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ABSTRACT

KEYWORDS: Policy, Stochastic, Dynamics, Exception

A long standing goal of AI researchers has been to develop learning approaches

that enable knowledge accumulation such that it can easily be reused in solving related

tasks. Although several tasks may seem similar, it is not easy to reuse knowledge gained

in solving a particular task for another task, however similar they may be. This is

due to the minute differences in the dynamics involved in the environment. The usual

approach to this problem has been to learn good abstractions by ignoring seemingly

irrelevant details. But some of these irrelevant details could be used to represent the

changes caused by the minute differences in the environment. In this thesis, we use this

approach wherein we treat the differences between two tasks as exceptions of one task’s

solution when applied to the other.

Policy is a function, mapping state to an action. Normally, when exceptions occur

near a state, the new optimal policy is not very different from the previous optimal

policy. The changes in the optimal policy are usually restricted to a neighborhood of

the affected state. Therefore it makes sense to handle only these exceptions as opposed

to relearning a new policy. One of the challenges here is to represent these exceptions

so as to accommodate cascading changes while making minimal modifications to the

model/policy representation.

Detecting an exception is a key issue in such approaches. In a deterministic envi-

ronment, identifying these changes is trivial since every action is associated with a fixed

output (next state/ response from the environment). A violation of this is an exception.

On the other hand, in a stochastic environment, differentiating between the occurrence

of an exception and a stochastic change in state is hard.

In this thesis, we look at developing compact models of the dynamics that retain

sufficient information to detect exceptions and localize them to small regions of the

state space. In addition we also explore questions of how to make minimal modification

to the model in order to accommodate cascading exceptions.
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CHAPTER 1

Introduction

The primary objective of Artificial Intelligence (AI) is to study human intelligence in

order to imitate it in a machine. But in spite of advances made in this area, the notion

of intelligence is still not well understood. Hence, the process of seeing, language un-

derstanding, reasoning, and other mental process that might appear straightforward and

obvious, are far more difficult to imitate in a machine. Though intelligence in generic

form is difficult to define, we can understand it better if it is characterized in terms

of different functional forms like attention, memory, producing and understanding lan-

guage, learning, reasoning, problem solving, and decision making. One of the common

aspects of intelligence in most of these functional forms is to look for redundancy and

then model it as an abstraction, where the notion of redundancy varies across the func-

tional forms.

Machine learning, a branch of AI, focuses on the development of algorithm con-

cerned with the problem of learning. Though there may be different aspects to the

problem of learning, the branch of machine learning known as reinforcement learning

(RL) is concerned with the development of algorithms to specifically solve the problem

of learning based on interaction in order to achieve a goal. Markov decision processes or

MDPs provide the framework for modeling and solving reinforcement learning prob-

lems. Most of the current solution techniques available in the RL community scale

poorly with the size of the MDPs. One way of addressing this problem would be to

use methods based on spatio-temporal abstractions. The abstraction is based on the

strategy of "removing irrelevant details". Spatial abstraction is done by the state aggre-

gation methods where the states are grouped together by ignoring distinctions between

the states. This is also called as factored representation of the states and the states are

represented using the factored variables. The temporal abstraction for example hier-

archical RL (HRL) framework (Barto and Mahadevan, 2003), encapsulates the lower

level action sequences into a single unit at more abstract level, allowing the decisions

to made at coarser level .



Figure 1.1: Agent with different Obstacles en route to the Door(goal)

Agent

Door

(a) Without obstacle X

Agent

Door

X

(b) With obstacle X

Spatio-temporal abstraction based methods like (MaxQ (Dietterich, 1999), VISA

(Jonsson, 2006) and Relativized option (Ravindran and Barto, 2003)) are based on no-

tion of skill specific representation. Dietterich, while proposing the MaxQ framework

for value function decomposition has discussed safe state abstraction conditions that

would minimally affect the quality of the sub-task policies that are being learned. Jon-

sson and Barto (Jonsson and Barto, 2000) have looked at the problem of jointly deter-

mining spatial and temporal abstractions in factored MDPs. Ravindran and Barto have

proposed relativized options that use the notion of partial homomorphisms to determine

lossless option specific state representations that satisfy some form of safe state abstrac-

tion conditions. Such approaches yield more compact representations of the skill since

they do spatial abstractions that are specific to the skill being learned. This allows to

considerably cut down the learning time and there by achieve better success rates when

solving new problems.

Option (Sutton et al., 1999) is a framework in HRL, where the skills are learned

using temporal abstraction. One might need many options to solve a given RL prob-

lem. However, the main difficulty in applying these to solve a new set of problems is

that problems are seldom encountered in exactly the same form. For example the agent

might have to operate in a variety of tasks; or there can be some changes in the en-

vironment such as different obstacle configuration (Figure 1.1); or there can be minor

changes in the dynamics of the world. In such scenarios one need to address several

questions such as whether to use the existing options, modify the existing set of options

or to learn new options.

However using the same option again in this situation may be suboptimal or even

may result in a failure. Also changing the option may end up in losing the options of

2



earlier tasks. Further, these changes may create a different spatial abstraction, if the

skills are learned with skill specific representation to represent the modified solution

thus losing the abstraction of earlier learned skills. Hence we need a framework which

can accommodate such changes with minimal variation in the spatial abstraction still

maintaining the quality of the solution of the original subtask that the skill was learned

on.

The knowledge management community has long dealt with the problem of incre-

mental maintenance of rule bases using the Ripple Down Rule (RDR) (Compton and

Jansen, 1990a,b; Gaines, 1995). The RDR representation allows to minimally mod-

ify the existing rule by adding exceptions that are derived from only those training

instances that contradict the existing rule. Taking inspiration from this concept, we

propose an extension to the options framework called Options With Exceptions (OWE).

Here, we assumed that new tasks are minor modifications to the earlier existing tasks.

In this framework, we also propose a novel method to find the landmarks in the spatial

representation of the task. This further allows us to represent the task and provide a

novel option management framework that enables us to safely update options. Similar

to RDR, this framework allows to modify an option’s policy only using instances where

the existing policy seems to fail. Thus, in order to maintain minimal variation in the

abstraction, changes in the policy are represented by the features extracted from these

instances. For example, in the simulated game shown in Figure 1.1a, the introduction of

an additional obstacle ‘X’ (Figure 1.1b) might require changing the policy only around

the states with the obstacle. However, this would require us to represent the location of

the obstacle as well as the original information that we were considering. In fact, we

would like to also accommodate more such changes cascadingly, without degrading the

spatial abstraction and any of the solutions learned along the way. While this method

may not yield a perfect abstraction, it does help to prevent in making critical changes to

the existing abstraction by maintaining the quality of the solution of the original subtask

that the skill was learned on.

The recent works like Option-Critic Architecture (Bacon et al., 2017) and Kulkarni

et al. (2016) learn the policy over the options, and the option policy. However, they

neither modify the existing set of options, nor maintain a database like structure for the

options.

3



1.1 Outline of the Thesis

In Chapter 2, we the provide the related work. In Chapter 3, we propose the framework

for Options With Exception (OWE). We also provide the notations to be used in the

chapter. We give the reasons why methods like UTree McCallum (1995) failed when

used as building blocks for OWE. Different building blocks of the framework are given.

The first is a structured representation of the option policy that allows for easy addition

of exceptions represented by the specific features. The second is the identification of

landmarks and building a network of landmarks that acts as a compact model of the

environment and quickly allows us to narrow down to the region where the option failed.

The third is a minimum model for the original policy that allows us to pinpoint the

exception state and provides the specific training instances that we need to include in

the exception representation. Chapter 4, describes the experiment section, where we

provide the results using the grid world and blocks world domain.

In Chapter 5, we summarize and present the possible future work.

4



CHAPTER 2

Related Work and Background

2.1 Introduction

In this chapter, we provide the background knowledge and the related work needed to

formulate the framework of OWE. In the background knowledge we look at reinforce-

ment learning, option framework and ripple down rules.

2.2 Background

2.2.1 Reinforcement Learning

Reinforcement Learning is a computational approach utilized in the area of goal di-

rected learning. It provides a framework to help solve the problem of learning based

on interaction. The learner is the agent and decision maker, and interacts with the en-

vironment in the form of an action (a(t)) at discrete time steps as shown in Figure 2.1.

In response, the environment presents a new situation (s(t)) to the agent and returns

a numerical value called reward (r(t)). The agent tries to maximize expected reward

over a period of time. Though there are many different ways to formulate the expected

reward, here we restrict ourselves to cumulative discounted reward formulation. Hence,

the expected reward will be r(t1) + γr(t2) + γ2r(t3) + ... + γn−1r(tn) + ..., where γ

is the discount factor and lies between 0 and 1. Though we have defined the reward in

terms of infinite termination time, reinforcement learning is finite horizon problem.

The agent uses the discount factor as a preference for the current reward over the

future rewards.



2.2.2 Markov Decision Process

A Markov decision process (MDP) provides the simplest framework for modeling and

solving reinforcement learning problems. We are using notation from Sutton and Barto

(1998). MDP is defined as a tuple 〈 S, A, Ψ, P , R 〉, where

(1) S is finite set of states, but can be extended to countable infinite states.

(2) A is finite set of actions that are possible from states in S.

(3) Ψ ⊆ A× S is set of admissible state action pairs.

(4) P is transition model : Ψ × S → [0,1]. It is denoted as P ( s, a, s′) = P a
s,s′

=

pr{ st+1 = s′ | st = s, at = a }, probability of transitioning from state s to state s′

under action a and
∑

s′ P ( s, a, s′) = 1.

(5) R is reward function : Ψ × S → <. It is denoted as R( s, a, s′), expected reward

for transitioning from the state s to state s′ under the action a.

The set of states is described via multi-valued features X1, · · · , Xn, where each Xi

takes value from some finite domain Val(Xi). The state s defines a value xi ∈ Val(Xi)

for each variable Xi. This representation is called structured representation.

MDPs can be further classified as discrete and continuous MDPs, depending upon

the type of values taken by the state and action variables of the MDPs.

The goal of reinforcement learning is to find an optimal policy. A policy π, for an

MDP is a mapping π : s → a that describes the behavior of an agent. Since the MDP

dynamics are stationary and as we are not concerned with the finite horizon problem, the

policies are assumed to be stationary. Further, a stationary policy can be deterministic

Figure 2.1: Agent Environment Interaction

Agent

Environment

r(t) a(t) s(t)
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or stochastic. In a deterministic policy, the same action is picked whenever the agent is

in that state, whereas in stochastic policy, actions are picked with some probability from

that state. The policy is called ε- greedy policy if with probability ε the agent explores

and with probability 1 − ε it acts greedily. While exploring, the agent picks the next

state with equal probability.

Further, the environment modeled by the MDP can be deterministic or stochastic

depending on the outcome of the action, taken by the agent. In a deterministic envi-

ronment taking the same action in the same state on two different occasions will result

in the same next state. While in a stochastic environment taking the same action in the

same state on two different occasions may result in different next states.

Given a policy π, a utility or value function can be associated with each state and

is a measure of the expected discounted reward, which the agent will receive following

policy π from state s. The value function is denoted as V π(s) and written as

V π(s) =
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)]

called as Bellman equation for state-value function V π.

Optimal value function is denoted as V ∗ and is maximal expected value got by any

policy starting at that state. It satisfies Bellman optimality equation.

V ∗(s) = maxa∈A(s)
∑
s′

P a
ss′ [R

a
ss′ + γV ∗(s

′
)]

Similar to the state-value function, one can define an action-value function. It is

denoted as Qπ(s, a) which means discounted reward which the agent gets from state s,

after taking action a and then following policy π. Optimal action-value function denoted

as Q∗(s, a) is maximal expected value got by starting at state s, taking an action a and

then following policy π.

Q∗(s, a) =
∑
s′

P a
ss′ [R

a
ss′ + γmaxa′Q

∗(s
′
, a
′
)]
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There may be possibly many optimal policies but they share the same optimal state-

value function.

V (s) = maxπV
π(s) ∀s ∈ S

A policy that is greedy with respect to this optimal value function is an optimal policy:

π∗ = greedy(V ∗).

It is easier to work with the action-value function because givenQ∗ one does not have to

do a one-step-lookahead search to find the optimal action as done with the state-value

function. Being greedy relative to optimal action-value function leads to an optimal

policy:

π∗ = maxaQ
∗(s, a).

The sequence of states 〈s1, s2, s3, . . . , st, st+1, . . .〉 are simulated using Q-values by

executing the policy π∗(st) in the state st ∈ {s1, s2, s3, . . .}, resulting in the next state

st+1 .

2.2.3 Q-Learning

Q-learning (Watkins, 1989) , (Sutton and Barto, 1998) is an off-policy TD control algo-

rithm which is used to update action-value functions:

Q(st, at)← Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)].

Its called off-policy because here learned action-value function approximates the opti-

mal action-value function independent of the policy being followed.

2.2.4 Options Framework

Options (Sutton et al., 1999) are used to represent temporal abstraction in reinforce-

ment learning. Given an MDP 〈S,A,R, P 〉, an option is described as 〈I, π, β〉, where

1. I : Initiation set where I ⊆ S.
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2. π : S × A→ [0, 1] where π is policy.

3. β : S → [0, 1] is termination condition.

The option is executed in states s ∈ I by selecting actions according to policy π.

At each state s the option stops with probability β(s) or continues with probability

β(s)−1. Typically the termination condition is deterministic, with the "terminal states"

of the option having β(.) = 1 and the other states having β(.) = 0. The initiation and

termination condition restrict the range over which option policy needs to be defined.

The SMDP Q-learning can be used to update the Q-values. This is given as

Q(s, o)← Q(s, o) + α[r + γkmaxo′∈os′Q(s′, o′)−Q(s, o)]

where k denotes the number of time steps elapsing between s and s′, r denotes the

cumulative discounted reward over this time,

In many cases, accurately executing an option’s policy does not depend on all state

features available to the learning agent. One can do option-specific state abstraction by

which irrelevant features specific to each option are ignored leading to compact state

representation.

2.2.5 Rules With Exception

Compton and Jansen (1990a,b); Gaines and Compton (1995) have provided a simple

structure which captures the context in which knowledge is obtained from an expert.

Usually new rules are added when an expert system misinterprets or fails to interpret

a case. For the wrong interpretation, the context is the rule which gave the wrong

interpretation. Therefore, the new rule added can fire if the rule that previously fired

incorrectly is again satisfied. This is done by including the rule number in the premise

of the new rule along with other conditions. In this way, rules are added at the end of

the list of rules. This representation of rule is called ripple down rule (RDR).

RDR is very different from the conventional types of representation where the new

rules subsume or overlap other rules in the knowledge base. Whereas in RDR, a new

rule will be tested after all the rules in the knowledge base have been considered. This
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represents the situation exactly the way in which the rules were to be obtained from

an expert resulting in the growth of the system very similar to the way in which the

knowledge is acquired from an expert.

There are few advantages of using RDR over conventional rules. In the conventional

rules, one of the drawbacks is that small changes made can lead to global changes

through complex interactions. This in turn makes the development and maintenance of

the system tougher. But, if the changes are locally contained in a well-defined manner,

the development and maintenance becomes easier. Thus addition of rules to RDR is

faster than the conventional rules as it keeps all the rules consistent while incorporating

the new knowledge into the system.

The format of rules with exception is

if <cond1> then conclusion except

if <cond2> then ...

else if ...

Example:

if A and B then rule1 [A, B]

If the new case is [A, B, D] then the error occurs in the conclusion which is corrected

as:

if A and B then rule1 except [A, B]

if C then rule2 [A, B, C]

In RDR, rule activation is done in the context of other rule activation. If the antecedent

of the parent rule is true and has no dependent rule, then its conclusion is ascertained.

However, if it has a dependent rule, then its antecedent is also checked. This goes on

until the antecedent of the dependent rule is false. When this occurs, the conclusion of

the rule before the rule whose antecedent is false is ascertained. For example,

if A and B then rule1 except [A, B]

if C then rule2 [A, B, C]

if D then rule3 [A, B, C, D]
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If to the above rule-set, a case [A, B, C] is introduced, the parent rule is checked first.

