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Abstra
tCurrent solution and modelling approa
hes to Markov De
ision Pro
esses (MDPs)s
ale poorly with the size of the MDP. Model minimization methods address this issueby exploiting redundan
y in problem spe
i�
ation to redu
e the size of the MDP model.Symmetries in a problem spe
i�
ation 
an give rise to spe
ial forms of redundan
y thatare not exploited by existing minimization methods. In this work we extend the modelminimization framework proposed by Dean and Givan to in
lude symmetries. We baseour framework on 
on
epts derived from �nite state automata and group theory.
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tCurrent solution and modelling approa
hes to Markov De
ision Pro
esses (MDPs)s
ale poorly with the size of the MDP. Model minimization methods address this issueby exploiting redundan
y in problem spe
i�
ation to redu
e the size of the MDP model.Symmetries in a problem spe
i�
ation 
an give rise to spe
ial forms of redundan
y thatare not exploited by existing minimization methods. In this work we extend Deanand Givan's [5℄ model minimization framework to in
lude symmetries. We base ourframework on 
on
epts derived from �nite state automata and group theory.1 Introdu
tionMarkov De
ision Pro
esses (MDPs) [21℄ are a popular way to model sto
hasti
 sequentialde
ision problems. But most modelling and solution approa
hes to MDPs su�er from thefa
t that they s
ale poorly with the size of the problem. While modelling real-world s
e-narios, often there is a lot of redundan
y in the MDP model. Model minimization methodsintrodu
ed by Dean and Givan [5℄ exploit su
h redundan
y in the problem spe
i�
ation toderive smaller models, i. e., models with fewer states, by aggregating \equivalent" states.Figure 1 illustrates the model minimization pro
ess. The gridworld on the left is thegiven MDP. This has the usual gridworld dynami
s with 4 deterministi
 a
tions fN;S;E;Wg.Ea
h 
ell in the grid 
orresponds to a state of the MDP. All the states in the top row aregoal states with identi
al rewards for rea
hing them. Dean and Givan 
onsider two statesequivalent if the e�e
t of ea
h of the available a
tion is equivalent in both the states andif no essential information is lost by aggregating them. In this example, the states in ea
hrow 
an be 
onsidered equivalent to one another.3 The resulting redu
ed model is just a
olumn of states as depi
ted in the right of Figure 1. It is evident that solving this redu
edmodel will give us a solution to the original problem.1e-mail: ravi�
s.umass.edu2e-mail: barto�
s.umass.edu3We formalize the notion of equivalen
e later. Informally, in this spe
ial 
ase, the states in a row are
onsidered equivalent sin
e ea
h a
tion 
hanges the distan
e to goal by the same amount. A
tion N takesyou one step 
loser to the goal. A
tion S takes you one step farther in most 
ases and keeps you at the samedistan
e in the bottom row. A
tions E and W keep you at the same distan
e from the goal.
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SFigure 1: Illustration of Model Minimization in a Simple GridworldA spe
ial form of redundan
y arises in 
ases where the problem is symmetri
 and AIresear
hers have been exploring ways to take advantage of that (e. g., refs. [1, 20℄). Sym-metries in a problem spe
i�
ation naturally give rise to notions of equivalen
e. For example
onsider another simple gridworld with usual dynami
s, shown to the left in Figure 2. Thegoal state is labelled G. Intuitively one 
an see that there is a symmetry about the NE-SWdiagonal. For example taking a
tion E in state A is equivalent to taking a
tion N in stateB, in the sense that they go to equivalent states that are one step 
loser to the goal. One
an say that states A and B are symmetri
ally equivalent. Dean and Givan's model mini-mization framework 
annot a

ommodate su
h notions of equivalen
e and hen
e 
onsidersthis gridworld irredu
ible.4 In this work we extend the model minimization framework toin
lude su
h notions of symmetri
al equivalen
e. A redu
ed model of the gridworld underour framework is shown to the right in Figure 2.
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Figure 2: Model Minimization with Symmetri
 Equivalen
eIn the next se
tion we present some basi
 
on
epts and notation. Then we dis
uss somerelated work on minimization of di�erent stru
tures. In Se
tion 4 we present an extensionto Dean and Givan's model minimization framework using the notion of homomorphismsderived from 
lassi
al �nite state automata (FSA) [11℄ theory. Next we develop a formalde�nition of symmetry in MDPs and show how it relates to our model minimization frame-work. We 
on
lude with a dis
ussion of 
ertain spe
ializations of our framework, someimpli
ations and future dire
tions for resear
h.4States in the same row in the gridworld of Figure 1 are also symmetri
 to ea
h other. While Dean andGivan's framework does a

ommodate some 
ases of symmetries, their theory does not expli
itly 
onsidersymmetries of MDPs.
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2 Basi
s and Notation2.1 Markov De
ision Pro
essesA Markov De
ision Pro
ess is a tuple hS;A;	; P;Ri, where S is the set of states, A is theset of a
tions, 	 � S � A is the set of admissible state-a
tion pairs, P : 	 � S ! [0; 1℄ isthe transition probability fun
tion with P (s; a; s0) being the probability of transition fromstate s to state s0 under a
tion a, and R : 	 ! IR is the expe
ted reward fun
tion, withR(s; a) being the expe
ted reward for performing a
tion a in state s. We assume that therewards are bounded. Let As = faj(s; a) 2 	g � A denote the set of a
tions admissible instate s. We assume that for all s 2 S, As is non-empty. In this work we assume that theset of states and set of a
tions are �nite, but the language of homomorphisms we employextends to in�nite spa
es with little work.A sto
hasti
 poli
y � is a mapping from 	 to the real interval [0; 1℄ withPa2As �(s; a) = 1for all s 2 S. For any (s; a) 2 	, �(s; a) gives the probability of pi
king a
tion a in state s.The value of state s under poli
y � is the expe
ted value of the dis
ounted sum of futurerewards starting from state s and following poli
y � thereafter. The value fun
tion V �
orresponding to a poli
y � is the mapping from states to their values under �. It 
an beshown (e. g., ref. [2℄) that V � satis�es the Bellman equation:V �(s) = Xa2As �(s; a)24R(s; a) + 
 Xs02S P (s; a; s0)V �(s0)35 ;where 0 � 
 < 1 is a dis
ount fa
tor. This formulation is known as the dis
ounted sum ofrewards 
riterion.Similarly, the value of a state-a
tion pair (s; a) under poli
y � is the expe
ted value ofthe dis
ounted sum of future rewards starting from state s, taking a
tion a, and following �thereafter. The a
tion value fun
tion Q� 
orresponding to a poli
y � is the mapping fromstate-a
tion pairs to their values and satis�es [2℄:Q�(s; a) = R(s; a) + 
 Xs02S P (s; a; s0)V �(s0);where 0 � 
 < 1 is a dis
ount fa
tor.The solution of an MDP is an optimal poli
y �? that uniformly dominates all otherpossible poli
ies for that MDP. It 
an be shown [2℄ that the value fun
tions for all optimalpoli
ies is the same. We denote this optimal value fun
tion by V ?. It satis�es the Bellmanoptimality equation: V ?(s) = maxa2As Xs02S P (s; a; s0) �R(s; a) + 
V ?(s0)� :Similarly the optimal a
tion value fun
tion Q? satis�es:Q?(s; a) = Xs02S P (s; a; s0) �R(s; a) + 
 maxa02As0 Q?(s0; a0)� :3



