi-state, general reinforcement learning ideas. Secondly, as stated

in Maillard (2011), even 50 years after Robbins (1952) introduced the first idea of ban-

dits, there are many interesting and fruitful areas where bandit concept can be extended

in both practical and theoretical terms. Finally, there are several real-life industrial ap-

plications ranging from recommendation systems, game theory to anomaly detection

where bandit applications have been found to perform exceptionally well. All of these

forces us to delve deep into a systemic research of bandits.

1.4 Motivation

The MAB model fits very well in various real-world scenarios that can be modeled as

decision-making under uncertainty problems. Some of which are as follows:-

1. Online Shop Domain: In the online shop domain (Ghavamzadeh et al., 2015),
a retailer aims to maximize profit by sequentially suggesting products to online
shopping customers. In this scenario, at every timestep, the retailer displays an
item to a customer from a pool of items which has the highest probability of being
selected by the customer. The one-step interaction ends when the customer selects
or does not select a product (which will be considered as a loss to the retailer).
This feedback is incorporated by the learner as a feedback from the environment
and it modifies its policy for the next suggestion. This process is repeated till
a pre-specified number of times with the retailer gathering valuable information
regarding the customer from this behaviour and modifying its policy to display
other items to different customers. In its simplest form, this can be modeled as a
stochastic MAB problem which is studied in the first part of the thesis.

2. Medical Treatment Design: Another interesting domain that MAB model was
first studied was for the medical treatment design (Thompson, 1933),(Thompson,
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1935). Here at every timestep, the learner chooses to administer one out of several
treatments sequentially on a stream of patients who are suffering from the same
ailment (say). Let’s also assume that there is a single treatment which will be able
to alleviate the patients from their disease. Here, the one-step interaction ends
when the patient responds well or does not respond well to the treatment whereby
the learner modifies its policy for the suggestion to the next patient. The goal of
the learner is to quickly converge on the best treatment so that whenever a new
patient comes with the same ailment, the learner can suggest the best treatment
which can relieve the patient of its ailment with a high probability. This problem
can also be modeled as a stochastic MAB problem.

3. Financial Portfolio Management: In financial portfolio management MAB mod-
els can also be used. Here, the learner is faced with the choice of selecting the
most profitable stock option out of several stock options. The simplest strategy
where we can employ a bandit model is this; at the start of every trading ses-
sion, the learner suggests a stock to purchase worth Re 1, while at the closing of
the trading session it sells off the stock to witness its value after a day’s trading.
The profit recorded is treated as the reward revealed by the environment and the
learner modifies its policy for the next day. Let’s assume that no new stock op-
tions are being introduced over the considered time horizon and there is a single
best stock option which if selected in perpetuity will always give the best returns.
Then, the goal of the learner is reduced to identifying the best stock option as
quickly as possible. This is another interesting variation which can be modeled
as a stochastic MAB problem.

4. Product Selection: A company wants to introduce a new product in the market
and there is a clear separation of the test phase from the commercialization phase.
In this case, the company tries to minimize the loss it might incur in the commer-
cialization phase by testing as much as possible in the test phase. So from the
several variants of the product that is in the test phase, the learning learner must
suggest the product variant(s) whose qualities are above a particular threshold τ
at the end of the test phase that has the highest probability of minimizing the loss
in the commercialization phase. A similar problem has been discussed for sin-
gle best product variant identification without threshold in Bubeck et al. (2011).
This problem can be modeled as a stochastic thresholding MAB problem which
is studied in the second part of the thesis.

5. Mobile Phone Channel Allocation: Another similar problem as above concerns
channel allocation for mobile phone communications (Audibert et al., 2009).
Here there is a clear separation between the allocation phase and communication
phase whereby in the allocation phase a learner has to explore as many channels
as possible to suggest the best possible set of channel(s) whose qualities are above
a particular threshold τ . The threshold may depend on the subscription level of
the customer such that with the higher subscription the customer is allowed bet-
ter channel(s) with the τ set high. Each evaluation of a channel is noisy and the
learning algorithm must come up with the best possible set of suggestions within
a very small number of attempts. This setting can also be modeled as a stochastic
thresholding MAB problem.

4



6. Anomaly Detection and Classification: MABs can also be used for anomaly de-
tection where the goal is to seek out extreme values in the data. Anomalies may
not always be naturally concentrated which was shown in Steinwart et al. (2005).
To implement a MAB model the best possible way is to define a cut-off level τ
and classify the samples above this level τ as anomalous along with a tolerance
factor which gives it a degree of flexibility. Such an approach has already been
mentioned in Streeter and Smith (2006) and further studied in Locatelli et al.
(2016). Finally, this is also an interesting variation which can be modeled as a
stochastic thresholding MAB problem.

1.5 Types of Information Feedback

In an online sequential setting, the feedback that the learner receives from the environ-

ment can be characterized into three broad categories, full information feedback, partial

information feedback and bandit feedback.

To illustrate the different types of feedback we will take help of the following ex-

ample. Let a learner be given a set of finite actions i ∈ A such that |A| = K. Let,

the environment be such that each action has a probability distribution Di attached to

it which is fixed throughout the time horizon T . The learning proceeds as follows, at

every timestep the learner selects m ∈ A actions and observes some form of feedback

vectorGobs
t (which will be characterized later). Before the learner selects the set of arms

the environment draws the feedback vector F env
t ∈ [0, 1]K of K i.i.d random rewards

for all actions i ∈ A from Di,∀i ∈ A which it decides to reveal in particular format

depending on the form of feedback chosen for the game, that is full information, partial

information or bandit feedback. This game is shown in algorithm 1.

Algorithm 1 An online sequential game
Input: Time horizon T , K number of arms with unknown parameters of reward
distribution

for each timestep t = 1, 2, . . . , T do
The environment chooses a reward vector F env

t =
[
ri,t ∼i.i.d Di,∀i ∈ A

]
.

The learner chooses m actions such that m < K following some policy π, where
A is the set of arms and |A| = K.

The learner observes the reward vector Gobs
t ⊆ F env

t .

end for
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1.5.1 Full Information Feedback

In full information feedback, when a learner selects m actions then the environment

reveals the rewards of all the actions i ∈ A. Hence, in this form of feedback the learner

observes Gobs
t = F env

t = [ri,t, ∀i ∈ A]. This has been studied in many forms previously

in Takimoto and Warmuth (2003), Kalai and Vempala (2005) or in online prediction

with full information feedback in Cesa-Bianchi and Lugosi (2006).

1.5.2 Partial Information Feedback

In partial information feedback, when a learner selects m actions then the environment

reveals the rewards of only those m actions for m ∈ A. Hence, in this form of feedback

the learner observes Gobs
t = [rm,t,∀m ∈ A]. This is also sometimes called the semi-

bandit feedback and has been studied in Awerbuch and Kleinberg (2004), McMahan

and Blum (2004) and György et al. (2007).

1.5.3 Bandit Feedback

In bandit feedback, when a learner selects m actions then the environment reveals a

cumulative reward of those m actions for m ∈ A. Hence, in this form of feedback the

learner observes Gobs
t =

∑m
q=1 rq,t. Note, that when m = 1, then the learner observes

the reward of only that action that it has chosen out of K actions. Bandit feedback for

single action has been extensively studied in literature with many open problems and

we focus on its various interpretations in this thesis.

1.6 Different types of Bandits

In this section, we discuss the various types of bandits that are available in the literature.
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1.6.1 Types of Bandits Based on Environment

Stochastic Bandits

In stochastic bandits, the distribution associated with each of the arms remains fixed

throughout the time horizon T . Some of the notable works associated with this type

of setup are Robbins (1952), Lai and Robbins (1985), Agrawal (1995), Auer et al.

(2002a), UCB-Improved Auer and Ortner (2010), Audibert and Bubeck (2009), Lat-

timore (2015), etc which gives us a broad class of algorithms suited for this setting.

Chapter 2 and Chapter 3 is based on this setup where we discuss extensively on the lat-

est state-of-the-art algorithms and discuss their empirical and theoretical performances.

Non-stochastic Bandits

In non-stochastic setting, the distribution associated with each arm varies over the du-

ration of the play. Two notable examples of this are:-

1. Adversarial bandits: One of the first settings that has greatly motivated the
studies in bandit literature is the adversarial setting. In this setting, at every
timestep, an adversary chooses the reward for each arm and then the learner se-
lects an arm without the knowledge of the adversary’s choice. The adversary
may or may not be oblivious to the learner’s strategy and this forces the learner
to employ a randomized algorithm to confuse the adversary. Previous works on
this have focused on constructing different types of exponential weighting al-
gorithms that are based on the Hedge algorithm that has been proposed before
in Littlestone and Warmuth (1994),Freund and Schapire (1995) and analyzed in
Auer et al. (2000). Further variants of this strategy called EXP3 (Auer et al.,
2002b), (Auer, 2002) and EXP3IX (Kocák et al., 2014) have also been proposed
which incorporates different strategies for exploration to minimize the loss of the
learner.

2. Piece-wise stationary: Striding between the two contrasting settings of stochas-
tic and adversarial bandits is the piece-wise stochastic multi-armed bandit setting
where there are a finite number of changepoints when the distribution associ-
ated with each arm changes abruptly. Hence, this setting is neither as pessimistic
as adversarial setting nor as optimistic as the stochastic setting. Therefore, the
two broad class of algorithms mentioned before fail to perform optimally in this
setting. Several interesting solutions have been proposed before for this setting
which can be broadly divided into two categories, passively adaptive and ac-
tively adaptive strategies. The passively adaptive strategies like Discounted UCB
(DUCB) (Kocsis and Szepesvári, 2006), Switching Window UCB (SW-UCB)
(Garivier and Moulines, 2011) and Discounted Thompson Sampling (DTS) first
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proposed in Raj and Kalyani (2017) do not actively try to locate the changepoints
but rather try to minimize their losses by concentrating on past few observations.
Similarly, algorithms like Restarting Exp3 (RExp3) (Besbes et al., 2014) be-
have pessimistically as like Exp3 but restart after pre-determined phases. Hence,
RExp3 can also be termed as a passively adaptive algorithm. On the other hand,
actively adaptive strategies like Adapt-EVE (Hartland et al., 2007), Windowed-
Mean Shift (Yu and Mannor, 2009), EXP3.R (Allesiardo et al., 2017), CUSUM-
UCB (Liu et al., 2017) try to locate the changepoints and restart the chosen bandit
algorithms. Also, there are Bayesian strategies like Global Change-Point Thomp-
son Sampling (GCTS)(Mellor and Shapiro, 2013) which uses Bayesian change-
point detection to locate the changepoints.

1.6.2 Types of Bandits Based on Goal

In bandit literature, based on the goal we can divide bandits into several categories.

To illustrate this we put forward a simple scenario let us consider a stochastic bandit

scenario where there are K arms labeled i = 1, 2, . . . , K with their expected means of

reward distributions (Di) be denoted by ri. Also let there be single optimal arm ∗ such

that r∗ = maxi∈A ri.

Cumulative Regret Minimization

In cumulative regret minimization the goal of the bandit is to minimize the cumulative

regret which is the total loss suffered by the learner throughout the time horizon T for

not choosing the optimal arm. Formally, we can define the cumulative regret as,

RT =
T∑
t=1

r∗ −
∑
i 6=∗

rini,T (1.1)

where, ni,T is the number of times the learner has chosen arm i over the entire

horizon T . We can further reduce equation 1.1 to obtain,

RT =
T∑
t=1

r∗ −
∑
i 6=∗

rini,T =
K∑
i=1

∆ini,T
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where ∆i = r∗ − ri is called the gap between the optimal and the sub-optimal arm.

Simple Regret Minimization

In simple regret minimization the goal of the bandit is to minimize the instantaneous

regret that is suffered at any timestep by the learner. Formally, the simple regret at t-th

timestep where Jn ∈ A is the recommendation by the learner at timestep t is defined,

SRt = r∗ − rJn = ∆Jn

where ∆Jn is the instantaneous gap between the expected mean of the optimal arm

and the recommended arm by the learner. In the pure exploration setting the learner

tries to minimize the simple regret and we study a very similar setting in chapter 4 and

chapter 5.

Weak Regret minimization

In the non-stochastic scenario, when the distribution associated with each arm changes,

the notion of regret is defined differently than cumulative regret. In this scenario, con-

sidering that there is a single best arm, the learner is more interested in minimizing

the worst-case regret. Formally, for any sequence of actions (j1, . . . , jT ) chosen by the

learner over the time horizon T , the weak regret for single best action is defined as the

difference between,

Gmax(j1, . . . , jT )−Gπ(T )

where, Gmax(j1, . . . , jT ) = maxi∈A
∑T

t=1Xit is the return of the globally best action

over the entire horizon T , Xit is the reward observed for the i-th arm at the t-th timestep

and Gπ(T ) is the return following the policy π over the horizon T instead of choosing

j1, . . . , jT .
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1.6.3 Contextual Bandits

Another interesting variation of the MAB model is the contextual bandit setup, where

there are contexts or features associated with each arm. We can envision this with an

example of online news article recommendation where there are users and articles and

the goal of the learner is to map the correct article to a user so as to generate the user’s

interest. Following a similar work in Langford and Zhang (2007) this problem can be

formulated as a contextual MAB problem such that at every timestep t = 1, . . . , T

1. The learner observes an user ut and the set of arms (articles) i ∈ A along with
their feature vectors vi,t,∀i ∈ At. This vector contains information about both
the users and the arms and is referred as the context.

2. On the basis of previous trials the learner pulls an arm it ∈ A at the t-th timestep
and observes the reward Xi,t for only the arm it ∈ A.

3. The algorithm then improves its prediction for the next trial with the new obser-
vation, (vi,t, it, Xi,t).

This type of settings have been extensively studied in Li et al. (2010) and Beygelz-

imer et al. (2011).

1.6.4 Collaborative Bandits

Distributed bandits is a special setting where a network of bandits collaborates with

each other to identify the best set of arms. The contextual MAB model discussed be-

fore naturally extends into this setting where a network of bandits try to map articles

to a large number of users by collaborating between themselves (see Awerbuch and

Kleinberg (2008); Liu and Zhao (2010); Szörényi et al. (2013); Hillel et al. (2013)). In

this setting, bandits at the end of specific phases share information synchronously or

asynchronously amongst each other to identify the best set of arms. Further, to learn

more complicated structures and interaction between the user and article feature vec-

tors, clustering can be used to cluster the articles and users based on their features and

this has been studied in Bui et al. (2012), Cesa-Bianchi et al. (2013), Gentile et al.

(2014).
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1.6.5 Bandits with Corrupt Feedback

Another interesting area in the bandit setting is a variant of the stochastic MAB problem

in which the rewards are corrupted. In certain recommender systems, it is sometimes

vital to preserve the privacy of the users. Motivated by these, bandits with corrupt

feedback assumes that the rewards it is receiving is corrupted by a stochastic corruption

process of known parameters and the goal of the learner is again to maximize the reward

by suggesting the best items to the users in this framework. This setting has been

analyzed in Gajane et al. (2017).

1.6.6 Conservative Bandits

This setting is motivated by the scenario where there is one default safe arm which will

always provide the learner with a good reward, but there are several unexplored arms

which might provide the learner with better rewards if explored more. But the learner

cannot do unconstrained exploration as its budget is limited and every time it pulls an

arm it has to pay a cost. Hence, it must balance between pulling the safe arm and

constrained exploration. This type of exploration under constraint has been termed as

conservative bandits and is studied in Wu et al. (2016).