Since it is true, its antecedent is also checked and as it is also true, its dependent an-

tecedent is checked, which is false. Therefore, rule 2 is asserted. In the above rule

formation

A and B and not C and not D => rule1

A and B and C and not D => rule2

A and B and C and D => rule3

2.3 Related Work

Spatial abstraction is important for scaling reinforcement learning. This results in com-

pact representation of the problem. Compact representation not only mean correct rep-

resentation, it should be easy to learn from sample data and should lead to re usabil-

ity. Here correct representation means that the quality of solutions of original problem

matches with that of the compact representation of the problem. Compact represen-

tation of the MDP would require appropriate representation of MDP dynamics. For

example, factored MDPs are one approach to represent large MDPs compactly, where

the transition probability is represented using dynamic Bayesian network (Dean and

Kanazawa, 1989). Further, the ability to find the optimal solutions to the original MDP

from the reduced MDP are required. If the optimal solution in the abstract space is

also considered optimal in the original space, then the abstraction is called safe state

abstraction. Amarel introduced the concept of abstraction in the Missionaries and Can-

nibles problem (Amarel, 1968). He explored various representations of the problem but

selected the one which, while compact, still represents the true nature of the problem.

Skill-specific representation leads to state abstraction where irrelevant features spe-

cific to the skill are ignored. For example, while walking out of the room, the features

associated with the interior of the room are relevant while the features associated with

the exterior of the room are irrelevant. Thus, skill-specific representations lead to com-

pact representations which in turn reduce the computation and accelerate learning. This

is because, without state abstraction, one has to learn a separate value function for each

state of the world. But the disadvantage is that the abstractions generated could be

limited to tasks with similar goals.
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MaxQ (Dietterich, 1999) is a HRL method where state abstraction is combined

with the decomposition of value functions that are specific to the MaxQ framework. In

this framework, MDP M is decomposed into a finite set of subtasks M0,M1, . . . ,Mn,

where M0 is the root task. These subtasks are connected via an acyclic directed graph,

implying MaxQ is recursive in nature with the constraint that no subtasks can invoke

themselves directly or indirectly. Each subtask can be thought of as discrete-time semi-

Markov decision problems where actions taken to solve subtasks consist of primitive

actions or policies that solve other subtasks. These primitive actions are at leaf levels

and the policies of the subtasks are at intermediate levels. The reward got for executing

an action of the subtask is the value function for the executed action. The MaxQ value

function for a task consists of two terms; a discounted sum of rewards and a completion

function. The discounted sum of rewards is computed until the subtasks terminate. The

completion function is updated when the subtask’s call is returned and MaxQ learns the

value function of all these subtasks simultaneously.

Safe state abstraction is performed by removing the irrelevant state variables within

a subtask. The relevant variables are then used to define the value functions and policies

which are abstract. To remove the irrelevant variables from the subtask, conditions to

identify leaf and subtask irrelevance are used. In the condition identifying leaf irrele-

vance, a set of state variables X is irrelevant for a primitive action of a MaxQ graph,

if all the states, differing only in the value of the state variable X, have the same ex-

pected value for the reward function. This leads to a lesser number of relevant variables

for the nodes closer to the leaves than the nodes higher up in the MaxQ graph. In the

condition identifying subtask irrelevance, a set of state variables Y is irrelevant with

respect to subtask relevance, if the state transition probability distribution factors into

two sets X and Y for all possible abstract hierarchical policies. The result distribution

and termination conditions are only defined for the funnel action. The funnel action is a

macro action, which, when used, results in transition from set A to set B, where the size

of set A is smaller than the size of set B. In the condition utilizing result distribution

irrelevance, a set of state variables Z is irrelevant for the result distribution of an action

if the value function of two states have different values under the given policy but has a

component of the value function that has the same value for both the states. A termina-

tion condition can be used when a subtask guarantees termination of its parent task in

a goal state. All these conditions result in safe state abstraction and some of them are
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specific to the MaxQ framework.

One of the skill specific learner called VISA algorithm (Jonsson, 2006) decomposes

factored MDPs into hierarchies of options. This is done by constructing a causal graph

that describes the relation between state variables using Dynamic Bayesian Network

model of the factored MDP. Analysis of the state variable changes is used to induce hi-

erarchies of temporal abstractions. The algorithm assumes key state variables to change

at different time scales. Temporal abstractions are modeled using option framework.

The constraints on state representations along with dependence on a DBN model are

drawbacks of the algorithm.

There are various tree-based approaches, which lead to skill-specific state abstrac-

tion by learning the compact models of the value function of the abstract states. These

abstract states are represented as leaves of the tree. The G-algorithm (Chapman and

Kaelbling, 1991) follows a similar approach, applied to the continuous state space,

wherein it discretizes the attributes depending upon the distance from the agent and

then uses those attributes to discretize the state space by building tree-like structures. It

starts with a single node, making no state distinction, but after a fixed number of steps

and for each state distinction that could be made, fringe nodes are added beneath the

root node. The addition of these distinctions are based on the statistical test on future

discounted rewards, i.e., comparisons are made between the immediate rewards, stored

in root node and future discounted rewards, stored in fringe node. If the comparison is

found useful, then the fringe nodes are upgraded to leaf nodes, with new fringe nodes

added beneath the leaf nodes. The statistical test used is t-test. The statistics and Q-

value are stored and updated in the leaf nodes.

The parti-game algorithm (Moore and Atkeson, 1995) is similar to the G-algorithm

but restricted to high-dimensional continuous deterministic environments. It starts with

two cells, with one cell covering the goal region and the other cell covering the rest of

the continuous state space. The greedy controller then traverses the cell covering the

goal region, and if it fails to transit to the other cell, it then refines the partition. In this

process, it builds a tree where the leaves represent the direction. The controller then

uses this tree to reach the goal region. The parti-game algorithm is an instance-based

learner.

The U-Tree (McCallum, 1995) extended the idea of the G-algorithm to instance-
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based learning to solve large partially observable Markov decision problem (POMDP).

Normally, while solving POMDP, one has to look at the history of state space until

the problem becomes Markov, thereby converting POMDP to MDP. Similarly, the U-

Tree looks back in time and records the history of state and action until the state is

Markov. This results in partitioning of the set (A × O)H where H is the history’s

index, representing a certain number of experiences, O is a set of observation variables

representing the observable features of the state and A is a set of actions. Therefore, the

U-Tree considers state distinction with respect to the actions and observation variables

over H , resulting in a factored representation of the set (A×O)H .

The learning agent in the U-Tree encodes the information regarding the agent-

environment interaction as a transition instance, which is then added to the end of the

transition instance chain. In transition instance Tt =< Tt−1, at−1, rt, st > st ,rt are ob-

servation vectors and rewards at time step t and Tt−1, at−1 are transition instances and

the action taken at time step t− 1. Transition instances, whose actions and observation

variables match that of the labeled internal nodes of the U-Tree are then stored in the

corresponding leaves of the U-Tree. As the leaves of the U-Tree are treated as states, an

estimate of P (s′/s, a) , R(s, a) and Q(s, a) are stored in the leaves. For each action a

taken by the agent, the U-Tree performs one value iteration sweep and updates Q(s, a)

stored in the leaf node s and also updates the estimates P (s′/s, a) and R(s, a).

Similar to the G-algorithm, the U-Tree algorithm also starts with a single node,

adding fringe nodes beneath the leaf nodes. However, the U-Tree differs from the G-

algorithm on the number of split variables considered for the fringe nodes. While the

G-algorithm considers one variable as a split variable, the U-Tree considers a set con-

sisting of observation variables and actions which are not already in the path from the

root to leaf node. The fringe node is then expanded by all possible permutations of new

variables selected from this set to depth z. The maximum value of z depends on the his-

tory index H and controls the number of new distinctions that can be made. Depending

upon the new distinctions, a fringe node gets its set of instances from its parent leaf

node. The U-tree then updates the estimates of R(s, a), P (s′/s, a) for each fringe node,

and performs value iteration to calculate the Q(s, a) for each fringe node s, action a

pair.

The U-Tree calculates the expected future discounted reward values,Q(Ti) = Q(Ti) =
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rt+1+γ
∑

s′ P (s′/s, a)u(s′) for each instance Ti, for all the fringe nodes and leaf nodes.

A non-parametric statistical test, Kolmogorov-Smirinov test, compares the cumulative

distributions of the Q(Ti) values of the leaf node’s policy with that of the fringe node’s

policy. This is done to look for the state distinction (fringe node) whose Q-values differ

significantly from that of its parent leaf node. If the distributions have enough difference

to be statistically significant, the new distinctions are made permanent and the fringe

nodes are upgraded to official leaf nodes. This process continues until no more utile

distinctions can be made to the tree.

The problem with the U-Tree is that it is computationally highly intensive as a statis-

tical test has to be done for each fringe node / leaf node pair.Also, the number of fringe

nodes is a factorial of the number of variables which are selected as a new variable for

splitting. Furthermore, there is no concept of roll-back as the distinctions made in the

U-Tree are hard-coded, i.e., once the split is made, it cannot be changed.

The U-Tree was further extended by Jonsson and Barto (2000), called the Hierarchi-

cal U-Tree or H-Tree. They used the H-Tree to solve problems in partially observable

semi-Markov decision processes (POSMDP). POSMDP is got by adding temporarily

extended actions to the action set of partially observable decision processes (POMDP).

The H-Tree uses options to model activity representing temporarily extended actions.

It forms the partition of the set (op × O)H where op is the option, i.e., it considers the

distinction over the options and observations which are recorded during the execution

of the options over the last H time step. The H-Tree represents each option as a U-Tree.

Thus, it can represent a single primitive action or a hierarchy of options. In this way, it

performs option-specific state abstraction.

The differences between the U-Tree and the H-Tree are very limited. Transition

instances used to train the H-Tree are extensions of the instances of the U-Tree. The

only difference in the transition instance of the H-Tree when compared to the U-Tree

is in reward. In H-Tree, reward is the sum of discounted rewards received during the

execution of the option as compared to rewards received during the execution of ac-

tions stored in the U-Tree. Transition instances of the H-Tree also store an extra term

called the duration of the execution of the option. The H-Tree uses SMDP Q-learning to

perform value iteration to estimate Q(s, op) of each leaf-option pair (s, op). One inter-

esting point highlighted by the authors was about hierarchical memory. Generally, there
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is no method to select the history index H in the U-Tree. Although the H-Tree doesn’t

define a method to select H , hierarchical organizations make it easier to remember im-

portant decision points. This is because of transition instances which act like memory.

The H-Tree framework was also extended to MDP, with H’s value recorded as 1.

The continous U-Tree (Uther and Veloso, 1998) was an extension of the discrete

U-Tree to continuous valued features. In this method, discretization of continuous val-

ues is not needed since it is done while the U-Tree is being built. The agent views

the world as a continuous state called sensory input. Sensory input is a vector of real

value. The U-tree leads to a factored state space where the abstract state is an area in

sensory input space. It starts with a single node depicting no discretization of sensory

input. A binary tree is then formed where each internal node is labeled with an attribute

and decides the way sensory input has to be divided. Leaves of this binary tree cor-

respond to abstract states. The transition instance is recorded similar to the discrete

U-tree and is represented as 〈I, a, I ′, r〉, where I , I ′ are sensory input, a is action and

r is reward. This transition instance is then used to generate data-points represented

as tuples 〈I, a, q(I, a)〉 where q(I, a) is the expected reward of performing this transi-

tion. It updates the action value function, q(I, a) = r + γV (s′) where s′ is the abstract

state in which the transition instances are stored. The continuous U-Tree performed two

statistical tests, Kolmogorov-Smirinov and sum-squared error, to compare the distribu-

tions. Once the tree was built, the result was a standard discrete reinforcement learning

problem and finding Q(s, a) for every abstract state s was similar to that done by the

U-Tree.

The idea of the U-Tree looking back in time for a required number of time steps

to make a current decision was used to formalize Hierarchical Short-Term Memory

(Hernandez-gardiol and Mahadevan, 2000). This solved large partially-observable se-

quential decision tasks and specially perceptually-aliased tasks. It used short-term

memory to make decisions at each decision-making point which was represented as the

Nearest Sequence Memory (McCallum, 1995) or the U-Tree. The Nearest Sequence

Memory algorithm was used to evaluate the closeness between the current state and the

past states experienced by the agent according to the matched length of the suffix chain

preceding the current state, and the action was selected from the longest match. Com-

bining hierarchical activity with short-term memory allowed the agent to add memory

at more informative levels of abstraction. A Hierarchical Abstract machine was used
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to implement the hierarchy of activities while SMDP Q-learning was used to update

the Q-value of the current state. They found that multi-level Hierarchical Short-Term

Memory, where each abstract level had memory, outperformed the flat and hierarchical

methods which did not use memory because memory-based SMDP Q-learning methods

rapidly propagated delayed rewards across long decision sequences.

A relativized option framework (Ravindran and Barto, 2003) is a compact repre-

sentation where the family of related subtasks are represented using a single subtask

whose solution gives the solution for the entire family of related subtasks. A relativized

option does symmetry-based reductions, by abstracting away the repeated portions in

the tasks by specific subtasks called option-MDP. Let M be an MDP and M ′ be the

reduced model got by minimization of M . Homomorphism mapping from M to M ′

is a mapping where equivalent states and actions of M are mapped to the same state

and the same action respectively in M ′ . The transition probability of M ′ is the sum of

the transition probability of states of M that are mapped to the same state in M ′ . A

state-action pair that has the same image under homomorphism has the same expected

reward. Subtasks restrict the state-action space and when viewed with respect to the

original MDP, homomorphism over these restricted spaces is called partial homomor-

phism. This partial homomorphic image models the similarity among the family of

related subtasks and is called an option MDP as it is a partial homomorphic image of

an MDP with respect to options. The option MDP is the reduced representation of the

subtask. S, A and P of the option MDP are same as the original MDP but for reward

functions, which are chosen based on option subtasks. As the relativized option is de-

fined over the option MDP, separate state abstraction is done for each option. To learn

relativized options, it is assumed that the option MDP and the transformation are given

beforehand.

The traditional RL framework assumes that the ‘critic’ evaluates the agent’s behav-

ior as a part of the environment. In intrinsically motivated RL (Singh et al., 2004)

the environment is split into external and internal environment. The critic is now part

of the internal environment. The inspiration behind the framework is to encapsulate

the organism motivation system within the internal environment. The rewards are ex-

trinsic and intrinsic, given by the external and internal environment respectively. The

authors also assume that the salient events are given beforehand, and the reward given

to achieve an event is intrinsically proportional to the error in prediction of the option.
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Higher level options use the options corresponding to the ‘salient’ event options us-

ing intra option learning methods (McGovern, 2002). Limitation of this work is that

the notion of ‘interesting and novelty’ is much more complex than their assumption of

salient events. Since the salient events are assumed to be known beforehand, there is no

notion of option discovery.

Linear options (Sorg and Singh, 2010) is a linear representation of the option. Lin-

ear method are used to approximate the value function as a linear combination of the

state feature vectors. In this work the authors represent the state feature vector in a n

dimensional space. A linear option is a option where I ∈ Rn, π : Rn × A → [0, 1]

and β : Rn → [0, 1]. The behavioral policy evaluation is done using SMDP-LSTD,

which is an extension of MDP-LSTD method for policy evaluation of primitive actions.

Although linear options provide better generalization over states, their use has so far

been explore mainly in LSTD style methods, which have quadratic complexity. This

makes their convergence slow as compared to the conventional linear complexity of the

TD algorithms.

Kulkarni et al. (2016) extends the work (Singh et al., 2004), where they use func-

tion approximation (deep neural network) to represent the option policies (controller)

and the policy over the options (meta controller). The meta controller finds the policy

over the goals by maximizing the expected future extrinsic rewards. The goals here can

be thought of as the sub goals. The meta controller hands the control to the controller,

and the controller uses the current state and the goal to find the policy that maximizes

the expected future intrinsic reward. When the controller reaches the goal, it hands the

control back to the meta controller, which again calls the controller with the current

state and the new goal. Limitations here are that the subgoals are given beforehand to

the option learners.