These two optimal value fun
tions are related by V ?(s) = maxaQ?(s; a).Typi
ally MDPs are solved by approximating the solution to the Bellman optimalityequations (e. g., refs. [2, 23℄). Given the optimal a
tion value fun
tion, an optimal poli
yis given by �?(s; a) � 0 if Q?(s; a) = maxa02As Q?(s; a0)= 0 otherwise:2.2 Partitions, maps and equivalen
e relationsA partition B of a set X is a 
olle
tion of disjoint subsets, or blo
ks, bi � X su
h thatSi bi = X. For any x 2 X, [x℄B denotes the blo
k of B to whi
h x belongs. Let B1 andB2 be partitions of X. We say that B1 is 
oarser than B2 (or B2 is a re�nement of B1),denoted B1 � B2, if for all x; x0 2 X, [x℄B2 = [x0℄B2 implies [x℄B1 = [x0℄B1 . The relation �is a partial order on the set of partitions of X.To any partition B of X there 
orresponds an equivalen
e relation, �B , on X withx �B x0 if and only if [x℄B = [x0℄B for all x; x0 2 X. Any fun
tion f from a set X into a setY de�nes an equivalen
e relation on X with x �f x0 if and only if f(x) = f(x0). We say thatx and x0 are f -equivalent when x �f x0, and we denote the partition of X 
orresponding tothis equivalen
e relation by Bf .Let B be a partition of Z � X � Y , where X and Y are arbitrary sets. For any x 2 X,let B(x) denote the set of distin
t blo
ks of B 
ontaining pairs of whi
h x is a 
omponent,that is, B(x) = f[(w; y)℄B j (w; y) 2 Z;w = xg. The proje
tion of B onto X is the partitionBjX of X su
h that for any x; x0 2 X, [x℄BjX = [x0℄BjX if and only if B(x) = B(x0). Inother words, x �BjX x0 if and only if every blo
k of B 
ontaining a pair in whi
h x (x0) isa 
omponent also 
ontains a pair in whi
h x0 (x) is a 
omponent.5 Note that if B1 and B2are partitions of Z, then B1 � B2 implies that B1jX � B2jX.A partition of an MDP M = hS;A;	; P;Ri is a partition of 	. Given a partition B ofM, the blo
k transition probability of M is the fun
tion T : 	 � BjS ! [0; 1℄ de�ned byT (s; a; [s0℄BjS) = Ps002[s0℄BjS P (s; a; s00). In other words, when applying a
tion a in state s,T (s; a; [s0℄BjS) is the probability that the resulting state is in the blo
k [s0℄BjS . It is 
learthat sin
e BjS is a partition of S, ea
h of these blo
k transition probabilities is in theinterval [0; 1℄.Example 1Let M = hS;A;	; P;Ri be an MDP with S = fs1; s2; s3g, A = fa1; a2g and 	 =f(s1; a1); (s1; a2); (s2; a1); (s2; a2); (s3; a1)g. We give the proje
tions under both our de�-nition and the traditional one (see footnote).5The more traditional de�nition of a proje
tion is: x �BjX x0 if and only if (x; y) �B (x0; y) for all y 2 Y .This proje
tion is always a re�nement of our proje
tion. We need the modi�ed de�nition to fa
ilitate thedevelopment of some 
on
epts below. 4



