
Scalable Community Detection and Centrality

Algorithms for Network Analysis

A THESIS

submitted by

VISHNU SANKAR M

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

NOVEMBER 2014

THESIS CERTIFICATE

This is to certify that the thesis titled Scalable Community Detection and Centrality

Algorithms for Network Analysis, submitted by Vishnu Sankar M, to the Indian

Institute of Technology, Madras, for the award of the degree of Master of Science,

is a bonafide record of the research work done by him under our supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. B Ravindran
Research Guide
Associate Professor
Dept. of CSE
IIT-Madras, 600 036

Place: Chennai

Date: April 1, 2015

ACKNOWLEDGEMENTS

I take this opportunity to thank my research guide Dr. B. Ravindran for his friendly

guidance and inputs during the course of my research. He organized weekly lab meet-

ings which served as a forum to be aware of the ongoing research in the lab.

I thank Ericcson for funding my research and Mr.Shivashankar of Ericsson for help-

ing me getting a patent out of it.

I thank my colleague Swarnim with whom I collaborated on the topic “comparison

of different scoring functions". This served as the base, from which my research led me

to come up with a new scoring function.

Lastly, I thank my family and friends for supporting me throughout my research.

i

ABSTRACT

KEYWORDS: Social Networks ; Communities ; Scoring functions; Modularity;

Hadoop; Game Theory; Centrality

Communication has become a lot easier with the advent of easy and cheap means of

reaching people across the globe. This has allowed the development of large networked

communities and, with the technology available to track them, has opened up the study

of social networks at unprecedented scales. This has necessitated the scaling up of

various network analysis algorithms that have been proposed earlier in the literature.

While some algorithms can be readily adapted to large networks, in many cases the

adaptation is not trivial.

Real-world networks typically exhibit non-uniform edge densities with there be-

ing a higher concentration of edges within modules or communities. Various scoring

functions have been proposed to quantify the quality of such communities. The popu-

lar scoring functions suffer from certain limitations. This thesis identifies the necessary

features that a scoring function should incorporate in order to characterize good commu-

nity structure and propose a new scoring function, CEIL (Community detection using

External and Internal scores in Large networks), which conforms closely with the char-

acterization. It also demonstrates experimentally the superiority of CEIL score over the

existing scoring functions. Modularity, a very popular scoring function, exhibits a res-

olution limit, i.e., one cannot find communities that are much smaller in size compared

to the size of the network. In many real world networks, community size does not grow

in proportion to the network size. This implies that resolution limit is a serious prob-

ii

lem in large networks. Still modularity is very popular since it offers many advantages

such as fast algorithms for maximizing the score, and non-trivial community structures

corresponding to the maxima. This thesis shows analytically that the CEIL score does

not suffer from resolution limit. It also modifies the Louvain method, one of the fastest

greedy algorithms for maximizing modularity, to maximize the CEIL score. The modi-

fied algorithm, known as CEIL algorithm, gives the expected communities in synthetic

networks as opposed to maximizing modularity. The community labels given by CEIL

algorithm matches closely with the ground-truth community labels in real world net-

works. It is on par with Louvain method in computation time and hence scales well to

large networks.

This thesis also explores the scaling up of a class of node centrality algorithms based

on cooperative game theory which were proposed earlier as efficient alternatives to tra-

ditional measure of information diffusion centrality. It presents the distributed versions

of these algorithms in a Map-Reduce framework, currently the most popular distributed

computing paradigm. The scaling behavior of the distributed version of algorithms on

large synthetic networks is demonstrated empirically thereby establishing the utility of

these methods in settings such as online social networks.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES ix

