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ABSTRACT

Classification of data with imbalance characteristics has be-
come an important research problem, as data from most of
the real-world applications follow non-uniform class distri-
butions. A simple solution to handle class imbalance is by
sampling from the dataset appropriately to compensate for
the imbalance in class proportions. When the data distribu-
tion is unknown during sampling, making assumptions on
the distribution requires domain knowledge and insights on
the dataset. We propose a novel unsupervised topic model-
ing based weighting framework to estimate the latent data
distribution of a dataset. We also propose TODUS, a top-
ics oriented directed undersampling algorithm that follows
the estimated data distribution to draw samples from the
dataset. TODUS minimizes the loss of important information
that typically gets dropped during random undersampling.
We have shown empirically that the performance of TODUS
method is better than the other sampling methods compared
in our experiments.
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puting methodologies → Topic modeling ; Supervised learning
by classification;
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1 INTRODUCTION

Learning from imbalanced datasets has become an impor-
tant research area as all practical data sets have inherent
imbalance characteristics. Credit card fraud classification,
classifying cancerous patients from non-cancerous, network
anomaly detection, factory production defect classification,
conversion of clickable online ads are some of the examples
of binary class imbalance problems. Multi-class problems like
disease classification using ICD-101 codes, job occupation
classification using O*Net2 codes suffer from severe class
distribution skew leading to hard multi-class imbalance prob-
lems.

Non-uniform class proportions lead to poor classification
performance [16], as most of the classifiers in their simplest
form assume uniform class distribution. Several methods to
address the class imbalance condition are available in the
literature [5, 11]. Typically, the methods are categorized into
sampling methods, cost-sensitive methods, kernel methods
and active learning methods. Sampling based class imbalance
methods modify the data set distribution by undersampling,
oversampling or synthetic oversampling to induce artificial
balance in class proportions. Random oversampling from
minority class, suffers from overfitting problem [21]. Synthetic
oversampling is non-trivial for the additional effort towards
identification and cleansing of synthetic samples that lead to
overfitting.

Random undersampling from majority class has been the
most popular technique for its simplicity and speed. But,
instead of random undersampling, where there is a possibility
of losing a good portion of information about the majority
class, directed or informed undersampling methods [9] were
proposed. They perform smart selection of candidate data

1http://www.cdc.gov/nchs/icd/icd10cm.htm
2http://www.onetonline.org/
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points from the majority class based on data characteristics
and domain specific insights.

The rationale for undersampling is typically derived in
terms of: a) data clusters representatives, where pockets of
data points are represented by a single representative point
and the others from the same pocket become redundant,
b) data points closer to classifier decision boundary, which
serve as the key ingredient for the construction of decision
boundary, while also making the other data points that are
away from the decision boundary redundant, c) misclassified
data points, where an iterative method like boosting, up-
weights them to force the classifier to bias towards them, d)
noisy data points, where cleaning methods like OSS identify
and prune them from the training dataset [1, 20, 26, 29].

For a typical directed undersampling task, it is assumed
that the samples drawn with replacement from the majority
class are representative of the original distribution, such that
a probabilistic sampler can pick the required number of data
points to balance against the size of minority class. Instead
of assuming uniform distribution for the majority class data
points, we propose to allow the probabilistic sampler to pick
the required number of data points based on the estimated
data distribution. The estimated data distribution assigns
higher probability for important data points, as identified
by topic modeling [13], and hence the chance of losing those
instances during random undersampling is minimized.

Topic models are statistical models for discovering latent
factors that influence the data distributions. Topic modeling
was originally proposed to discover latent topics occurring
in a text corpus, where a text document is assumed to be
a mixture of latent topics and each latent topic generates a
vocabulary of terms. Although developed for text processing,
the method can be applied to general data [24], where feature
values are non-negative and could be described by a mixture
of conditionally independent multinomial distributions. For
the general data setting, assuming feature values to be non-
negative is not a strong limitation as majority of the enterprise
data features are based on one of: counting, boolean indicators
or quantitative measurements.