i) If B1 = nf(s1; a1); (s2; a2)g; f(s1; a2); (s2; a1); (s3; a1)go,then B1jS = nfs1; s2g, fs3go (ours); nfs1g, fs2g; fs3go (traditional).ii) If B2 = nf(s2; a1)g; f(s1; a1); (s1; a2); (s2; a2); (s3; a1)go,then B2jS = nfs1; s3g, fs2go; nfs1g, fs2g; fs3go.iii) If B3 = nf(s1; a1); (s2; a2)g; f(s1; a2); (s3; a1)g; f(s2; a1)go,then B3jS = nfs1g, fs2g; fs3go; nfs1g, fs2g; fs3go.3 Related WorkThere has been extensive work on minimization of FSAs [11℄. Minimization te
hniquesderive the \smallest" model that is equivalent to the given model. This simpli�es thesear
h for an eÆ
ient implementation. See Hartmanis and Stearns [11℄ for more details.Similar te
hniques exist for Probabilisti
 Automata [19℄, Probabilisti
 Transition Systems[17℄, Con
urrent Pro
esses [18, 7℄, Finite Markov Chains [15℄ and Markov Pro
esses [22℄.Dean, Givan and 
olleagues have explored minimization of MDPs in detail. Dean andGivan [5℄ introdu
e a framework for model minimization and explore its relation to someexisting algorithms. They also give algorithms for �nding redu
ed models of MDPs withspe
ial representations. They base their de�nition of equivalen
e on the notion of homoge-neous partitions of the state set. This 
on
ept of equivalen
e is related to the substitutionproperty of �nite state ma
hines [11℄ and the notion of lumpability of markov 
hains [15℄.Givan et al. [9℄ explore minimization based on 
ertain relaxed equivalen
e 
riteria, andDean et al. [6℄ extend the framework to fa
ilitate elimination of redundant a
tions. Givanet al. [8℄ formulate the model minimization problem in terms of sto
hasti
 bisimulationsderived from the notion of bisimulations of 
on
urrent pro
esses [12, 17, 18℄ and establishall their previous results in this framework.Minimization te
hniques frequently exploit symmetries of the underlying stru
ture (e. g.,see ref. [14℄ for FSAs, ref. [10℄ for Markov Chains and refs. [13, 7℄ from model 
he
king for
on
urrent pro
esses). But there has not been mu
h work on exploiting symmetries ofMDPs for minimization. Re
ently Zinkevi
h and Bal
h [24℄ de�ned symmetries of MDPsand derived algorithms that take advantage of su
h symmetries. But their work did notrelate to the existing resear
h on model minimization.In this arti
le we extend the model minimization framework of Dean and Givan toin
lude symmetri
al equivalen
e. This gives us additional power and sometimes enablesgreater redu
tion as outlined in the introdu
tion. We base our framework on the notion ofMDP homomorphisms derived from the 
on
ept of homomorphisms of FSAs. Traditionallysymmetries are de�ned via groups of morphisms (e. g. ref. [16℄) and hen
e employinghomomorphisms makes it easier to in
lude symmetries in our framework.In the next se
tion we present extensions of some of the key results in Givan et al. [8℄using our framework. In Se
tion 5 we de�ne symmetries of MDPs using group theoreti
5




on
epts and show that our extended minimization framework 
an exploit symmetri
alequivalen
e.4 Homomorphisms and model minimizationIn this se
tion we extend the 
on
ept of ma
hine homomorphism from the FSA literatureto MDPs and develop a notion of equivalen
e of states and state-a
tion pairs based onthis extended homomorphism. Informally, a homomorphism of a system with transitiondynami
s is a transformation that preserves some aspe
ts of the dynami
s.For example, 
onsider two MDPs M = hS;A;	; P;Ri and M0 = hS0; A, 	0; P 0; R0ithat have deterministi
 a
tions. By abusing notation, we employ the shorthand P (s; a)to denote s1 in S, su
h that P (s; a; s1) = 1. A map f : S ! S0 is a homomorphism ifP 0(f(s); a) = f(P (s; a)) and R(s; a) = R0(f(s); a) for all (s; a) 2 	. The homomorphism fis said to 
ommute with the dynami
s of the MDPs. We 
an depi
t this using 
ommutativediagrams as follows:s1 -P (�; a) s2?f ?fs01 -P 0(�; a) s02
s1 -R(�; a) r?f ������R0(�; a)s01Figure 3: Homomorphisms Represented by Commutative DiagramsMore generally a homomorphism from an MDP M to an MDP M0 is a map from 	 to 	0that 
ommutes with the transition dynami
s and preserves the reward fun
tion:De�nition: An MDP homomorphism h from an MDP M = hS;A;	; P;Ri to an MDPM0 = hS0; A0;	0; P 0; R0i is a surje
tion from 	 to 	0, de�ned by a tuple of surje
tionshf; fgsjs 2 Sgi, with h((s; a)) = (f(s); gs(a)), where f : S ! S0 and gs : As ! A0f(s) fors 2 S, su
h that:P 0(f(s); gs(a); f(s0)) = T (s; a; �s0�BhjS); 8s; s0 2 S; a 2 As (1)R0(f(s); gs(a)) = R(s; a); 8s 2 S; a 2 As (2)We 
all M0 the homomorphi
 image of M under h. We use the shorthand h(s; a) to denoteh((s; a)).Let Psa : S ! [0; 1℄ be the distribution over states resulting from taking a
tion a instate s, i. e., Psa(s1) = P (s; a; s1) for any s1 in S. The aggregation hPsa, of Psa over h,is the distribution over S0 su
h that hPsa(s0) = Ps12f�1(s0) Psa(s1) for ea
h s0 2 S0. Here6



f�1(s0) = fs 2 Sjf(s) = s0g is the pre-image of s0 in S. A homomorphism 
ommuteswith the one step dynami
s of the MDP in the sense that the aggregation hPsa is the samedistribution as P 0f(s)gs(a) for all (s; a) 2 	. We 
an depi
t this using 
ommutative diagramsas follows: (s; a) -P Psa?h ?agg.(s0; a0) -P 0 P 0s0a0
(s; a) -R r?h ������R0(s0; a0)Figure 4: An MDP Homomorphism as Commutative DiagramsApart from the preservation of blo
k transition behaviour, the usefulness of homomorphismslie in the fa
t that they help establish the following equivalen
es.De�nition: State a
tion pairs (s1; a1) and (s2; a2) 2 	 are equivalent if hPs1a1 = hPs2a2 ,i. e., the aggregation of their next state distributions is the same. Note that any h-equivalentstate-a
tion pairs are also equivalent in this sense.De�nition: States s1 and s2 2 S are equivalent if for every a
tion a1 2 As1 , there is ana
tion a2 2 As2 su
h that (s1; a1) and (s2; a2) are equivalent and for every a
tion a2 2 As2 ,there is an a
tion a1 2 As1 , su
h that (s1; a1) and (s2; a2) are equivalent.These notions of equivalen
e lead us to the following theorem on optimal value equivalen
e.This theorem is an extension of the optimal value equivalen
e theorem developed in Givanet al [8℄ for sto
hasti
 bisimulations.Theorem 1: (Optimal value equivalen
e) LetM0 = hS0; A0;	0; P 0; R0i be the homomorphi
image of the MDPM = hS;A;	; P;Ri under the MDP homomorphism h = hf; fgsjs 2 Sgi.For any (s; a) 2 	, Q?(s; a) = Q?(f(s); gs(a)).Proof: (Along the lines of [8℄) Let us de�ne the m-step optimal dis
ounted a
tion valuefun
tion re
ursively for all (s; a) 2 	 and for all non-negative integers m asQm(s; a) = R(s; a) + 
 Xs12S "P (s; a; s1) maxa12As1 Qm�1(s1; a1)#and set Q�1(s1; a1) = 0. Letting Vm(s1) = maxa12As1 Qm(s1; a1), we 
an rewrite this as:Qm(s; a) = R(s; a) + 
 Xs12S [P (s; a; s1)Vm�1(s1)℄ :Now we prove by indu
tion on m that the theorem is true. For the base 
ase of m = 0,we have that Q0(s; a) = R(s; a) = R0(f(s); gs(a)) = Q0(f(s); gs(a)). Now let us assume7