In Option-Critic Architecture (Bacon et al., 2017), the authors overcome the limi-

tations of the work (Kulkarni et al., 2016). They use policy gradient methods to learn

the option policies and the termination conditions of the option. The idea of policy

gradient method is to increase the probability of the actions which would increase the

expected discounted reward. The option goal which is a subgoal in a task is a state with

the property of the ‘bottleneck’ (Simsek et al., 2005; Menache et al., 2002). So the

option policy would be to optimize the reward to achieve the subgoal but will ignore the
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effect of those actions in hindsight. The authors come up with the "Intra-option policy

gradient theorem" which actually says that the local changes ( primitive actions) are

going to have an effect on the global expected discounted reward. Hence this theorem

says take better primitive actions more often in the option. In the "Termination gradient

theorem", the intuition is that when the advantage function is large then lengthen the

option or cut down the option when the option is suboptimal. The advantage function

with respect to an action measures the difference between expected return by taking ac-

tion from the state with the expected return from the state. The limitation of this work

is the assumption that all options apply everywhere.

The recent works like Option-Critic Architecture (Bacon et al., 2017) and Kulkarni

et al. (2016) learn both the policy over the options, and the option policy. However, they

do not modify the existing option, whereas we develop an option representation that can

accomodate small changes in the option policy. The changes do not modify the original

policy thus maintaining a database like structure for the options.

2.3.1 Conclusion

In this chapter, we looked at the background work and the related work needed for the

next chapter "Options with exception". In the next chapter, we propose the framework

of options with exceptions and the explain different building blocks of this framework.

We also provide the experimental setup and the results to evaluate the framework.
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CHAPTER 3

Options With Exceptions

3.1 Introduction

In this chapter, we propose the Options With Exceptions (OWE) framework and address

several key issues towards its formulation. Let us consider a partitioned gridworld do-

main with partitions (‘P1’, ‘P2’, ‘P3’ and ‘P4’) and an agent as shown in Figure 3.1.

The actions available to the agent are North, South, East, West. An action would result

in the transition to the expected state with a probability of 0.9. It results in a transition

to any one of the unintended directions with a probability of 0.1. A executed trajectory

from the start position to goal position using the optimal policy is indicated by the line

through ‘P1’ and ‘P2’. Let an obstacle ‘O’ be placed near the partition ‘P1’ as shown

in Figure 3.2, leading to the failure of the policy (action ‘West’) which is called an ex-

ception. Usually, when an exception happens, a new policy is learnt between the start

position and the goal. However, since the changes in the policy are restricted to a few

states, one can look at learning a policy from the point where the original policy failed,

state ‘A’, to the nearest point where the two policies agree which is indicated as ‘L2’.

A executed trajectory of this new policy is represented using the dashed line in Figure

3.2. Similarly when an obstacle ‘R‘ is placed near partition ‘P2‘ blocking the original

policy ‘West’, the new policy is learnt, which is denoted using double dotted line in

Figure 3.3.

One key issue to be addressed in such a framework is “how to detect when an ex-

ception has occurred”. In a deterministic environment this is easy since each action has

only one outcome and we can readily detect when the expected outcome does not occur.

In a stochastic environment identifying such a failure of expectation is non-trivial. One

would have to learn a probabilistic model of the expected dynamics under the current

policy and then devise a test to detect when there is significant deviation from the ex-

pectation. While one could take recourse to many of the model estimation methods,

building and maintaining a database of such models for all possible situations is time



Figure 3.1: A partitioned gridworld example with the partitions P1, P2, P3 and P4. The
agent learns the policy to reach the goal from the start.

A executed trajectory using the normal Policy
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Figure 3.2: A partitioned gridworld example showing the exception caused by the in-
troduction of an obstacle O near partition P1.

A executed trajectory using the normal Policy

A executed trajectory using the exception Policy
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Figure 3.3: A partitioned gridworld example showing the exception caused by the in-
troduction of the obstacles O and R near partition P1 and P2 respectively.

A executed trajectory using the normal Policy

A executed trajectory using the exception Policy
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consuming and not feasible. So we look at developing compact models of the dynamics

that retain sufficient information to detect exceptions and localize them to small re-

gions of the state space. In addition we also explore questions of how to make minimal

modification to the model in order to accommodate cascading exceptions.

We look at problem definition in section 3.2, followed by choice of algorithm in

section 3.3. In section 3.4, we look at Transition Time Model. Finally in section 3.5 we

conclude.

3.2 Problem Definition

An option O = 〈I, π, β〉 is a policy fragment that represents a solution to a frequent

subproblem encountered in a domain. Often, it is hard to find subproblems that are

exactly the same. Though I and β might be same for the subproblem, the policy π

might be different. Thus using the same option again could be suboptimal. These

differences in π, however small, need to be accounted for in the reused policy. The goal

is to develop an option representation that can accommodate small changes in π while
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maintaining the original π. Further, the representation should be able to accommodate

cascading changes to π.

3.3 Framework and Choice of Algorithms

Let us consider the partitioned gridworld shown in Figure (3.1), with the assumption

of a deterministic environment in the room. In a deterministic environment, taking the

same action in the same state on two different occasions will result in the same next

state. For example at the state ‘A’, the action ‘East’ taken by the agent would always

result in a state that represents the passage through ‘P1’ leading to the other side of the

room. But when an obstacle ‘O’ is placed near the partition ‘P1’ as shown in Figure

3.2, the action ‘East’ would result in a failure. This failure is easy to detect as the agent

fails to cross the partition ‘P1’. However, one might still need to model the result of the

action to detect the failure. This model can be of a simple form, where one needs to

store the next state for each state-action pair that one encounters on the path from start

to goal.

In a stochastic environment, identifying the failure mentioned in the above para-

graph is non-trivial. Because in a stochastic environment taking the same action in the

same state on two different occasions may result in different next states. Further, there

are three basic types of outcomes possible due to a failure in a stochastic domain. These

are lack of transitions, transitions to arbitrary neighboring states, and transitions to ar-

bitrary non-neighboring states. For example in Figure (3.2), placing the object ‘O’ near

‘P1’ will result in the failure, lack of a change of state. In order to identify these pat-

terns of outcomes, one needs to store the transition dynamics for each action. Though

there might be different models to capture the transition dynamics, the basic model,

similar to deterministic environment would be to store a set of next states along with

their respective transition probabilities for each state-action pair.

However, building and maintaining a database of such models for all possible state-

action pairs is time consuming and not feasible for stochastic environment. Thus we

need a framework which can compactly store the information regarding the transition

dynamics and is useful in detecting failures and localizing them to small regions of the

state space. We also need to add and safely update the policies. Hence we propose a
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framework called Transition Time Model, which addresses all the above issues. In the

next section, we enumerate the difficulties faced in our initial attempts while imple-

menting OWE using U-Tree.

3.3.1 Discussion

Initially, we looked at using U-Tree representation (McCallum, 1995) to model OWE

as it does skill specific state representation along with on-line learning. In addition,

a U-Tree is essentially a suffix tree, which is a variant of decision trees and supports

incremental learning of representations. However, U-Trees do not represent the policies

explicitly and at any point use the action with the maximum Q value in the abstract state

corresponding to the current leaf of the U-Tree.

Hence even local changes in policy result in global changes, due to the change

in the value functions. This results in the original policy being adversely affected.

Furthermore it also changes the state abstraction extensively resulting in unnecessarily

complex representations. For example in Figure 3.3, the states whose policies fail, are

predominantly near the place, where the obstacle ‘R’ is placed. But when the U-Tree

learns the new policy through the partition ‘P3’, the value function for most of the states

will change. This will lead to splits in the U-Tree for all the states represented by the

U-Tree in ‘Room3’ and ‘Room2’, though the policies are not changed in these states.

Thus we have to look at alternate mechanisms for implementing the OWE frame-

work. We use an explicit representation for the policy using suffix trees in conjunction

with a "Transition Time Model" which we will explain in the next section.

3.3.2 Notation

Definition: A trajectory is a sequence of states 〈s1, s2, s3 . . .〉 through which an agent

moves.

Definition: st-trajectory is a trajectory where the agent starts from the start state and

follows the optimal policy to reach the destination. Q-value table is used to sim-

ulate this trajectory as described in the section 2.2.2.

Definition: st-exception-trajectory is a trajectory where the agent starts from the start
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state and follows the optimal policy but the trajectory might contain states where

the optimal policies fail. The st-exception-trajectory , unlike st-trajectory, might

never reach the destination. Hence, we need to specify the threshold threshno−state,

which is used to terminate the trajectory when the length of the trajectory is

greater than the threshold.

Definition: ηs is the total number of times a state s has occurred in all the trajectories.

Definition: A transition instance is the tuple 〈st, at, st+1〉, where st+1 is the resultant

state when the agent follows the action at in current state st.

Definition: A transition chain is a sequence of transition instances where the resultant

state (st+1) in the transition instance (Tt) is same as the current state of the next

transition instance (Tt+1) i.e., { T1=〈 s1, a1, s2 〉, T2=〈 s2, a2, s3 〉 . . . Tt=〈 st, at,

st+1 〉 , Tt+1=〈 st+1, at+1, st+2 〉 . . . }.

3.3.3 Policy Representation

One of the key issues in OWE framework is to address the problem of policy repre-

sentation, so that modifications can be made without affecting the base policy. Further,

we also need context specific updation of the policies. In this section, we address these

issues and propose a representation for policies.

Usually, the policies are implicitly represented using Q-values. But if the agent

learns a new policy, then modifying the policy will result in changing the value function.

For example in Figure 3.2, the representation of the new policy between the states ‘A’

and ‘L1’ through partitions ‘P1’ and ‘P2’ might affect the representation of the original

policy if it is represented using Q-values. However the values of the value function take

a longer time and more experience to converge to useful values. Hence, a representation

is required that is computationally efficient. Further, the changes to the policies should

not alter the existing policies and also the changes should result in a representation

with minimum variation from the existing one. Here by minimum variation we mean

that required changes are made to the affected part of the representation and rest of the

representation is left untouched.

Though there are more than one method to do it, we look at a method in which the
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Figure 3.4: An example of a suffix tree, where the current state 〈x0 = 6, x1 = 6, x2 =
0〉(H = 0) of the agent is ‘B’ and the previous state 〈x0 = 6, x1 = 7, x2 =
1〉(H = 1) of the agent is ‘A’ with an obstacle ‘O’. The action taken at state
‘B’ is dependent on the previous action act|1step. The features of a state
for example the ith feature of a state, is represented with the history infor-
mation(H) as featurei|Hstep. Similary the action is represented with the
history H as act|Hstep.
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representation of the new policy is conditioned on the features that caused the changes.

For example in Figure 3.2, new policy between the states ‘A’ and ‘L1’ through parti-

tions ‘P1’ and ‘P2’ can be represented by conditioning it on the feature corresponding

to obstacle ‘O’. Let the initial policy and the new policy represent the policy of the

state before and after the obstacle is introduced in the domain. Note that in Figure

(3.1,3.2,3.3), the states can be represented as a tuple 〈x0, x1, x2〉, where x0, x1 indicates

the position of the agent in the domain and x2 indicate the presence of the obstacle.

Therefore, the state and the position of the agent are the same. Though an obstacle will

affect the policy of the state containing it, it will also affect the policies of the neigh-

boring states. For example in Figure 3.2, let ‘B’ be the state which is above the state

containing the obstacle ‘O’. Initial policy of the agent at state ‘B’ is south. However as

the new policy at state ‘B’ is north, the change in policy should be represented using

the feature of ‘O’ as shown in Figure 3.4. Similarly the neighbors of ‘B’ also have to

represent the changes in their policy. In general we might also require a small amount

of history in representing these changes. But as we move farther away from point ‘O’,

the policies might not get affected. Thus the representation should be able to make the

required changes to the affected parts of the existing representation and leave the rest

of representation unaffected. This can be achieved using a suffix tree.

Definition : A suffix tree T for an m-character string S is a rooted directed tree with

exactly m leaves where

(1) Each internal node, other than the root, has at least two children and each

edge is labeled with a non-empty substring of S.

(2) No two edges out of a node can have edge-labels which begin with the same

character.

(3) The key feature of the suffix tree is that for any leaf i, the concatenation of the

edge-labels on the path from the root to leaf i exactly spells out the suffix of

S that starts at position i i.e., S[i..m].

The suffix tree provides a rich representation that supports context specific updation

and thereby accommodating the required changes in a minimal way. Our policy rep-

resentation uses a modified form of a suffix tree, where the past states and actions are

stored as internal nodes of the suffix tree, and the leaf nodes store the policy.
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Definition : A history space (Ã × S̃)H={ st−H , . . ., at−2, st−1, at−1 } where H is the

history index denoting the number of time steps in the past from the current time,

is a sequence of past states S̃ = { st−H , . . ., st−2, st−1} visited and past actions Ã

= { at−H , . . . at−2, at−1 } taken by the agent.

For example, if the agent’s current state is ‘B’, then the history space one time step

in the past is (Ã × S̃), where the variable S̃ is the state with ‘O’ and the variable Ã

is the action in that state. Suffix can be thought of as a sequence in the history space.

For example in the previous example, the suffix will be the values of S̃ and Ã. We

have included the action in the history space because it helps to capture the context of

learning a new policy in a more generic manner, thus allowing us to condition on it along

with the state features. This formulation is very useful as some of the states which are

farther away from ‘B’ might represent its new policy conditioned on the policies of its

neighboring states. In general if the history space is (Ã× S̃)H then the internal nodes of

the suffix tree are from the set { st−H , . . ., at−2, st−1, at−1 }. Another advantage which

suffix tree provides is that of incremental learning as done with decision tress.

The transition instances required to train the suffix tree are provided with the help

of the transition time model which is explained in the subsequent section.

3.4 Transition Time Model

One of the chief components of the Option With Exceptions (OWE) framework is a

Transition Time Model that records the transition time between certain distinguished

states, hereafter known as landmarks.

In the partitioned gridworld example , as shown in Figure (3.1,3.2) the initial policy

of the agent whose task is to reach the goal from the start, is represented by the lines

through partitions ‘P1’ and ‘P2’. Though the policy fails at the state ‘A’ because of the

obstacle ’O’, the policy of the states along the line segment from the start to state ‘A’

agrees with the initial policy. Similarly policies of the states along the line from the

‘L2’ to goal also agree. Thus one has to come up with a method, to find the nearest

position where the two policies agree, from the point where the policies failed. In order

to pinpoint such a point, one has to compare the two policies at each position, which
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is computationally intensive and unrealistic. Hence, we look at a generic method of

landmarks and networks formed by interconnecting these landmarks. The idea behind

this is to partition the st-trajectory in terms of landmarks, thus providing the abstraction

of the trajectory.

Definition : A Region 〈st, st+1, st+2 . . . st+m〉 is a subsequence of the trajectory 〈s1, s2,

s3 . . . st, st+1, st+2 . . . st+m, st+m+1 . . .〉.

Definition : A Path 〈s1, s2, s3 . . . sn〉 is a trajectory that starts at the start state s1 and

terminates at the goal state sn.

Definition : Landmarks are places or sites that are visited often and are used to either

find the way backward or forward. Using the same notion, we define a landmark

for a region as a state that is mostly visited when paths are traversed (successful

or unsuccessful) through that region. The notion of a subgoal is different from

that of a landmark.

Definition : Subgoal is a funnel state (Asadi and Huber, 2005) or a bottleneck (Mc-

Govern and Barto, 2001) state that is visited on all successful paths but not on

unsuccessful paths. Thus a subgoal may be a landmark whereas vice-versa may

not be true. For example, in a two room connected by a door, the state corre-

sponding to the doorway can be a subgoal and landmark but the state near some

distinguished object might be a landmark, but not a subgoal.

Definition : Exception region is a region of st-exception-trajectory where the policy

fails. Landmarks help us to approximately find the region where the policy dis-

agrees by identifying the landmarks which cover this region of trajectory. In

Figure 3.2, the exception region lies within landmark pair L1 and L2 and we can

assume the point at which the policy agrees as L2. This allows to work abstractly,

reducing the computation cost. It also provides an option management framework

that allows us to safely update the options.

3.4.1 Identification of Landmarks

We propose two heuristics to identify landmarks:
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Figure 3.5: Spiked states

A

(a)

B

(b)
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(c)

Spiked State Method While traveling, most people try to associate landmarks with

junctions. A junction would aid in allowing people to move between paths.

Definition : Spiked State st is a state with the property ηst−1 < ηst and ηst > ηst+1

3.3.2, where st−1, st, st+1 are the states that are visited by the agent at suc-

cessive time instances. Hence the spiked state has the highest frequency of

visits across paths when compared to other neighboring states. It normally

occurs at the junction of many paths.