We propose a novel unsupervised topic modeling based
data weighting framework for imbalanced binary classification
tasks, where we compute the data distribution by marginal-
izing the joint distribution of data points and latent topics
estimated by topic modeling. The weighting framework con-
sists of the following steps:

(1) Represent data as a matrix with features as rows and
data points as columns

(2) Run topic modeling to estimate the probabilistic fac-
torizations

(3) Estimate data distribution by marginalizing data-topic
joint distribution

(4) Compute weights for the majority and minority data
points independently as a function of the estimated
data distribution

(5) Normalize the majority data weights to make it a
probability distribution

(6) Perform undersampling from the majority class fol-
lowing the majority class data distribution to balance
against the size of minority class.

The main contributions of this work are summarized as fol-
lows:

• A novel unsupervised weighting framework for estimat-
ing data distribution based on topic modeling.
• TODUS, a novel directed undersampling algorithm,
which minimizes information loss that typically occur
during random undersampling.
• A novel rationale based on topic modeling, for directed
undersampling from the majority class following the
estimated data distribution.

The remainder of the paper is organized as follows. In Section
2, we present some of the prior works on class imbalance
learning through sampling methods. In Section 3, we describe
the proposed topic modeling based weighting framework,
where we compute data point weights by estimating the data
distribution using topic modeling. Section 4 describes TO-
DUS, a directed undersampling algorithm, which generates a
balanced training corpus by undersampling the majority class
based on the data distribution estimated by the weighting
framework. Section 5 describes the dataset selection, experi-
ment setup and performance comparison of several sampling
methods against TODUS. Finally, we present concluding
remarks in Section 6.

2 BACKGROUND

The simplest approach to solving class imbalance problems is
to handle the imbalance directly by adjusting the sample pop-
ulation through oversampling (sampling with replacement)
or undersampling (eliminating samples to reduce population
count) the class populations. Random oversampling follows
naturally from its description by augmenting the original
minority set with replications of selected minority samples.
Random undersampling eliminates data from the original
data set. Although oversampling and undersampling meth-
ods appear to be functionally equivalent, each method intro-
duces its own set of problematic consequences hindering the
learning process [7, 21]. In case of undersampling, removing
examples from the majority class may cause the classifier
to miss important concepts pertaining to the majority class.
Whereas in oversampling, multiple instances of certain exam-
ples become “tied,” leading to overfitting [21]. Although the
training accuracy may be higher in this scenario, the classifi-
cation performance on the unseen testing data is generally
far worse [14].

Directed undersampling based on EasyEnsemble and Bal-
anceCascade [20] overcomes the deficiency of information
loss introduced in the traditional random undersampling
method. Another example of informed undersampling uses
the K-nearest neighbor (KNN) classifier to achieve undersam-
pling. Based on the characteristics of the given data distribu-
tion, four KNN undersampling methods were proposed [29],
namely, NearMiss-1, NearMiss-2, NearMiss-3, and the “most
distant” method. The One-Sided Selection (OSS) method
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[17] on the other hand selects a representative subset of the
majority class and combines it with the set of all minority
examples to form a preliminary set, which is further refined
by using data cleaning techniques. Cluster Centroids is a
cluster based undersampling method [28], where the required
k majority points are extracted by choosing the centroids of
k clusters estimated by k-means algorithm.

An inverse random under sampling [25] method is proposed
for class imbalance learning, where several distinct training
sets are constructed by severely undersampling the majority
class to sizes smaller than the minority class, to bias the
learned decision boundaries towards the minority class.

Synthetic Minority Over-sampling Technique (SMOTE)
[6] generates new synthetic examples along the line between
the minority examples and their selected nearest neighbors.
Although SMOTE makes the decision regions larger and
less specific, the overfitting problem of oversampling persists.
More grave is the possibility of minority class noise getting
synthetic oversampled. To overcome these issues, only se-
lected sub-samples of the minority class are subjected to
synthetic sample generation. Borderline-SMOTE [10] uses
only the minority samples near the decision boundary to
generate new synthetic samples. MWMOTE [2] generates
synthetic samples based on hard-to-learn informative minor-
ity class samples by assigning them weights according to their
euclidean distance from the nearest majority class samples.
SCUT [1] over samples minority class examples through the
generation of synthetic examples and employs cluster analy-
sis in order to undersample majority classes. In addition, it
handles both within-class and between-class imbalance.