that Qj(s; a) = Qj(f(s); gs(a)) for all values of j less than m and all state-a
tion pairs in	. Now we have,Qm(s; a) = R(s; a) + 
 Xs02S P (s; a; s0)Vm�1(s0)= R(s; a) + 
 X[s0℄BhjS2BhjS T (s; a; �s0�BhjS)Vm�1(s0) (sin
e h is a homomorphism)= R0(f(s); gs(a)) + 
 Xs02S0 P 0(f(s); gs(a); s0)Vm�1(s0) ( " )= Qm(f(s); gs(a))Sin
e R is bounded it follows by indu
tion that Q?(s; a) = Q?(f(s); gs(a)) for all (s; a) 2 	.2Corollary:1. For any h-equivalent (s1; a1); (s2; a2) 2 	, Q?(s1; a1) = Q?(s2; a2).2. For all equivalent s1; s2 2 S, V ?(s1) = V ?(s2).3. For all s 2 S, V ?(s) = V ?(f(s)) .Proof: Corollary 1 follows from Theorem 1. Corollaries 2 and 3 follow from Theorem 1 andthe fa
t that V ?(s) = maxa2As Q?(s; a). 2The above theorem establishes optimal value equivalen
e. As shown by Givan et al.[8℄, this is not a suÆ
ient notion of equivalen
e. In many 
ases even when the optimalvalues are equal, the poli
ies might not be related and hen
e we 
annot easily transformsolutions of the image MDP to the original MDP. The optimal poli
ies of an MDP and itshomomorphi
 images are 
losely related and the following establishes the 
orresponden
e.De�nition: Let M0 be the image of M under homomorphism h. For any s 2 S, g�1s (a0)denotes the set of a
tions that have the same image a0 2 A0f(s) under gs. Let � be asto
hasti
 poli
y inM0. Then � lifted to M is the poli
y �M su
h that for any a 2 g�1s (a0),�M(s; a) = �(f(s); a0). ��g�1s (a0)��.Note: It is suÆ
ient if Pa2g�1s (a0) �M(s; a) = �(f(s); a0), but we use the above de�nition tomake the lifted poli
y unique.Example 2Consider MDP M from example 1 and M0 = hS0; A0;	0; P 0; R0i with S0 = fs01; s02g, A0 =fa01; a02g and 	0 = f(s01; a01), (s01; a02), (s02; a01)g. Let h = hf; fgsjs 2 Sgi be a surje
tion fromM to M0 de�ned by f(s1) = s01 f(s2) = s02 f(s3) = s02gs1(a1) = a02 gs2(a1) = a01 gs3(a1) = a01gs1(a2) = a01 gs2(a2) = a018



Let � be a poli
y in M0 with�(s01; a01) = 0:6 �(s01; a02) = 0:4 �(s02; a01) = 1:0Now � lifted to M, the poli
y �M, is derived as follows:�M(s1; a1) = �(s01; a02) = 0:4 �M(s1; a2) = �(s01; a01) = 0:6�M(s2; a1) = �(s02; a01)=2 = 0:5 �M(s2; a2) = �(s02; a01)=2 = 0:5�M(s3; a1) = �(s02; a01) = 1:0Theorem 2: Let M0 = hS0; A0;	0; P 0; R0i be the image of M = hS;A;	; P;Ri under thehomomorphism h = hf; fgsjs 2 Sgi. If �? is an optimal poli
y for M0, then �?M is anoptimal poli
y for M.Proof: Let �? be an optimal poli
y inM0. Consider some (s; a) 2 	 su
h that �?(f(s); gs1(a1))is greater than zero. Then Q?(f(s1); gs1(a1)) is the maximum value of the Q? fun
tion instate f(s1). From Theorem 1, we know that Q?(s; a) = Q?(f(s); gs(a)) for all (s; a) 2 	.Therefore Q?(s1; a1) is the maximum value of the Q? fun
tion in state s1. Thus a1 is anoptimal a
tion in state s1 and hen
e �?M is an optimal poli
y for M. 2Theorem 2 establishes that an MDP 
an be solved by solving one of its homomorphi
images. To a
hieve the most impa
t, we need to derive the smallest possible homomorphi
image of the MDP, i. e., an image with the least number of admissible state-a
tion pairs.The following de�nitions help formalize this notion.De�nition: An MDP M is a minimal MDP if for every MDP M0 that is a homomorphi
image of M, there exists a homomorphism from M0 to M.De�nition: A minimal image of an MDP M is a homomorphi
 image of M that is also aminimal MDP.A minimal image of an MDP M is the smallest MDP whose solution 
an be lifted to yielda solution to M. Finding a minimal image is the goal of model minimization. Sin
e this
an be 
omputationally prohibitive, we frequently settle for a reasonably redu
ed model,even if it is not a minimal MDP.4.1 Homomorphisms and PartitionsAs mentioned earlier any map on a set indu
es a partition of the set. Thus a homomorphismfrom M = hS;A;	; P;Ri to M0 = hS0; A0;	0; P 0; R0i indu
es a partition on 	. Classi
alFSA literature employs su
h partitions of the state set in minimization of ma
hines. Thereare various algorithms for identifying a suitable partition that gives rise to a redu
ed imageof a ma
hine. Dean and Givan [5℄ propose several su
h algorithms for MDP model mini-mization and demonstrate that they are e�e
tive in �nding minimal images. The basi
 ideabehind all these algorithms is to start with a very 
oarse partition satisfying some 
ondi-tions and su