Definition : Co-occurring Spiked States are set of states that spiked in the same

path.

Spiked state heuristic uses the notion of spiked state with the constraint that the

paths are sampled with random start state. From the set of spiked states, we

choose those states that co-occcured with the spiked states in a maximum number

of paths. We use this heuristic to identifiy landmarks in the entire domain because

it uses a random start state to sample the st-trajectory, thus allowing us to capture

the actual notion of landmarks.

One of the problems with this heuristic is that it requires the domain to have large

number of different paths through the states which enables us to find the required

pattern to identify the spiked states. For example in Figure 3.5, states A and B

will satisfy the criteria of spiked state compared to state C as they have multiple

different paths passing through them. The states A or B should have large number

of neighbors in order to be highly connected. But most of the RL domains do not

satisfy this criterion, thus leading to an alternate method called mean-to-variance

ratio.

Mean-to-Variance Ratio Method This heuristic uses a simpler computational approach

when compared to a spiked state. Here we find the landmarks only on the st-
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trajectory. Paths are assumed to start from the same start state. Let tis be the time

at which the state s is encountered while traversing the path i. The time at which

each state s occurs in the path along with its mean, µs =

∑
i t
i
s

Totalnumberofpaths
and variance σs =

∑
i(t

i
s − µs)

2 is extracted for all the states in the paths. The

states which are closer to start are almost always visited hence they have low vari-

ance as compared to the other states in the path. Similarly the states near the goal

have high mean. The states are then sorted in an increasing order of mean-to-

variance ratio. By this the states near the goal state and the start state are avoided.

This analysis is done for the states which occur in nearly all the paths. From this

list, landmarks are then selected, satisfying the criteria of minimum and maxi-

mum distance between them. This leads to uniform distribution of landmark on

st-trajectory.

3.4.2 Construction of the Transition Time Model

Once the landmarks have been identified, we build a Transition Time Model to capture

the connectivity information between the landmarks. To build a Transition Time Model,

landmarks need to be uniformly distributed throughout the st-trajectory. The model also

works with non-uniformly distributed landmarks, but then it will lead to non-uniform

division of st-trajectory. This will further lead to learning varied length of policies

between the landmarks, though exception is caused by small change in the policies. In

order to localize an exception within a small region and to make minimal changes in

the policies, we need the landmarks to be distributed uniformly. We specify a bound on

the distance between landmarks. Small region can be described in terms of the bounded

distance between landmarks having a lower and an upper limit.

Definition : A Landmark Network denoted as lgraph is a labeled directed acyclic graph

described by the tuple 〈llist, ledge, Lf〉where llist is a list of landmarks, and ledge ⊆

llist × llist is the set of edges; (u, v) ∈ ledge implies that landmark v is followed

directly after the landmark u in many st-trajectories. The edge (u, v) is present in

lgraph if the percentage of st-trajectories in which v directly follows u is greater

than the threshold threshno−traj . The label function, Lf assigns to each element

31



in ledge a list of real numbers

Lf : ledge → R|paths(u,v)|

(u, v) 7→ (tu,v1 , tu,v2 , tu,v3 . . . , tu,v|paths(u,v)|).

Here | paths(u, v) | represents the number of different paths between landmarks

u and v leading to multiple average transition times between the same pair of

landmarks. This happens because, after an exception, the modification of the

landmark network leads to the addition of new paths between landmarks which

may be already connected. The average transition time along the ith path between

the landmarks u and v is denoted by tu,vi . The average transition time between

any two landmarks u and v is the average of the difference tiv - tiu, as discussed in

Section 3.4.1, and is extracted for all the landmark pairs that are part of the same

path i

Definition : A Transition Time Model consists of the tuple 〈lgraph, Tf〉 where Tf maps

an edge in lgraph to a list of thresholds, i.e.,

Tf : ledge → R|paths(u,v)|

(u, v) 7→ rvu,v1 , rvu,v2 , rvu,v3 , · · · , rv|paths(u,v)|.

The threshold rvu,vi is the “relative variability" of the average transition time for

the path i between the landmarks u and v and is estimated by σu,v
i

tu,vi
× 100. The

standard deviation(σu,vi ) is calculated for the transition time along the ith path.

3.4.3 Identification of the Exception Region

The landmark network in the Transition Time Model helps to find the exception region.

Let the current Transition Time Model be denoted as TTM. An RL agent follows a

policy corresponding to some exception which results in many exception trajectories.

If a landmark li ∈ llist is not visited within a reasonable deviation of the transition time

stored in the Transition Time Model from its predecessor landmark li−1 ∈ llist, then a

failure occurs. Let lexlist ⊆ llist be the set of landmarks that were visited in st-exception-

trajectories.
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Definition : An Auxiliary Landmark Network is a tuple 〈lexset, lexedge, Lexf 〉 where lexedge ⊆

lexset × lexset is the set of edges; (u, v) ∈ lexedge implies that landmark v followed

directly after the landmark u in many st-exception-trajectories. Edge (u, v) is

considered between the landmarks u and v if the percentage of st-exception-

trajectories in which v directly follows u is greater than the threshold threshno−traj .

The Auxiliary Model is populated with the average transition time(t̃u,v) extracted

from the st-exception-trajectories. The label function Lexf assigns to lexedge a real

number

Lexf : lexedge → R

(u, v) 7→ {t̃u,v}.

Definition : An Auxiliary Model consists of 〈lgraph, Af〉, where the label function Af

assigns to each element in ledge a label from the set {RC,ER,NR}.

Af : ledge → {RC,ER,NR}

(u, v) 7→ {RC,ER} if (u, v) ∈ ledge ∩ lexedge

(u, v) 7→ {NR} otherwise.

HereRC, ER andNR denotes "Reached Correctly", "Error in Reaching" and "Not

Reachable" respectively. Let the Auxiliary Model be denoted as AM. In order to find

the pair of landmarks between which exception occurs, we need to compare the average

transition time provided by TTM with the average transition time stored in AM for each

pair of landmarks (u, v) ∈ ledge. There are two different scenarios which an RL agent

might encounter while transitioning between the two landmarks u and v. In the first

scenario, the agent does not reach or reaches landmark v occasionally. This is defined

as failure in reachability criteria. The reachability criterion is satisfied if the proportion

of st-exception-trajectories in which v directly follows u is higher than the threshold

threshno−traj . If the reachability criteria between u and v is not satisfied, the label

function Af of the Auxiliary Model AM labels the edge (u, v) as “NR”.

For example in Figure 3.6, let the threshno−traj be .5 and 100 trajectories reach

landmark o. If the number of trajectories reaching the landmark p is 55 and the rest

45 reaches landmark q, then (a) the reachability criteria is satisfied by the landmark p,
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Figure 3.6: Identification of exception landmark: possible combinations of labelled
edges.
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Figure 3.7: Identification of exception landmark: example of a Transition Time Model
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implying the proportion of trajectories in which the RL agent reaches landmark p from

landmark o is greater than the threshno−traj . But the landmark q is labelled as “NR" as

the propotion of trajectories from o to q is lower than the threshno−traj .

In the second scenario, while transitioning from landmark u to v, an agent may

satisfy the reachability criteria but then v might not be visited within a reasonable

deviation of the transition time stored in the TTM from u. Since we have stored the

average transition time for each path between the landmarks as a list in TTM, we need

to compute the percentage increase between t̃u,v and tu,vi for all paths . This is done by

computing

CItu,vi =
|t̃u,v − tu,vi |2

tu,vi
× 100

called Change In Landmark Distance (CItu,vi ) for the ith path between the landmarks

u and v. Each CItu,vi corresponds to a different path i between the two landmarks.

Existence of CItu,vi value less than or equal to rvu,vi for any i ≤| paths(u, v) | assures

the nonexistence of the exception in the region covered by the corresponding landmark.
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This is called as variability criteria where

Af (u, v) = RC if ∃i ≤| paths(u, v) | such that CItu,vi ≤ rvu,vi

= ER otherwise.

For example, Figure 3.6 (b) shows the failure of variability criteria where Af (o, p) =

“ER”.

In our implementation, we initialize Af (u, v) = “NR”, ∀(u, v) ∈ llist × llist . The

variability criteria for each (u, v) ∈ lexedge is checked only if the reachability criteria

is satisfied by the landmark pair (u, v). Hence, the variability criteria results in an

edge label being changed from “NR” to either “RC” or “ER” by the label function Af ,

depending upon the success or the failure of the variability criteria.

The Auxiliary Model with the edges labeled by the label function Af is further used

to find the exception region. Nonexistence of the exception is assured if there exists a

unique path consisting of a sequence of edges labeled as “RC” between the start and

the terminal landmarks. Exception is reported when one of the outgoing edges from

the current landmark is labeled as “ER” as shown in Figure 3.6 (b) or all the outgoing

edges are labeled as “NR” as shown in Figure 3.6 (c). Such a landmark is then called

an exception landmark (lexception) and the sequence of states visited under the current

policy starting from the exception landmark is called exception region. For example, in

Figure 3.7, s4 is the exception landmark in the sequence of landmarks s1, s2, s3, s4, s5

and s6. The exception region, starts from the landmark s4 and might end up at landmark

s5 or s6.

Thus, Transition Time Model and Auxillary Model provides an approximate lo-

cation of an exception, further leading to identification of the exact point where the

exception happens.

3.4.4 Identification of Exception State

The Transition Time Model identifies the exception region where the current policy

fails. An exception can happen because of changes in the dynamics of the domain

which are caused by either the introduction of a new object in the domain or a change
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in the values of domain’s features. For example in Figure 3.2, the obstacle ‘O’ can be

thought of as a new object in the domain. Similarly, if the door is present at ‘A’, with

value 0 representing the door as open and 1 as closed, then the change in dynamics is

caused by the feature door. In either case, there are some features of the exception state

which reflect the change in the domain.

Definition : Exception state is a state where the first exception happens and it is denoted

as sexception.

This characterization of exception state is needed because of cascading nature of fail-

ures. In order to pinpoint such a state, we need to come up with a method which can do

a local search in the exception region to find the exception state. Further, the features of

the exception state are used by suffix tree to represent the new policy by conditioning

it on these features. For example in Figure 3.2, the exception state is a state where the

feature corresponding to obstacle ‘O’ has a value present whereas the rest of states has

the value absent for the same feature.

In order to find the exception state in the exception region, one needs to compare

the policy at each state in the exception region. But since the domain can be stochastic,

the policy needs to be stored along with the set of resultant states and their respective

transition probability, in a model called Transition Probability Model.

Definition : The Transition Probablity model TPM consists of P π(s)

s,s
′ (2.2.2 ) where s

is the state, π is the policy at s, and s′ is the resultant state.

There are three basic types of outcomes due to an exception caused by the change

in the dynamics of the domain. These are (a) lack of transitions, (b) transitions to

arbitrary neighboring states, and (c) transitions to arbitrary non-neighboring states, as

shown in Figure 3.8. Other outcomes of exceptions that are possible are combinations

of these. Thus, in order to find the exception state, we search for these three patterns of

outcomes using the transition model. Let the Transition Probability Model learned from

the transition instance derived using the st-trajectory be denoted as TPMst−traj . This

stores the state transition model for states with the assumption that exception has not

yet happened. Similarly the Transition Probability Model learned from the transition

instance derived using the st-exception–trajectory is denoted as TPMst−ex−traj , which
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stores the state transition model after an exception has happened. Since the exception

region starts from the exception landmark, we iterate sequentially over the st-exception-

trajectories starting from the exception landmark.

Let the entry corresponding to some (s, π(s), s′) ∈ TPMst−traj be denoted as ps′

and corresponding entry in TPMst−ex−traj be denoted as p′s′ . For all possible transi-

tioned states s′ from the state s under the policy π(s), there is entry in TPMst−traj .

The distribution of s′ can be modelled as a binomial distribution where one bin con-

sists of state s′ and the other bin consists of rest of transitioned states. Let σs′ =√
n ∗ ps′ ∗ (1− ps′) be the standard deviation of s′, where n is total number of sam-

ples corresponding to transition from state s under policy π stored in TPMst−traj .

Similarly n′ is total number of samples corresponding to transition from state s under

policy π stored in TPMst−ex−traj . If |n ∗ ps′ − n′ ∗ p′s′ | ≥ σs′ for any s′, then failure

is ascertained for the state s. We sample same number of trajectories before and after

exception in order to construct TPMst−traj and TPMst−ex−traj . In certain cases where

for some resultant state s′, the entry (s, π(s), s′) might either be present in TPMst−traj

or TPMst−ex−traj but not in both. In such cases we assume the transition probability

to be 0 where it is not present and then compare the corresponding entries. The state s

where the model fails is called exception state.

After the exception state has been identified, the new policy has to be learnt and the

Transition Time Model has to be updated.

3.4.5 Subtask Option and Updation of Transition Time Model

In the previous section we looked at a method which gave the first state where the

current policy deviates from expected behaviour, called exception state. In order to learn

a new policy, i.e., exception policy, we also need to know the point where the current

policy and the exception policy agrees after the failure. We identify these points with

existing landmarks used in the definition of the transition time model. Since it is difficult

to identify these landmarks apriori, we come up with a list of possible landmarks called

potential destination landmarks (ldest), that could be points where the policy agrees.

One way of defining ldest is to consider all landmarks in the ordered list, llist which

come after lexception as potential destination landmarks.
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Figure 3.8: Different types of exceptions. Lack of transistion is shown as (a), Transis-
tion to arbitary non neighbour is shown as (b) and Transistion to arbitary
neighbour is shown as (c)
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An exception policy is learned between the exception state and some potential des-

tination landmark using Q-learning. The destination landmark chosen by the RL agent

would be the one to which it finds the least expensive path from the exception state. Let

Osexception→lterm be the subtask option denoting 〈I, π, β〉, where π is the exception policy

and β(lterm) = 1 when lterm ∈ ldest. Multiple executions of the option policy are stored

as transition chain which are then used to retrain the suffix tree corresponding to the

current policy to represent the exception policy. The exception policy is used to update

the TPMst−traj by adding the transition model for the exception state and its neigh-

bours. During the updation of the TPMst−traj , we follow a procedure similar to the

one described in Section 3.4.4. If in the state s, the deviation of transistion probability

is beyond the standard deviation then we update the entries of the state s in TPMst−traj .

The lgraph is updated to include the new tu,v|paths(u,v)|+1 between the exception landmark

u and the destination landmark v. This is done by following the old policy from the ex-

ception landmark to the exception state and then further using exception policy to reach

the lterm. This new path might add edges between landmarks which were not connected

earlier or might add new transition times between already connected landmarks. The

rvu,v|paths(u,v)|+1 is also calculated and stored in the TTM.
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3.4.6 Description of algorithm

Algorithm 1 Pseudo-code for OWE learning agent
1: Let π be the optimal policy learned using Q-learning between the start and the goal

state
2: [ lmlist, LMN, TTM, TPMst−traj , tsfx ] = Initialize-Data-structures(π)
3: lex = start state // Initialize exception landmark
4: while lex ! = null do
5: st-exception-trajectories = ∅ //List to store st-exception-trajectories
6: Simulate policy using tsfx and store it in st-exception-trajectories
7: Identify the landmarks ∈ lmlist, which st-exception-trajectories traverses

through and call it as lmex
set

8: ALMN = Initialize-Auxiliary-Model(st-exception-trajectories, lmex
set) //Initialize

data structure ALMN
9: lexception = Identify-the-exception-landmark(TTM, ALMN)

10: if lexception != null then
11: sexception = Identify-the-exception-state(TMst−traj , st-exception-trajectories,

lexception )
12: if sexception != null then
13: Learn the new subtask option, Osexception→lterm∈ldest using Q-learning
14: Update TTM, TPMst−traj with the st-trajectories simulated using Q-table
15: Update tsfx using st-trajectories
16: end if
17: end if
18: end while

The Pseudo-code for the OWE learning agent [Algorithm 1] gives the detailed

overview of the learning agent. The agent learns the optimal policy π, between the

start and goal state using the Q-learning algorithm. The procedure Initialize-Data-

structures initializes the data structure for the implementation of the landmark network

(LMN), transition time model (TTM) and the transition model (TPMst−traj). The vari-

able lexception stores the exception landmark and is initialized with the start state. In

order to build the auxiliary landmark network (ALMN), the trajectories are simulated

using the policy represented by the suffix tree tsfx and these trajectories are stored in the

list st-exception-trajectories as shown in lines 5-6. The landmarks from the list lmlist

that are visited in the st-exception-trajectories are stored in the list lmex
set. These are

further used along with the st-exception-trajectories to initialize the auxiliary landmark

network in the procedure Initialize-Auxiliary-Model as shown in line 8. The exception

landmark is found using the procedure Identify-the-exception-landmark and if state-

ment is entered in line 10. Within the if statement the exception region is explored by

the agent to find the exception state which is stored in the variable sexception. This is
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done by comparing the transition probabilities of the states in the procedure Identify-

the-exception-state in line 11. If the exception state is found, then the agent learns

the new policy (Osexception→lterm∈ldest) between the sexception and the nearest landmark

(lterm) from the list of landmarks (ldest) which comes after the exception landmark in

the list lmset. The agent then updates the TTM , TPMst−traj and the tsfx with the

st-trajectories simulated using Q-table as shown in lines 14-15.