Data cleaning techniques, such as Tomek links [27] identify
data instances being border points or noise to “cleanup” un-
wanted overlapping between classes after synthetic sampling.
Tomek links are then removed until all minimally distanced
nearest neighbor pairs are of the same class. Some repre-
sentative work in this area includes the Condensed Nearest
Neighbor rule and Tomek Links (CNN+Tomek) integration
method [3], the Neighborhood Cleaning Rule [18] based on
the Edited Nearest Neighbor (ENN) rule—which removes
examples that differ from two of its three nearest neighbors.

An adaptive sampling with optimal cost [23] for class im-
balance learning is proposed to adaptively oversample the
minority positive examples and undersample the majority
negative examples, forming different sub-classifiers by differ-
ent subsets of training data with the best cost ratio adaptively
chosen, and combining these sub-classifiers according to their
accuracy to create a strong classifier. The sample weights
are computed based on the prediction probability of every
sample, by a pair of induced SVM classifiers built on two
equal sized partitions of the training instances.

Weighted Extreme Learning Machines (ELM) [8, 30] is
proposed as a generalized cost sensitive learning method to
deal with imbalanced data distributions, where weights are
assigned to every training instance based on users’ needs.
Although, per-sample weights are possible, the authors pro-
posed to use class proportion as the common weight to ev-
ery sample from a class. They also proposed an alternate

weighting scheme that uses golden ratio in computing the
common weights for the majority classes. An adaptive semi-
unsupervised weighted oversampling (A-SUWO) method [22]
is proposed for imbalanced datasets, which clusters the minor-
ity instances using a semi-unsupervised hierarchical clustering
approach and adaptively determines the size to oversample
each sub-cluster using its classification complexity and cross
validation. The minority instances are weighted based on
their Euclidean distance to the majority class based on which
they are oversampled.

3 TOPIC MODELING BASED WEIGHTING
FRAMEWORK

3.1 Weighting Model

Aspect model [12] is a latent variable model for co-occurrence
data, which associates an unobserved class variable with
each observation. Probabilistic Latent Semantic Analysis
(PLSA) [13] is an extension of aspect models for NLP and
machine learning tasks for text data. Although the technique
is developed for text data, it can be applied on general multi-
nomial data distributions as well. The latent topics estimated
by the PLSA modeling on multinomial data can be inter-
preted as some kind of clustering [15] on the dataset. Given
a term-document matrix (TDM), PLSA factorizes it using
Expectation-Maximization (EM) into: a) topic-conditional
density of terms, b) topic-conditional density of documents
and c) topic priors.

An alternate approach to topic modeling is to factorize
TDM using Latent Dirichlet’s Allocation (LDA) [4], which
is claimed to not suffer from the overfitting problem that
arises with PLSA modeling. LDA is a generative model on
P(F,Z), where it attempts to backtrack from the data points
to find a set of topics that are likely to have generated the
collection. There are no direct ways to estimate P(D) from this
generative model. We chose to proceed with PLSA modeling
for its overfitting characteristics, as the objective is to only
estimate the data distribution of the given dataset and not
generalization to unseen data. PLSA generates soft clusters of
data points by estimating the membership of every data point
in a cluster, where each cluster is a representation of a latent
topic. It was sufficient for us to fit the PLSA model that
gave the best clusters for the given training data, as we rank
ordered the data points based only on how unambiguously
we could place a data point in a cluster. Besides LDA, there
may be other generative models that could generate similar
effect.

Consider a general dataset D = {d1,d2, ...,dN } sampled

from a p-dimensional feature space F = { f1, f2, ..., fp } ∈ Rp+.
The objective is to estimate the weight wi for every data
point di in the dataset. We assume that the feature values are
non-negative ∀fi j ≥ 0, as PLSA modeling assumes a mixture
of conditionally independent multinomial distribution on the
data represented as a TDM. An aspect model associates
an unobserved class variable z ∈ Z = {z1, z2, ..., zk } with
each observation. A class zk can be regarded as a concept,
a data sample refers to. Every data sample can be modeled
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as a mixture of multiple concepts to different extents. Using
these definitions, a generative model can be defined for the
observation pair ⟨di , fj ⟩ by the following scheme as suggested
in PLSA modeling:

(1) Pick a latent class zk with probability P(zk )
(2) Generate a feature fj with probability P(fj |zk )
(3) Select a data point di with probability P(di |zk )

A joint probability model over D×F is defined by the mixture

P(D,F) =
∑
z∈Z

P(z)P(D|z)P(F|z) (1)

We can estimate the data distribution P(D) from the data-
topic joint distribution P(D,Z) by marginalizing on Z.

