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Abstract

Data mining has primarily focused on statistical proper-
ties of data alone and not necessarily on what could be
done with the patterns. While there has been some work
on measuring usefulness of patterns in decision making
but not on using such measures for driving the mining
process. We introduce a framework to mine clusters that
support decision making. We use an extrinsic measure
that evaluates patterns based on their utility in decision
making. We show empirical validation of our approach
on several test domains.

Motivation
Traditionally clustering algorithms use inherent statistical
properties of the data to evaluate the goodness of the clusters
formed. These are known asintrinsic measures, examples
include cluster purity, average diameter and RAND index.

Consider a scenario from the telecom domain, where a
service provider wishes to segment his customer base, so
as to promote various calling plans. Typically the promo-
tions are focused on certain demographics and trying to sell
a package designed for a business executive to a college stu-
dent would probably not succeed.

Clustering based on the calling patterns of the customers
would yield compact clusters. But in this case trading com-
pactness of the clusters for more homogeneity in the demo-
graphic of the users clustered together is a better approach.
The degree of the trade-off is usually quantified in the form
of a utility function which encapsulates the payoff for taking
different decisions in various contexts. The output of a clus-
tering algorithm is evaluated in terms of the over-all payoff
earned by promotional decisions made based on the clusters
produced.

Our framework is the first of its kind that provides an ap-
proach to mine actionable clusters using an extrinsic mea-
sure. A cluster is actionable if the user can act upon it to his
advantage. The extrinsic measure defines the value of the
pattern with respect to an externally defined task. In order
to mine these actionable clusters, we must be able to change
the clustering process so as to obtain clusters based on which
an optimal strategy can be provided. We call this approach
“utility-driven clustering”.
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Framework
In order to drive the mining of actionable patterns based on
the utility in decision making we need to come up with a
single complex objective function that we must optimize. In
most formulations of the evaluation stage, the decision is re-
lated to the patterns mined via a complex optimization pro-
cedure and no simple relationship exists to the underlying
intrinsic measures (Kleinberg, Papadimitriou, and Ragha-
van 1998). We therefore consider data mining and decision
making as two different stages in order to mine clusters that
support decision making.

Given a set of values for the hyper-parameters (parame-
ters of the model) the clustering algorithm proceeds as usual.
If we considerk-means clustering for example, the hyper-
parameter can be the number of clusters,k, as well as the
distance function, say weighted euclidean measure. Once
the clusters are formed and the decision is taken with re-
spect to the clusters in the decision making stage, we can
employ an utility function for evaluating this decision. The
evaluation stage then returns a single scalar evaluation ofthe
clusters detected based on the utility of the optimal decisions
supported by the patterns.

We impose a neighborhood structure on the hyper-
parameter space and use the scalar evaluation to select new
settings for the hyper-parameters using local search proce-
dure in order to search for a better pattern with higher util-
ity. We use the evaluation to drive a local search procedure
since it is difficult to formulate the single complex objective
function in terms of the hyper-parameter. The parameter of
k-means is the set of centroids corresponding to the clusters
and it is computationally expensive to store the centroids.
Hence we chose to tune hyper-parameter space and not pa-
rameter space.

Our framework is flexible since we can accommodate
any clustering algorithm. There are several potential hyper-
parameters such as the diameter of the cluster in hierarchical
clustering that can be tuned in order to get small/large clus-
ters accordingly. We can also use a class of supervised clus-
tering algorithm known as constrained clustering by incor-
porating background knowledge in the form of instance level
constraints that are specified apriori. Typically constrained
clustering uses a set of must-link and cannot-link constraints
meaning that two instances must be in the same cluster or
cannot be in the same cluster respectively (Wagstaff et al.



Utility 1 Utility 2 Utility 3
Hyper Hypo Normal Hyper Hypo Normal Hyper Hypo Normal

Treatment A +10 -9 -4 +10 -15 -9 +50 -25 -10
Treatment B -5 +10 -3 -16 +10 -15 -25 +50 -10
No Treatment -9 -6 +10 -19 -15 +10 -10 -10 +50

Table 1: Utility function - Thyroid dataset

2001). These constraints can be tuned in order to obtain bet-
ter actionable clusters.