Algorithm 2 Initialize-Data-structures(π)
Input: policy: π
Output: lmlist: landmarks, LMN: landmark network, TTM: transition time model,
TPMst−traj: transition probability model, suffix tree: tsfx

1: st-trajectories = ∅ //List to store st-exception-trajectories
2: Simulate policy π and store it in st-trajectories
3: Create transition instance chain using st-trajectories
4: Learn suffix tree tsfx using the transition instance chain
5: lmlist = Identify-landmarks(st-trajectories).
6: temp = hashtable // Data structure used to initialize landmark network and transition

time model
7: LMN = Initialize-Landmark network(st-trajectories, lmlist, temp) //Initialize data

structure LMN
8: TTM = Initialize-Transition-Time-Model(LMN, temp)//Initialize data structure

TTM
9: TPMst−traj = transition model for each (state, action) in st-trajectories.

10: return lmlist, LMN, TTM, TPMst−traj , tsfx

The procedure Initialize-Data-structures [Algorithm 2], initializes the data structure

for the policy representation, landmark network, transition time model and the transition

model. The agent simulates the trajectories by following the policy π and stores them

in the st-trajectories shown in line 2. The transition instance is created for each tuple

〈s, a〉 in the trajectory and the transition instance chain is formed using these transition

instances. The transition instance chain is used to learn the suffix tree (tsfx) which

represents the agents policies. The st-trajectories are also used to find the landmarks

using the spiked state method or mean to variance ratio method and the landmarks are

stored as a list lmlist as shown in line 5. The temporary hash table temp is used to store

the transition time in procedure Initialize-Landmark network and the temp is further

used in procedure Initialize-Transition-Time-Model. The LMN, TTM and TPMst−traj

are initialized in lines 7-9.

The algorithm Identify-landmarks [Algorithm 3] selects the final list of landmarks
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Algorithm 3 Identify-landmarks(st-trajectories)
Input: policy: st-trajectories
Output: lmlist:Landmark list.

1: minimum-distance-candidate-landmarks = ∅ //List to store candidate landmarks.
2: Add start and end states to minimum-distance-candidate-landmarks.
3: From the list of candidate landmarks, select the landmark with the increasing order

of mean to variance ratio.
4: Add the selected landmark to the list of minimum-distance-candidate-landmarks if

its distance is greater than all the existing landmarks of the list.
5: The maximum distance between the landmark constraint could be checked on

the minimum-distance-candidate-landmarks and removing those landmarks which
does not satisfy the constraint.

from the list of candidate landmarks. We here use mean to variance method to get the

list of candiate landmarks. This problem can be thought as an subset selection problem

that has to satisfy certain constraints. The first constraint is that the landmarks are

selected in a increasing order of mean to variance ratio. The second constraint is that the

distance between the two consecutive landmarks is bounded between the minimum and

the maximum limit. The problem can be also formulated as an minimization problem.

Let f(S) =
∑N

n=1 pj , where j ∈ S for j = 1 . . . N , where pj is the priority value

associated with the candidate landmark j. The minimization problem would be min

f(S) s.t B1 ≤ |i − j| ≤ B2 where i, j ∈ candidate landmarks set and B1 and B2

are lower and upper bound respectively. Since the problem is hard, we used greedy

approach to find the solution as described in the algorithm. Sometimes the approach

fails and the landmarks violate either the minimum or maximum limit. But the failures

are local and are not cascading.

The algorithm Initialize-Landmark network [Algorithm 4] describes the procedure

to initialize the LMN. We start by initializing the list of landmarks in LMN with the

landmarks in lmlist. The list ledge stores the edges between the landmarks and is initial-

ized as an empty list. We also initialize hash table Lf to store the average transition time

between the landmarks. The for loop in lines 2-8 adds the edge between the landmarks.

After initialization we iterate through each trajectory stored in the st-trajectories and

extract the transition time between the landmarks u and v as shown in lines 9-15. The

transition time between the landmarks u and v is stored in the hash table temp with the

key (u, v). The edge list (LMN.ledge) stored in the LMN is pruned by removing the edge

corresponding to the landmarks u and v if number of trajectories in which u is followed
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Algorithm 4 Initialize-Landmark network(st-trajectories, lmlist, temp)
Input: st-trajectories: list of trajectories, lmlist: list of landmarks, temp: hash table to
store data
Output: LMN: landmark network.

1: LMN = < llist = lmlist, ledge = ∅, Lf = empty hash table > // Data structure for
landmark network

2: for u in LMN.llist do
3: for v in LMN.llist do
4: if index(u in LMN.llist) ≤ index(v in LMN.llist) then
5: add (u, v) to LMN.ledge
6: end if
7: end for
8: end for
9: for i = 1 to number(st-trajectories) do

10: for (u, v) ∈ LMN.ledge do
11: if landmark u followed by v occurs in st-trajectories(i) then
12: add transition time between (u, v) to temp(u, v)
13: end if
14: end for
15: end for
16: for (u, v) ∈ LMN.ledge do
17: if count( temp(u, v)) > threshno−traj then
18: add average( temp(u, v)) to LMN.Lf (u, v) // Average transition time stored in

Lf ((u, v)).
19: else
20: remove (u, v) from LMN.ledge
21: end if
22: end for
23: return LMN
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by v does not satisfy the threshold criteria (threshno−traj). The average transition time

is calculated for the remaining edges by using the hash table temp. This value is stored

in the hash table Lf with the key (u, v).

Algorithm 5 Initialize-Transition-Time-Model(LMN, temp)
Input: LMN: landmark network, temp: hash table to store data
Output: TTM: transition Time model

1: TTM = < LMN, Af = empty hash table > // Data structure for TTM
2: for (u, v) ∈ TTM.LMN.ledge do
3: calculate rv using TTM.LMN.Lf (u, v) and temp(u, v) // rv is relative variability

4: add rv to the list TTM.Tf (u, v)
5: end for
6: return TTM

The algorithm Initialize-Transition-Time-Model [Algorithm 5] calculates the rela-

tive variability of the transition time and stores in the TTM. We start by initializing the

TTM with the LMN and a empty hash table Af . The list of relative variability of the

transition time between the landmarks are stored in Af . The for loop in lines 2-5 calcu-

lates the relative variability using the value in TTM.LMN.Lf and the data stored in the

temp for each edge in the LMN.ledge. This is stored in the TTM.Tf .

The procedure to initialize the ALMN is described in the algorithm Initialize-Auxiliary-

Landmark-Network [Algorithm 6]. In line 1, the landmark list of the ALMN is initial-

ized with the landmarks stored in the lmex
set. This is followed by the addition of edges

between the landmarks stored in the lmex
set. The hash table Lexf stores the average tran-

sition time between the landmarks and is initialized lines 3-7. After the initialization

we iterate through each trajectory stored in the st-exception-trajectories and extract the

transition time between the landmarks u and v as shown in lines 8-14. The transition

time between u and v is stored in the hash table temp-ex with the key (u, v). The for

loop in lines 15-21 prunes the edge list (ALMN.lexedge) by removing the edge between

the landmarks u and v if the number of trajectories in which the landmark u is followed

by v does not satisfy the threshold criteria. The average transition time is calculated

for the remaining edges using the hash table temp-ex and is stored in the hash table Lexf

with the corresponding key (u, v).

Identify-the-exception-landmark [Algorithm 7] is a procedure to find the exception
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Algorithm 6 Initialize-Auxiliary-Landmark-Network(ALMN, st-exception-
trajectories, lmex

set)
Input: st-exception-trajectories: list of exception trajectories, lmex

set: list of landmarks
Output: ALMN: auxiliary landmark network.

1: ALMN = < lexlist = lmex
set, l

ex
edge = ∅, Lexf = empty hash table > // Data structure for

auxiliary landmark network.
2: temp-ex = empty hash table //To store list of transition time
3: for u in ALMN.lexset do
4: for v in ALMN.lexset do
5: add (u, v) to ALMN.lexedge
6: end for
7: end for
8: for i = 1 to number(st-exception-trajectories ) do
9: for (u, v) ∈ ALMN.lexedge do

10: if landmark u followed by v occurs in st-trajectories(i) then
11: add transition time between (u, v) to temp-ex(u, v)
12: end if
13: end for
14: end for
15: for (u, v) ∈ ALMN.lexedge do
16: if count( temp(u, v)) > threshno−traj then
17: add average( temp-ex(u, v)) to ALMN.Lexf (u, v) // Average transition time

stored in Lexf (u, v).
18: else
19: remove (u, v) from ALMN.lexedge
20: end if
21: end for
22: return ALMN
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Algorithm 7 Identify-the-exception-landmark(TTM, ALMN)
Input: TTM: Transition time model, ALMN: Auxiliary landmark network
Output: landmark: exception landmark

1: AM = < TTM.LMN, Af = Hashtable > // Data structure for Auxiliary model.
2: for (u, v) in TTM.LMN.ledge do
3: AM.Af (u, v) = “NR”
4: end for
5: for (u, v) ∈ ALMN.ledge do
6: found = false
7: for i = 1 to‖paths(u, v)‖ do
8: Extract tu,vi value from the TTM.LMN.Lf (u, v) and rvu,vi from TTM.Tf (u,v)
9: t̃u,v = ALMN. Lexf (u, v)

10: CItu,vi =
|t̃u,v−tu,vi |

tu,vi
× 100

11: if CItu,vi ≤ rv
u,v
i then

12: AM.Af (u, v) = “RC"
13: found = true
14: break
15: end if
16: end for
17: if not found then
18: AM.Af (u, v) = “ER"
19: end if
20: end for
21: Search in the order of landmarks in TTM.LMN.llist for the landmark whose outgo-

ing edge is labeled as “ER" or whose all the outgoing edges are labeled as “NR"

22: if landmark not found then
23: return null
24: else
25: return landmark
26: end if
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landmark. The AM is initialized with the landmark network (TTM.LMN) in line 1. The

for loop in lines 2-4 initializesAf with the “NR” for each edge in the landmark network

(TTM.LMN.ledge). The outer for loop in line 5 iterates over the edge list stored in the

auxiliary landmark network (ALMN.ledge). The inner for loop in lines 7-16 iterate over

the number of paths (paths(u,v)) and for each path i, the average transition time(tu,vi

and t̃i
u,v

) between the landmarks u and v is extracted from the landmark network

(TTM.LMN.Lf (u, v)) and the auxiliary landmark network (ALMN.Lexf (u, v)). The

change in the transition time CItu,vi is calculated and is compared with the ith compo-

nent (rvu,vi ) of the relative variability stored in the transition time model (TTM.Tf (u, v))

in lines 10-11. The hash table AM.Af (u, v) is modified to “RC” in line 12 when the

CItu,vi is lesser then the rvu,vi indicating the existence of ith path between u and v in the

auxiliary landmark network. If no component (rvu,vi ) of the relative variability is lesser

than the CItu,vi , then the AM.Af (u, v) is modified to “ER” indicating the existence of

erroneous ith path between u and v in the auxiliary landmark network as shown in line

18. The landmark whose outgoing edge is labeled with “ER” or all the outgoing edges

are labeled with “NR” is searched using the AM.Af .

Algorithm 8 Identify-the-exception-state( TPMst−traj , st-exception-trajectories,
lexception )
Input: TPMst−traj: transition probability model, st-exception-trajectories: list of ex-
ception trajectories,
Output: exception state: s

1: TPMst−ex−traj = transition model for (s, a) ∈ st-exception-trajectories .
2: for (s, a) ∈ st-exception-trajectories do
3: Compare the entry of (s, a) in TPMst−traj with that of in TPMst−ex−traj for the

failure of transition probability.
4: if found then
5: return s
6: end if
7: end for
8: return null

In the procedure Identify-the-exception-state [Algorithm 8], the transition model

(TPMst−traj) is compared with the transition model (TPMst−ex−traj) extracted from

the st-exception-trajectories as shown in line 1. The for loop in lines 3-8 iterate over

each state, action (s,a) pair in the st-exception-trajectories. The first state in the st-

exception-trajectories where the transition models fails is returned as exception state.
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3.5 Conclusion

In this chapter, we proposed a framework in which exceptions can be added to already

learned options without disturbing the original policies. While the framework succeeds

in identifying small changes required to the options, we still have some distance to go

before building a complete skill management system. In the next chapter we describe

the experimental domains and the results of our framework on these domains.
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CHAPTER 4

Experiments and Results

In this chapter, we test our framework on Grid world and Blocks world domain. We

descirbe the domains and the results in detail.

4.1 Grid World

4.1.1 Experimental setup

Figure 4.1: A simple room domain with different objects.The rooms are as numbered
1, 2, 3 and 4. The task is to collect all the diamonds, O in the room

C C

C

D DO O

2

3 4

0

E

1
O O

Our goal is to learn options in one room and re-use in other rooms, adapting them

suitably to accommodate exceptions. In this scenario as shown in Figure 4.1, the agent’s

goal is to collect the diamond(O) in every room by occupying the same square as the

diamond. Each of the rooms is a 11 by 11 grid with certain obstacles in it. The actions

available to the agent are N, S, E, W. An action would result in the transition to the



indicated direction with a probability of 0.9. It results in a transition to any one of the

unintended directions with a probability of 0.1.

The state is described by the following features: the room number the agent is in,

with 0 denoting the corridor, the x and y co-ordinates within the room or corridor and

boolean variables have(i), i = 1,..., 4, indicating possession of diamond in room i. The

goal is any state of the form 〈0, ..1, 1, 1, 1〉, where 0 indicates the corridor and 1 indicates

possession of diamonds in the respective rooms. The state abstraction for the option is

〈x, y, have〉 as explained in Section 2.2.4. In each room the diamond is placed in (0,2).

The agent starts from (10,5) in each room. The base policy is learnt in room 1 with

no exceptions. The agent used a learning rate of .05, discount rate of .9 and ε greedy

exploration, with an ε of 0.1. The results were averaged over 10 independent runs. The

trials were terminated either on completion of the task or after 1500 steps.

4.1.2 Landmarks extraction

Initially we ran spiked state method described in Section 3.4.1 to find the landmarks.

10000 trajectories were simulated from a random start state that terminated at the goal

state. The set of states along with their frequency count are shown in Table 4.1. The

state (0, 2, 1) and (2, 5, 1) has the characteristics shown in sub figure B in Figure 3.5.

It is obvious in (0, 2, 1) because it is the state which represents the agent fetching the

diamond, hence it occurs in all the trajectories. From the state (2, 5, 1), if the agent

stochastically transitions to (3, 5, 1), then the agent follows the path through the lower

slit. Hence through both the states there are multiple different trajectories, representing

the characteristics of spiked state.

But since the number of states that spiked are few and also are not uniformly dis-

tributed over the state space, we use mean-to-variance ratio to find the landmarks. States

that occur in more than 80 % of the trials only were considered as candidate landmarks.

Three sets of experiments were performed with a different bounded distance (in time)

between the landmarks, resulting in a different number of landmarks for each set of

experiments.