P(D) =
∑
z∈Z

P(D, z) (2)

P(D) =
∑
z∈Z

P(z)P(D|z) (3)

=⇒ P(di ) =
∑
z∈Z

P(z)P(di |z) (4)

P(di |zj ) is the confidence score of putting the data point

di in the jth topic and when we sum up all these confidence
scores of a data point di , we get a measure of how easy or
difficult it is to place a data point di in a cluster confidently.
We have used this idea to rank order the data point. We
compute the data point weight wi by transforming the prior
probability through a function W as W : P(di ) 7→ wi . The
functionW can even be an identity function wi = P(di ), where
the prior probabilities are directly used as sample weights.
The estimated data point weights wi ∈ W would then be
normalized to setup the probability distribution for the data
samples, based on which samples could be drawn.

3.2 Characteristics of Estimated Sample Priors

We analyzed the estimated data distribution against different
number of topics and sample sizes, while setting the param-
eters of PLSA to their default values. We used the English
version of Europarl3 corpus to build the PLSA4 model, fol-
lowed by estimation of the data distribution. We used the
bag-of-words representation for the texts from the Europarl
corpus, where stop words were filtered from the unique words
list.

A plot of the estimated data distribution against number
of topics {5, 25, 50, 75} for a Europarl sample of size 100,000
is shown as the first plot in Figure 1. The second plot in
Figure 1 shows the exponential decay characteristics, limited
to the top 2500 P(di ∈ D) estimates for three different sample
sizes {3K, 50K, 100K}. We observed shape-similarity in the
exponential decay characteristics of the estimated data dis-
tribution against different corpus sizes and different number
of topics. The X-axes of both the plots have the data point
indices sorted by P(di ) in descending order. In the second
plot, the Y-axis represents the P(di ) values in the log scale.

3http://www.statmt.org/europarl/
4https://github.com/lizhangzhan/plsa

The range of the exponential decay is dependent on the size
of the corpus, where the range size is found to be inversely
proportional to the corpus size.

The data point weights estimated as a function of the prior
probabilities are observed to be insensitive to the classes
from where the samples are drawn. The first plot in Figure
2 demonstrates the distribution of data points P(D) for one
Abalone5 dataset containing 311 minority and 3030 majority
samples. It is apparent that the majority samples overshadow
the minority samples in the top portion of the response curve.
This is due to the majority samples taking precedence over
the minority samples due to population difference. In the
mid and lower parts of the response curve, we observe the
proportional distribution of majority and minority samples.
To overcome the overshadowing problem, we considered the
ranking order of minority and majority samples individually
and scaled them independently to generate a decay response
for themselves. The second plot of Figure 2 shows the distribu-
tion of minority P(Dmin ) and majority P(Dmaj ) data points
as independent exponential decays. The independent compu-
tation of minority and majority data distributions help the
important samples of the minority class to get more attention
while using the data weights aware classifiers. The second plot
in Figure 2 shows the data point weights estimated for the
minority and majority classes individually by the weighting
framework through application of min-max normalization
as the transformation function. The estimated weights for a
majority and minority samples can be normalized to make
probability distributions. A random sampler can follow the
estimated distributions to sample from majority and minority
classes independently.

4 TOPICS ORIENTED DIRECTED UNDER
SAMPLING (TODUS) ALGORITHM

TODUS is a directed undersampling method, which under-
samples from the majority class dataset to balance against
the size of minority class dataset in a corpus. TODUS is
different from random undersampling as the under sampling
is based on a data distribution estimated through topic mod-
eling based weighting framework instead of assuming uniform
sample distribution as in random undersampling. Consider a
binary classification dataset D = Dmaj ∪ Dmin , the objective
of TODUS is to produce a balanced dataset DTODU S , which
has uniform distribution of classes from the original dataset D.
This is achieved by running topic modeling with the dataset
to estimate the prior probabilities P(d ∈ D) of every data
point d from the dataset D. A random sampler can then
follow the estimated probability distribution to draw the
required number of majority samples to match the number
of samples present in the minority class dataset partition.

Alternately, the data distribution of the majority class
data points could be estimated independently, as we don’t
use the prior probability of minority data points to generate
the rebalanced dataset. We did not report our findings as the
observed performance improvement was found to be lesser.