We use a couple of evaluation settings in our framework.
In the first setting each cluster is associated with a single
decision which is unique across all clusters. In the second
setting each decision might be applied to multiple clusters
as well. We can use other approaches to mine better patterns
other than local search such as meta-learning.

Experiments
For the purposes of validating our framework, we usek-
means clustering algorithm and the hyper-parameter that we
use is the weighted euclidean measure. The neighborhood
structure is a Manhattan structure, where only one hyper-
parameter is allowed to change at a time, by a fixed step size
(constant 1).

We conduct two different experiments : The experiment 1
tunes the hyper-parameters (weights of the distance metric).
In order to speed up the local search process, we use a “mo-
mentum” term, wherein we keep increasing the weight of a
particular feature which provides a high utility till no further
improvement is possible. The experiment 2 performs feature
selection. We perform feature selection by allowing hyper-
parameters to take only binary values either 0 or 1 (attribute
ignored or considered). We adopt a first-improvement strat-
egy in order to speed up the process when the neighborhood
is large.

We consider a simple florist task to illustrate the first eval-
uation setting using Iris dataset from UCI repository that
contains 3 classes of flowers (iris setosa, iris versicolourand
iris virginica). The dataset consists of 150 data points and4
attributes. The task is to create bouquets according to users
preference (not known apriori). We assume that each user
can pick only one bouquet according to his preference from
the available bouquets and leave with some amount of util-
ity with respect to the bouquet. The decision making stage
is modeled using the matching problem - Hungarian assign-
ment, which solves the utility maximization problem and
provides the utility which indicates the best bouquet each
user picks according to the availability.

We create three users whose preferences over certain at-
tributes is modeled using differentα, β (parameters of the
preferred features - say petal and sepal length) andγ (clus-
ters cardinality) variables such as User 1 : 10, 3, 0.1, User
2 : 5, 5, 0.2; User 3 : 11, 4, 0.3. We conduct experiment
1 with different pairs of preferred features ordered in sucha
way that the first feature is given more preference than the
second [(4,3), (2,4), (1,2)]. We observe that the features 4, 3
has the least average percentage improvement (10%), since
the variance of these features are very high in our data. It

is evident that features 2, 4 has higher improvement (21%)
since the variance of these features are low and the user also
expects more uniformity on those features. The experiment
2 is not conducted in this setup since the dataset already has
minimal number of features.

We illustrate the second evaluation setting using thyroid
dataset adopted from UCI repository. The dataset contains
3 classes (Hypo-thyroid, Hyper-thyroid, and Normal) with
3772 instances and 21 attributes. The decisions that we con-
sider are providing either Treatment A, B or No treatment.
The task is to cluster patients with similar symptoms and as-
sign a single decision to the cluster in order to maximize the
utility. The utility in this case is the sum of costs of applying
a particular treatment to patients within the cluster.

We conduct experiments 1 and 2 using weighted and non-
weighted approaches on small balanced dataset (93 hyper,
191 hypo, and 372 normal) and skewed dataset (93 hyper,
191 hypo, and 3488 normal). We use the weighted approach
to handle data skewness. The weights used in skewed data
for hyper, hypo and normal are 0.97, 0.95, 0.07. While the
weights for balanced data are 0.95, 0.7, 0.43. We gener-
ally give more weightage to the rarer labels, in this case the
hyper-patients.

Experiment 1 Experiment 2
U1 U2 U3 U1 U2 U3

Wtg, Balanced 28 17 12 73 32 49
Wtg, Skewed 26 10 4 48 22 35
Non-wtg, Balanced 11 27 3 36 32 29

Table 2: Average percentage improvement

We used three different utility functions corresponding to
different scenarios as shown in Table 1. We have reported
results fork = 5 in Table 2. Our approach takes advantage
of the trade-offs specified in the utility function to improve
the results. For example we obtain average improvement
of 73 % with balanced data, weighted approach, utility 1
since most of the hypo and normal patients are given the
right treatment and most of the hyper-patients are classified
as hypo-patients and are given treatment B.
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