1.7 Objectives of Thesis

The main objectives of the thesis are as follows:-

1. The first objective of this thesis is to study the area of stochastic multi-armed ban-
dit (SMAB) and how to minimize cumulative regret in this setup. We intend to
give strong gap-dependent and gap-independent regret guarantees in the SMAB
setting. We also intend to provide the algorithm in the SMAB setting that outper-
forms the current state-of-the-art algorithms in this setting.

2. The second objective of this thesis is to study the area of thresholding bandit
problem (TBP) setting where the goal is to minimize the expected loss at the
end of a fixed budget provided as input. We intend to provide strong guarantees
with respect to expected loss and also propose the algorithm that does not require
any problem complexity as an input. We also intend to provide strong empirical
evaluations of the algorithm proposed for the TBP setting.
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1.8 Contributions of Thesis

The main contributions of the thesis are as follows:-

1. We proposed a novel algorithm for the stochastic multi-armed bandit (MAB)
problem. Our proposed Efficient UCB Variance method, referred to as EUCBV
is an arm elimination algorithm based on UCB-Improved and UCBV strategy
which takes into account the empirical variance of the arms and along with ag-
gressive exploration factors eliminate sub-optimal arms. Through a theoretical
analysis, we establish that EUCBV achieves a better gap-dependent regret upper
bound than UCB-Improved, MOSS, UCB1, and UCBV algorithms. EUCBV en-
joys an order optimal gap-independent regret bound same as that of OCUCB and
MOSS, and better than UCB-Improved, UCB1 and UCBV. Empirically, in sev-
eral considered environments EUCBV outperforms most of the state-of-the-art
algorithms.

2. We proposed the Augmented-UCB (AugUCB) algorithm for a fixed-budget ver-
sion of the thresholding bandit problem (TBP), where the objective is to identify
a set of arms whose quality is above a threshold. A key feature of AugUCB is
that it uses both mean and variance estimates to eliminate arms that have been
sufficiently explored. This is the first algorithm to employ such an approach for
the considered TBP. Furthermore, in numerical evaluations, we establish in sev-
eral considered environments that AugUCB outperforms all the algorithms that
do not take into consideration the variance of the arms in their action selection
strategy.

1.9 Outline of the Thesis

In this chapter, we gave an overview of the various types of bandits available in the lit-

erature and also discussed about the main objectives of the thesis and our contributions.

In this section, we give a general outline of the thesis that is to follow. In Chapter 2

we give a detailed overview of the stochastic multi-armed bandit model and the latest

available algorithms in this setting. In the next Chapter 3 we introduce our algorithm

Efficient UCB Variance (EUCBV) for the stochastic multi-armed bandit model. We

give theoretical guarantees on the performance of EUCBV and also show in numerical

simulations that it indeed performs very well as compared to the state-of-the-art algo-

rithms. In the subsequent Chapter 4 we introduce a new variant of pure exploration

multi-armed stochastic bandit called the thresholding bandit problem. We analyze the

connections between thresholding bandit problem and pure exploration problem and
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also discuss several existing algorithms in both the settings that are relevant to carefully

analyze the thresholding bandit problem. Then in Chapter 5 we introduce our solution

for the thresholding bandit problem, called the Augmented UCB (AugUCB) algorithm.

We analyze our algorithm AugUCB and derive theoretical guarantees for it as well as

show in numerical experiments that it indeed outperforms several state-of-the-art algo-

rithms in the thresholding bandit setting. Finally, in Chapter 6 we conclude by briefly

summarizing all the problems covered in the thesis and discussing some future direc-

tions in which the stated problems can be further extended.
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Chapter 2

Stochastic Multi-armed Bandits

2.1 Introduction to SMAB

In this chapter, we deal with the stochastic multi-armed bandit (SMAB) setting. In its

classical form, stochastic MABs represent a sequential learning problem where a learner

is exposed to a finite set of actions (or arms) and needs to choose one of the actions at

each timestep. After choosing (or pulling) an arm the learner receives a reward, which is

conceptualized as an independent random draw from stationary distribution associated

with the selected arm. Also, note that in SMAB, the distribution associated with each

arm is fixed throughout the entire duration of the horizon denoted by T . This SMAB

formulation is shown in algorithm 2.

Algorithm 2 SMAB formulation
Input: Time horizon T , K number of arms with unknown parameters of reward
distribution

for each timestep t = 1, 2, . . . , T do
The learner chooses an arm i ∈ A, where A is the set of arms and |A| = K.
The learner observes the reward Xi,t ∼i.i.d Di where, Di is the distribution asso-

ciated with the arm i.

end for

The rest of the chapter is organized as follows. We specify all the notations and

assumptions in Section 2.2. Then we define the problem statement for the SMAB setting

in Section 2.3. In the next Section 2.4 we discuss the motivations behind the SMAB

setting. In Section 2.5 we discuss extensively on the various state-of-the-art algorithms

available for the SMAB setting. Finally, we summarize in Section 2.6.
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2.2 Notations and assumptions

Assumption 1 In the considered SMAB setting we assume the optimal arm to be unique

and it is denoted by ∗.

Assumption 2 We assume the rewards of all arms are bounded in [0, 1].

Notations: The mean of the reward distribution Di associated with an arm i is

denoted by ri whereas the mean of the reward distribution of the optimal arm ∗ is

denoted by r∗ such that ri < r∗,∀i ∈ A, where A is the set of arms such that |A| = K.

We denote the individual arms labeled i, where i = 1, . . . , K. We denote the sample

mean of the rewards for an arm i at time instant t by r̂i(t) = 1
zi(t)

∑zi(t)
`=1 Xi,`, where

Xi,` is the reward sample received when arm i is pulled for the `-th time, and zi(t) is

the number of times arm i has been pulled until timestep t. We denote the true variance

of an arm by σ2
i while v̂i(t) is the estimated variance, i.e., v̂i(t) = 1

zi(t)

∑zi(t)
`=1 (Xi,` −

r̂i)
2. Whenever there is no ambiguity about the underlying time index t, for simplicity

we neglect t from the notations and simply use r̂i, v̂i, and zi to denote the respective

quantities. Also, ∆ denotes the minimum gap such that ∆ = mini∈A{∆i}.

2.3 Problem Definition

With the formulation of SMAB stated in Algorithm 2, the learner seeks to identify the

optimal arm as quickly as possible to maximize its rewards. In the pursuit of this,

the learner faces the task of balancing exploitation and exploration. In other words,

should the learner pull the arm which currently has the best-known estimates (exploit)

or explores arms more thoroughly to ensure that a correct decision is being made. This

is termed as the exploration-exploitation dilemma, one of the fundamental challenges

of reinforcement learning as discussed in chapter 1.

The objective of the learner in the SMAB setting is to maximize his rewards or in

other words, to minimize the cumulative regret, which is defined as follows:

RT = r∗T −
K∑
i=1

rizi(T ),
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where T is the number of timesteps, and zi(T ) is the number of times the algorithm has

chosen arm i up to timestep T . The expected regret of an algorithm after T timesteps

can be written as,

E[RT ] =
K∑
i=1

E[zi(T )]∆i,

where ∆i = r∗ − ri is the gap between the means of the optimal arm and the i-th arm.

In the theoretical analysis of each algorithm, we try to obtain bounds on this cumulative

regret. These bounds can be both asymptotic or for a finite horizon. Again, these regret

bounds can be either gap-dependent or gap-independent bounds.

1. Asymptotic regret bounds: These type of regret bounds are valid for a large
horizon T tending to infinity. In other words, if the guarantees of these bounds to
be held true then an infinite number of samples needs to be collected.

2. Finite horizon regret bounds: These type of regret bounds are valid for a finite
horizon when a limited number of samples are allowed to be collected. Note, that
the knowledge of horizon may or may not be known to the learner.

3. Gap-Dependent regret bounds: In gap-dependent or problem dependent regret
bounds the regret is obtained as a measure of the gap ∆i = r∗ − ri for an arm
i ∈ A along with the time horizon and number of arms. It is so called because
the regret bound depends explicitly on the means of the arms considered for that
environment along with the stated assumptions on the distribution.

4. Gap-Independent regret bounds: In gap-independent regret bound the regret
does not contain the gaps and is stated explicitly in terms of the number of arms
and the horizon. This is because the regret depends only on the distributional as-
sumption, but not on the means of the arms considered. In fact, gap-independent
regret bounds point to something more general and informative. These type of
bounds actually give us the maximum possible regret such that no matter what is
the policy, there will be an environment on which the policy achieves almost the
same regret as the gap-independent regret upper bound. This leads to the notion
of minimax regret.

5. Minimax regret bounds: For a finite horizon T , K number of arms, for all set
of possible policies πT,K over T and K and all possible environment class E the
minimax regret is given by,

RT (E) = inf
π∈πT,K

sup
E∈E

RT (π,E).

Hence, this value is independent of any specific choice of a policy π but only
depends on T , K and E where the dependence on K is hidden in E .
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2.4 Motivation

There has been a significant amount of research in the area of stochastic MABs. One

of the earliest work can be traced to Thompson (1933), which deals with the problem

of choosing between two treatments to administer to patients who come in sequentially.

In Thompson (1935) this work was extended to include more general cases of finitely

many treatments. In recent years the SMAB setting has garnered extensive popularity

because of its simple learning model and its practical applications in a wide-range of

industries, including, but not limited to, mobile channel allocations, online advertising

and computer simulation games. Some of these problems have been already discussed

in chapter 1, section 1.4 and an interested reader can refer to it.

2.5 Related Work in SMAB

2.5.1 Lower Bound in SMAB

SMAB problems have been extensively studied in several earlier works such as Thomp-

son (1933), Thompson (1935), Robbins (1952) and Lai and Robbins (1985). Lai and

Robbins in Lai and Robbins (1985) established an asymptotic lower bound for the cu-

mulative regret. It showed that for any consistent allocation strategy, we can have

lim inf
T→∞

E[RT ]

log T
≥

∑
{i:ri<r∗}

(r∗ − ri)
KL(Qi||Q∗)

where KL(Qi||Q∗) is the Kullback-Leibler divergence between the reward densities Qi

and Q∗, corresponding to arms with mean ri and r∗, respectively.

2.5.2 The Upper Confidence Bound Approach

Over the years SMABs have seen several algorithms with strong regret guarantees. For

further reference, an interested reader can look into Bubeck and Cesa-Bianchi (2012).

In the next few subsections, we will explicitly focus on the upper confidence bound

algorithms which is a type of non-Bayesian algorithm widely used in SMAB setting.
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The upper confidence bound or UCB algorithms balance the exploration-exploitation

dilemma by linking the uncertainty in the estimate of an arm with the number of times

an arm is pulled and therefore ensuring sufficient exploration.

UCB1 Algorithm

One of the earliest among these algorithms is UCB1 algorithm proposed first in Agrawal

(1995) and subsequently analyzed in Auer et al. (2002a). The UCB1 algorithm (as

stated in Auer et al. (2002a)) is mentioned in Algorithm 3.

Algorithm 3 UCB1
1: Input: K number of arms with unknown parameters of reward distribution
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that arg maxi∈A

{
r̂i +

√
2 log(t)

zi

}
5: t := t+ 1
6: end for

The intuition behind this algorithm is simple and it follows from the ideas of con-

centration inequalities in probability measure theory. The term
√

2 log(t)

zi
is called the

confidence interval of the arm i and it signifies a measure of uncertainty over the arm

i based on the history of observed rewards for that arm. Therefore, lesser the confi-

dence interval, higher is our confidence that the estimated mean r̂i is lying close to the

expected mean ri of the arm i. Also, note that the confidence interval decreases at the

rate of O
(

1
√
zi

)
which signifies the rate of convergence of r̂i to ri and depends on the

number of time the arm has been pulled.

UCB1 has a gap-dependent regret upper bound ofO
(
K log T

∆

)
, where ∆ = mini:∆i>0 ∆i.

This result is asymptotically order-optimal for the class of distributions considered. But,

the worst case gap-independent regret bound of UCB1 is found to be O
(√

KT log T
)
.

UCB-Improved Algorithm

The UCB-Improved stated in Algorithm 4, proposed in Auer and Ortner (2010), is a

round-based variant of UCB1. An algorithm is round-based if it pulls all the arms equal

number of times in each round and then eliminates one or more arms that it deems to be
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Algorithm 4 UCB-Improved
1: Input: Time horizon T , K number of arms with unknown parameters of reward

distribution
2: Initialization: Set B0 := A and ε0 := 1.

3: for m = 0, 1, ..
⌊1

2
log2

T

e

⌋
do

4: Pull each arm in Bm, nm =

⌈
2 log (Tε2m)

εm

⌉
number of times.

5: Arm Elimination by Mean Estimation
6: For each i ∈ Bm, delete arm i from Bm if,

r̂i +

√
log (Tε2m)

2nm
< max

j∈Bm

{
r̂j −

√
log (Tε2m)

2nm

}

7: Set εm+1 :=
εm
2

, Set Bm+1 := Bm

8: Stop if |Bm| = 1 and pull i ∈ Bm till n is reached.
9: end for

sub-optimal. Note, that in this algorithm the confidence interval term is

√
log (Tε2m)

2nm
which is constant in the m-th round as nm is fixed for that round and all arms are being

pulled an equal number of times in each round. This is unlike UCB1 algorithm where

the confidence interval term depends on zi which is a random variable. Also, note

that in UCB-Improved the knowledge of horizon is required before-hand to calculate

the confidence intervals whereas no such input is required for UCB1. An illustrative

flowchart depicting the main steps is given in Figure 2.1.

UCB-Improved incurs a gap-dependent regret bound of O
(
K log(T∆2)

∆

)
, which is

better than that of UCB1. On the other hand, the worst case gap-independent regret

bound of UCB-Improved is O
(√

KT logK
)
.

Empirically, UCB-Improved is out-performed by UCB1 in almost all environments.

This stems from the fact that UCB-Improved is pulling all arms equal number of times

in each round and hence spends a significant number of pulls in initial exploration as

opposed to UCB1 thereby incurring higher regret.

MOSS Algorithm

In the later work of Audibert and Bubeck (2009), the authors propose the MOSS algo-

rithm which stands for Minimax Optimal Strategy in the Stochastic case (see Algorithm
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Figure 2.1: Flowchart of UCB-Improved

Algorithm 5 MOSS
1: Input: Time horizon T , K number of arms with unknown parameters of reward

distribution
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that arg maxi∈A

{
r̂i +

√
max{0, log( T

Kzi
)}

zi

}
5: t := t+ 1
6: end for

5). The confidence interval of MOSS is designed in such a way so as to divide the hori-

zon T proportionally between the number of arms K and the number of pulls zi that

each arm is pulled. As the sub-optimal arms are pulled more number of times their con-

fidence interval decreases, indicating that they have been explored sufficiently, forcing
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MOSS to explore other arms and quickly converging on the optimal arm. Theoretically,

Audibert and Bubeck (2009) showed that the worst case gap-independent regret bound

of MOSS isO
(√

KT
)

which improves upon UCB1 by a factor of order
√

log T . How-

ever, the gap-dependent regret of MOSS is O
(
K2 log(T∆2/K)

∆

)
and in certain regimes,

this can be worse than even UCB1 (see Audibert and Bubeck (2009); Lattimore (2015)).

OCUCB Algorithm

Algorithm 6 OCUCB
1: Input: Time horizon T , K number of arms with unknown parameters of reward

distribution, exploration parameter α and ψ
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that arg maxi∈A

{
r̂i +

√
α log(ψ T

t
)

zi

}
5: t := t+ 1
6: end for

Recently in Lattimore (2015), the authors proposed the Optimally Confident UCB

(OCUCB) (see Algorithm 6) which incorporates the increasing timestep t in the con-

fidence interval along with the fixed horizon T and exploration parameters ψ and α.