5https://archive.ics.uci.edu/ml/datasets/abalone
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Figure 1: The first plot shows the estimated data distribution P(D) against different number of topics K . The corpus size was
100K, but truncated to 20K items for brevity. The thickness of the lines are just for better visibility. The second plot shows the
decay characteristics of estimated data point priors against different corpus sizes. The X-axes of the plots are the data instance
indices sorted by P(di ) in descending order and the Y-axes are the P(di ) values in the linear and natural log scales respectively.
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Figure 2: The first plot shows the distribution of minority and majority samples following a smooth a decay response curve. The
top portion of the plot is observed to be completely dominated by the majority class samples. The second plot shows the data
weights for majority and minority classes estimated independently as a function of data point priors. The X-axis is the data point
instances sorted by prior probabilities P(di ) in descending order.

Algorithm 1 describes the TODUS algorithm for binary
classification datasets. Step 1 combines the majority and
minority class data points into one dataset D. Step 2 as-
sumes that the feature space of the majority samples from
the dataset to be F and the latent topics as Z. Next, we
run PLSA modeling in step 3 on the entire dataset to es-
timate the factors P(Z), P(F|Z) and P(D|Z) based on the
symmetric aspect model [13]. We chose PLSA modeling for
the overfit characteristics as our objective was to estimate
the apparent data distribution of the training data and not
generalization for the unseen data points. Step 4 estimates
the data point priors by marginalizing the joint distribution
of data samples and latent topics, on topics, to provide us
with the apparent data distribution. Step 5 splits the data
distribution into majority and minority priors. Steps 6 applies

min-max normalization on the majority priors to normalize
the values to the [0, 1] closed interval. The estimated weights
Wmaj are then normalized to make it a probability distri-
bution again as P(Dmaj ). In step 8, a probabilistic sampler
follows the estimated majority class data distribution to draw
the required number of data points from the majority class
to match the population size of minority samples. Step 9
combines the undersampled majority data points and the ac-
tual minority data points to compose the TODUS sample set.
This modified dataset is typically twice the size of minority
samples. We have evaluated the quality of TODUS generated
rebalanced samples using several datasets and reported the
results in Section 5.

For plotting the graphs in Figure 2, we computed the
minority data weightsWmin similar toWmaj as in step 6 of
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Data: D = Dmaj ∪ Dmin
Result: DTODU S

1 D = Dmaj +Dmin
2 Let F, Z be the features and latent topics of D
3 Run PLSA modeling on D as

P(F,D) = ∑
z∈Z

P(z)P(d ∈ D|z)P(F|z)

4 Now P(d ∈ D) = ∑
z∈Z

P(z)P(d ∈ D|z) /* estimate the

sample priors by marginalizing the joint

distribution */

5 Split P(D) =⇒ P(Dmin ) ∪ P(Dmaj ), where
P(Dmin ) = P(d ∈ Dmin ) and P(Dmaj ) = P(d ∈ Dmaj )
/* split the data distribution into majority and

minority priors */

6 Wmaj = MinMaxNormalize
(
P(Dmaj )

)
/* min-max

normalize the majority data point priors

separately to estimate weights W ∈ [0, 1] */

7 P(Dmaj ) ← Normalize(Wmaj ) /* normalize Wmaj to

estimate P(Dmaj ) */

8 Dundersampled
maj ∼ Dmaj with P(Dmaj ) /* draw ∥Dmin ∥
samples from the majority class using P(Dmaj )
*/

9 DTODU S = D
undersampled
maj +Dmin

Algorithm 1: TODUS Algorithm for Binary Class Datasets

Algorithm 1. We then computed the data distribution of the
minority class data points P(Dmin ) by normalizingWmin as in
step 7. Computing the weightsWmaj andWmin independently
avoids the problem of majority points shadowing minority
points by its sheer magnitude as shown in Figure 2.

5 EXPERIMENTS

We considered several multi-class datasets from the UCI
repository6, where we converted the multi-class problem into
one-vs-rest binary classification. We considered the one in
one-vs-rest configuration, as the positive (minority) class
and the aggregate of the rest as negative (majority). This
transformation resulted in imbalanced data sets, which is of
interest to our problem.