essively re�ne it until one obtains a suitable partition that 
an be indu
ed9



by a homomorphism. In this se
tion, we explore the relationship between partitions of 	and homomorphisms, and we establish 
onditions under whi
h a partition 
orresponds toa homomorphism. We 
an then extend algorithms that identify suitable partitions of S toidentify suitable partitions of 	.De�nition: A partition B of an MDP M = hS;A;	; P;Ri is said to be reward respe
tingif BR � B.6 In other words B is reward respe
ting if (s1; a1) �B (s2; a2) implies R(s1; a1) =R(s2; a2) for all (s1; a1); (s2; a2) 2 	.De�nition: A partition B of an MDP M = hS;A;	; P;Ri has the sto
hasti
 substitu-tion property if for all (s1; a1); (s2; a2) 2 	, (s1; a1) �B (s2; a2) implies T (s1; a1; [s℄BjS)= T (s2; a2; [s℄BjS) for all [s℄BjS 2 BjS.In other words, the blo
k transition probability is the same for all state-a
tion pairs ina given blo
k. A partition that satis�es the sto
hasti
 substitution property is an SSPpartition. This is an extension of the substitution property for �nite state ma
hines [11℄.The SSP blo
k transition probability is the fun
tion Tb : B � BjS ! [0; 1℄, de�ned byTb([(s1; a1)℄B ; [s℄BjS) = T (s1; a1; [s℄BjS). This quantity is well-de�ned only for SSP parti-tions.Theorem 3: Let h be an MDP homomorphism from an MDP M = hS;A;	; P;Ri to anMDP M0 = hS0; A0;	0; P 0; R0i. Then Bh, the partition of 	 indu
ed by h, is a rewardrespe
ting SSP partition.Proof: Let h = hf; fgsjs 2 Sgi be the homomorphism from M to M0. We need to showthat the partition Bh is a reward respe
ting SSP partition.First let us ta
kle the sto
hasti
 substitution property. Let (s1; a1); (s2; a2) 2 	, beh-equivalent. From the de�nition of a homomorphism we have that f(s1) = f(s2) = s0 2 S0and gs1(a1) = gs2(a2) = a0 2 A0s0 . Thus, for any s 2 S, T (s1; a1; [s℄BhjS) = P 0(s0; a0; f(s)) =T (s2; a2; [s℄BhjS). Hen
e Bh is an SSP partition.From 
ondition 2 in the de�nition of a homomorphism, it is 
lear that the partitionindu
ed is reward respe
ting. 2Theorem 3 establishes that the partition indu
ed by a homomorphism is a reward re-spe
ting SSP partition. But the 
onverse of the theorem, that for every reward respe
tingSSP partition there exists a homomorphism that indu
es it, is not true. The following ex-amines how to 
onstru
t a homomorphi
 image of an MDP given a reward respe
ting SSPpartition.De�nition: Let B be a reward respe
ting SSP partition of MDP M = hS;A;	; P;Ri.Let �(s) be the number of distin
t blo
ks of B that 
ontain a state-a
tion pair with sas the state 
omponent and let f[(s; ai)℄B ji = 1; 2; � � � ; �(s)g be the blo
ks. Note that if[s1℄BjS = [s2℄BjS then �(s1) = �(s2), hen
e the following is well-de�ned. The quotientMDP M=B is the MDP hS0; A0;	0; P 0; R0i where, S0 = BjS; A0 = S[s℄BjS2BjS A0[s℄BjS where6Re
all, BR is the partition of 	 indu
ed by the reward fun
tion.10



A0[s℄BjS = fa01, a02, � � �, a0�(s)g for ea
h [s℄BjS 2 BjS; P 0 is given by P 0([s℄BjS ; a0i; [s0℄BjS) =Tb([(s; ai)℄B ; [s0℄BjS) and R0 is given by R0([s℄BjS ; a0i) = R(s; ai).Theorem 4: Let B be a reward respe
ting SSP partition of MDP M = hS;A;	; P;Ri.There exists a homomorphism from M to the quotient MDP M=B.Proof: Given a reward respe
ting SSP partition B of M, we show by 
onstru
tion thatthere exists a homomorphism h from M to the quotient MDP M=B = hS0; A0;	0; P 0; R0i.The homomorphism h = hf; fgsjs 2 Sgi between M and M=B is given by f(s) = [s℄BjSand gs(a) = a0i su
h that T (s; a; [s0℄BjS) = P 0([s℄BjS ; a0i; [s0℄BjS) for all [s0℄BjS 2 BjS. Inother words, if [(s; a)℄BjS is the i-th unique blo
k in the ordering used in the 
onstru
tionof M=B, then gs(a) = a0i. It is easy to verify that h is indeed a homomorphism. 2The partition indu
ed on M by h, is only guaranteed to be a re�nement of B and isnot always the same partition as B. In other words, B � Bh. In fa
t Bh is the least 
oarsepartition su
h that BhjS = BjS, and M=B is the same MDP as M=Bh up to a relabellingof states and a
tions.Partitions and minimal imagesAs we said earlier model minimization algorithms work by �nding suitable partitions of anMDP. As is evident now, by suitable partitions we mean reward respe
ting SSP partitions.Here we explore the relationship between reward respe
ting SSP partitions and minimalimages of the MDPsDe�nition: A partition B of an MDP M is the 
oarsest reward respe
ting SSP partitionof M if and only if for every reward respe
ting SSP partition B0 of M, B � B0.It is easy to verify (by 
ontradi
tion) that there exists an unique 
oarsest reward respe
tingSSP partition for any MDP M. Intuitively one would expe
t the quotient MDP 
orre-sponding to the 
oarsest reward respe
ting SSP partition of an MDP M to be a minimalimage of M. The following theorem states that formally.Theorem 5: Let B be the 
oarsest reward respe
ting SSP partition of MDP M. Thequotient MDP M=B is a minimal image of M.Proof: We defer the proof of this theorem to the next se
tion, after we de�ne 
ompositionof homomorphisms.Given an MDPM = hS;A;	; P;Ri the outline of a basi
 model minimization algorithmis as follows:1. Start with any reward respe
ting partition of 	. The most obvious 
hoi
e is to pi
kthe one that is indu
ed by the expe
ted reward fun
tion R. This is the 
oarsestpossible reward respe
ting partition, but any suitable reward respe
ting partition willdo. 11