The authors showed that the algorithm OCUCB achieves order-optimal gap-dependent

regret bound of O
(∑K

i=2
log(T/Hi)

∆i

)
where Hi =

∑K
j=1 min

{
1

∆2
i
, 1

∆2
j

}
, and a gap-

independent regret bound of O
(√

KT
)

. This is the best known gap-dependent and

gap-independent regret bounds in the stochastic MAB framework. However, unlike our

proposed EUCBV algorithm (in Chapter 3), OCUCB does not take into account the

variance of the arms; as a result, empirically we find that our algorithm outperforms

OCUCB in all the environments considered.

UCB-Variance Algorithm

In contrast to the above work, the UCB-Variance (UCBV) algorithm in Audibert et al.

(2009) utilizes variance estimates to compute the confidence intervals for each arm. In

UCBV (see Algorithm 7) the confidence interval term is given by
√

2v̂i log(t)

zi
+

3 log(t)

3
where v̂i denotes the empirical variance of the arm i. Hence, the confidence interval
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Algorithm 7 UCBV
1: Input: K number of arms with unknown parameters of reward distribution
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that maxi∈A

{
r̂i +

√
2v̂i log(t)

zi
+

3 log(t)

2

}
5: t := t+ 1
6: end for

makes sure that the arms whose variances are high are pulled more often to get a better

estimates of their r̂i.

UCBV has a gap-dependent regret bound of O
(
Kσ2

max log T
∆

)
, where σ2

max denotes

the maximum variance among all the arms i ∈ A. Its gap-independent regret bound

can be inferred to be same as that of UCB1 i.e O
(√

KT log T
)
. Empirically, Audibert

et al. (2009) showed that UCBV outperforms UCB1 in several scenarios.

2.5.3 Bayesian Approach

Algorithm 8 Bernoulli Thompson Sampling
Input: K number of arms with unknown parameters of reward distribution
Initialization: For each arm i := 1 to K set Si = 0 and Fi = 0

for t = 1, .., T do

for i = 1, .., K do
Sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.

end for
Play the arm i(t) := arg maxi θi(t) and observe reward Xi,t.
if Xi,t = 1 then Si(t) = Si(t) + 1
elseFi(t) = Fi(t) + 1
end if

end for

Another notable design principle which has recently gained a lot of popularity is the

Thompson Sampling (TS) algorithm ((Thompson, 1933), (Agrawal and Goyal, 2011))

and Bayes-UCB (BU) algorithm (Kaufmann et al., 2012). This TS is stated in Al-

gorithm 8. The TS algorithm is initialized with a uniform prior and it maintains a

posterior reward distribution for each arm; at each round, the algorithm samples val-

ues from these distributions and the arm corresponding to the highest sample value is
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chosen. Although TS is found to perform extremely well when the reward distributions

are Bernoulli, it is established that with Gaussian priors the worst-case regret can be as

bad as Ω
(√

KT log T
)

(Lattimore, 2015). The BU algorithm is an extension of the TS

algorithm that takes quartile deviations into consideration while choosing arms.

2.5.4 Information Theoretic Approach

The final design principle we state is the information theoretic approach of DMED

(Honda and Takemura, 2010) and KLUCB (Garivier and Cappé, 2011),(Cappé et al.,

2013) algorithms. The algorithm KLUCB uses Kullbeck-Leibler divergence to com-

pute the upper confidence bound for the arms. KLUCB is stable for a short horizon

and is known to reach the Lai and Robbins (1985) lower bound in the special case

of Bernoulli distribution. However, Garivier and Cappé (2011) showed that KLUCB,

MOSS and UCB1 algorithms are empirically outperformed by UCBV in the exponen-

tial distribution as they do not take the variance of the arms into consideration.

2.5.5 Discussion on The Various Confidence Intervals

A comparative analysis of the confidence interval of the UCB algorithms is discussed

in table 2.1.
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Table 2.1: Confidence interval of different algorithms

Algorithm Confidence interval Horizon
as input

Remarks

UCB1
√

2 log(t)

zi
No Loose confidence interval

leading to high regret upper
bounds.

UCBV
√

2v̂i log(t)

zi
+

3 log(t)

2
No Confidence interval uses vari-

ance estimation.

UCB-Imp

√
log (Tε2m)

2nm
Yes Same confidence interval for

all arms in a particular round.

MOSS

√
max{0, log( T

Kzi
)}

zi
Yes Confidence interval is based

on dividing the horizon pro-
portionally between K arms
and zi pulls for each arm.

OCUCB

√
2 log(2T

t
)

zi
Yes Tightest confidence interval

with exploration parameter
α = 2, ψ = 2 leading to
order-optimal regret bounds.

2.6 Summary

In this chapter, we looked at the stochastic multi-armed bandit (SMAB) setting and dis-

cussed how it is important in the general reinforcement learning setup. We also looked

at the various state-of-the-art algorithms in the literature for the SMAB setting and dis-

cussed the advantages and disadvantages of them. The regret bounds that have been

proven for the said algorithms have also been discussed at length and their confidence

intervals have also been compared against each other. In the next chapter, we pro-

vide our solution to this SMAB setting which achieves an almost order-optimal regret

bound.
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Chapter 3

Efficient UCB Variance: An Almost Optimal Algorithm

in SMAB Setting

3.1 Introduction

In this chapter, we look at a novel variant of the UCB algorithm (referred to as Efficient-

UCB-Variance (EUCBV)) for minimizing cumulative regret in the stochastic multi-

armed bandit (SMAB) setting. EUCBV incorporates the arm elimination strategy pro-

posed in UCB-Improved (Auer and Ortner, 2010) while taking into account the variance

estimates to compute the arms’ confidence bounds, similar to UCBV (Audibert et al.,

2009). Through a theoretical analysis we establish that EUCBV incurs a gap-dependent

regret bound of O
(
Kσ2

max log(T∆2/K)

∆

)
after T trials, where ∆ is the minimal gap

between optimal and sub-optimal arms; the above bound is an improvement over that

of existing state-of-the-art UCB algorithms (such as UCB1, UCB-Improved, UCBV,

MOSS). Further, EUCBV incurs a gap-independent regret bound of O
(√

KT
)

which

is an improvement over that of UCB1, UCBV and UCB-Improved, while being compa-

rable with that of MOSS and OCUCB. Through an extensive numerical study, we show

that EUCBV significantly outperforms the popular UCB variants (like MOSS, OCUCB,

etc.) as well as Thompson sampling and Bayes-UCB algorithms.

The rest of the chapter is organized as follows. We elaborate our contributions in

Section 3.2 and in Section 3.3 we present the EUCBV algorithm. Our main theoretical

results are stated in Section 3.4, while the proofs are established in Section 3.5. Sec-

tion 3.6 contains results and discussions from our numerical experiments and finally we

summarize in Section 3.7.
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3.2 Our Contributions

We propose the Efficient-UCB-Variance (henceforth referred to as EUCBV) algorithm

for the stochastic MAB setting. EUCBV combines the approach of UCB-Improved,

CCB (Liu and Tsuruoka, 2016) and UCBV algorithms. EUCBV, by virtue of taking into

account the empirical variance of the arms, exploration parameters and non-uniform

arm selection (as opposed to UCB-Improved), performs significantly better than the ex-

isting algorithms in the stochastic MAB setting. EUCBV outperforms UCBV (Audibert

et al., 2009) which also takes into account empirical variance but is less powerful than

EUCBV because of the usage of exploration regulatory factor by EUCBV. Also, we

carefully design the confidence interval term with the variance estimates along with the

pulls allocated to each arm to balance the risk of eliminating the optimal arm against

excessive optimism. Theoretically we refine the analysis of Auer and Ortner (2010) and

prove that for T ≥ K2.4 our algorithm is order optimal and achieves a worst case gap-

independent regret bound of O
(√

KT
)

which is same as that of MOSS and OCUCB

but better than that of UCBV, UCB1 and UCB-Improved. Also, the gap-dependent re-

gret bound of EUCBV is better than UCB1, UCB-Improved and MOSS but is poorer

than OCUCB. However, EUCBV’s gap-dependent bound matches OCUCB in the worst

case scenario when all the gaps are equal. Through our theoretical analysis we establish

the exact values of the exploration parameters for the best performance of EUCBV. Our

proof technique is highly generic and can be easily extended to other MAB settings. An

illustrative table containing the bounds is provided in Table 3.1.

Empirically, we show that EUCBV, owing to its estimating the variance of the arms,

exploration parameters and non-uniform arm pull, performs significantly better than

MOSS, OCUCB, UCB-Improved, UCB1, UCBV, TS, BU, DMED, KLUCB and Me-

dian Elimination algorithms. Note that except UCBV, TS, KLUCB and BU (the last

three with Gaussian priors) all the aforementioned algorithms do not take into account

the empirical variance estimates of the arms. Also, for the optimal performance of TS,

KLUCB and BU one has to have the prior knowledge of the type of distribution, but

EUCBV requires no such prior knowledge. EUCBV is the first arm-elimination algo-

rithm that takes into account the variance estimates of the arm for minimizing cumu-

lative regret and thereby answers an open question raised by Auer and Ortner (2010),
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Table 3.1: Regret upper bound of different algorithms

Algorithm Gap-Dependent Gap-Independent

EUCBV O

(
Kσ2

max log(T∆2

K
)

∆

)
O
(√

KT
)

UCB1 O

(
K log T

∆

)
O
(√

KT log T
)

UCBV O

(
Kσ2

max log T

∆

)
O
(√

KT log T
)

UCB-Imp O

(
K log(T∆2)

∆

)
O
(√

KT logK
)

MOSS O

(
K2 log(T∆2/K)

∆

)
O
(√

KT
)

OCUCB O

(
K log(T/Hi)

∆

)
O
(√

KT
)

where the authors conjectured that an UCB-Improved like arm-elimination algorithm

can greatly benefit by taking into consideration the variance of the arms. Also, it is the

first algorithm that follows the same proof technique of UCB-Improved and achieves a

gap-independent regret bound ofO
(√

KT
)

thereby, closing the gap of UCB-Improved

which achieved a gap-independent regret bound of O
(√

KT logK
)
.

3.3 Algorithm: Efficient UCB Variance

The algorithm: Earlier round-based arm elimination algorithms like Median Elim-

ination (Even-Dar et al., 2006) and UCB-Improved mainly suffered from two basic

problems:

(i) Initial exploration: Both of these algorithms pull each arm equal number of times in

each round, and hence waste a significant number of pulls in initial explorations.

(ii) Conservative arm-elimination: In UCB-Improved, arms are eliminated conserva-

tively, i.e, only after εm < ∆i

2
, where the quantity εm is initialized to 1 and halved after

every round. In the worst case scenario when K is large, and the gaps are uniform

(r1 = r2 = · · · = rK−1 < r∗) and small this results in very high regret.
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Algorithm 9 EUCBV
Input: Time horizon T , exploration parameters ρ and ψ.
Initialization: Set m := 0, B0 := A, ε0 := 1, M =

⌊
1
2

log2
T
e

⌋
, n0 =

⌈ log (ψTε20)

2ε0

⌉
and N0 = Kn0.
Pull each arm once
for t = K + 1, .., T do

Pull arm i ∈ arg maxj∈Bm

{
r̂j +

√
ρ(v̂j+2) log (ψTεm)

4zj

}
, where zj is the number of

times arm j has been pulled.
Arm Elimination by Mean Estimation

For each arm i ∈ Bm, remove arm i from Bm if,

r̂i+

√
ρ(v̂i + 2) log (ψTεm)

4zi
< max

j∈Bm

{
r̂j −

√
ρ(v̂j + 2) log (ψTεm)

4zj

}

if t ≥ Nm and m ≤M then
Reset Parameters

εm+1 := εm
2

Bm+1 := Bm

nm+1 :=

⌈
log (ψTε2m+1)

2εm+1

⌉
Nm+1 := t+ |Bm+1|nm+1

m := m+ 1

end if
Stop if |Bm| = 1 and pull i ∈ Bm till T is reached.

end for

The EUCBV algorithm, which is mainly based on the arm elimination technique of

the UCB-Improved algorithm, remedies these by employing exploration regulatory fac-

tor ψ and arm elimination parameter ρ for aggressive elimination of sub-optimal arms.

Along with these, similar to CCB (Liu and Tsuruoka, 2016) algorithm, EUCBV uses

optimistic greedy sampling whereby at every timestep it only pulls the arm with the

highest upper confidence bound rather than pulling all the arms equal number of times

in each round. Also, unlike the UCB-Improved, UCB1, MOSS and OCUCB algorithms

(which are based on mean estimation) EUCBV employs mean and variance estimates

(as in Audibert et al. (2009)) for arm elimination. Further, we allow for arm-elimination

at every time-step, which is in contrast to the earlier work (e.g., Auer and Ortner (2010);

Even-Dar et al. (2006)) where the arm elimination takes place only at the end of the re-

spective exploration rounds. An illustrative flowchart depicting the main steps is shown

in Figure 3.1.
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Figure 3.1: Flowchart of EUCBV algorithm

3.4 Main Results

The main result of this chapter is presented in the following theorem, where we establish

a regret upper bound for the proposed EUCBV algorithm.

Gap-Dependent bound of EUCBV

Theorem 1 (Gap-Dependent Bound) For T ≥ K2.4, ρ = 1
2

and ψ = T
K2 , the regret

RT for EUCBV satisfies

E[RT ] ≤
∑

i∈A:∆i>b

{
C0K

4

T
1
4

+

(
∆i +

320σ2
i log (

T∆2
i

K
)

∆i

)}
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+
∑

i∈A:0<∆i≤b

C2K
4

T
1
4

+ max
i∈A:0<∆i≤b

∆iT.

for all b ≥
√

e
T

and C0, C2 are integer constants.

Proof (Outline) The proof is along the lines of the technique in Auer and Ortner

(2010). It comprises of three modules. In the first module we prove the necessary

conditions for arm elimination within a specified number of rounds. However, here

we require some additional technical results (see Lemma 1 and Lemma 2) to bound

the length of the confidence intervals. Further, note that our algorithm combines the

variance-estimate based approach of Audibert et al. (2009) with the arm-elimination

technique of Auer and Ortner (2010) (see Lemma 3). Also, while Auer and Ortner

(2010) uses Chernoff-Hoeffding bound (see A.2.2) to derive their regret bound whereas

in our work we use Bernstein inequality (as in Audibert et al. (2009), see A.2.3) to ob-

tain the bound. To bound the probability of the non-uniform arm selection before it gets

eliminated we use Lemma 4 and Lemma 5. In the second module we bound the number

of pulls required if an arm is eliminated on or before a particular number of rounds.