The premise of topic modeling is to represent every data
point as a topics-distribution. The general intuition is to
expect a similar topics-distribution for every data point be-
longing to a particular class. Combining data points from
multiple classes into one larger class may affect the validity
of this intuition. Our method is not affected by this caveat
as we don’t use the class information of data points when we
estimate the data distribution.

In many practical scenarios, the datasets are counts based
or discretized independent measurements, which can be mod-
eled as a mixture of multinomial distributions. The assump-
tion holds good for categorical features as well when they are

6http://archive.ics.uci.edu/ml

represented in one-hot encoding. It is not easy to verify the
conditional independence assumption of the PLSA modeling
on the dataset ahead of usage, but we can assume this for
counts and independent measurements type datasets. The
assumption may become invalid with transformed datasets
such as embeddings as the data dimensions are no longer
necessarily independent.

The datasets for experimentation were selected based on
the choice of the standard benchmark datasets that class
imbalance learning researchers have used in the literature.
We could not find any online data repository, exclusively for
class imbalance learning research.

Table 1 lists the selected datasets with their meta infor-
mation. The suffix digit mentioned in the dataset name is
the class id that is considered as positive (minority) class.
The rest of the classes are aggregated into one class, which
becomes the negative (majority) class. As an exception in
PageBlocks data set, the classes 3, 4 and 5 were combined
to get the positive (minority) and the rest were taken as
negative (majority). The last column is the minority to ma-
jority sample size ratio, which identifies the class imbalance as
marginally to modestly imbalanced. The column “C” declares
a compact index code for the datasets, which are referred
in the performance evaluation tables. Column “D” lists the
dimensionality of the datasets. We have presented the time
taken for TODUS preprocessing for all the dataset in column
“PP” of Table 1.

We have selected some of the representative directed under-
sampling, random oversampling and SMOTE methods for our
experimentation as listed in Table 2. We chose to limit our
focus only to sampling methods as comparing against state-
of-art techniques such as cost-sensitive methods, ensemble
methods, and kernel methods would make our experimental
results less useful.

Classifier: We chose decision trees as the method for
learning the classification model on the TODUS-rebalanced
dataset. We used the classification performance of the learned
model as a surrogate measure for measuring the quality of
the samples generated. The assumption we made is that
the sample quality correlates positively with classification
performance. We preferred using a decision tree, as it does
not require special parameter tuning.

Performance Metric: To evaluate the performance of
sampling, we used the correctness of classification as the
surrogate metric, for a model learned from the majority-
undersampled datasets. In most of the practical applications,
the minority class performance is more critical than the ma-
jority. At the same time, the majority class performance
should not be traded off for changing the bias towards mi-
nority class. When the imbalance ratio is R : 1 and the F1
scores are F

maj
1 and Fmin

1 , we computed Weighted Average
F1 (WAF1) as:

WAF1 =
F
maj
1 + R ∗ Fmin

1
1 + R

(5)
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Dataset C D Size Maj Min Ratio PP

Satimage4 S4 36 4435 4020 415 1:9 2.1

Vehicle1 V1 18 846 634 212 1:3 .26

Ecoli4 E4 8 336 301 35 1:10 .19

Car3 C3 6 1728 1659 69 1:25 .24

Pima1 P1 8 768 500 268 1:2 .32

Haberman2 H2 4 306 225 81 1:3 .07

CMC2 C2 9 1473 1140 333 1:4 .27

Pageblocks345 PB 10 5473 5242 231 1:25 .85

Wisconsin WS 10 683 444 239 1:2 .23

Yeast4 Y4 8 528 477 51 1:9 .17

Vehicle3 V3 18 846 634 212 1:3 .27

Vehicle2 V2 18 846 628 218 1:3 .28

Vehicle0 V0 18 846 647 199 1:3 .29

Yeast2Vs4 Y2 8 514 463 51 1:9 .23

Yeast1 Y1 8 1484 1054 430 1:3 .29

Ecoli1 E1 8 336 259 77 1:3 .11

Ecoli2 E2 8 336 284 52 1:6 .08

Ecoli3 E3 8 336 301 35 1:9 .11

WineQuality4 W4 13 1599 1546 53 1:30 .32

LetterJ LJ 16 20000 19253 747 1:25 .33

ConnectDraw C4 42 67557 61108 6449 1:10 64

Poker Hand PK 10 1025010 976182 48828 1:20 262

Table 1: UCI Datasets used for performance evaluation along
with the respective TODUS preprocessing (column PP) time
in seconds.