2. Repeatedly re�ne the partition until all violations of the SSP property are resolved.This pro
ess might take as mu
h time as solving the original MDP itself. Thereforemost modi�
ations of this basi
 algorithm fo
us on spe
ial representations of M thatmake this step simpler. Let B be the resulting partition.3. Form the quotient MDPM=B and identify the homomorphism betweenM andM=B.Now one 
an solve M=B and lift the optimal poli
y to get an optimal poli
y for M.Spe
i�
 methods for re�ning the partitions 
an provide 
ertain guarantees on the qualityof the SSP partition derived. For example, see ref. [5℄ for a method that guarantees �ndingthe 
oarsest reward respe
ting SSP partition.5 Automorphisms and SymmetriesRe
all the notion of symmetri
al equivalen
e outlined in Se
tion 3. That notion is a spe
ial
ase of the notion of equivalen
e we developed in the previous se
tion. In this se
tion wede�ne symmetries using homomorphisms. We also borrow 
on
epts from group theory tode�ne groups of symmetries and show that 
onsidering su
h groups together 
an lead to agreater redu
tion in problem size. This is a spe
ial 
ase of our earlier framework and uni�esthe 
on
epts of model minimization and exploiting symmetries.De�nition: An MDP homomorphism h = hf; fgsjs 2 Sgi from MDP M = hS;A;	; P;Rito MDP M0 = hS0; A0;	0; P 0; R0i is an MDP isomorphism from M to M0 if and only if fand gs, s 2 S, are bije
tive. M is said to be isomorphi
 to M0 and vi
e versa.Note that property (1) of a homomorphism redu
es to a simpler form in this 
ase: P (s; a; s0) =P 0(f(s); gs(a); f(s0)) for all s; s0 2 S and a 2 As. Therefore, when two MDPs are isomor-phi
, it means that the MDPs are the same ex
ept for a relabelling of the states and thea
tions. Thus we 
an transfer poli
ies learned for one MDP to the other by simple trans-formations. Also note that an MDP M is a minimal MDP if it is isomorphi
 to all of itshomomorphi
 images.De�nition: An MDP isomorphism from an MDP M = hS;A;	; P;Ri to itself is anautomorphism of M.Intuitively one 
an see that automorphisms 
an be used to des
ribe symmetries in aproblem spe
i�
ation. In the gridworld example of Figure 2 a re
e
tion of the states alongthe NE-SW diagonal and a swapping of a
tions N and E and of a
tions S and W is an auto-morphism. It is easy to see that this remapping 
aptures the symmetry that we dis
ussedearlier. When we 
onsider all su
h symmetries together we a
hieve greater redu
tion in thesize of an MDP.Let the set of all automorphisms of an MDP M be denoted by AutM. This set formsa group under 
omposition of homomorphisms. This group is the symmetry group of M.Let G be a subgroup of AutM denoted by G � AutM .12



The subgroup G de�nes an equivalen
e relation �G on 	: (s1; a1) �G (s2; a2) if andonly if there exists h 2 G su
h that h(s1; a1) = (s2; a2). Note that sin
e G is a subgroup,this implies that there exists an h�1 2 G su
h that h�1(s2; a2) = (s1; a1). Let BG be thepartition of 	 indu
ed by �G .Lemma: For any h = hf; fgsjs 2 Sgi 2 G, f(s) 2 [s℄BG jS.Proof: The lemma follows from the properties of groups, namely 
losure and existen
e ofan inverse. 2Theorem 6: Let G � AutM be a group of automorphisms on M = hS;A;	; P;Ri. Thepartition BG is a reward respe
ting SSP partition of M.Proof: Consider (s1; a1), (s2; a2) 2 	 su
h that (s1; a1) �G (s2; a2). This implies that thereexists an h = hf; fgsjs 2 Sgi in G su
h that f(s1) = s2 and gs1(a1) = a2.From the de�nition of an automorphism we have that for any s 2 S, P (s1; a1; s) =P (s2; a2; f(s)). Using the lemma, we havePs02[s℄BG jS P (s1; a1; s0) =Ps02[s℄BG jS P (s2; a2; s0).Sin
e we 
hose s arbitrarily, this holds for all s in S. Hen
e BG is an SSP partition.Again from the de�nition of an automorphism we have that R(s1; a1) = R(s2; a2). Hen
eBG is reward respe
ting too. 2Corollary: There exists a homomorphism hG from M to M=BG . We 
all M=BG theG-redu
ed image of M.This follows from Theorems 4 and 6. 2Corollary: An optimal poli
y for M=BG lifted to M is an optimal poli
y for M.This follows from the above 
orollary and Theorem 2. 2Note that the 
onverse of Theorem 6 is not true. It is possible to de�ne SSP partitionsthat are not generated by groups of automorphisms. We give an example in the nextse
tion. Frequently the AutM-redu
ed image of an MDP M is a minimal image of M, asin the example in the next se
tion. Even when we employ some G < AutM we get usefulredu
tions. Thus model redu
tion 
an also be a

omplished by �nding the symmetry groupof an MDP.Proof of Theorem 5De�nition: Let h = hf; fgsjs 2 Sgi : M1 !M2 and h0 = hf 0; fg0sjs 2 Sgi :M2 !M3 betwo MDP homomorphisms. The 
omposition of h and h0 denoted by h Æ h0 is a map fromM1 to M3, with (h Æ h0)(s; a) = h0(h(s; a)) = �f 0(f (s)); g0f(s)(gs (a))� for all (s; a) 2 	. It
an be shown that h Æ h0 is a homomorphism from M1 to M3.Theorem 5: Let B be the 
oarsest reward respe
ting SSP partition of MDP M =hS;A;	; P;Ri. The quotient MDP M=B is a minimal image of M.Proof: We will prove this by proving the 
ontrapositive: if M=B is not a minimal image of13