Note that the number of pulls allocated in a roundm for each arm is nm :=

⌈
log (ψTε2m)

2εm

⌉
which is much lower than the number of pulls of each arm required by UCB-Improved

or Median-Elimination. We introduce the variance term in the most significant term in

the bound by Lemma 6. Finally, the third module deals with case of bounding the regret,

given that a sub-optimal arm eliminates the optimal arm. �

Discussion 1 From the above result we see that the most significant term in the gap-

dependent bound is of the order O
(
Kσ2

max log (T∆2/K)
∆

)
which is better than the exist-

ing results for UCB1, UCBV, MOSS and UCB-Improved (see Table 3.1). Also as like

UCBV, this term scales with the variance. Audibert et al. (2010) have defined the term

H1 =
∑K

i=1
1

∆2
i
, which is referred to as the hardness of a problem; Bubeck and Cesa-

Bianchi (2012) have conjectured that the gap-dependent regret upper bound can match

O
(
K log (T/H1)

∆

)
. However, in Lattimore (2015) it is proved that the gap-dependent re-

gret bound cannot be lower thanO
(∑K

i=2
log(T/Hi)

∆i

)
, whereHi =

∑K
j=1 min

{
1

∆2
i
, 1

∆2
j

}
(OCUCB proposed in Lattimore (2015) achieves this bound). Further, in Lattimore

(2015) it is shown that only in the worst case scenario when all the gaps are equal (so
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that H1 = Hi =
∑K

i=1
1

∆2 ) the above two bounds match. In the latter scenario, con-

sidering σ2
max ≤ 1

4
as all rewards are bounded in [0, 1], we see that the gap-dependent

bound of EUCBV simplifies toO
(
K log (T/H1)

∆

)
, thus matching the gap-dependent bound

of OCUCB which is order optimal.

Gap-Independent bound of EUCBV

In this section, we specialize the result of Theorem 1 in Corollary 1 to obtain the gap-

independent worst case regret bound.

Corollary 1 (Gap-Independent Bound) When the gaps of all the sub-optimal arms are

identical, i.e., ∆i = ∆ =
√

K logK
T

>
√

e
T
,∀i ∈ A and C3 being an integer constant,

the regret of EUCBV is upper bounded by the following gap-independent expression:

E[RT ] ≤ C3K
5

T
1
4

+ 80
√
KT.

Proof From Bubeck et al. (2011) we know that the function x ∈ [0, 1] 7→ x exp(−Cx2)

is decreasing on
[

1√
2C
, 1
]

for any C > 0. Thus, we take C =
⌊
T
e

⌋
and choose ∆i =

∆ =
√

K logK
T

>
√

e
T

for all i.

First, let us recall the result in Theorem 1 below:

E[RT ] ≤
∑

i∈A:∆i>b

{
C0K

4

T
1
4

+

(
∆i +

320σ2
i log (

T∆2
i

K
)

∆i

)}
+

∑
i∈A:0<∆i≤b

C2K
4

T
1
4

+ max
i∈A:0<∆i≤b

∆iT.

Now, with ∆i = ∆ =
√

K logK
T

>
√

e
T

we obtain,

∑
i∈A:∆i>b

320σ2
i log (

T∆2
i

K
)

∆i

≤
320σ2

maxK
√
T log (T

K(logK)

TK
)

√
K logK

≤ 320σ2
max

√
KT log (logK)√
logK

(a)

≤ 320σ2
max

√
KT
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where (a) follows from the identity
log (logK)√

logK
≤ 1 for K ≥ 2. Thus, the total worst

case gap-independent bound is given by

E[RT ]
(a)

≤ C3K
5

T
1
4

+ 320σ2
max

√
KT

(b)

≤ C3K
5

T
1
4

+ 80
√
KT

where, in(a), C3 is an integer constant such that C3 = C0 + C2 and (b) occurs

because σ2
i ∈ [0, 1

4
],∀i ∈ A.

�

Discussion 2 In the non-stochastic scenario, Auer et al. (2002b) showed that the bound

on the cumulative regret for EXP-4 isO
(√

KT logK
)
. However, in the stochastic case,

UCB1 proposed in Auer et al. (2002a) incurred a regret of order of O
(√

KT log T
)

which is clearly improvable. From the above result we see that in the gap-independent

bound of EUCBV the most significant term is O
(√

KT
)

which matches the upper

bound of MOSS and OCUCB, and is better than UCB-Improved, UCB1 and UCBV (see

Table 3.1).

3.5 Proofs

We first present a few technical lemmas that are required to prove the result in Theorem

1.

In Lemma 1 we use the constraint on the horizon, that is T ≥ K2.4 to derive an

inequality which we re-use in Lemma 2 to bound the length of the confidence interval

ci of the i-th sub-optimal arm till the mi-th round.

Lemma 1 If T ≥ K2.4, ψ = T
K2 , ρ = 1

2
and m ≤ 1

2
log2

(
T
e

)
, then,

ρm log(2)

log(ψT )− 2m log(2)
≤ 3

2
.

Proof The proof is based on contradiction. Suppose

ρm log(2)

log(ψT )− 2m log(2)
>

3

2
.
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Then, with ψ =
T

K2
and ρ =

1

2
, we obtain

6 log(K) > 6 log(T )− 7m log(2)
(a)

≥ 6 log(T )− 7

2
log2

(
T

e

)
log(2)

= 2.5 log(T ) + 3.5 log2(e) log(2)

(b)
= 2.5 log(T ) + 3.5

where (a) is obtained using m ≤ 1

2
log2

(
T

e

)
, while (b) follows from the identity

log2(e) log(2) = 1. Finally, for T ≥ K2.4 we obtain, 6 log(K) > 6 log(K) + 3.5, which

is a contradiction. �

In Lemma 2 we bound the length of the confidence interval ci for the i-th arm till

the mi-th round.

Lemma 2 If T ≥ K2.4, ψ = T
K2 , ρ = 1

2
, mi = min{m|

√
4εm < ∆i

4
} and ci =√

ρ(v̂i+2) log(ψTεmi )

4zi
, then,

ci <
∆i

4
.

Proof In themi-th round since zi ≥ nmi , by substituting zi with nmi we can show that,

ci ≤

√
ρ(v̂i + 2)εmi log(ψTεmi)

2 log(ψTε2mi)

(a)

≤

√√√√2ρεmi log(
ψTε2mi
εmi

)

log(ψTε2mi)

=

√
2ρεmi log(ψTε2mi)− 2ρεmi log(εmi)

log(ψTε2mi)

≤

√
2ρεmi −

2ρεmi log( 1
2mi

)

log(ψT 1
22mi

)

≤

√
2ρεmi +

2ρεmi log(2mi)

log(ψT )− log(22mi)

≤

√
2ρεmi +

2ρεmimi log(2)

log(ψT )− 2mi log(2)
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(b)

≤
√

2ρεmi + 2.
3

2
εmi <

√
4εmi <

∆i

4
.

In the above simplification, (a) is due to v̂i ∈ [0, 1], while (b) is obtained using Lemma 1.

�

In Lemma 3 we bound the probability of the deviation of the sample mean r̂i from

its expectation ri till the mi-th round.

Lemma 3 Ifmi = min{m|
√

4εm < ∆i

4
}, ci =

√
ρ(v̂i+2) log(ψTεmi )

4zi
and nmi =

log (ψTεmi )

2εmi

then we can show that in the mi-th round,

P(r̂i > ri + ci) ≤
2

(ψTεmi)
3ρ
2

.

Proof We start by recalling from equation (3.6) that,

P(r̂i > ri + ci) ≤ P (r̂i > ri + c̄i) + P
(
v̂i ≥ σ2

i +
√
εmi
)

(3.1)

where

ci =

√
ρ(v̂i + 2) log(ψTεmi)

4zi
and

c̄i =

√
ρ(σ2

i +
√
εmi + 2) log(ψTεmi)

4zi
.

Note that, substituting zi ≥ nmi ≥
log (ψTεmi )

2εmi
, c̄i can be simplified to obtain,

c̄i ≤

√
ρεmi(σ

2
i +
√
εmi + 2)

2
≤ √εmi . (3.2)

The first term in the LHS of (3.1) can be bounded using the Bernstein inequality as

below:

P (r̂i > ri + c̄i) ≤ exp

(
− (c̄i)

2zi
2σ2

i + 2
3
c̄i

)
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(a)

≤ exp

(
−ρ
(

3σ2
i + 3

√
εmi + 6

6σ2
i + 2

√
εmi

)
log(ψTεmi

)
(b)

≤ exp (−ρ log(ψTεmi)) ≤
1

(ψTεmi)
3ρ
2

(3.3)

where, (a) is obtained by substituting equation 3.2 and (b) occurs because for all σ2
i ∈

[0, 1
4
],
(

3σ2
i+3
√
εmi+6

6σ2
i+2
√
εmi

)
≥ 3

2
.

The second term in the LHS of (3.1) can be simplified as follows:

P
{
v̂i ≥ σ2

i +
√
εmi

}
≤ P

{
1

ni

ni∑
t=1

(Xi,t − ri)2 − (r̂i − ri)2 ≥ σ2
i +
√
εmi

}
≤ P

{∑ni
t=1(Xi,t − ri)2

ni
≥ σ2

i +
√
εmi

}
(a)

≤ P
{∑ni

t=1(Xi,t − ri)2

ni
≥ σ2

i + c̄i

}
(b)

≤ exp

(
−ρ
(

3σ2
i + 3

√
εmi + 6

6σ2
i + 2

√
εmi

)
log(ψTεmi)

)
≤ 1

(ψTεmi)
3ρ
2

(3.4)

where inequality (a) is obtained using (3.2), while (b) follows from the Bernstein in-

equality.

Thus, using (3.3) and (3.4) in (3.1) we obtain P(r̂i > ri + ci) ≤
2

(ψTεmi)
3ρ
2

. �

In Lemma 4 we bound the probability of the confidence interval of the optimal arm

c∗ being greater than the confidence interval ci of the i-th sub-optimal arm till the mi-th

round.

Lemma 4 If mi = min{m|
√

4εm < ∆i

4
}, ψ = T

K2 , ρ = 1
2
, ci =

√
ρ(v̂i+2) log(ψTεmi )

4zi
and

nmi =
log (ψTε2mi )

2εmi
then in the mi-th round,

P{c∗ > ci} ≤
182K4

T
5
4
√
εmi

.

Proof From the definition of ci we know that ci ∝ 1
zi

as ψ and T are constants. There-

fore in the mi-th round,

P{c∗ > ci} ≤ P{z∗ < zi}
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≤
mi∑
m=0

nm∑
z∗=1

nm∑
zi=1

(
P{r̂∗ < r∗ − c∗}+ P{r̂i > ri + ci}

)

Now, applying Bernstein inequality and following the same way as in Lemma 3 we

can show that,

P{r̂∗ < r∗ − c∗} ≤ exp(− (c∗)2

2σ2
∗ + 2c∗

3

z∗) ≤ 4

(ψTεmi)
3ρ
2

P{r̂i > ri + ci} ≤ exp(− (ci)
2

2σ2
i + 2ci

3

zi) ≤
4

(ψTεmi)
3ρ
2

Hence, summing everything up,

P{c∗ > ci} ≤
mi∑
m=0

nm∑
z∗=1

nm∑
zi=1

(
P{r̂∗ < r∗ − c∗}+ P{r̂i > ri + ci}

)
(a)

≤
mi∑
m=0

|Bm|nm
(
P{r̂∗ < r∗ − c∗}+ P{r̂i > ri + ci}

)
(b)

≤
mi∑
m=0

4K

(ψTεmi)
3ρ
2

log (ψTε2m)

2εm
×(

P{r̂∗ < r∗ − c∗}+ P{r̂i > ri + ci}
)

(c)

≤
mi∑
m=0

4K

(ψTεm)
3ρ
2

log(T )

εm

[
4

(ψTεm)
3ρ
2

+
4

(ψTεm)
3ρ
2

]
≤

mi∑
m=0

32K log T

(ψTεm)3ρεm
≤ 32K log T

(ψT )3ρ

mi∑
m=0

1

ε3ρ+1
m

(d)

≤
mi∑
m=0

32K log T

(ψT )3ρ

(
mi∑
m=0

1

εm

)3ρ+1

(e)

≤ 32K log T

( T
2

K2 )
3
2

[(
1 +

2(2
1
2

log2
T
e − 1)

2− 1

) 5
2 ]

≤ 182K4T
5
4 log T

T 3

(f)

≤ 182K4

T
5
4

(g)

≤ 182K4

T
5
4
√
εmi

where, (a) comes from the total pulls allocated for all i ∈ Bm till the m-th round, in

(b) the arm count |Bm| can be bounded by using equation (3.7) and then we substitute

the value of nm, (c) happens by substituting the value of ψ and considering εm ∈

[
√

e
T
, 1], (d) follows as 1

εm
≥ 1,∀m, in (e) we use the standard geometric progression
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formula and then we substitute the values of ρ and ψ, (f) follows from the inequality

log T ≤
√
T and (g) is valid for any εmi ∈ [

√
e
T
, 1].

�

In Lemma 5 we bound the probability of the number of pulls of the i-th sub-optimal

arm, zi, of not being greater then the allocated nmi number of pulls till the mi-th round.

Lemma 5 If mi = min{m|
√

4εm < ∆i

4
},ψ = T

K2 , ρ = 1
2
, ci =

√
ρ(v̂i+2) log(ψTεmi )

4zi
and

nmi =
log (ψTε2mi )

2εmi
then in the mi-th round,

P{zi < nmi} ≤
182K4

T
5
4
√
εmi

.

Proof Following a similar argument as in Lemma 4, we can show that in the mi-th

round,

P{zi < nmi} ≤
mi∑
m=0

nm∑
zi=1

nm∑
z∗=1

(
P{r̂∗ > r∗ − c∗}+ P{r̂i < ri + ci}

)

≤ 32K log T

(ψT )3ρ

mi∑
m=0

1

ε3ρ+1
m

≤ 182K4

T
5
4
√
εmi

.

�

In Lemma 6 we prove the inequality required to introduce the variance term in the

number of pulls of a sub-optimal arm i till the mi-th round.

Lemma 6 For two integer constants c1 and c2, if 20c1 ≤ c2 then,

c1
4σ2

i + 4

∆i

log

(
T∆2

i

K

)
≤ c2

σ2
i

∆i

log

(
T∆2

i

K

)
.

Proof We again prove this by contradiction. Suppose,

c1
4σ2

i + 4

∆i

log

(
T∆2

i

K

)
> c2

σ2
i

∆i

log

(
T∆2

i

K

)
.

Further reducing the above two terms we can show that,
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4c1σ
2
i + 4c1 > c2σ

2
i

⇒ 4c1.
1

4
+ 4c1

(a)
>
c2

4

⇒ 20c1 > c2.

Here, (a) occurs because 0 ≤ σ2
i ≤ 1

4
, ∀i ∈ A. But, we already know that 20c1 ≤

c2. Hence,

c1
4σ2

i + 4

∆i

log

(
T∆2

i

K

)
≤ c2

σ2
i

∆i

log

(
T∆2

i

K

)
.

�

Proof of Theorem 1

Proof For each sub-optimal arm i ∈ A, let mi = min
{
m|
√

4εmi <
∆i

4

}
. Also, let

A′ = {i ∈ A : ∆i > b} and A′′ = {i ∈ A : ∆i > 0}. Note that as all rewards are

bounded in [0, 1], it implies that 0 ≤ σ2
i ≤ 1

4
,∀i ∈ A. Now, as in Auer and Ortner

(2010), we bound the regret under the following two cases:

• Case (a): some sub-optimal arm i is not eliminated in round mi or before and
the optimal arm ∗ ∈ Bmi

• Case (b): an arm i ∈ Bmi is eliminated in round mi (or before), or there is no
optimal arm ∗ ∈ Bmi

The details of each case are contained in the following sub-sections.