Methods Code

Random Undersampling RUS

Cluster Centroids CC

Near Miss 1 N1

Near Miss 2 N2

Near Miss 3 N3

Condensed Nearest Neighbors CNN

One-sided Sampling OSS

TODUS TOD

Without Sampling WS

Random Oversampling ROS

SMOTE SM

Table 2: Directed Undersampling and Oversampling methods

to assign more importance to Fmin
1 score, while computing

the performance summary. We used two-sample t−test to
measure the statistical significance of weighted average F1-
score measured for TODUS against the other listed methods.

Evaluation: We repeated 5-fold cross validation for four
times to get the performance measures for 20 runs in total.
During every fold, we used TODUS method to sample from
the training split to generate a balanced training sample.
We trained a J48 classifier on the balanced dataset and
evaluated the performance of the classifier model against

the testing split of the same fold, using weighted average
F1 score as the performance measure. Likewise, the samples
generated by the other methods listed in Table 2 for every
cross validation fold were used for training the respective J48
classifiers. The classification models thus built were tested
against the respective testing splits to record the classification
performance. We used the Python implementation[19] of the
methods in Table 2 to run the experiments. Table 3 tabulates
the weighted average F1-scores for each dataset across all
the methods. We ran two-sample t−test on the weighted
average F1-scores to study the significance of the TODUS
performance against the listed methods using MATLAB’s
ttest27 API. Table 3 tabulates the performance of TODUS
by setting a null-hypothesis for similar performance and the
alternate hypothesis for TODUS being better than the other
method in comparison. We tabulated the result of the tests as
Win, Tie, Loss, where TODUS has outperformed, performed
at-par and underperformed respectively. All the experiments
discussed in this paper were performed in MATLAB and
Python on an Intel Core i5 CPU with 8 GB of RAM.

Interpretation: is observed in Table 3 that TODUS per-
forms better against other balancing directed sampling meth-
ods. TODUS has outperformed or performed at-par with all
the methods compared based on the number of wins. TODUS
was observed to be better than both random oversampling
and SMOTE methods in terms of top-3 positions as well be-
sides number of wins. The performance of TODUS in terms
of top-3 positions, is lower compared to the cleansing method
OSS, where training set balancing is not a requirement and
the entire dataset is available for building the models. It is
interesting to notice from the t−test in Table 3 that TODUS
outperformed every other sampling method, if AUC (Area
under ROC) was used as the evaluation metric. When the
corpus size gets larger, TODUS is observed to scale well but
the cleansing methods could not scale. From the experimen-
tal results, it is apparent that TODUS is a better sampling
strategy to deal with class imbalance learning.

The classification performance of the datasets without any
kind of rebalancing (WS column in Table 3) is observed to
be performing better than any sampling method. But, with
a larger imbalanced dataset, it may not be feasible to learn
a classifier without undersampling. This fact is apparent for
the Poker dataset, where the original dataset, oversampling
and cleansing methods have all failed.

6 CONCLUSION

We presented a novel weighting framework based on topic
modeling, for assigning weights to every sample in a training
corpus in an unsupervised fashion. Although, topic model-
ing was developed for text application, we have successfully
demonstrated its use with generic non-negative p-dimensional

multinomial datasets D ∈ Rp+. We capitalized on the over-
fitting characteristics of PLSA modeling in our weighting
framework to generate the sample weights, as our objective is

7http://in.mathworks.com/help/stats/ttest2.html
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DataSet RUS CC N1 N2 N3 CNN OSS TOD WS ROS SM