Since in this domain, number of steps taken by the agent was approximately around

43 steps, the lmin(minimum distance between the two landmarks) and lmax(maximum
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distance between the two landmarks) were chosen as 16 and 32 , 8 and 16, 4 and 8

respectively for Experiment set GW-Exp-1, Experiment set GW-Exp-2 and Experiment

set GW-Exp-3. The number of trajectories used to collect the information regarding

the landmarks and transition times between the landmarks was 3000. Though we had

different set of ordering for each experiment, we give example for one experiment from

each experiment set. The landmarks in Experiment GW-Exp-1 with threshno−traj =

.8, Experiment GW-Exp-2 with threshno−traj = .8 and Experiment GW-Exp-3 with

threshno−traj = .6 are selected respectively from the Tables 4.2, 4.3 and 4.4. These are

marked with bold letters in the table. Though the landmarks are selected in increasing

order of the mean to variance ratio, we have labelled the landmarks the order in which

they are visited by the agent. The landmarks are shown in the domain as in Figures 4.2,

4.3 and 4.4. The number of candidates for the landmarks will usually depend on the

nature of the domain. If the domain consist of multiple different trajectories through the

state space then naturally the number of states which will be captured by 80% threshold

will be fewer resulting in fewer number of candidates for landmarks. In this domain as

there are no optimal multiple disjoint trajectories between the start and the goal state,

we have large number of candidates for the landmarks.

The problem of adding the landmark is generally hard as we have to satisfy both

lmin, lmax constraint and also we need to add in the increasing order of mean to variance

ratio. For example when lmin = 8 and lmax = 16, then one cannot add any landmark be-

tween the start and the end landmark satisfying both the lmin and lmax constraints. Here

the distance between the start and end landmark is 43. We apply algorithm Identify-

landmarks. Some times this method fails as landmarks maybe removed for not sat-

isfying the lmax constraint. This happens particularly, when the distance between the

landmarks are very close with respect to the total distance(distance between the start

and the end landmark), for example in Experiment GW-Exp-3, but still the failure af-

fects very few landmarks. In Experiments GW-Exp-1 and GW-Exp-2, it rarely fails as

the landmark distance are large and in this case mostly lmin condition automatically

satisfies the lmax condition.
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Table 4.1: Information regarding spiked states

Result 1
previous state spiked state next state
(0, 3, 0) , η = 8635 (0, 2, 1) , η = 10000 (0 ,3 ,1), η = 9460
(2, 4, 1) , η = 8771 (2, 5, 1) , η = 9990 (3, 5, 1), η = 9596

Result 2
previous state spiked state next state
(0, 3, 0) , η = 8075 (0, 2, 1) , η = 10000 (0, 3, 1), η = 9519
(1, 5, 1) , η = 9058 (2, 5, 1) , η = 9175 (3, 5, 1), η = 8715

4.1.3 Exceptions

We introduce multiple objects in successive trials in order to cause exceptions. As

described in Section 3.4.4, we model 3 types of exceptions - C, D, E. The objects

were introduced in the domain in the order “C", “D" and “E". For the purpose of

learning nested OWE, the objects were introduced in the specific order. The mentioned

representation is with respect to room 2 in Figure 4.1 where the coordinates are written

as (row, column). The object “C" is placed at coordinate (row = 8, column =7) of the

gridworld and it blocks the action west. The object “D" is placed at coordinate (6,2) of

the gridworld and it randomly moves the agent to one of the coordinates (7,2), (6,1),

(5,2) and (5,3). The object “E" is placed at coordinate (4,5) and it randomly moves the

agent to one of the coordinates (4,3), (4,7), (6,5) and (2,5).

Within the experiment set we further perform the experiments depending upon the

threshno−traj . This value affects the identification of the exception between the land-

marks, particulary when the exceptions are of type “E" or “D" and are close to the

landmarks. We explain this later in this section.

In the graphs, the new policies are plotted for various obstacles. The new policy was

a concatenation of the path given by the suffix tree from the start state to the exception

state or the terminal state, followed by the path given by Q-learning from the exception

state to the potential terminal landmarks, followed by a path given by the suffix tree

from the potential terminal landmarks to the terminal state. The maximum number of

steps were assigned as 100 for the simulation of the path from start to exception state.

Similar number of steps were assigned for the path given by the suffix tree from the

potential terminal landmarks to the terminal state. The trials for the exception policy
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Table 4.2: Set of candidates for landmark arranged in increasing order of mean-to-
variance ratio for Experiment GW-Exp-1

State mean(m) variance(v) m/v
7, 7, 0 6.2849462366 3.6614131692 1.7165356506
3 ,5, 0 13.9794820047 8.0557512285 1.7353418208
0 ,2, 1 21.417 12.053111 1.7768856522 L2
2 ,5, 0 15.1937436932 8.5161128936 1.7841172238
2 ,4, 0 16.3632986627 9.1325014517 1.7917652408
10 ,5, 1 42.9716666667 23.8588638889 1.8010776568 L3
3 ,5, 1 28.953480589 16.0644356767 1.8023341231
9 ,5, 1 41.6075388027 22.9723600179 1.8112000147
2 ,3, 0 17.5678724232 9.6814104481 1.8145984531
6 ,7, 0 7.5507392473 4.1553556363 1.8171102327
4 ,5, 1 30.1904283802 16.5986098567 1.8188528221
5 ,7, 0 8.8077876106 4.8313729814 1.823040292
2 ,5, 1 27.622244489 15.1415359108 1.8242696548
2 ,4, 1 26.323379461 14.4023448793 1.8277148396
0 ,3, 0 20.1269609632 11.0068652261 1.8285824846
4 ,5, 0 12.5620585267 6.8482341748 1.8343500245
0 ,3, 1 22.4870956016 12.2403823678 1.8371236229
5 ,6, 0 10.0427509294 5.4662020978 1.8372447176
1 ,3, 0 18.8519040903 10.2411141459 1.840805973
6 ,6, 1 33.8115325077 18.0979939362 1.8682475321
4 ,6, 0 11.2024399543 5.976936479 1.8742779003
2 ,3, 1 24.9956043956 13.3274532061 1.8754974419
8 ,7, 1 37.7594623276 20.1091030714 1.8777298119
8 ,6, 1 38.9851576994 20.7508001143 1.8787303374
7 ,7, 1 36.4941634241 19.3642213288 1.8846181731
6 ,5, 1 32.5089424572 17.1892668443 1.8912349638
8 ,5, 1 40.1518590998 21.1855493813 1.8952474811
6 ,7, 1 35.1057658295 18.4879292596 1.8988479097
5 ,5, 1 31.2759633028 16.444945173 1.9018587763
1 ,3, 1 23.6557852738 12.4332028382 1.9026300449
8 ,7, 0 4.906922043 2.3901940208 2.0529387992
9 ,7, 0 3.4158730159 1.0540337617 3.2407624311
9 ,6, 0 2.2363984674 0.4877939255 4.5847197976
10, 6, 0 1.0599634369 0.1060936001 9.9908329595
10 ,5, 0 0 0 Inf L1

Figure 4.2: Set of landmarks shown in the domain for Experiment GW-Exp-1.

Landmark encountered while going to fetch the diamond O

Landmark encountered after fetching the diamond O

L1
L3

O
L2

P1

P2

P3
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Table 4.3: Set of candidates for landmark arranged in increasing order of mean-to-
variance ratio Experiment GW-Exp-2

State mean(m) variance(v) m/v
8 ,7, 0 4.7316001465 5.5650907753 0.8502287451
7 ,7, 0 6.1215671915 6.6677552883 0.9180851616
6 ,7, 0 7.3687294031 7.2236138744 1.0200890484
6 ,6, 0 8.4869530309 8.0049482029 1.0602133601 L2
5 ,6, 0 9.6645833333 8.5712456597 1.127558784
4 ,6, 0 11.0191769876 9.4530880961 1.1656695543
4 ,5, 0 12.4582210243 9.8715698811 1.2620303735
3 ,5, 0 13.8490566038 10.9118522097 1.2691756026
2 ,4, 0 16.3073785688 12.6771164874 1.2863633923
2 ,5, 0 15.1164591047 11.6821626219 1.2939778014
0 ,4, 0 18.8396778917 13.8447214189 1.3607841806 L3
1 ,4, 0 17.5644366197 12.7789465136 1.3744823645
0 ,3, 0 20.1099824869 14.4089196144 1.3956620638
0 ,2, 1 21.4263333333 15.1272398889 1.4164073215
0 ,3, 1 22.6228873239 15.7785606774 1.4337738268
1 ,3, 1 23.806379822 16.51444001 1.4415493233
2 ,3, 1 25.0742230347 17.1261179978 1.4640926238
2 ,4, 1 26.3509817672 17.917835642 1.4706565175
6 ,5, 1 32.5127996749 21.8256183707 1.4896622457 L4
3 ,5, 1 28.9856235373 19.4277438355 1.4919706469
6 ,6, 1 33.6397621071 22.5303815917 1.4930844367
5 ,5, 1 31.3830022075 20.9625808322 1.4970963002
4 ,5, 1 30.2420595119 20.0477261496 1.5085032231
2 ,5, 1 27.6003333333 18.2765998889 1.5101459517
7 ,7, 1 36.2963818322 24.0068460313 1.5119179664
8 ,6, 1 38.7850542387 25.5765383759 1.5164309442
8 ,7, 1 37.5369515012 24.5165329699 1.5310872686
6 ,7, 1 34.9453636014 22.7026708855 1.5392622206
10, 5, 1 42.826 27.5830573333 1.5526197652 L5
9 ,6, 1 39.8994345719 25.5751046884 1.5600888074
10 ,6, 1 41.10479423 21.740821309 1.8906734776
8 ,6, 0 3.3414023372 0.8016414391 4.1682006121
9 ,6, 0 2.1937953263 0.4269880935 5.1378372368
9 ,5, 0 1.0738304094 0.1444028718 7.4363507858
10, 5, 0 0 0 Inf L1

Figure 4.3: Set of landmarks shown in the domain for Experiment GW-Exp-2.

Landmark encountered while going to fetch the diamond O

Landmark encountered after fetching the diamond O

L1
L5

O

L3

L2

L4

P1

P2

P3
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Table 4.4: Set of candidates for landmark arranged in increasing order of mean-to-
variance ratio Experiment GW-Exp-3

State mean(m) variance(v) m/v
3, 5, 0 13.9889742733 9.7603194624 1.4332496315 L3
4 ,5, 0 12.631807551 8.7745579422 1.4395947504
2 ,5, 0 15.2335449382 10.19838025 1.4937219995
2 ,4, 0 16.4488078541 10.8890343432 1.5105846245
0 ,2, 1 21.475 13.5780416667 1.5815977391 L4
0 ,3, 0 20.2093969663 12.7197489149 1.588820432
1 ,4, 0 17.6622097115 11.0991278406 1.5913150984
7 ,7, 1 36.7267226891 23.0207816962 1.5953725279 L7
0 ,4, 0 18.9261595547 11.8605958261 1.5957174355
5 ,7, 1 34.0062043796 21.2273337684 1.6020007388
10, 5, 1 43.087 26.8707643333 1.6034899293 L8
8 ,7, 1 37.9700840336 23.6552394887 1.6051447736
9 ,7, 1 39.2215909091 24.3521758781 1.6105990325
1 ,2, 1 22.644037988 14.0576033922 1.6108035884
6 ,7, 1 35.3368067227 21.8072335005 1.6204167632
1 ,3, 1 23.8119038535 14.633448531 1.6272243554
10, 7, 1 40.4641130532 24.7686079991 1.6336853914
2 ,4, 1 26.3638773192 16.1103043909 1.6364605336 L5
10, 6, 1 41.7329718739 25.5003666 1.6365636043
3, 5, 1 29.0950150552 17.6597576863 1.6475319521
2, 3, 1 25.0503624571 15.1970057824 1.6483748717
4 ,5, 1 30.3268651723 18.0902150307 1.6764236976
2, 5, 1 27.7161936561 16.4510065468 1.684771906
5, 5, 1 31.5375886525 18.7166721996 1.6849997861 L6
5, 6, 1 32.7051372273 19.1495091472 1.7078838406
7, 7, 0 6.174020473 3.2415135569 1.9046721121 L2
6, 7, 0 7.4221673138 3.7575319071 1.9752772558
6, 6, 0 8.5757695343 4.2111098064 2.0364630534
6, 5, 0 9.7567001675 4.5978403674 2.1220180319
5, 5, 0 10.9737521515 5.0290012398 2.1820937455
8, 7, 0 4.7822096717 2.0178691731 2.3699304868
9, 7, 0 3.4367816092 0.9779277955 3.5143510852
9, 6, 0 2.2071269488 0.3676403722 6.0034944907
10, 6, 0 1.0513104467 0.0730409184 14.3934450696
10, 5, 0 0 0 Inf L1

Figure 4.4: Set of landmarks shown in the domain for Experiment GW-Exp-3.

Landmark encountered while going to fetch the diamond O

Landmark encountered after fetching the diamond O

L1
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L2
L7
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Table 4.5: Selected Landmarks

Experiment
GW-Exp-1 GW-Exp-2 GW-Exp-3
(threshno−traj = .9) (threshno−traj = .8) (threshno−traj = .7)
(10, 5, 0), (0, 3, 0), (10, 5, 1) (10, 5, 0), (4, 6, 0), (0, 3, 0) (10, 5, 0), (8, 7, 0), (5 ,6, 0)

(4, 5, 1), (10, 5, 1) (3, 5, 0), (0, 2, 1), (2, 5, 1)
(6, 5, 1), (8, 7, 1), (10, 5, 1)

(threshno−traj = .8) (threshno−traj = .7) (threshno−traj = .6)
(10, 5, 0), (0, 2, 1), (10, 5, 1) (10, 5, 0), (6, 6, 0), (0, 4, 0) (10, 5, 0), (7, 7, 0), (3 ,5, 0)

(6, 5, 1), (10, 5, 1) (0, 2, 1), (2, 4, 1), (5, 5, 1)
(7, 7, 1), (10, 5, 1)

(threshno−traj = .7) (threshno−traj = .6) (threshno−traj = .5)
(10, 5, 0), (0, 3, 0), (10, 5, 1) (10, 5, 0), (5, 6, 0), (1, 2, 0) (10 ,5, 0), (8 ,7 ,0), (5 ,6, 0)

(4, 6, 1), (10, 5, 1) (0, 5, 0), (0, 3, 1), (1, 3, 1)
(8, 7, 1) (10, 5, 1)

that is from exception state to potential landmark were terminated either on completion

of the task or after 1300 steps.

4.1.4 Results and Discussion

In Experiment GW-Exp-1, while going to fetch the diamond, the exception caused by

“D" was not identified. This happened because of the change in the number of steps

caused by the object “D" was around 1.5 on an average and this change becomes negli-

gible compared to the distance between the landmarks. This is reflected when CIT is

calculated and is lesser than rv as shown in Table 4.6 under the column 1. But when ob-

ject “E" was introduced in the domain the exception was caught. Though the exception

was caused by the object E, the object “D" also got identified as an exception state by

the minimum model. This happened because both “D" and “E" lay within the same pair

of landmarks and the state with the obstacle “D" is visited first compared to the state

with the obstacle “E". The exception policy learnt from the exception state at (6,2) to

the next landmark passes through coordinate (4,5). The object “E" at coordinate (4,5)

further randomly increases or decreases the number of steps in the exception policy. For

example if the agent moves to coordinate (2,5) or (4,7) from (4,5) then there is decrease

in number of steps in the exception policy. But if the agent moves to (4,3) or (6,5) it

can again come to (4,5) further increasing the number of steps. This can be seen in the
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Table 4.6: Details of exception caused by object D

Experiment
GW-Exp-1 GW-Exp-2
(threshno−traj = .9) (threshno−traj = .8)
u = (10, 5, 0) , v = (0, 3, 0) u = (10, 5, 0) , v = (4, 6, 0)
tu,v2 = 26.96, t̃u,v = 27.08 tu,v2 = 18.2, t̃u,v = 18.03
rvu,v2 = 10.02, CItu,v2 = .45 rvu,v2 = 12.36, CItu,v2 = 0.50

(threshno−traj = .8) (threshno−traj = .7)
u = (10, 5, 0) , v = (0, 2, 1) u = (10, 5, 0) , v = (6, 6, 0)
tu,v2 = 25.6, t̃u,v = 27.42 t̃u,v = NR
rvu,v2 = 11.02, CItu,v2 = 7.10

(threshno−traj = .7) (threshno−traj = .6)
u = (10, 5, 0) , v = (0, 3, 0) u = (10, 5, 0) , v = (5, 6, 0)
tu,v2 = 25.12, t̃u,v = 27.38 t̃u,v = NR
rvu,v2 = 11.56, CItu,v2 = 8.99

Table 4.7: Details of exception caused by object E after the agent fetches the diamond

Experiment
GW-Exp-1
(threshno−traj = .9)
u = (0, 3, 0) , v = (10, 5, 1)
tu,v2 = 17.8, t̃u,v = 21.08
rvu,v2 = 11.0, CItu,v2 = 18.0

(threshno−traj = .8)
u = (0, 2, 1) , v = (10, 5, 1)
tu,v2 = 19.08, t̃u,v = 22.25
rvu,v2 = 11.35, CItu,v2 = 16.6

(threshno−traj = .7)
u = (0, 3, 0) , v = (10, 5, 1)
tu,v2 = 18.83, t̃u,v = 22.38
rvu,v2 = 11.56, CItu,v2 = 18.85
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graph of new policy as shown in sub figure b of Figures 4.5, 4.6 and 4.7 where we can

see points above the average.