Case (a): For simplicity, let ci :=
√

ρ(v̂i+2) log(ψTεmi )

4zi
denote the length of the con-

fidence interval corresponding to arm i in round mi. Thus, in round mi (or before)

whenever zi ≥ nmi ≥
log (ψTε2mi )

2εmi
, by applying Lemma 2 we obtain ci < ∆i

4
. Now, the

sufficient conditions for arm i to get eliminated by an optimal arm in round mi is given

by

r̂i ≤ ri + ci, r̂∗ ≥ r∗ − c∗, ci ≥ c∗ and zi ≥ nmi . (3.5)
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Indeed, in round mi suppose (3.5) holds, then we have

r̂i + ci ≤ ri + 2ci

= ri + 4ci − 2ci

< ri + ∆i − 2ci

≤ r∗ − 2c∗

≤ r̂∗ − c∗

so that a sub-optimal arm i ∈ A′ gets eliminated. Thus, the probability of the comple-

mentary event of these four conditions in (3.5) yields a bound on the probability that

arm i is not eliminated in round mi. Following the proof of Lemma 1 of Audibert et al.

(2009) we can show that a bound on the complementary of the first condition is given

by,

P(r̂i > ri + ci) ≤ P (r̂i > ri + c̄i) + P
(
v̂i ≥ σ2

i +
√
εmi
)

(3.6)

where

c̄i =

√
ρ(σ2

i +
√
εmi + 2) log(ψTεmi)

4nmi
.

From Lemma 3 we can show that P(r̂i > ri+ci) ≤ P (r̂i > ri + c̄i)+P
(
v̂i ≥ σ2

i +
√
εmi
)
≤

2

(ψTεmi )
3ρ
2

. Similarly, P{r̂∗ < r∗ − c∗} ≤ 2

(ψTεmi )
3ρ
2

. Summing the above two contri-

butions, the probability that a sub-optimal arm i is not eliminated on or before mi-th

round by the first two conditions in (3.5) is,

(
4

(ψTεmi)
3ρ
2

)
. (3.7)

Again, from Lemma 4 and Lemma 5 we can bound the probability of the comple-

mentary of the event ci ≥ c∗ and zi ≥ nmi by,
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182K4

T
5
4
√
εmi

+
182K4

T
5
4
√
εmi
≤ 364K4

T
5
4
√
εmi

. (3.8)

Also, for eq. (3.7) we can show that for any εmi ∈
[√

e
T
, 1
]

(
4

(ψTεmi)
3ρ
2

)
(a)

≤
(

4

( T
2

K2 εmi)
3
4

)
≤
(

4K
3
2

(T
3
2 ε

1
4
mi
√
εmi)

)
(b)

≤
(

4K
3
2

(T
3
2
− 1

8
√
εmi)

)
≤ 4K4

T
5
4
√
εmi

. (3.9)

Here, in (a) we substitute the values of ψ and ρ and (b) follows from the identity

ε
1
4
mi ≥ ( e

T
)
1
8 as εmi ≥

√
e
T

.

Summing up over all arms in A′ and bounding the regret for all the four arm elim-

ination conditions in (3.5) by (3.8) + (3.9) for each arm i ∈ A′ trivially by T∆i, we

obtain

∑
i∈A′

(
4K4T∆i

T
5
4
√
εmi

)
+
∑
i∈A′

(
364K4T∆i

T
5
4
√
εmi

)
(a)

≤
∑
i∈A′

(
368K4T∆i

T
5
4

(
∆2
i

4.16

) 1
2

)
(b)

≤
∑
i∈A′

(
C1K

4

(T )
1
4

)
.

Here, (a) happens because
√

4εmi <
∆i

4
, and in (b), C1 denotes a constant integer

value.

Case (b): Here, there are two sub-cases to be considered.

Case (b1) (∗ ∈ Bmi and each i ∈ A′ is eliminated on or before mi ): Since we are
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eliminating a sub-optimal arm i on or before round mi, it is pulled no longer than,

zi <

⌈
log (ψTε2mi)

2εmi

⌉

So, the total contribution of i until round mi is given by,

∆i

⌈
log (ψTε2mi)

2εmi

⌉
(a)

≤ ∆i

⌈ log (ψT (
∆i

16× 256
)4)

2(
∆i

4
√

4
)2

⌉

≤ ∆i

(
1 +

32 log (ψT (
∆4
i

16384
)

∆2
i

)
≤ ∆i

(
1 +

32 log (ψT∆4
i )

∆2
i

)
.

Here, (a) happens because
√

4εmi <
∆i

4
. Summing over all arms in A′ the total

regret is given by,

∑
i∈A′

∆i

(
1 +

32 log (ψT∆4
i )

∆2
i

)
=
∑
i∈A′

(
∆i +

32 log (ψT∆4
i )

∆i

)
(a)

≤
∑
i∈A′

(
∆i +

64 log (
T∆2

i

K
)

∆i

)
(b)

≤
∑
i∈A′

(
∆i +

16(4σ2
i + 4) log (

T∆2
i

K
)

∆i

)
(c)

≤
∑
i∈A′

(
∆i +

320σ2
i log (

T∆2
i

K
)

∆i

)
.

We obtain (a) by substituting the value of ψ, (b) from 0 ≤ σ2
i ≤ 1

4
,∀i ∈ A and (c)

from Lemma 6.

Case (b2) (Optimal arm ∗ is eliminated by a sub-optimal arm): Firstly, if conditions

of Case a holds then the optimal arm ∗ will not be eliminated in round m = m∗ or

it will lead to the contradiction that ri > r∗. In any round m∗, if the optimal arm ∗
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gets eliminated then for any round from 1 to mj all arms j such that mj < m∗ were

eliminated according to assumption in Case a. Let the arms surviving till m∗ round be

denoted byA′ . This leaves any arm ab such that mb ≥ m∗ to still survive and eliminate

arm ∗ in round m∗. Let such arms that survive ∗ belong toA′′ . Also maximal regret per

step after eliminating ∗ is the maximal ∆j among the remaining arms j with mj ≥ m∗.

Let mb = min
{
m|
√

4εm < ∆b

4

}
. Hence, the maximal regret after eliminating the arm

∗ is upper bounded by,

max
j∈A′mj∑
m∗=0

∑
i∈A′′ :mi>m∗

(
368K4

(T
5
4
√
εm∗)

)
.T max

j∈A′′ :mj≥m∗
∆j

≤
max

j∈A′mj∑
m∗=0

∑
i∈A′′ :mi>m∗

(
368K4

√
4

(T
5
4
√
εm∗)

)
.T.4
√
εm∗

(a)

≤
max

j∈A′mj∑
m∗=0

∑
i∈A′′ :mi>m∗

(
C2K

4

T
1
4 ε

1
2
− 1

2
m∗

)

≤
∑

i∈A′′ :mi>m∗

min {mi,mb}∑
m∗=0

(
C2K

4

T
1
4

)

≤
∑
i∈A′

(
C2K

4

T
1
4

)
+

∑
i∈A′′\A′

(
C2K

4

T
1
4

)
.

Here at (a), C2 denotes an integer constant.

Finally, summing up the regrets in Case a and Case b, the total regret is given by

E[RT ] ≤
∑

i∈A:∆i>b

{
C0K

4

T
1
4

+

(
∆i +

320σ2
i log (

T∆2
i

K
)

∆i

)}
+

∑
i∈A:0<∆i≤b

C2K
4

T
1
4

+ max
i∈A:0<∆i≤b

∆iT

where C0, C1, C2 are integer constants s.t. C0 = C1 + C2.
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3.6 Experiments

In this section, we conduct extensive empirical evaluations of EUCBV against sev-

eral other popular MAB algorithms. We use expected cumulative regret as the met-

ric of comparison. The comparison is conducted against the following algorithms:

KLUCB+ (Garivier and Cappé, 2011), DMED (Honda and Takemura, 2010), MOSS

(Audibert and Bubeck, 2009), UCB1 (Auer et al., 2002a), UCB-Improved (Auer and

Ortner, 2010), Median Elimination (Even-Dar et al., 2006), Thompson Sampling (TS)

(Agrawal and Goyal, 2011), OCUCB (Lattimore, 2015), Bayes-UCB (BU) (Kaufmann

et al., 2012) and UCB-V (Audibert et al., 2009)1. The parameters of EUCBV algorithm

for all the experiments are set as follows: ψ = T
K2 and ρ = 0.5 (as in Corollary 1). Note

that KLUCB+ empirically outperforms KLUCB (see Garivier and Cappé (2011)).
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Figure 3.2: A comparison of the cumulative regret incurred by the various bandit algo-
rithms.

Experiment-1 (Bernoulli with uniform gaps): This experiment is conducted to

observe the performance of EUCBV over a short horizon. The horizon T is set to 60000.

The testbed comprises of 20 Bernoulli distributed arms with expected rewards of the

arms as r1:19 = 0.07 and r∗20 = 0.1 and these type of cases are frequently encountered

in web-advertising domain (see Garivier and Cappé (2011)). The regret is averaged over

100 independent runs and is shown in Figure 3.2(a). EUCBV, MOSS, OCUCB, UCB1,

UCB-V, KLUCB+, TS, BU and DMED are run in this experimental setup. Not only

1The implementation for KLUCB, Bayes-UCB and DMED were taken from Cappe et al. (2012)
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do we observe that EUCBV performs better than all the non-variance based algorithms

such as MOSS, OCUCB, UCB-Improved and UCB1, but it also outperforms UCBV

because of the choice of the exploration parameters. Because of the small gaps and

short horizon T , we do not compare with UCB-Improved and Median Elimination for

this test-case.

Experiment-2 (Gaussian 3 Group Mean Setting): This experiment is conducted

to observe the performance of EUCBV over a large horizon in Gaussian distribution

testbed. This setting comprises of a large horizon of T = 3× 105 timesteps and a large

set of arms. This testbed comprises of 100 arms involving Gaussian reward distribu-

tions with expected rewards of the arms in 3 groups, r1:66 = 0.07, r67:99 = 0.01 and

r∗100 = 0.09 with variance set as σ2
1:66 = 0.01, σ2

67:99 = 0.25 and σ2
100 = 0.25. The

regret is averaged over 100 independent runs and is shown in Figure 3.2(b). From the

results in Figure 3.2(b), we observe that since the gaps are small and the variances of

the optimal arm and the arms farthest from the optimal arm are the highest, EUCBV,

which allocates pulls proportional to the variances of the arms, outperforms all the

non-variance based algorithms MOSS, OCUCB, UCB1, UCB-Improved and Median-

Elimination (ε = 0.1, δ = 0.1). The performance of Median-Elimination is extremely

weak in comparison with the other algorithms and its plot is not shown in Figure 3.2(b).

We omit its plot in order to more clearly show the difference between EUCBV, MOSS

and OCUCB. Also note that the order of magnitude in the y-axis (cumulative regret)

of Figure 3.2(b) is 104. KLUCB-Gauss+ (denoted by KLUCB-G+), TS-G and BU-G

are initialized with Gaussian priors. Both KLUCB-G+ and UCBV which is a variance-

aware algorithm perform much worse than TS-G and EUCBV. The performance of

DMED is similar to KLUCB-G+ in this setup and its plot is omitted.

Experiment-3 (Failure of TS): This experiment is conducted to demonstrate that

in certain environments when the horizon is large, gaps are small and the variance of

the optimal arm is high, the Bayesian algorithms (like TS) do not perform well but

EUCBV performs exceptionally well. This experiment is conducted on 100 Gaussian

distributed arms such that expected rewards of the arms r1:10 = 0.045, r11:99 = 0.04,

r∗100 = 0.05 and the variance is set as σ2
1:10 = 0.01, σ2

100 = 0.25 and T = 4 × 105.

The variance of the arms i = 11 : 99 are chosen uniform randomly between [0.2, 0.24].
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(b) Expt-4: 3 Group Variance Setting

Figure 3.3: Further Experiments with EUCBV

TS and BU with Gaussian priors fail because here the chosen variance values are such

that only variance-aware algorithms with appropriate exploration factors will perform

well or otherwise it will get bogged down in costly exploration. The algorithms that are

not variance-aware will spend a significant amount of pulls trying to find the optimal

arm. The result is shown in Figure 3.3(a). Predictably EUCBV, which allocates pulls

proportional to the variance of the arms, outperforms its closest competitors TS-G,

BU-G, UCBV, MOSS and OCUCB. The plots for KLUCB-G+, DMED, UCB1, UCB-

Improved and Median Elimination are omitted from the figure as their performance is

extremely weak in comparison with other algorithms. We omit their plots to clearly

show how EUCBV outperforms its nearest competitors. Note that EUCBV by virtue of

its aggressive exploration parameters outperforms UCBV in all the experiments even

though UCBV is a variance-based algorithm. The performance of TS-G is also weak

and this is in line with the observation in Lattimore (2015) that the worst case regret of

TS when Gaussian prior is used is Ω
(√

KT log T
)
.

Experiment-4 (Gaussian 3 Group Variance setting): This experiment is con-

ducted to show that when the gaps are uniform and variance of the arms are the only

discriminative factor then the EUCBV performs extremely well over a very large hori-

zon and over a large number of arms. This testbed comprises of 100 arms with Gaus-

sian reward distributions, where the expected rewards of the arms are r1:99 = 0.09 and

r∗100 = 0.1. The variances of the arms are divided into 3 groups. The group 1 consist of

arms i = 1 : 49 where the variances are chosen uniform randomly between [0.0, 0.05],
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group 2 consist of arms i = 50 : 99 where the variances are chosen uniform randomly

between [0.19, 0.24] and for the optimal arm i = 100 (group 3) the variance is set as

σ2
∗ = 0.25. We report the cumulative regret averaged over 100 independent runs. The

horizon is set at T = 4 × 105 timesteps. We report the performance of MOSS,BU-G,

UCBV, TS-G and OCUCB who are the closest competitors of EUCBV over this uni-

form gap setup. From the results in Figure 3.3(b), it is evident that the growth of regret

for EUCBV is much lower than that of TS-G, MOSS, BU-G, OCUCB and UCBV. Be-

cause of the poor performance of KLUCB-G+ in the last two experiments we do not

implement it in this setup. Also, note that for optimal performance BU-G, TS-G and

KLUCB-G+ require the knowledge of the type of distribution to set their priors . Also,

in all the experiments with Gaussian distributions EUCBV significantly outperforms all

the Bayesian algorithms initialized with Gaussian priors.

3.7 Summary

In this chapter, we studied the EUCBV algorithm which takes into account the em-

pirical variance of the arms and employs aggressive exploration parameters in con-

junction with non-uniform arm selection (as opposed to UCB-Improved) to eliminate

sub-optimal arms. Our theoretical analysis conclusively established that EUCBV ex-

hibits an order-optimal gap-independent regret bound of O
(√

KT
)

. Empirically, we

show that EUCBV performs superbly across diverse experimental settings and outper-

forms most of the bandit algorithms in an SMAB setup. Our experiments showed that

EUCBV is extremely stable for large horizons and performs consistently well across

different types of distributions.
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Chapter 4

Thresholding Bandits

4.1 Introduction to Thresholding Bandits

In the previous Chapter 2 and Chapter 3 we studied the stochastic multi-armed ban-

dit (SMAB) setting with the goal of minimizing cumulative regret. In this chapter, we

will study another setting called Pure-exploration multi-armed bandits. Though we re-

use the ideas from SMABs, the goal of pure exploration setup is distinctly different

from that of cumulative regret minimization of SMABs and the required algorithms to

understand this setup are mentioned in this chapter itself. Pure-exploration MAB prob-

lems are unlike their traditional (exploration vs. exploitation) counterparts, the SMABs,

where the objective is to minimize the cumulative regret. The cumulative regret is the

total loss incurred by the learner for not playing the optimal arm throughout the time

horizon T . In pure-exploration problems a learning algorithm, until time T , can invest

entirely on exploring the arms without being concerned about the loss incurred while

exploring; the objective is to minimize the probability that the arm recommended at

time T is not the best arm. In this chapter, we further consider a combinatorial version

of the pure-exploration MAB, called the thresholding bandit problem (TBP). Here, the

learning algorithm is provided with a threshold τ , and the objective, after exploring for

T rounds, is to output all arms i whose ri is above τ . It is important to emphasize that

the thresholding bandit problem is different from the threshold bandit setup studied in

Abernethy et al. (2016), where the learner receives a unit reward whenever the value of

an observation is above a threshold.