M, then B 
annot be the 
oarsest reward respe
ting SSP partition of M.Let h be the homomorphism from M to M=B. If M=B is not a minimal MDP, thenthere exists a homomorphism h0 (that is not an isomorphism) from M=B to some MDPM0. Therefore there exists a homomorphism (h Æ h0) from M to M0. From the de�nitionof 
omposition, it is evident that Bh < B(hÆh0).We need to show that B is not 
oarser than B(hÆh0). In other words we need to showthat either B < B(hÆh0) or they are not 
omparable. From the 
onstru
tion of a quotientMDP it is 
lear that BhjS = BjS sin
e we use BjS as the states of M=B. Sin
e M0 isa homomorphi
 image of M=B but is not isomorphi
 to it, either (i) M0 has fewer statesthan M=B or (ii) some states in M0 have fewer a
tions than M=B. In 
ase (i) we havethat BjS < B(hÆh0)jS. We know that this implies that B is not 
oarser than B(hÆh0). In 
ase(ii) we have that BjS = B(hÆh0)jS. Let [s℄B (= [s℄B(hÆh0)) be a state with fewer admissiblea
tions in M0. This implies that s appears in fewer unique blo
ks in B(hÆh0) than in B.Thus B < B(hÆh0). Therefore B is not the 
oarsest reward respe
ting SSP partition. Hen
eM=B is a minimal image if B is the 
oarsest reward respe
ting partition of M. 26 An ExampleIn this se
tion we work out a slightly detailed example.Consider the MDP M = hS;A;	; P;Ri with S = fs1; s2; s3; s4g, A = fa1; a2g, 	 =S �A, P and R de�ned as follows:P (si; a1; sj) is given by the entry in the i-th row and j-th 
olumn of:s1 s2 s3 s4s1 0 0:8 0:2 0s2 0:2 0 0 0:8s3 0:8 0 0 0:2s4 0 0 0 1:0and P (si; a2; sj) is given by: s1 s2 s3 s4s1 0 0:2 0:8 0s2 0:8 0 0 0:2s3 0:2 0 0 0:8s4 0 0 0 1:0R(s2; a1) = R(s3; a2) = 0:8 and R(s2; a2) = R(s3; a1) = 0:2. For all other values of i and j,R(si; aj) equals zero. Figure 5 gives the transition graph of M.Consider the partition B of M given by B = nf(s1; a1); (s1; a2)g, f(s2; a1), (s3; a2)g,f(s2; a2); (s3; a1)g, f(s4; a1); (s4; a2)go. B is a reward respe
ting SSP partition. We 
anderive the quotient MDP M=B = hS0; A0;	0; P 0; R0i as follows:S0 = BjS = nfs1g; fs2; s3g; fs4go are the states of M=B.14
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Figure 5: Transition graph of example MDP MNow, �(s1) = 1, �(s2) = �(s3) = 2 and �(s4) = 1. Hen
e we set A0fs1g = fa01g, A0fs2;s3g =fa01; a02g and A0fs4g = fa01g.Now P 0(fs1g; a01; fs2; s3g) = P (s1; a1; s2)+P (s1; a1; s3) = P (s1; a2; s2)+P (s1; a2; s3) = 1:0.Pro
eeding similarly, we haveP 0(fs1g; a01; fs2; s3g) = 1:0 P 0(fs4g; a01; fs4g) = 1:0P 0(fs2; s3g; a01; fs1g) = 0:8 P 0(fs2; s3g; a02; fs1g) = 0:2P 0(fs2; s3g; a01; fs4g) = 0:2 P 0(fs2; s3g; a02; fs4g) = 0:8The probability of the ea
h of the other transitions is zero. R0(fs2; s3g; a01) = 0:2, R0(fs2; s3g,a02) = 0:8 and all other rewards are zero. Figure 6 shows the transition graph for M=B.One 
an de�ne a homomorphism hf; fgsjs 2 Sgi from M to M=B as follows: f(s1) =fs1g, f(s2) = fs2; s3g, f(s3) = fs2; s3g and f(s4) = fs4g. gs1(ai) = gs4(ai) = a01, fori = 1; 2, gs2(a1) = gs3(a2) = a02 and gs2(a2) = gs3(a1) = a01.Let I be the identity map on 	 and let h be an automorphism on M de�ned by:h(s1; a1) = (s2; a2), h(s2; a1) = (s3; a2), h(s2; a2) = (s3; a1) and h(s4; a1) = (s4; a2). The setof all automorphisms is given by AutM = fI; hg and with the 
omposition operator is thesymmetry group of M. It is easy to see that BG = B. Hen
e the M=B is the G-redu
edimage of M. M=B is also the minimal image of M.Consider the partitionB1 = nf(s1; a1)g, f(s1; a2)g, f(s2; a1), (s3; a2)g, f(s2; a2), (s3; a1)g,f(s4; a1)g, f(s4; a2)go. B1 is also a reward respe
ting SSP partition, but is not generatedby any group of automorphisms on M.
15
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Figure 6: Transition graph of redu
ed MDP M=B7 Spe
ial forms of HomomorphismsIn some spe
ial 
ases we 
an study simpler transformations of an MDP that give rise touseful redu
ed images. In this se
tion, we dis
uss some spe
ial forms of homomorphisms.If there exists an isomorphism from MDPM to MDPM0, then they are the same ex
eptfor a relabelling of states and a
tions. Frequently the relabelling of a
tions is independentof the states. In su
h 
ases one 
an 
onsider a simpler de�nition of a homomorphism asan ordered pair of surje
tions. Thus a homomorphism h from M = hS;A;	; P;Ri toM0 = hS0; A0;	0; P 0; R0i is de�ned by hf; gi where f : S ! S0 and g : A ! A0. h stillneeds to satisfy both 
onditions (1) and (2) of a homomorphism. We assume that in su
hs
enarios ea
h state has the same set of a
tions admissible in it, i. e., 	 = S �A.For example 
onsider the symmetri
 gridworld example from Se
tion 3. That world isisomorphi
 to problems with the goal in any of the other 
orners. If the goal moves fromthe NE 
orner to the SE 
orner, then an isomorphism between the two problems maps thestates in the bottom half of the grid to those in the top half and vi
e versa. A
tion N goesto S and vi
e versa. A
tions W and E are mapped onto themselves. This 
ertainly is asimpler des
ription than giving a
tion maps for ea
h of the 25 states.Another interesting spe
ialization is the 
ase of state homomorphisms. When the a
tionsadmissible in a state and its homomorphi
 image are the same, i. e., As = A0f(s) for all s 2 S,we 
an 
onsider homomorphisms with gs(a) = a for all s. Thus a homomorphism h redu
esto just a surje
tion on states f . This is the 
ase widely studied in model minimizationliterature. This simpli�es the derivation of a redu
ed image. As Dean and Givan [5℄ show,it is still a hard problem to derive a minimal image and frequently we have to settle for16