P1 .633 .630 .595 .534 .611 .622 .639 .659 .676 .617 .620

C2 .466 .437 .376 .344 .481 .443 .452 .509 .475 .449 .452

V0 .861 .858 .586 .714 .849 .870 .883 .834 .894 .881 .877

V1 .617 .575 .528 .404 .619 .578 .596 .581 .592 .573 .609

V2 .893 .877 .882 .575 .890 .922 .926 .897 .931 .936 .921

V3 .600 .575 .528 .402 .621 .608 .589 .586 .592 .579 .603

PB .549 .244 .179 .108 .401 .757 .770 .344 .787 .737 .740

Y1 .541 .559 .431 .450 .547 .537 .537 .610 .625 .538 .525

Y2 .687 .643 .635 .379 .642 .699 .694 .657 .723 .731 .764

Y4 .444 .376 .306 .258 .341 .469 .489 .402 .476 .481 .520

S4 .481 .445 .216 .264 .360 .567 .570 .488 .580 .564 .562

H2 .408 .439 .414 .405 .437 .428 .424 .473 .411 .416 .392

E1 .759 .792 .724 .730 .723 .783 .804 .800 .813 .789 .778

E2 .650 .696 .571 .503 .471 .775 .770 .726 .816 .764 .780

E3 .536 .544 .371 .346 .530 .619 .625 .566 .590 .571 .577

E4 .512 .556 .354 .375 .455 .601 .618 .547 .602 .547 .555

W4 .119 .092 .060 .064 .101 .155 .128 .122 .041 .132 .131

WS .936 .938 .938 .935 .906 .915 .924 .935 .943 .930 .929

C3 .421 .323 .230 .088 .165 .044 .039 .400 .836 .054 .039

PK .163 - .123 - .160 - - .249 - - -

C4 .322 .182 .225 .180 .304 - .358 .345 .194 .354 .341

LJ .509 .258 .257 .191 .286 - .870 .560 .895 .897 .874

WINS 0 0 0 0 2 1 3 3 9 1 2

TOP3 2 3 1 0 4 6 12 8 15 6 7

Table 3: The table shows the weighted average F1-scores performance comparison of TODUS against other methods. The best
score is underlined and next two scores are highlighted as bold.

t-test on Weighted Average F1 t-test on AUROC

DataSet RUS CC N1 N2 N3 CNN OSS WS ROS SM RUS CC N1 N2 N3 CNN OSS WS ROS SM

P1 W W W W W W T T W W W W W W W W W L W W

C2 W W W W W W W W W W W W W W W W W W W W

V0 L T W W T L L L L L T T W W W W W T W W

V1 L T W W L T T T T L T W W W T W W L W T

V2 T W T W T L L L L L T W W W W T T T T T

V3 T T W W L T T T T T T W W W T W W L W W

PB L W W W L L L L L L L W W W T T T T W T

Y1 W W W W W W W T W W W W W W W W W L W W

Y2 L T T W T L L L L L T T W W T W W W W T

Y4 L T W W W L L L L L T W W W W W W T W T

S4 T W W W W L L L L L T W W W W W W W W W

H2 W T W W T T T T W W W T W W T T T T T T

E1 W T W W W T T T T T W W W W W W W T W W

E2 W T W W W T T L T L T T W W W T T T T T

E3 W T W W W T T T T T T T W W T W W W W W

E4 T T W W W T T T T T T T W W T W T W W W

W4 T W W W W T T W T T T W W W W W W W W W

WS T T T T W W T T T T T T T T T W T T T T

C3 T W W W W W W L W W W W W W W W W L W W

PK W - W - W - - - - - W - W - W - - - - -

C4 W W W W W - L W L T W W W W W - W L W W

LJ W W W W W - L L L L W W W W W - W T W W

Win 10 10 19 20 15 5 3 3 5 5 9 14 21 20 14 15 15 6 17 13

Tie 7 11 3 1 4 8 10 9 8 7 12 7 1 1 8 4 6 9 4 8

Loss 5 0 0 0 3 6 8 9 8 9 1 0 0 0 0 0 0 6 0 0

Table 4: The tables show the summary of two sample t-test on weighted average F1-score and AUC respectively of TODUS against
other methods with significance level at 0.05.
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limited to the given dataset and not generalization to unseen
data points. We proposed TODUS, a novel directed under-
sampling algorithm built on top of the weighting framework
and established its performance against other undersampling
methods considered. Although the proposed method is not
as simple as random under sampling, the extra computation
time leads to better selection of data points from the majority
class with the topic modeling rationale.

We want to extend the idea of undersampling majority
class samples based on the estimated data distribution to also
consider resampling of minority class samples. We believe
that resampling dataset would be a powerful tool for improv-
ing classification performance. Besides resampling, we would
also be extending the framework to multi-class imbalanced
datasets as a future endeavor. The source codes, curated
datasets, results and reports are made available at GitHub8.
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