The rest of the chapter is organized as follows. We specify all the notations and

assumptions in Section 4.2. Then we define the problem statement for the TBP setting in

Section 4.3. In the next Section 4.4 we discuss the motivations behind the TBP setting.

In Section 4.5 we discuss extensively on the various state-of-the-art algorithms available

for the pure exploration setting, in Section 4.6 we draw the connection between pure
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exploration and thresholding bandit setting and then in Section 4.7 we discuss the latest

works done in the TBP setting. Finally, we summarize in Section 4.8.

4.2 Notations and Assumptions

To benefit the reader, we again recall the notations we stated in Chapter 2 and also

a few additional notations. A denotes the set of arms, and |A| = K is the number

of arms in A. For arm i ∈ A, we use ri to denote the true mean of the distribution

from which the rewards are sampled, while r̂i(t) denotes the estimated mean at time t.

Formally, using zi(t) to denote the number of times arm i has been pulled until time t,

we have r̂i(t) = 1
zi(t)

∑zi(t)
b=1 Xi,b, where Xi,b is the reward sample received when arm

i is pulled for the b-th time. Similarly, we use σ2
i to denote the true variance of the

reward distribution corresponding to arm i, while v̂i(t) is the estimated variance, i.e.,

v̂i(t) = 1
zi(t)

∑zi(t)
b=1 (Xi,b − r̂i)2. Whenever there is no ambiguity about the underlying

time index t, for simplicity we neglect t from the notations and simply use r̂i, v̂i, and

zi, to denote the respective quantities. Let ∆i = |τ − ri| denote the distance of the true

mean from the threshold τ . Also, like Assumption 2, in this setting too we assume that

the rewards of all arms are bounded in [0, 1].

4.3 Problem Definition

Formally, the problem we consider is the following. First, we define the set Sτ = {i ∈

A : ri ≥ τ}. Note that, Sτ is the set of all arms whose reward mean is greater than

τ . Let Scτ denote the complement of Sτ , i.e., Scτ = {i ∈ A : ri < τ}. Next, let Ŝτ =

Ŝτ (T ) ⊆ A denote the recommendation of a learning algorithm (under consideration)

after T time units of exploration, while Ŝcτ denotes its complement.

The performance of the learning agent is measured by the accuracy with which it

can classify the arms into Sτ and Scτ after time horizon T . Equivalently, using I(E) to

denote the indicator of an event E, the loss L(T ) is defined as

L(T ) = I
(
{Sτ ∩ Ŝcτ 6= ∅} ∪ {Ŝτ ∩ Scτ 6= ∅}

)
.
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Finally, the goal of the learning agent is to minimize the expected loss:

E[L(T )] = P
(
{Sτ ∩ Ŝcτ 6= ∅} ∪ {Ŝτ ∩ Scτ 6= ∅}

)
.

Note that the expected loss is simply the probability of mis-classification (i.e., error),

that occurs either if a good arm is rejected or a bad arm is accepted as a good one.

4.4 Motivation

The above TBP formulation has several applications, for instance, from areas ranging

from anomaly detection and classification (see Locatelli et al. (2016)) to industrial ap-

plication. Particularly in industrial applications, a learners objective is to choose (i.e.,

keep in operation) all machines whose productivity is above a threshold. The TBP

also finds applications in mobile communications (see Audibert et al. (2010)) where

the users are to be allocated only those channels whose quality is above an acceptable

threshold. Again, some of these problems have been already discussed in Chapter 1,

Section 1.4 and an interested reader can refer to it. In some cases the TBP problem is

more relevant than the variants of p-best problem (identifying the best p arms from K

given arms). As explained in Locatelli et al. (2016), the p-best problem is a "contest"

whereas the TBP is an "exam" and in many domains, one requires the idea of "effi-

ciency" or "correctness" threshold above which one wants to utilize an option rather

than simply selecting the p-best options.

4.5 Related Work in Pure Exploration Problem

A significant amount of literature is available on the stochastic MAB setting with re-

spect to minimizing the cumulative regret. Chapter 2 and 3 deals with that. In this work,

we are particularly interested in pure-exploration MABs, where the focus is primarily

on simple regret rather than the cumulative regret. The relationship between cumulative

regret and simple regret is proved in Bubeck et al. (2011) where the authors prove that

minimizing the simple regret necessarily results in maximizing the cumulative regret.
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The pure exploration problem has been explored mainly in the following two settings:

4.5.1 Fixed Budget Setting

Here the learning algorithm has to suggest the best arm(s) within a fixed budget or

time-horizon T , that is given as an input. The objective is to maximize the probability

of returning the best arm(s). This is the scenario we consider in this chapter. Some of

the important algorithms used in pure exploration setting are discussed in the next part.

UCB-Exploration Algorithm

One of the first algorithms proposed for the fixed budget setting is the UCB-Exploration

(UCBE) algorithm in Audibert et al. (2010) used for identifying a single best arm. This

is shown in Algorithm 10.

Algorithm 10 UCBE
1: Input: The budget T , exploration parameter a
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that arg maxi∈A

{
r̂i +

√
a

zi

}
, where a =

25(T −K)

36H1

and

H1 =
∑K

i=1

1

∆2
i

.

5: t := t+ 1
6: end for

This algorithm is quite similar to the UCB1 algorithm discussed in Auer et al.

(2002a) (see Algorithm 3). The major difference between the two algorithms is the

confidence interval such that for UCB1 it is designed for minimizing the cumulative

regret but for UCBE it is designed for minimizing simple regret. The confidence inter-

val of UCBE is of the order O (T ) instead of O (log T ) which helps UCBE to conduct

sufficient exploration to reach an exponentially low probability of error in suggesting

the best arm at the end of budget T . Note, that the problem complexity factor H1 needs

to be provided as input for the initialization of UCBE.
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UCB-Exploration with Variance Algorithm

The idea of UCBE can be extended to incorporate the estimation of variance while

conducting exploration. This idea was first proposed in Audibert et al. (2010) and later

studied in a different context in Gabillon et al. (2011) for identifying the p-best arms in

a fixed-budget setting. We present UCB-Exploration-Variance (UCBEV) in Algorithm

11. Again, as like UCBE, the choice of the confidence interval scales with T rather

than log(T ) so that the probability of error in suggesting the best arm at the end of

the budget T is exponentially low. Again, like UCBE, the problem complexity factor

Hσ,1 (see Gabillon et al. (2011)) needs to be provided as input for the initialization of

UCBEV and furthermore incorporates variance estimates in the complexity factor to

conduct better exploration.

Algorithm 11 UCBEV
1: Input: The budget T , exploration parameter a
2: Pull each arm once
3: for t = K + 1, ..., T do

4: Pull the arm such that arg maxi∈A

{
r̂i +

√
a

zi

}
, where a =

(T − 2K)

Hσ,1

and

Hσ,1 =
∑K

i=1

σi+
√
σ2
i+(16/3)∆i

∆2
i

.
5: t := t+ 1
6: end for

Comparison between UCB1, UCBE, and UCBEV

An illustrative table comparing the UCB1 for SMAB setting, UCBE, and UCBEV for

the pure exploration setting is provided in Table 4.1.

Successive Reject Algorithm

The Successive Reject (SR) algorithm has also been proposed in Audibert et al. (2010)

and is used for identifying a single best arm. This algorithm is quite different than upper

confidence bound based algorithms because it does not rely on any explicit confidence

interval to select arm at every timestep. It is shown in Algorithm 12.

From Algorithm 12 we see that SR is a round based algorithm quite similar to UCB-
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Table 4.1: Confidence interval and exploration parameters of different algorithms

Algorithm Confidence
interval

Exploration Parameter(a) Remarks

UCB1
√
a

zi

a = 2 log(t)

a is logarithmic in t to
minimize cumulative re-
gret. This achieves a bal-
ance between exploration
and exploitation. Hence,
the cumulative regret grows
logarithmically with t.

UCBE
√
a

zi

a =
25(T −K)

36H1

,

where H1 =
K∑
i=1

1

∆2
i

a is linear in T to mini-
mize simple regret. Here,
the main concern is to min-
imize the probability of er-
ror at the end of budget T
and conduct as much explo-
ration as possible. Hence, a
large a helps to reach expo-
nentially low probability of
error.

UCBEV
√
a

zi

a =
(T − 2K)

Hσ,1

,

where

Hσ,1 =
K∑
i=1

σi +
√
σ2
i + (16/3)∆i

∆2
i

Like UCBE, a is linear in T
to minimize simple regret.
Also, incorporates variance
estimates to conduct better
exploration.
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Algorithm 12 Successive Reject(SR)
1: Input: The budget T
2: Initialization: n0 = 0

3: Definition: logK =
1

2
+
∑K

i=2

1

i
, nm =

1
¯logK

T −K
K + 1−m

4: for For each phase m = 1, ..., K − 1 do
5: For each i ∈ Bm, select arm i for nm − nm−1 timesteps.
6: Let Bm+1 = Bm \ arg mini∈Bm r̂i (remove one element from Bm , if there is a

tie, select randomly the arm to dismiss among the worst arms).
7: m := m+ 1
8: end for
9: Output the single remaining i ∈ Bm.

Improved (see Algorithm 4). Similar to UCB-Improved, SR pulls all arms equal number

of times in each round and then discards some arm that it deems to be sub-optimal until

it is left with a single best arm. However, SR does not have any explicit confidence

interval as UCBE, rather the idea of the confidence interval is hidden in the number of

pulls allocated to each arm in every round. The number of times each arm is pulled

in every round, that is nm − nm−1 timesteps makes sure that the optimal arm is not

eliminated in the m-th round with high probability.

4.5.2 Successive Accept Reject Algorithm for Best-p Arms Setting

The goal in the best p-arms setting is to identify the top p arms out of K given arms

where p is supplied as an input. Several algorithms have been proposed for this setup

starting with Gabillon et al. (2011) where the authors proposed the GapE and GapE-V

algorithms that suggest, with high probability, the best-p arms at the end of the time

budget. These algorithms are similar to the UCBE type algorithm discussed in the

previous section. In this section, we will discuss the Successive Accept Reject strategy

shown in Algorithm 13.

Bubeck et al. (2013) introduced the Successive Accept Reject (SAR) algorithm,

which is an extension of the SR algorithm; SAR is a round based algorithm whereby at

the end of each round an arm is either accepted or rejected (based on certain confidence

conditions) until the top p arms are suggested at the end of the budget with high prob-

ability. Like SR algorithm, the SAR algorithm divides the budget into rounds where in

each round it pulls all the arms equal number of times that is for nm − nm−1 timesteps.
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Algorithm 13 Successive Accept Reject(SAR)
1: Input: The budget T , p
2: Initialization: n0 = 0

3: Definition: logK =
1

2
+
∑K

i=2

1

i
, nm =

1
¯logK

T −K
K + 1−m

4: for For each phase m = 1, ..., K − 1 do
5: For each i ∈ Bm, select arm i for nm − nm−1 timesteps.
6: Let B′m be the set that contains arms in decreasing order of their sample means
r̂i, ∀i ∈ Bm such that r̂B′m(1),nm ≥ r̂B′m(2),nm ≥ . . . ≥ r̂B′m(K+1−m),nm .

7: Define the new empirical gaps ∀i ∈ B′m such that for 1 ≤ r ≤ K + 1−m,

∆B′m(r),nm =

{
r̂B′m(r),nm − r̂B′m(p(m)+1),nm , if r ≤ p(m+ 1)

r̂B′m(p(m)),nm − r̂B′m(r),nm , if r > p(m) + 1

8: Let im ∈ arg maxi∈B′m ∆̂i,nm , then Bm+1 = Bm \ im (deactivate im with ties
broken arbitrarily).

9: If r̂im,nm > r̂B′m(p(m)+1), then accept im and set p(m + 1) = p(m) − 1,
Jp−p(m+1) = im.

10: m := m+ 1
11: end for
12: Output the p-accepted arms J1, J2, . . . , Jp.

At the end of the round it orders the arms into a decreasing sequence of their empirical

means in B′m and computes for the p(m) empirical best arms in B′m the distance (in

terms of their empirical means) to the (p(m) + 1)-th empirical best arm in B′m. Again

for the arms not in the p(m) empirical best arms, SAR computes the distance to the

p(m)-th empirical best arm. Finally, SAR deactivates the arm im that has the maximum

empirical distance. If im is the empirical best arm in the m-th round, then SAR accepts

im and sets p(m + 1) = p(m)− 1 and Jp − p(m + 1) = im, or otherwise SAR rejects

im.

A similar combinatorial setup was explored in Chen et al. (2014) where the au-

thors propose the Combinatorial Successive Accept Reject (CSAR) algorithm, which is

similar in concept to SAR but with a more general setup.

4.5.3 Fixed Confidence Setting

In this setting, the learning algorithm has to suggest the best arm(s) with a fixed con-

fidence (given as input) with a fewer number of attempts as possible. The single best
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arm identification has been studied in Even-Dar et al. (2006), while for the combina-

torial setup Kalyanakrishnan et al. (2012) have proposed the LUCB algorithm which,

on termination, returns m arms which are at least ε close to the true top-m arms with

probability at least 1 − δ. For a detailed survey of this setup, we refer the reader to

Jamieson and Nowak (2014).

4.5.4 Unified Setting

Apart from these two settings some unified approaches has also been suggested in

Gabillon et al. (2012) which proposes the algorithms UGapEb and UGapEc which can

work in both the fixed budget setting and fixed confidence setting.

4.6 TBP Connection to Pure Exploration Problem

The thresholding bandit problem is a specific instance of the pure-exploration setup

of Chen et al. (2014). To put it in perspective, the considered TBP setup lies at the

intersection of the larger pure exploration setting and the stochastic multi-armed bandit

(SMAB) setting discussed in Chapter 2 and Chapter 3. This is shown in Figure 4.1.

Challenges in the TBP seeting

Further, if we look closely into the TBP setting we will see that there are several simi-

larities between the challenges in SMAB setting and the TBP setting. These challenges

are as follows:-

1. The more closer an arm’s expected reward mean (ri) is to τ , the more harder is
the problem. This stems from the fact that it becomes increasingly difficult to
discriminate between the arms lying above and below τ .

2. Lesser the budget T , the more harder is the problem. This is because there are
lesser number of pulls available and so the number of samples collected tends to
be low.

3. The higher the variance of an arm’s reward distribution Di, the more harder is
the problem. This is similar to the first case as it becomes harder to discriminate
between the arms lying close to the threshold.
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Figure 4.1: Connection between TBP, Pure Exploration and SMAB

In the theoretical section in Chapter 5 we will try to characterize this hardness and

give guarantees that are almost optimal.

4.7 Related Work in Thresholding Bandits

In the latest work of Locatelli et al. (2016), Anytime Parameter-Free Thresholding

(APT) algorithm comes up with an improved anytime guarantee than CSAR for the

thresholding bandit problem. APT is stated in algorithm 14.

Algorithm 14 APT
Input: Time horizon T , threshold τ , tolerance factor ε ≥ 0
Pull each arm once

for t = K + 1, .., T do
Pull arm j ∈ arg mini∈A

{
(|r̂i − τ |+ ε)

√
zi
}

and observe the reward for arm j.
end for
Output: Ŝτ = {i : r̂i ≥ τ}.