Similar thing happens after the agent fetches the diamond and returns through the

coordinate (4,5) where object “E" is placed. But in the graph of new policy we can see

few points above the average in sub-figure c of Figures 4.5, 4.6 and 4.7 as compared to

sub-figure b because the agent can come back again to (4,5) only if it moves back to

(2,5). If it moves to (4,3), (6,5) and (4,7), it generally does not come back to (4,5) or

only occasionally comes back because of the stochasticity.

The new policy converges faster compared to the policy learned using Q learning.

But the new policy is mostly similar to the old policy or is worse than the old policy

because of the nature of the object “E" and its position in the domain. It seems that

on average the new policy which goes through coordinate (3,8) takes more number of

steps as compared to the old policy which most of time passes through the partition

near (4,5) by moving to (2,5) from (4,5). We will further explain this in the end of

this section. As shown in sub-figure a of Figures 4.5, 4.6 and 4.7, the old policy is far

worse than the new policy. This purely happens because of the nature of the object“C"

and the position it is placed. We also find that the average number of steps for the new

policy was greater than that of Q Learning because the new policy was constrained to

go through the landmarks.

In Experiments GW-Exp-2 and GW-Exp-3 we find that the exception by the object

“D" is caught because the landmark which is near (6,2) is occasionally visited by the

agent because of the stochasticity of the object “D". For example in Table 4.6 under

the column Experiment GW-Exp-2, with the exception of the category threshno−traj =

.8 all the other experiment shows similar result because of object “D". This happens

because after the exception by the object “D", the landmark (4, 6, 0) still lies on the

path taken by the agent. Whereas (6, 5, 0) and (5, 6, 0) are close to the object “D" and

once the agent moves randomly away from the object “D", it takes the path on which

landmark (6, 5, 0) and (5, 6, 0) does not lie. Thus out of the 3000 trajectories, around

1220 trajectories reached next landmark from object “D". Similar pattern happens in all

the experiments in the experiment set 3. For Experiments GW-Exp-2 and GW-Exp-3,

the next landmark after the exception caused by object “E" was mostly not reachable.

For example when the landmark was at (4, 6, 1) the agent visited it only 42 times.
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Figure 4.5: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-1(threshno−traj = .7)

(a) Exception caused by the object C (b) Exception caused by the object D and E
while going to fetch the diamond

(c) Exception caused by the object E after
fetching the diamond
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Figure 4.6: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-1 (threshno−traj = .8)

(a) Exception caused by the object C (b) Exception caused by the object D and E
while going to fetch the diamond

(c) Exception caused by the object E after
fetching the diamond
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Figure 4.7: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-1 (threshno−traj = .9)

(a) Exception caused by the object C (b) Exception caused by the object D and E
while going to fetch the diamond

(c) Exception caused by the object E after
fetching the diamond
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The lowering of the threshno−traj for the Experiments GW-Exp-2 and GW-Exp-

3 was reasonable because when the exception policy is learnt after the exception, the

number of trajectories passing through the landmarks near the object “E" and “D" de-

creases as compared to total number of trajectories. For example when the landmark

is at (4, 6, 1), after the exception policy is learnt, the number of trajectories that pass

through this landmark is 2100 out of a total of 3000 trajectories. The analysis of the

graphs are similar to experiment “1".

When comparing the graphs across the Experiments GW-Exp-1, GW-Exp-2 and

GW-Exp-3 we find we find that the new policy learned with OWE converges much

more quickly than Q learning for Experiments GW-Exp-2 and GW-Exp-3 as compared

to GW-Exp-1. This indicates that as the distance between the landmarks decreases the

performance is far better compared to when the landmarks are far away.

Table 4.8: Transfer back of the policy to old domain(Avg No of steps) for Experi-
ment GW-Exp-1

threshno−traj = .7

Initial Environment Object C Object C,D
Initial Environment 45.36
After Object C 44.673 49.971
After Object D 45.124 50.55 52.957
After Object E 45.521 50.65 52.899

threshno−traj = .8

Initial Environment 45.12
After Object C 44.528 50.875
After Object D 44.473 50.605 52.961
After Object E 43.866 50.771 53.103

threshno−traj = .9

Initial Environment 45.59
After Object C 45.582 50.542
After Object D 45.324 50.632 53.712
After Object E 44.904 50.56 53.36

When the OWE policies were used in the original domains, i.e., without exceptions

or fewer exceptions, the average number of steps taken to complete the task did not

change appreciably, as shown in Tables 4.8, 4.9 and 4.10. The average was taken over

1000 trails and the maximum length of the trajectory is 500. The trajectories are sam-

pled using the ε-greedy policy. In these tables, the rows indicate transfer of policies

to the original domain after a particular object was introduced in the domain and the

columns indicate different objects present in the domain at that time. There is random-
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Figure 4.8: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-2 (threshno−traj = .6)

(a) Exception caused by the object C (b) Exception caused by the object D

(c) Exception caused by the object E while
going to fetch the diamond

(d) Exception caused by the object E after
fetching the diamond
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Figure 4.9: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-2 (threshno−traj = .7)

(a) Exception caused by the object C (b) Exception caused by the object D

(c) Exception caused by the object E going to
fetch the diamond

(d) Exception caused by the object E after
fetching the diamond
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Figure 4.10: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-2 (threshno−traj = .8)

(a) Exception caused by the object C (b) Exception caused by the object D and E
while going to fetch the diamond

(c) Exception caused by the object E after
fetching the diamond
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Figure 4.11: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-3 (threshno−traj = .5)

(a) Exception caused by the object C (b) Exception caused by the object D

(c) Exception caused by the object E while
going to fetch the diamond

(d) Exception caused by the object E after
fetching the diamond
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Figure 4.12: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-3 (threshno−traj = .6)

(a) Exception caused by the object C (b) Exception caused by the object D

(c) Exception caused by the object E whilego-
ing to fetch the diamond

(d) Exception caused by the object E after-
fetching the diamond
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Figure 4.13: Comparison of old, new and policy learnt using Q-learning for Experi-
ment GW-Exp-3 (threshno−traj = .7)
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(a) Exception caused by the object C
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(b) Exception caused by the object D
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(c) Exception caused by the object E after
fetching the diamond
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Table 4.9: Transfer back of the policy to original domains (Avg No of steps) for Exper-
iment GW-Exp-2

threshno−traj = .6

Initial Environment Object C Object C,D
Initial Environment 45.47
After Object C 45.301 54.5
After Object D 45.094 54.571 56.421
After Object E 44.599 54.475 56.404

threshno−traj = .7

Initial Environment 44.55
After Object C 44.709 53.995
After Object D 44.623 53.943 56.875
After Object E 44.086 53.866 56.574

threshno−traj = .8

Initial Environment 44.13
After Object C 43.866 53.912
After Object D 44.168 54.321 55.48
After Object E 44.15 54.314 55.779

Table 4.10: Transfer back of the policy to the original domains (Avg No of steps) for
Experiment GW-Exp-3

threshno−traj = .5

Initial Environment Object C Object C,D
Initial Environment 44.10
After Object C 43.712 54.62
After Object D 43.749 54.594 56.849
After Object E 43.923 54.352 56.807

threshno−traj = .6

Initial Environment 44.50
After Object C 43.897 54.927
After Object D 43.961 54.69 56.97
After Object E 44.12 54.88 56.619

threshno−traj = .7

Initial Environment 45.10
After Object C 43.812 54.194
After Object D 44.281 54.762 54.97
After Object E 44.409 54.481 55.046
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ness in the domain in the execution of the action as explained in the domain section and

also because of ε =.1. Because of this randomness, a state may exist in the trajectory

that might not be represented by the suffix tree. That is why in the table, we see some

form of randomness.

As the agent is constrained to visit each landmark, we have a longer new policy in

the domain with larger number of landmarks as compared to that with smaller number

of landmarks. For example, in Experiment GW-Exp-1 (Table 4.8) in column “Object

C” and “Object C,D”, the average number of steps was lower as compared to the Ex-

periments GW-Exp-2 (Table 4.9) and GW-Exp-3 (Table 4.10).

Because of the above reason, we can see that the old policy is some times better

than the new policy(exception policy) especially when the exception is caused by the

object “D" and “E" in Experiments GW-Exp-2 and GW-Exp-3. Though the old policy

is better than the new policy, one can only know this after learning the new policy.

4.2 Blocks World

4.2.1 Experimental setup

A blocks world, as shown in Figure 4.14 , contains a table, a fixed set of blocks and a

robot arm. Given the initial configuration of blocks, the agent, using the robot arm, has

to arrange the blocks as depicted in the final configuration. Each block can be in one

of the 3 positions; either on the table, on top of the other block or in the robot’s arm.

The set of predicates are on(?Block,?Block), clear(?Block), ontable(?Block) and hold-

ing(?Block). Here ?Block is the variable corresponding to the name of the block. The

predicate on(A,B) is true if block A is on block B, clear(A) is true if the top of block A is

empty, ontable(A) is true if block A is on the table, and holding is true if the robot arm is

holding some block. The set of possible actions in this world are Stack(?Block,?Block)

, UnStack(?Block,?Block), PutDown(?Block) and PickUp(?Block). Stack and Un-

Stack actions need two blocks as indicated by the number of arguments. The pickUp

action results in picking up the block from the table. PutDown action puts the block

on the table. In order to introduce stochasticity in the world, we assume that an action

results in no effect with a probability of 0.1.
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Figure 4.14: A blocks world

Initial configuration
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Table 4.11: Experiments for the block worlds domain

Independent

Ordering of exceptions threshno−traj 5-10 10-15
Damage(C) followed Damage(F) .7 BW-Exp-1 BW-Exp-2
Damage(C) followed Damage(F) .9 BW-Exp-3 BW-Exp-4
Damage(F) followed Damage(C) .9 BW-Exp-5 BW-Exp-6

Nested
Damage(C) followed Damage(F) .9 BW-Exp-7 BW-Exp-8
Damage(F) followed Damage(C) .9 BW-Exp-9 BW-Exp-10

The agent used a learning rate of .01, discount rate of .9 and ε- greedy exploration,

with an ε of 0.001. The results were averaged over 5 independent runs. The trials were

terminated either on completion of the task or after 10000 steps.

4.2.2 Exceptions

The state is described by the predicates which are true in the current time step. To

introduce the exception, we need to ensure a policy action is invalidated, i.e., the pol-

icy is made to fail. From the set of 4 possible actions, only actions Stack and Put-

Down can be invalidated. UnStack cannot be invalidated because if the optimal policy

contains unStack, then every other optimal policy will also contain unStack. Hence

unStack is necessary to acheive the task. Similary if the block is on the table then

pickUp cannot be invalidated as this is the scenario, when the optimal policy consists

of pickUp. From the final configuration, as shown in Figure 4.14, we can conclude that

Stack(H,E), Stack(E,F), Stack(F,C), Stack(C,D), Stack(D,A), Stack(A,B), PutDown(B)

and PutDown(G) cannot be invalidated as they are necessary to achieve the final con-

figuration. The other actions which occurs as policies and can be invalidated are Put-

Down(E), PutDown(F) and PutDown(C).
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In order to invalidate these actions, we assume that if a block is damaged then it

cannot be put down by the robot on the table. However, it can be stacked on some

other block. As shown in Table 4.11, different sets of experiments where performed

with different ordering of the damaged blocks, C and F . Block E was not damaged

because the action PutDown(E) occurs quite early in the optimal policy, hence learning

the exception policy would lead to learning the optimal policy from the start state( first

landmark) to the end state(last landmark).

4.2.3 Landmarks extraction

We ran spiked state method to find the landmarks. 5000 trajectories were sampled

starting from a random start state and ending at the end state. Most of times we either

got sub figure (a) or (b) of Figure 4.15 as spiked state. These states were consecutive

in the trajectories. Since the number of state that spiked are very less and also not

uniformly distributed over the state space, we use mean-to-variance ratio to find the

landmarks. We did two set of experiments. In the first set of experiment the actions

were invalidated independent of each other i.e., either Damage(F) or Damage(C) is

invalidated. This is shown as row, labeled “Independent” in Table 4.11. In the second

set of experiments, the exceptions were introduced in sequential manner so that we can

have the notion of nested exceptions. This is shown as row, labeled “Nested” in Table

4.11. Here the ordering of the exception matters. For example if Damage(F) occurs

before Damage(C) in the optimal policy, then we need to invalidate Damage(C) and

then invalidate Damage(F). Here when we are invalidating Damage(F), Damage(C) also

remains invalidated. As the ordering is important, we further did two set of experiment

depending upon the ordering of the action Damage(F) and Damage(C).

Within each set of the above experiments, two sets of experiments were further

performed with a different bounded distance (in time) between the landmarks, resulting

in a different number of landmarks for each set of experiments. The lmin and lmax were

selected depending upon the number of steps taken by the agent to achieve the task and

required distance between the landmarks. Since in this domain, number of steps taken

by the agent was approximately around 22 steps, the lmin and the lmax were chosen
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Table 4.12: Set of candidates for landmark arranged in increasing order of mean-to-
variance ratio

State mean(m) variance(v) m/v
OTC(A),C(B), O(B,C), O(C,D), OT(D), 2.223 0.257548 8.632556
O(E,F), O(F,H), OT(H), OTC(G), C(E)
H(A),C(B), O(B,C), O(C,D), OT(D), O(E,F), 1.109 0.125785 8.816584
O(F,H), OT(H), OTC(G), C(E)
OTC(A),OTC(B), C(C), O(C,D), OT(D) 8.868 0.985909 8.994741
OTC(F), OTC(H), OTC(G), OTC(E))
OTC(A),C(B), O(B,C), O(C,D), OT(D) 5.555 0.616896 9.005173
H(F), O(F,H), OTC(H), OTC(G), OTC(E))
OTC(A),C(B), O(B,C), O(C,D), OT(D) 4.445 0.493393 9.009180
C(F), O(F,H), OT(H), OTC(G), OTC(E)
O(A,B), O(C,D), O(D,A) 23.337 2.539431 9.189853
O(F,C),H(H), OTC(G), O(E,F)
O(A,B), O(C,D), O(D,A) 24.452 2.660362 9.191228 L3
O(F,C),O(H,E), OTC(G), O(E,F)
O(A,B), H(C), O(D,A) 16.661 1.811863 9.195871
OTC(F), OTC(H), OTC(G), OTC(E)
O(A,B), OTC(C), O(D,A) 15.537 1.689565 9.196070
OTC(F), OTC(H), OTC(G), OTC(E)
OTC(A),C(B), O(B,C), O(C,D), OT(D) 6.656 0.72313 9.204551
OTC(F), OTC(H), OTC(G), OTC(E),
O(A,B), O(C,D), O(D,A) 22.223 2.412973 9.210075
O(F,C), OTC(H), OTC(G), O(E,F)
H(A),OTC(B), C(C), O(C,D), OT(D) 9.977 1.082152 9.21989
OTC(F), OTC(H), OTC(G), OTC(E))
O(A,B), O(C,D), O(D,A) 21.108 2.275263 9.277312
O(F,C), OTC(H), OTC(G), H(E)
O(A,B), O(C,D), O(D,A) 17.771 1.914739 9.280983
OTC(F), OTC(H), OTC(G), OTC(E)
O(A,B), O(C,D), O(D,A) 19.993 2.146293 9.315440
O(F,C), OTC(H), OTC(G), OTC(E)
O(A,B), O(C,D), O(D,A) 18.881 2.022933 9.332981
H(F), OTC(H), OTC(G), OTC(E)
O(A,B), OTC(C), H(D) 14.421 1.543388 9.344123 L2
OTC(F), OTC(H), OTC(G), OTC(E)
OTC(A),H(B), C(C), O(C,D), OT(D) 7.7522 0.828104 9.361446
OTC(F), OTC(H), OTC(G), OTC(E)
O(A,B), OTC(C), OTC(D) 13.306 1.419505 9.37429
OTC(F), OTC(H), OTC(G), OTC(E)
OTC(A),C(B), O(B,C), O(C,D), OT(D) 3.321 0.349822 9.495881
C(F), O(F,H), OT(H), OTC(G), H(E)
O(A,B), C(C), O(C,D), OT(D) 11.091 1.012453 10.95461
OTC(F), OTC(H), OTC(G), OTC(E))
O(A,B), H(C), OTC(D) 12.196 1.009543 12.08111
OTC(F), OTC(H), OTC(G), OTC(E)
O(A,B),O(B,C),O(C,D), OT(D), 0 0 Inf L1
O(E,F), O(F,H),OT(H), OTC(G), C(E), C(A)
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Table 4.13: Set of candidates for landmark arranged in increasing order of mean-to-
variance ratio