some redu
ed image.This formulation of a homomorphism is suÆ
ient for a large 
lass of problems. But(full) homomorphisms as we de�ne them in Se
tion 4 are more powerful and enable greaterredu
tion in MDP size. For example, in the previous se
tion, if we had restri
ted ourselves tostate homomorphisms, the given MDP M is a minimal MDP. Also 
ertain symmetries su
has rotational and re
e
tional symmetry, whi
h are not 
aptured by state homomorphisms,are 
aptured by (full) homomorphisms.As mentioned earlier, given a partition, it is a very hard task to identify and re�ne viola-tions of the SSP property. To make this task easier one 
an employ di�erent representationsof the MDPs. One su
h method is to use fa
tored representations as in refs. [5, 6℄. Herethe states of the MDP are represented by using various features. For example, a gridworldMDP might be represented by the x and y 
o-ordinates rather than a grid number. Withfa
tored representations, one 
an study partitions that result from proje
tions on to one ormore of the features in the 
ross produ
t. Though this restri
ts the 
lass of partitions thatwe examine, it sometimes makes it easier to 
he
k for violations of the SSP property. Deanand Givan [5℄ show that su
h restri
tions lead to useful algorithms.8 Dis
ussionIn this arti
le, we extended the model minimization framework of Givan and Dean to enablegreater redu
tion in problem size. Givan et al. [8℄ 
onsider two states equivalent if everya
tion admissible in one state is admissible in the other and is equivalent. We extend thenotion of equivalen
e so that two states are 
onsidered equivalent if for every a
tion availablein one state there is some equivalent a
tion available in the other state.Givan et al. [8℄ examined other notions of equivalen
e from existing literature beforeadopting sto
hasti
 bisimulations. For example, one su
h notion from FSA literature isa
tion sequen
e equivalen
e. Two ma
hines are 
onsidered equivalent if they produ
e thesame sequen
e of output symbols given the same sequen
e of input symbols and the samestarting state. In an MDP framework, this would translate as MDPs having the samedistribution over sequen
es of rewards re
eived given the same sequen
e of a
tions. This isnot a suÆ
ient notion of equivalen
e for MDPs, sin
e we are interested in equivalen
e ofpoli
ies and not just sequen
es of a
tions. See ref. [8℄ for an example where MDPs that area
tion-sequen
e equivalent have di�erent optimal values.MDP homomorphisms 
an be viewed as a form of sto
hasti
 bisimulations employed byGivan et al. [8℄ but they are a more basi
 
on
ept. Sto
hasti
 bisimulation are de�ned viarelations between sets and hen
e they have a greater expressive power than homomorphismsthat are based on surje
tions. Despite this greater power, one 
an show that there existsa sto
hasti
 bisimulation between two MDPs if and only if they have a 
ommon minimalimage. Thus, from the view point of model minimization, the same redu
tions are a
hievablewith both formulations.Givan et al. [8℄ also outline several methods for arriving at reward respe
ting SSP par-titions. It should be trivially possible to extend those methods to our extended de�nitions.17



It is also possible to extend their results on stru
tured state spa
es. We are working on thispresently. Dean and Givan [5℄ show that model redu
tion algorithms su
h as state-spa
eabstra
tion [3℄ and stru
tured poli
y iteration [4℄ are spe
ial 
ases of model minimization.These results also hold for our extended de�nition. In fa
t it is possible to show that a larger
lass of algorithms �t into our general framework. We outline one su
h example next.Zinkevi
h and Bal
h [24℄ de�ne spe
ial 
lasses of symmetries of MDPs and developalgorithms for taking advantage of su
h symmetries by 
opying values among symmetri
allyequivalent state-a
tion pairs. Their notion of symmetries is based on equivalen
e relationson state-a
tion pairs and 
an be shown to be a spe
ial 
ase of our de�nition. Their algorithm
an then be viewed as a spe
ial form of model minimization.The insight that symmetries give rise to reward respe
ting SSP partitions gives us an-other way to look for su
h partitions. One 
an start from obvious symmetries in a problemand �nd their 
losure to generate suitable partitions. In some 
ases, espe
ially that ofspatial problems, it is possible to de�ne the resulting homomorphism hG , and hen
e theredu
ed image, without expli
itly �nding G.Finding representations that exploit symmetries have always been a 
hallenging prob-lem [1℄. Combining model minimization with symmetries gives us some guidan
e in thisdire
tion. By examining the form of the homomorphism one 
an suitably modify repre-sentations so as to make it easier to derive the quotient MDP. This in turn simpli�es thesolution pro
ess. Again 
onsider the symmetri
al gridworld in Figure 2. As we dis
ussedearlier, the gridworld is symmetri
al around the NE-SW diagonal. If we adopt a s
hemethat assigns the same representation to states that are symmetri
al then we simplify thelearning pro
ess. One su
h s
heme is to represent ea
h square by the horizontal and verti
alproje
tions on the NE-SW diagonal. A
tions also should be represented with respe
t to thediagonal. This representation 
uts the state spa
e roughly in half. The resulting MDP 
anbe shown to be isomorphi
 to that in Figure 2 and is in fa
t a minimal MDP.Even when partitions of MDPs do not satisfy the SSP property exa
tly, sometimes theysatisfy some relaxation of it. Givan et al. [9℄ study model minimization with a weaker
riterion. The quotient MDP derived under this weaker 
ondition is a Bounded ParameterMDP where the transition probabilities are given by an interval. Analogously we would liketo develop a 
on
ept of approximate homomorphisms and approximate symmetries thatwould let us apply our ideas to a still larger 
lass of problems.A
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