The APT algorithm is very simple to implement and the logic behind the arm pull
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directly follows from the challenges in the TBP setting discussed before. Note, that the

most difficult arms to discriminate are the arms whose expected means are lying close

to the threshold τ , hence APT pulls those arms whose sample means r̂i are lying close

to the threshold and the arms which have not been pulled often. The second condition

is satisfied by the
√
zi term which acts very similar to the confidence interval term

discussed for UCBE (see Algorithm 10). The tolerance level ε ≥ 0 gives the algorithm

a degree of flexibility in pulling the arms close to the threshold.

4.8 Summary

In this chapter, we looked at the pure exploration MAB and thresholding bandit (TBP)

setting which is a special case of combinatorial pure exploration MAB. We then looked

at the various state-of-the-art algorithms in the literature for the pure-exploration setting

and discussed the advantages and disadvantages of them. Then we looked at the latest

algorithm for the TBP setting. The expected loss that has been proven for the said

algorithms have also been discussed at length and their exploration parameters have

also been compared against each other. In the next chapter, we provide our solution

to this TBP setting which uses variance estimation to find the set of arms above the

threshold.
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Chapter 5

Augmented UCB for Thresholding Bandit Problem

5.1 Introduction

In this chapter we look at the Augmented-UCB (AugUCB) algorithm for a fixed-budget

version of the thresholding bandit problem (TBP), where the objective is to identify a

set of arms whose expected mean is above a threshold. A key feature of AugUCB is that

it uses both mean and variance estimates to eliminate arms that have been sufficiently

explored; to the best of our knowledge this is the first algorithm to employ such an

approach for the considered TBP. Theoretically, we obtain an upper bound on the loss

(probability of mis-classification) incurred by AugUCB. Although UCBEV in litera-

ture provides a better guarantee, it is important to emphasize that UCBEV has access

to problem complexity (whose computation requires arms’ mean and variances), and

hence is not realistic in practice; this is in contrast to AugUCB whose implementation

does not require any such complexity inputs. We conduct extensive simulation experi-

ments to validate the performance of AugUCB. Through our simulation work, we estab-

lish that AugUCB, owing to its utilization of variance estimates, performs significantly

better than the state-of-the-art APT, CSAR and other non variance-based algorithms.

The rest of the chapter is organized as follows. We elaborate our contributions in

Section 5.2 and we present the AugUCB algorithm in Section 5.3. Our main theoretical

result on expected loss is stated in Section 5.4. Section 5.5 contains numerical simula-

tions on various testbeds to show the performance of AugUCB against state-of-the-art

algorithms and finally, we summarize in Section 5.6.

5.2 Our Contributions

We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget setting

of a specific combinatorial, pure-exploration, stochastic MAB called the thresholding
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bandit problem. AugUCB essentially combines the approach of UCB-Improved, CCB

(Liu and Tsuruoka, 2016) and APT algorithms. Our algorithm takes into account the

empirical variances of the arms along with mean estimates; to the best of our knowledge

this is the first variance-based algorithm for the considered TBP. Thus, we also address

an open problem discussed in Auer and Ortner (2010) of designing an algorithm that

can eliminate arms based on variance estimates. In this regard, note that both CSAR

and APT are not variance-based algorithms.

Our theoretical contribution comprises proving an upper bound on the expected

loss incurred by AugUCB (Theorem 2). In Table 5.1 we compare the upper bound on

the losses incurred by the various algorithms, including AugUCB. The terms H1, H2,

HCSAR,2, Hσ,1 and Hσ,2 represent various problem complexities, and are as defined in

Section 5.4. From Section 5.4 we note that, for all K ≥ 8, we have

log (K logK)Hσ,2 > log(2K)Hσ,2 ≥ Hσ,1.

Thus, it follows that the upper bound for UCBEV is better than that for AugUCB. How-

ever, implementation of UCBEV algorithm requires Hσ,1 as input, whose computation

is not realistic in practice. In contrast, our AugUCB algorithm requires no such com-

plexity factor as input.

Proceeding with the comparisons, we emphasize that the upper bound for AugUCB

is, in fact, not comparable with that of APT and CSAR; this is because the complexity

term Hσ,2 is not explicitly comparable with either H1 or HCSAR,2. However, through

Table 5.1: AugUCB vs. State-of-the-art algorithms

Algorithm Upper Bound on Expected Loss

AugUCB exp

(
− T

4096 log(K logK)Hσ,2

+ log (2KT )

)
UCBEV exp

(
− 1

512
T−2K
Hσ,1

+ log (6KT )

)
APT exp

(
− T

64H1

+ 2 log((log(T ) + 1)K)

)
CSAR exp

(
− T −K

72 log(K)HCSAR,2

+ 2 log(K)

)
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extensive simulation experiments we find that AugUCB significantly outperforms both

APT, CSAR and other non variance-based algorithms. AugUCB also outperforms

UCBEV under explorations where non-optimal values of Hσ,1 are used. In particu-

lar, we consider experimental scenarios comprising large number of arms, with the

variances of arms in Sτ being large. AugUCB, being variance based, exhibits superior

performance under these settings.

5.3 Augmented-UCB Algorithm

The Algorithm: The Augmented-UCB (AugUCB) algorithm is presented in Algo-

rithm 15. AugUCB is essentially based on the arm elimination method of the UCB-

Improved Auer and Ortner (2010), but adapted to the thresholding bandit setting pro-

posed in Locatelli et al. (2016). However, unlike the UCB improved (which is based

on mean estimation) our algorithm employs variance estimates (as in Audibert et al.

(2009)) for arm elimination; to the best of our knowledge this is the first variance-aware

algorithm for the thresholding bandit problem. Further, we allow for arm-elimination

at each time-step, which is in contrast to the earlier work (e.g., Auer and Ortner (2010);

Chen et al. (2014)) where the arm elimination task is deferred to the end of the respec-

tive exploration rounds. The details are presented below.

The active set B0 is initialized with all the arms from A. We divide the entire

budget T into rounds/phases like in UCB-Improved, CCB, SAR and CSAR. At every

time-step AugUCB checks for arm elimination conditions, while updating parameters

at the end of each round. As suggested by Liu and Tsuruoka (2016) to make AugUCB

to overcome too much early exploration, we no longer pull all the arms equal number

of times in each round. Instead, we choose an arm in the active set Bm that minimizes

(|r̂i − τ | − 2si) where

si =

√
ρψm(v̂i + 1) log(Tεm)

4zi

with ρ being the arm elimination parameter and ψm being the exploration regulatory

factor. The above condition ensures that an arm closer to the threshold τ is pulled;

parameter ρ can be used to fine tune the elimination interval. The choice of exploration
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Algorithm 15 AugUCB
Input: Time budget T ; parameter ρ; threshold τ
Initialization: B0 = A; m = 0; ε0 = 1;

M =

⌊
1

2
log2

T

e

⌋
; ψ0 =

Tε0

128
(
log( 3

16K logK)
)2 ;

`0 =

⌈
2ψ0 log(Tε0)

ε0

⌉
; N0 = K`0

Pull each arm once

for t = K + 1, .., T do
Pull arm j ∈ arg mini∈Bm

{
|r̂i − τ | − 2si

}
t← t+ 1

for i ∈ Bm do
if (r̂i + si < τ − si) or (r̂i − si > τ + si) then

Bm ← Bm\{i} (Arm deletion)
end if

end for

if t ≥ Nm and m ≤M then
Reset Parameters
εm+1 ← εm

2

Bm+1 ← Bm

ψm+1 ← Tεm+1

128(log( 3
16
K logK))2

`m+1 ←
⌈

2ψm+1 log(Tεm+1)
εm+1

⌉
Nm+1 ← t+ |Bm+1|`m+1

m← m+ 1
end if

end for
Output: Ŝτ = {i : r̂i ≥ τ}.

factor, ψm, comes directly from Audibert et al. (2010) and Bubeck et al. (2011) where it

is stated that in pure exploration setup, the exploring factor must be linear in T (so that

an exponentially small probability of error is achieved) rather than being logarithmic in

T (which is more suited for minimizing cumulative regret).

A simplified illustrative flowchart highlighting the main steps of AugUCB is pro-

vided in Figure 5.1. Also note the similarity between UCB-Improved (Figure 2.1) and

AugUCB in this flowchart.
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Figure 5.1: Flowchart for AugUCB

5.4 Theoretical Results

Problem Complexity

Let us begin by recalling the following definitions of the problem complexity as intro-

duced in Locatelli et al. (2016):

H1 =
K∑
i=1

1

∆2
i

and HCSAR,2 = min
i∈A

i

∆2
(i)
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where (∆(i) : i ∈ A) is obtained by arranging (∆i : i ∈ A) in an increasing order.

Also, from Chen et al. (2014) we have

HCSAR,2 = max
i∈A

i

∆2
(i)

.

HCSAR,2 is the complexity term appearing in the bound for the CSAR algorithm. The

relation between the above complexity terms are as follows (see Locatelli et al. (2016)):

H1 ≤ log(2K)H2 and H1 ≤ log(K)HCSAR,2.

As ours is a variance-aware algorithm, we require Hσ
1 (as defined in Gabillon et al.

(2011)) that incorporates reward variances into its expression as given below:

Hσ,1 =
K∑
i=1

σi +
√
σ2
i + (16/3)∆i

∆2
i

.

Finally, analogous to HCSAR,2, in this paper we introduce the complexity term Hσ,2,

which is given by

Hσ,2 = max
i∈A

i

∆̃2
(i)

where ∆̃2
i =

∆2
i

σi+
√
σ2
i+(16/3)∆i

, and (∆̃(i)) is an increasing ordering of (∆̃i). Following

the results in Audibert et al. (2010), we can show that

Hσ,2 ≤ Hσ,1 ≤ log(K)Hσ,2 ≤ log(2K)Hσ,2.

Proof of expected loss of AugUCB

Our main result is summarized in the following theorem where we prove an upper bound

on the expected loss.

Theorem 2 For K ≥ 4 and ρ = 1/3, the expected loss of the AugUCB algorithm is
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given by,

E[L(T )] ≤ 2KT exp

(
− T

4096 log(K logK)Hσ,2

)
.

Proof (Proof Outline) The proof comprises of two modules. In the first module we

investigate the necessary conditions for arm elimination within a specified number of

rounds, which is motivated by the technique in Auer and Ortner (2010). Bounds on the

arm-elimination probability is then obtained; however, since we use variance estimates,

we invoke the Bernstein inequality (as in Audibert et al. (2009), see A.2.3) rather that

the Chernoff-Hoeffding bounds (which is appropriate for the UCB-Improved (Auer and

Ortner, 2010), see A.2.2). In the second module, as in Locatelli et al. (2016), we first

define a favourable event that will yield an upper bound on the expected loss. Using

union bound, we then incorporate the result from module-1 (on the arm elimination

probability), and finally derive the result through a series of simplifications. The details

of the proof as stated in the proof outline are as follows.

Arm Elimination: Recall the notations used in the algorithm, Also, for each arm

i ∈ A, define mi = min
{
m|√ρεm < ∆i

2

}
. In the mi-th round, whenever zi = `mi ≥

2ψmi log (Tεmi )

εmi
, we obtain (as v̂i ∈ [0, 1])

si ≤
√
ρ(v̂i + 1)εmi

8
≤
√
ρεmi
2

<
∆i

4
. (5.1)

First, let us consider a bad arm i ∈ A (i.e., ri < τ ). We note that, in themi-th round

whenever r̂i ≤ ri + 2si, then arm i is eliminated as a bad arm. This is easy to verify as

follows: using (5.1) we obtain,

r̂i ≤ ri + 2si < ri + ∆i − 2si = τ − 2si

which is precisely one of the elimination conditions in Algorithm 15. Thus, the proba-

bility that a bad arm is not eliminated correctly in the mi-th round (or before) is given

by
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P(r̂i > ri + 2si) ≤ P (r̂i > ri + 2s̄i) + P
(
v̂i ≥ σ2

i +
√
ρεmi

)
(5.2)

where

s̄i =

√
ρψmi(σ

2
i +
√
ρεmi + 1) log(Tεmi)

4zi

Note that, substituting zi = `mi ≥
2ψmi log (Tεmi )

εmi
, s̄i can be simplified to obtain,

2s̄i ≤

√
ρεmi(σ

2
i +
√
ρεmi + 1)

2
≤ √ρεmi . (5.3)

The first term in the LHS of (3.6) can be bounded using the Bernstein inequality as

below:

P (r̂i > ri + 2s̄i)

≤ exp

(
− (2s̄i)

2zi
2σ2

i + 4
3
s̄i

)
≤ exp

(
−
ρψmi(σ

2
i +
√
ρεmi + 1) log(Tεmi)

2σ2
i + 2

3

√
ρεmi

)
(a)

≤ exp

(
−3ρTεmi

256a2

(
σ2
i +
√
ρεmi + 1

3σ2
i +
√
ρεmi

)
log(Tεmi)

)
:= exp(−Zi) (5.4)

where, for simplicity, we have used αi to denoted the exponent in the inequality (a).

Also, note that (a) is obtained by using ψmi =
Tεmi
128a2

, where a = (log( 3
16
K logK)).

The second term in the LHS of (5.2) can be simplified as follows:

P
{
v̂i ≥ σ2

i +
√
ρεmi

}
≤ P

{
1

zi

zi∑
t=1

(Xi,t − ri)2 − (r̂i − ri)2 ≥ σ2
i +
√
ρεmi

}
≤ P

{∑zi
t=1(Xi,t − ri)2

zi
≥ σ2

i +
√
ρεmi

}
(a)

≤ P
{∑zi

t=1(Xi,t − ri)2

zi
≥ σ2

i + 2s̄i

}
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(b)

≤ exp

(
− 3ρψmi

2

(
σ2
i +
√
ρεmi + 1

3σ2
i +
√
ρεmi

)
log(Tεmi)

)
= exp(−Zi) (5.5)

where inequality (a) is obtained using (5.3), while (b) follows from the Bernstein in-

equality.

Thus, using (5.4) and (5.5) in (5.2) we obtain P(r̂i > ri + 2si) ≤ 2 exp(−Zi).

Proceeding similarly, for a good arm i ∈ A, the probability that it is not correctly elim-

inated in themi-th round (or before) is also bounded by P(r̂i < ri−2si) ≤ 2 exp(−Zi).

In general, for any i ∈ A we have

P(|r̂i − ri| > 2si) ≤ 4 exp(−Zi). (5.6)

Favourable Event: Following the notation in Locatelli et al. (2016) we define the

event

ξ =

{
∀i ∈ A,∀t = 1, 2, .., T : |r̂i − ri| ≤ 2si

}
.

Note that, on ξ each arm i ∈ A is eliminated correctly in the mi-th round (or before).

Thus, it follows that E[L(T )] ≤ P (ξc). Since ξc can be expressed as an union of the

events (|r̂i− ri| > 2si) for all i ∈ A and all t = 1, 2, · · · , T , using union bound we can

write

E[L(T )] ≤
∑
i∈A

T∑
t=1

P(|r̂i − ri| > 2si)

≤
∑
i∈A

T∑
t=1

4 exp(−Zi)

≤ 4T
∑
i∈A

exp

(
−3ρTεmi

256a2

(
σ2
i +
√
ρεmi + 1

3σ2
i +
√
ρεmi

)
log(Tεmi)

)
(a)

≤ 4T
∑
i∈A

exp

(
− 3T∆2

i

4096a2

(
4σ2

i + ∆i + 4

12σ2
i + ∆i

)
log(

3

16
T∆2

i )

)
(b)

≤ 4T
∑
i∈A

exp

(
− 12T∆2

i

(12σi + 12∆i)

log( 3
16
K logK)

4096a2

)
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(c)

≤ 4T
∑
i∈A

exp

(
−

T∆2
i log( 3

16
K logK)

4096(σi +
√
σ2
i + (16/3)∆i)a2

)
(d)

≤ 4T
∑
i∈A

exp

(
−
T log( 3

16
K logK)

4096∆̃−2
i a2

)
(e)

≤ 4T
∑
i∈A

exp

(
−

T log( 3
16
K logK)

4096 maxj(j∆̃
−2
(j))(log( 3

16
K logK))2

)
(f)

≤ 4KT exp

(
− T

4096 log(K logK)Hσ,2

)
.