State mean(m) variance(v) m/v
OTC(D), C(F), OTC(E),O(F,H), 7.007 1.46212 4.79233 L2
OT(H), OTC(G), OTC(A), OTC(B),H(C)
OTC(D), C(F), OTC(E),O(F,H), 8.0 1.605 4.98442
OT(H), OTC(G), OTC(A), OTC(B), OTC(C)
C(C),O(C,D), OT(D), C(F),OTC(E), 6.003 1.185518 5.06614
O(F,H) OT(H), OTC(G), OTC(A), OTC(B)
C(C),O(C,D), OT(D), C(F), OTC(E), 5.0 0.92092 5.43478
O(F,H) OT(H), OTC(G), OTC(A), H(B)
C(B),O(B,C),O(C,D), OT(D), C(F), 4.0 0.69602 5.75263
OTC(E), O(F,H) OT(H), OTC(G), OTC(A)
O(D,A),O(C,D), OT(D), O(F,C), H(E),C(F) 18.0 3.06 5.88235
O(F,H), OTC(H), OTC(G),O(A,B), O(C,D)
C(B),O(B,C),O(C,D), OT(D), C(F), 3.001 0.48548 6.18556
OTC(E), O(F,H) OT(H), OTC(G), H(A)
O(D,A),O(C,D), OT(D), H(F), OTC(E),C(C) 16.0 2.37033 6.75011 L3
O(F,H), OTC(H), OTC(G),O(A,B)
O(D,A),O(C,D), OT(D), O(F,C), OTC(E), 17.0 2.5 6.8
C(F),OTC(H), OTC(G),O(A,B), O(C,D)
O(A,B),O(B,C),O(C,D), OT(D), C(F), 2.006 0.27794 7.202881
OTC(E), O(F,H) OT(H), OTC(G), C(A)
O(D,A),O(C,D), OT(D), C(F), OTC(E) 15.041 2.07419 7.251047
O(F,H), OT(H), OTC(G),O(A,B), O(C,D)
O(D,A), OTC(D), C(F), OTC(E) 14.037 1.85561 7.564841
O(F,H), OT(H), OTC(G),O(A,B), H(C)
O(A,B),O(B,C),O(C,D), OT(D), C(F), H(E), 1.001 0.13146 7.61421
O(F,H) OT(H), OTC(G), C(A)
O(D,A),O(C,D), OT(D), C(F), OTC(E) 13.031 1.65586 7.869249
O(F,H), OT(H), OTC(G),O(A,B), OTC(C)
H(D),O(C,D), OT(D), C(F), OTC(E) 12.021 1.45676 8.251203
O(F,H), OT(H), OTC(G),O(A,B), OTC(C)
O(D,A),O(C,D), OT(D), O(F,C), O(E,F),C(E) 22.0 2.65233 8.29458 L4
O(H,F), C(H), OTC(G),O(A,B), O(C,D)
O(D,A),O(C,D), OT(D), O(F,C), O(E,F),C(E) 21.0 2.45733 8.54584
O(F,H), H(H), OTC(G),O(A,B), O(C,D)
C(D),O(C,D), OT(D), C(F), OTC(E) 11.018 1.25208 8.8
O(F,H), OT(H), OTC(G),O(A,B), OTC(C)
O(D,A),O(C,D), OT(D), O(F,C), O(E,F),C(E) 20.0 2.273 8.798944
OTC(H), OTC(G),O(A,B), O(C,D)
C(D),O(C,D), OT(D), C(F), OTC(E) 10.011 1.11878 8.947211
OT(H), OTC(G),H(A), OTC(B), OTC(C)
O(A,B),O(B,C),O(C,D), OT(D), 0.0 0.0 Inf L1
O(E,F), O(F,H),OT(H), OTC(G), C(E), C(A)
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as 5 and 10 , 10 and 15 as shown under the columns 5-10 and 10-15 in Table 4.11.

The number of trajectories used to collect the information regarding the landmarks and

transition times between the landmarks was 3000. Though we had a different ordering

for each experiment, we give the example of two Tables 4.12 and 4.13. The landmarks

as shown in sub figure (b) of Figure 4.16 under experiment BW-Exp-8 and sub figure

(b) of Figure 4.18 under experiment BW-Exp-7 are selected from the Table 4.12 and

Table 4.13 respectively. In the table OTC implies ontable and clear, O implies on, C

implies clear, OT implies ontable and H implies holding.

4.2.4 Results and Discussion

Within the experiment set “Independent” and “PutDown(C) followed PutDown(F)”, we

further perform the experiments depending upon the threshno−traj . This value will not

affect the results as the exception is the result of the blocked action. But still we did the

experiment with threshno−traj= .7 and threshno−traj= .9 and found in both cases the

landmarks were not reachable as the action was blocked. The landmarks selected by

mean-to-variance ratio are shown in Figures 4.16, 4.17 and 4.18.

The maximum number of steps were assigned as 100 for the simulation of the path

from start to exception state. Similar number of steps were assigned from the potential

terminal landmarks to the terminal state. The trials for the exception policy that is from

exception state to potential landmark were terminated either on completion of the task

or after 9800 steps.

When learning the exception policy, only few landmarks called as the valid land-

marks would be considered from the candidate set of possible terminal states for the

exception policy. The valid landmarks are those landmarks in which the corresponding

pickUp action of the invalidated PutDown action has been executed. The absence of

valid landmarks other than the goal state leads to global changes in the domain. This

can be observed in all the experiments, sub figure (a), (b), (c), (d) of Figure 4.19, (c) and

(d) of Figure 4.21 and (c), (d) of Figure 4.22 where the landmark distance was 10-15

steps and the candidate set of terminal states consist of only the goal state. Similarly,

when the landmark distance is 5-10, we can see the similar pattern as shown in sub

figure (b), (d) of Figure 4.19 and (c) of Figure 4.21. This happens because the Put-
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Figure 4.15: Spiked States
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Figure 4.16: Landmarks for Experiments BW-Exp-1,BW-Exp-2,BW-Exp-6, BW-Exp-
8 and BW-Exp-10
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Figure 4.17: Landmarks for Experiments BW-Exp-3 and BW-Exp-4
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Figure 4.18: Landmarks for Experiments BW-Exp-5,BW-Exp-7 and BW-Exp-9
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Down(F) action occurs very early in the optimal policy. Invalidation of PutDown(C)

gives similar results in some experiments as shown in sub figure (b) in Figures 4.21 and

4.23. In all these cases the exception policy was at least better than the policy obtained

by Q learning.

In all the experiments, where the landmark distance is 5-10, the exception policy

learnt after the first exception is far better than the Q learning. This happened because

the candidate set of landmarks consisted of valid potential terminal states different from

the goal state. The exception policy can terminate at one of these valid landmarks. This

can be seen in sub figure (a) and (c) of Figure 4.19, (a) of Figures 4.22 and 4.23.

Table 4.14: Transfer back of the policy to original domains (Avg No of steps)

BW-Exp-1
Initial Environment Damage (C)

Initial Environment 25.321
Damage C 25.755 25.796
Damage (F) 25.324 25.858

BW-Exp-2
Initial Environment 25.89
Damage (C) 25.755 25.294
Damage (F) 25.324 25.376

BW-Exp-3
Initial Environment 25.09
Damage (C) 25.543 25.359
Damage (F) 25.764 25.96

BW-Exp-4
Initial Environment 25.89
Damage (C) 25.7768 25.32
Damage (F) 25.756 25.869

BW-Exp-7
Initial Environment 25.851
Damage (C) 25.433 25.87
Damage (F) 25.488 25.934

BW-Exp-8
Initial Environment 25.89
Damage (C) 25.694 25.498
Damage (F) 25.55 25.584

When the OWE policies were used in the original domains, i.e., without exceptions

or fewer exceptions, the average number of steps taken to complete the task did not

change appreciably, as shown in Tables 4.13, 4.14. The average was taken over 1000

trails and the maximum length of the trajectory is 500. In Table 4.3, the rows indicate

the transfer of policies to the old domain after a particular object was introduced in

the domain and the columns indicate the different objects present in the domain at that

time. The values under the column, “Initial Environment” , “Damage(C)” in Table 4.14

and “Intial Environement” , “Damage(F)” in Table 4.15)are same because the damaged

block could be placed on some other block and end state could be achieved. Hence
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Figure 4.19: Comparison of old, new and policy learnt using Q-learning for BW-Exp-1
and BW-Exp-3
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Figure 4.20: Comparison of old, new and policy learnt using Q-learning for BW-Exp-2
and BW-Exp-4
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Figure 4.21: Comparison of old, new and policy learnt using Q-learning for BW-Exp-5
and BW-Exp-6
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Figure 4.22: Comparison of old, new and policy learnt using Q-learning for BW-Exp-7
and BW-Exp-8
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Figure 4.23: Comparison of old, new and policy learnt using Q-learning for BW-Exp-9
and BW-Exp-10

(a) Exception caused by the damaged Block C
in BW-Exp-9

(b) Exception caused by damaged Block F
and C in BW-Exp-9

(c) Exception caused by damaged Block C in
BW-Exp-10

(d) Exception caused by damaged Block F
and C in BW-Exp-10
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Table 4.15: Transfer back of the policy to original domains (Avg No of steps)

BW-Exp-5
Initial Environment Damage(F)

Initial Environment 25.561
Damage (F) 25.902 25.413
Damage (C) 25.543 25.685

BW-Exp-6
Initial Environment 25.89
Damage (F) 25.186 25.52
Damage (C) 25.756 25.855

BW-Exp-9
Initial Environment 25.89
Damage (F) 25.483 25.428
Damage (C) 25.466 25.629

BW-Exp-10
Initial Environment 25.89
Damage (F) 25.833 25.854
Damage (C) 25.5 25.96

blocking the putDown action doesn’t changes the no of steps . Though block “G" was

provided as a replacement for the table, so that damaged block could be placed on it, it

was rarely used by the agent.

There is randomness in the domain in the execution of the action as explained in the

domain section and also because of ε =.001. Because of this randomness, a state may

exist in the trajectory that might not be represented by the suffix tree. That is why in the

table, we see some form of randomness.

4.3 Conclusion

In this chapter, we tested the OWE framework with the Grid World and Blocks World

domain. In the experiments we evaluated the Transition Time Model and learned the

exception policy. We found that exception policy learned is better than the original

policy. We also found that because of the complex exception structure, the policies

learned using the framework might be quite far away from the optimal policy.
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CHAPTER 5

Conclusion and Future Directions

Spatio-temporal abstraction of skills with the notion of skill specific representation is an

approach for solving large scale RL problems. These skill specific representations cut

down the learning time and achieve a better success rate when applied to new problems.

But seldom the new set of problems are exactly of the same form on which the skill

specific representation is learned on. Transferring the skill specific abstraction to the

entirely different domain may not work as the old policy may break down completely.

However the transfer may work if the domain is slightly different from the domain

on which representation is learned on. This slight difference might be in the form of

small changes in the environment such as change in the configuration or change in the

dynamics of the world. Applying the old policy here might be suboptimal or may result

in failure. This failure is attributed to a small change in the policy rather than complete

breakdown of the policy. In such a scenario repairing the old policy might be better

option than learning a new policy from scratch.

In order to repair the old policy, one needs to detect when and where the failure has

occurred and then change the failed policy. But changing the old policy might end up in

losing the policies of earlier tasks. Further, these changes may create a different spatial

abstraction if the skills are learned with skill specific representation to represent the

modified solution, thus losing the abstraction of earlier learned skills. Hence we need a

framework which can accommodate such changes with minimal variation in the spatial

abstraction still maintaining the quality of the solution of the original subtask that the

skill was learned on.

5.1 Contributions

We proposed novel methods to find the landmarks in the spatial representation of the

task. Landmarks are places or sites that are visited often and are used to either find

the way backward or forward. Thus we define a landmark for a region as a state that



is mostly visited when paths are traversed (successful or unsuccessful) through that

region. The first method is called Spiked State method. This is based on the notion of

junction which most people try to associate as landmarks while traveling. The heuristic

is based on this idea, where the junction of many paths is called a spiked state. One

of the problems with this heuristic is that it requires the domain to have large number

of different paths through the states which enables us to find the required pattern to

identify the spiked states. The second heuristic is called Mean-to-Variance ratio, were

we find the landmarks only on the st-trajectory. This problem can be formulated as

a constrained subset selection problem. The first constraint is that the landmarks are

selected in increasing order of mean to variance ratio. The second constraint is that

distance between two consecutive landmarks is bounded between the minimum and the

maximum limit. We also formulated this problem as an minimization problem. We

used greedy approach to find the solution as described in the algorithm. Sometimes the

approach fails and the landmarks violate either the minimum or maximum limit. But

the failures are local and are not cascading. Since OWE framework can also work with

non uniform distribution of landmarks on the st-trajectory, the local failure does not

affect.

Landmarks further allow us to represent the task abstractly and provide a novel op-

tion management framework that enables us to safely update options. This framework is

called Transition Time Model and it helps to find the exception region. Transition Time

Model consists of a landmark network which captures the connectivity information be-

tween the landmarks. The model stores the average transition time and the relative

variability of the transition time between pair (u, v) of landmarks, where the pair is

formed by the landmark u that follows directly the landmark v in many st-trajectories.

Similarly an Auxiliary Model is built using the landmark network. It stores the average

transition time extracted from the stexception- trajectories. Change In Landmark Dis-

tance measure compares the average transition time extracted from the Transition Time

Model and the Auxiliary model between the pair of landmarks. When this measure

deviates above the relative variability, exception is triggered between the pair of land-

marks. Once the exception region is found, the Transition Probability Model identifies

the first exception state where the current policy fails.

Since we are looking at skill specific representation, the option representation should

be able to make the required changes to the affected parts of the existing representation
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and leave the rest of representation unaffected. This can be achieved using a suffix

tree. Similar to Ripple Down Rules, this framework allows to modify an option’s policy

using instances only where the existing policy seems to fail. This results in context

specific updates. In order to maintain minimal variation in the abstraction, changes in

the policy are represented by the features extracted from these instances.

5.2 Future Work

While the framework succeeds in identifying small changes required to be made to the

options, we still have some distance to go before building a complete skill management

system. Regarding the identification of exception, in the experiments we found that

though exception is triggered, the exception policy learned remains the same as old one.

This happens for particular types of obstacles placed in the domain. More principled

approach would be to automatically identify when an exception would suffice and when

a new option is warranted.

The nested exceptions lead to more deeper suffix tree which further leads to huge

computation while storing and retrieving the policies. Usually the addition of exception

policy to the current set of policies might be suboptimal policy. With the complex

exception structure the polices learned using the framework might be quite far away

from the optimal policy. A more principled approach would be to find the threshold,

which will allow us to decide when to discard the current exception policies and learn

a new policy from scratch. A less stringent approach would be to flatten the exception

structure in the suffix tree without disturbing the exception.

The proposed framework cannot handle the notion of dynamic obstacles. In fact,

a moving obstacle would not cause an exception as the state in which the obstacle

is present might not even be a part of the sampled trajectories. One has to look at

the expanded representation of the state space to capture the exception caused by the

dynamic obstacle, which is not handled in this thesis.
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