The justification for the above simplifications are as follows:

• (a) is obtained by noting that in round mi we have ∆i

4
≤ √ρεmi < ∆i

2
.

• For (b), we note that the function x 7→ x exp(−Cx2), where x ∈ [0, 1], is decreasing

on [1/
√

2C, 1] for any C > 0 (see Bubeck et al. (2011); Auer and Ortner (2010)). Thus,

using C = bT/ec and minj∈A∆j = ∆ =
√

K logK
T

>
√

e
T

, we obtain (b).

• To obtain (c) we have used the inequality ∆i ≤
√
σ2
i + (16/3)∆i (which holds be-

cause ∆i ∈ [0, 1]).

• (d) is obtained simply by substituting ∆̃i =
∆2
i

σi+
√
σ2
i+(16/3)∆i

and a = log( 3
16
K logK).

• Finally, to obtain (e) and (f), note that ∆̃−2
i ≤ i∆̃−2

i ≤ maxj∈A j∆
−2
(j) = Hσ,2.

5.5 Numerical Experiments

In this section, we empirically compare the performance of AugUCB against APT,

UCBE, UCBEV, CSAR and the uniform-allocation (UA) algorithms. A brief note about

these algorithms are as follows:

• APT: This algorithm is from Locatelli et al. (2016); we set ε = 0.05, which is the

margin-of-error within which APT suggests the set of good arms.

• AugUCB: This is the Augmented-UCB algorithm proposed in this paper; as in

Theorem 2 we set ρ = 1
3
.

• UCBE: This is a modification of the algorithm in Audibert et al. (2009) (as it was

originally proposed for the best arm identification problem); here, we set a = T−K
H1

, and
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at each time-step an arm i ∈ arg min
{
|r̂i − τ | −

√
a
ni

}
is pulled.

• UCBEV: This is a modification of the algorithm in Gabillon et al. (2011) (pro-

posed for the TopM problem); its implementation is identical to UCBE, but with a =

T−2K
Hσ,1

. As mentioned earlier, note that UCBEV’s implementation would not be possible

in real scenarios, as it requires computing the problem complexity Hσ,1. However, for

theoretical reasons we show the best performance achievable by UCBEV. In experiment

6 we perform further explorations of UCBEV with alternate settings of a.

• CSAR: Modification of the successive-reject algorithm in Chen et al. (2014); here,

we reject the arm farthest from τ after each round.

• UA: The naive strategy where at each time-step an arm is uniformly sampled from

A (the set of all arms); however, UA is known to be optimal if all arms are equally

difficult to classify.

Motivated by the settings considered in Locatelli et al. (2016), we design six differ-

ent experimental scenarios that are obtained by varying the arm means and variances.

Across all experiments consists of K = 100 arms (indexed i = 1, 2, · · · , 100) of which

Sτ = {6, 7, · · · , 10}, where we have fixed τ = 0.5. In all the experiments, each algo-

rithm is run independently for 10000 time-steps. At every time-step, the output set, Ŝτ ,

suggested by each algorithm is recorded; the output is counted as an error if Ŝτ 6= Sτ .

In Figure 1, for each experiment, we have reported the percentage of error incurred by

the different algorithms as a function of time; Error percentage is obtained by repeating

each experiment independently for 500 iterations, and then respectively computing the

fraction of errors. The details of the considered experiments are as follows.

Experiment-1: The reward distributions are Gaussian with means r1:4 = 0.2 + (0 :

3) · 0.05, r5 = 0.45, r6 = 0.55, r7:10 = 0.65 + (0 : 3) · 0.05 and r11:100 = 0.4. Thus, the

means of the first 10 arms follow an arithmetic progression. The remaining arms have

identical means; this setting is chosen because now a significant budget is required in

exploring these arms, thus increasing the problem complexity.

The corresponding variances are σ2
1:5 = 0.5 and σ2

6:10 = 0.6, while σ2
11:100 is cho-

sen independently and uniform in the interval [0.38, 0.42]; note that, the variances of

the arms in Sτ are higher than those of the other arms. The corresponding results are
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shown in Figure 5.2(a), from where we see that UCBEV, which has access to the prob-

lem complexity while being variance-aware, outperforms all other algorithm (including

UCBE which also has access to the problem complexity but does not take into account

the variances of the arms). Interestingly, the performance of our AugUCB (without re-

quiring any complexity input) is comparable with UCBEV, while it outperforms UCBE,

APT and the other non variance-aware algorithms that we have considered.
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(a) Expt-1: Arithmetic Progression (Gaussian)
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(b) Expt-2: Geometric Progression (Gaussian)

Figure 5.2: Performances of the various TBP algorithms in terms of error percentage
vs. time-step in Arithmetic and Geometric Progression Environments.
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(a) Expt-3: Three Group Setting (Gaussian)
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(b) Expt-4: Two Group Setting (Gaussian)

Figure 5.3: Performances of the various TBP algorithms in terms of error percentage
vs. time-step in three group and two group Gaussian environments.

Experiment-2: We again consider Gaussian reward distributions. However, here

the means of the first 10 arms constitute a geometric progression. Formally, the re-

ward means are r1:4 = 0.4 − (0.2)1:4, r5 = 0.45, r6 = 0.55, r7:10 = 0.6 + (0.2)5−(1:4)
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(a) Expt-5: Two Group Setting (Advance)
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(b) Expt-6: Two Group Setting (Advance)

Figure 5.4: Performances of the various TBP algorithms in terms of error percentage
vs. time-step in Advance setting Gaussian Environment.

and r11:100 = 0.4; the arm variances are as in experiment-1. The corresponding re-

sults are shown in Figure 5.2(b). We again observe AugUCB outperforming the other

algorithms, except UCBEV.

Experiment-3: Here, the first 10 arms are partitioned into three groups, with all

arms in a group being assigned the same mean; the reward distributions are again Gaus-

sian. Specifically, the reward means are r1:3 = 0.1, r4:7 = {0.35, 0.45, 0.55, 0.65} and

r8:10 = 0.9; as before, r11:100 = 0.4 and all the variances are as in Experiment-1. The

results for this scenario are presented in Figure 5.3(a). The observations are inline with

those made in the previous experiments.

Experiment-4: The setting is similar to that considered in Experiment-3, but with

the first 10 arms partitioned into two groups; the respective means are r1:5 = 0.45,

r6:10 = 0.55. The corresponding results are shown in Figure 5.3(b), from where the

good performance of AugUCB is again validated.

Experiment-5: This is again the two group setting involving Gaussian reward dis-

tributions. The reward means are as in Experiment-4, while the variances are σ2
1:5 = 0.3

and σ2
6:10 = 0.8; σ2

11:100 are independently and uniformly chosen in the interval [0.2, 0.3].

The corresponding results are shown in Figure 5.4(a). We refer to this setup as Ad-

vanced because here the chosen variance values are such that only variance-aware algo-

rithms will perform well.Hence, we see that UCBEV performs very well in comparison
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with the other algorithms. However, it is interesting to note that the performance of

AugUCB catches-up with UCBEV as the time-step increases, while significantly out-

performing the other non-variance aware algorithms.

Experiment-6: We use the same setting as in Experiment-5, but conduct more

exploration of UCBEV with different values of the exploration parameter a. The cor-

responding results are shown in Figure 5.4(b). As studied in Locatelli et al. (2016),

we implement UCBEV with ai = 4i T−2K
Hσ,1

for i = −1, 0, 4. Here, a0 corresponds to

UCBEV(1) (in Figure 5.4(b)) which is UCBEV run with the optimal choice of Hσ,1.

For other choices of ai we see that UCBEV(ai) is significantly outperformed by Au-

gUCB.

Finally, note that in all the above experiments, the CSAR algorithm, although per-

forms well initially, quickly exhausts its budget and saturates at a higher error percent-

age. This is because it pulls all arms equally in each round, with the round lengths being

non-adaptive.

5.6 Summary

We proposed the AugUCB algorithm for a fixed-budget, pure-exploration TBP. Our

algorithm employs both mean and variance estimates for arm elimination. This, to

our knowledge is the first variance-based algorithm for the specific TBP that we have

considered. We first prove an upper bound on the expected loss incurred by AugUCB.

We then conduct simulation experiments to validate the performance of AugUCB. In

comparison with APT, CSAR and other non variance-based algorithms, we find that the

performance of AugUCB is significantly better. Further, the performance of AugUCB

is comparable with UCBEV (which is also variance-based), although the latter exhibits

a slightly better performance. However, UCBEV is not implementable in practice as

it requires computing problem complexity, Hσ,1, while AugUCB (requiring no such

inputs) can be easily deployed in real-life scenarios.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we studied two different bandit problems, the stochastic multi-armed

bandit (SMAB) with the goal of cumulative regret minimization and pure exploration

stochastic thresholding bandit problem (TBP) with the goal of expected loss minimiza-

tion. For the first problem, we devised a novel algorithm called Efficient UCB Variance

(EUCBV) which enjoys an order optimal regret bound and performs very well in di-

verse stochastic environments. In the second part, the thresholding bandit problem, we

came up with the novel algorithm called Augmented UCB (AugUCB) which is the first

algorithm to use variance estimation for the considered TBP setting and also empirically

outperforms most of the other algorithms.

6.2 Future Directions

There are several directions in which the work done in this thesis can be extended.

Starting with the SMAB setting, there are many fundamental questions that need to be

answered. Though EUCBV reached an order optimal regret bound of 80
√
KT , still the

constant associated with the bound is quite large and can be reduced by finer analysis.

One avenue for future work is to remove the constraint of T ≥ K2.4 required for EU-

CBV to reach the order optimal regret bound. Also, EUCBV does not have any asymp-

totic guarantee and we do not know whether it can reach the Lai and Robbins (1985)

asymptotic lower bound discussed in chapter 2. Recently another algorithm called KL-

UCB++ (Ménard and Garivier, 2017) has been proved to be both minimax optimal and

asymptotically optimal. Further, EUCBV requires the knowledge of horizon as input

and it will be interesting to find an anytime version of EUCBV. Similar anytime version
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of MOSS (Degenne and Perchet, 2016) and OCUCB (Lattimore, 2016) has also been

proposed in literature.

The thresholding bandit problem is also being intensely studied in the bandit com-

munity and there are several directions where this work can be extended. One way is

to modify the APT algorithm itself and come up with a variance adaptive version of

APT. This has bee recently studied in Kano et al. (2017). Also, currently there are no

lower bounds for the TBP setting considering only variance estimation and it will be

interesting to derive a lower bound for this setting. Again, whereas APT is an any-

time algorithm AugUCB is not anytime and it needs several modifications to obtain an

anytime version of AugUCB. Further, we can also derive a gap-independent and gap-

dependent bounds for AugUCB as like APT. In Lattimore (2015) the authors showed

that APT like UCB1 enjoys a gap-dependent cumulative regret bound of O
(
K log T

∆2

)
and gap-independent regret bound of O

(√
KT log T

)
.

Finally, to summarize everything, the bandit community is actively researching sev-

eral of these open problems discussed here and we hope to answer some of these prob-

lems in near future. Further, several interesting variations of the problems discussed

here are also being studied such as the Contextual Thresholding Bandit problem, Com-

binatorial Bandit problems (Cesa-Bianchi and Lugosi, 2012) and more powerful algo-

rithms for changepoint detection.
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Appendix A

Appendix on Concentration Inequalities

A.1 Sub-Gaussian Distribution

Let a random variable X ∈ R with variance as σ2. Then X is said to be σ-sub-gaussian

for σ ≥ 0 such that E[X] = 0 and its moment generating function satisfies for all λ ∈ R

the following condition,

E[expλX] ≤ exp

(
−λ

2σ2

2

)

Also, note that sub-gaussian distribution is a class of distribution rather than a dis-

tribution itself.

Remark 1 A random variable X ∈ [0, 1] is said to be
1

2
− sub − gaussian with its

moment generating function satisfying the condition,

E[expλX] ≤ exp

(
−λ

2

8

)
,∀λ ∈ R.

A.2 Concentration Inequalities

In this section we state some of the concentration inequalities used in the proofs in

several chapters of the thesis. Concentration inequality deals with the control of the

deviation of the average of independent random variables from their expected mean.

Let, X1, X2, . . . , Xn be a sequence of independent random variables defined on

a probability space (ω,F ,P), is bounded in [ai, bi], ∀i = 1, 2, . . . , n. Let Sn denote
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the sum of the random variables such that Sn = X1 + X2 + . . . + Xn, r̂ =
Sn
n

and

E[Sn] = r. Let Fn be an increasing sequence of σ-fields of F such that for each n,

σ(X1, . . . , Xn) ⊂ Ft and for q > t, Xq is independent of Fn.

A.2.1 Markov’s Inequality

Markov’s inequality states that, for any ε > 0,

P[Sn > ε] ≤ E[Sn]

ε
.

The Markov;s inequality gives us a very loose bound which is further tightened by

the Chernoff-Hoeffding Bound and Bernstein Inequality.

A.2.2 Chernoff-Hoeffding Bound

Chernoff-Hoeffding gives us the following inequality regarding the sums of indepen-

dent random variables Sn and their deviation from their expectation E[Sn] = r, for any

ε > 0,

P{Sn − nE[Sn] ≥ ε} ≤ exp

(
− 2ε2

n
∑n

i=1(ai − bi)

)
,

P{Sn − nE[Sn] ≤ −ε} ≤ exp

(
− 2ε2

n
∑n

i=1(ai − bi)

)
.

Considering all the random variables bounded in [0, 1], then both the right and left

tail inequality can be reduced to,

P
{∣∣∣∣Snn − E[Sn]

∣∣∣∣ ≥ ε

}
≤ 2 exp

(
−2ε2n

)
.
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Hence, we obtain that,

P{|r̂ − r| ≥ ε} ≤ 2 exp
(
−2ε2n

)
.

A.2.3 Empirical Bernstein Inequality

Similar to Chernoff-Hoeffding bound, empirical Bernstein inequality gives us the fol-

lowing inequality regarding the sums of independent random variables Sn and their

deviation from their expectation E[Sn] = r, for any ε > 0,

P{Sn − nE[Sn] ≥ ε} ≤ exp

(
− 2ε2(

2σ2 + 2bmaxε
3

)
n
∑n

i=1(ai − bi)

)
,

P{Sn − nE[Sn] ≤ −ε} ≤ exp

(
− 2ε2(

2σ2 + 2bmaxε
3

)
n
∑n

i=1(ai − bi)

)
.

Considering all the random variables bounded in [0, 1], then both the right and left

tail inequality can be reduced to,

P
{∣∣∣∣Snn − E[Sn]

∣∣∣∣ ≥ ε

}
≤ 2 exp

(
− 2ε2n(

2σ2 + 2ε
3

)) .

Hence, we obtain that,

P{|r̂ − r| ≥ ε} ≤ 2 exp

(
− 2ε2n(

2σ2 + 2ε
3

)) .
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