1 Introduction 1

1.1 Need for a new community detection algorithm 2

1.2 Need for parallelizing game theoretic centrality algorithms 3

1.3 Contribution of the thesis . 3

1.4 Outline of the thesis . 4

2 Background and Related Work 5

2.1 Related algorithms to find communities 5

2.2 Related measures of centrality . 10

3 Introduction and Analysis of CEIL Score 11

3.1 Introduction of CEIL score . 11

3.2 Analysis of CEIL score . 21

3.3 Comparison of several scoring functions 27

4 CEIL Algorithm to Find Communities 35

4.1 CEIL Algorithm . 35

iv

4.2 Empirical validation of CEIL algorithm 39

5 Parallelization of Centrality Algorithms 47

5.1 Map-Reduce and Hadoop . 47

5.2 Parallelization of game theoretic centrality algorithms 51

5.3 Experimental Results . 68

6 Conclusions and Future Work 76

A Results of perturbation experiments 77

LIST OF TABLES

3.1 Features that are captured by different scoring functions 21

3.2 Networks with ground-truth communities 28

3.3 Absolute difference in Z score between the large and small perturbation.
Best scores are bolded. 32

3.4 Spearman’s rank correlation coefficient for density 33

3.5 Spearman’s rank correlation coefficient for separability 33

4.1 Rand index . 45

4.2 Running Time . 45

5.1 Running time of Game 1 on E-R graphs of different densities in seconds 73

5.2 Running time of Game 2 on E-R graphs of different densities in seconds 73

5.3 Running time of Game 3 on E-R graphs of different densities in seconds 73

5.4 Running time of Game 4 on E-R graphs of different densities in seconds 74

5.5 Running time of Game 5 on E-R graphs of different densities in seconds 74

5.6 Running time of all the game theoretic algorithms on Barabasi Albert
graphs of density 0.1 in seconds . 74

5.7 Running time of game 1, game 2 and game 3 algorithms in seconds on
a 10 million edge network . 75

5.8 Running time of game 1, game 2 and game 3 algorithms in seconds on
a 1 million edge network . 75

vi

LIST OF FIGURES

3.1 Communities differing only in the parameter ‘Number of nodes forming
the community’ . 12

3.2 Communities differing only in the parameter ‘Number of intra commu-
nity edges present in the community’ 12

3.3 Communities differing only in the parameter ‘Number of inter commu-
nity edges incident on the community’ 12

3.4 An example network with 5 communities 14

3.5 An example network with 2 communities 19

3.6 Outline of a network with atleast 3 communities 23

3.7 Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under NodeSwap perturbation. . . . 30

3.8 Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Random perturbation. 30

3.9 Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Expand perturbation. 31

3.10 Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Shrink perturbation. 31

4.1 The network on the left side is an example network with 16 nodes. At
the end of the first phase, which is the maximization of CEIL score, four
communities are formed. In the diagram at the top, they are marked by
four different colors. The second phase is to construct the induced graph
using the labels of the first phase. It reduced the graph to 4 nodes. The
numbers inside the parenthesis are the properties of the nodes - Number
of intra community edges, Sum of degree of all nodes and Number of
nodes of the community in the original graph which the node represents
in the induced graph. One pass represents one iteration of the algorithm. 37

vii

4.2 The second pass reduces the graph to two nodes. After this, merging of
nodes decreases the score given by CEIL score to the network. So, the
algorithm stops. 38

4.3 Circle of Cliques . 41

4.4 Two Pair of Cliques . 42

5.1 Map-Reduce model with 3 mappers and 2 reducers 48

5.2 An example network which is unweighted 49

5.3 An example network which is weighted 50

5.4 Result of cascade experiment in collaboration network 71

A.1 Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under NodeSwap perturbation. 77

A.2 Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Random perturbation. 78

A.3 Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Expand perturbation. 78

A.4 Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Shrink perturbation. 79

A.5 Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under NodeSwap perturbation. 79

A.6 Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Random perturbation. 80

A.7 Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Expand perturbation. 80

A.8 Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Shrink perturbation. 81

A.9 Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under NodeSwap perturbation. 81

A.10 Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Random perturbation. 82

viii

A.11 Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Expand perturbation. 82

A.12 Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Shrink perturbation. 83

ix

CHAPTER 1

Introduction

Interactions between people in social media, telephone calls between phone users, col-

laboration between scientists and several other social interactions have significant cor-

relation with the behavior of people. Decisions taken by people are influenced by their

social interactions. Such interactions are frequently modeled using a graph. In social

domain, people form nodes and the interactions between them form edges [15]. In tele-

com domain, phone users form nodes and calls made by them form edges [17]. In all of

these networks, finding groups of nodes which have similar characteristics and finding

important nodes in the network have been among the top research interests.

Easy connectivity across the globe has resulted in a large number of interactions be-

tween people. The possibility of collection, storage and processing of this huge volume

of data has allowed the construction and study of large networks. This has necessi-

tated the improvements in the algorithms that are used to analyze the properties of the

network. Most of the algorithms are inherently non scalable. This thesis considers

two major areas of network analysis namely community detection and centrality and

improves over the existing algorithms in those two areas.

Many real world networks exhibit the property of community structure [20], i.e.,

nodes in the network can be partitioned into communities such that more edges are

present between nodes belonging to the same community than between the nodes be-

longing to different communities. This structural property has attracted researchers as

the communities in networks typically correspond to some real world property of the

network. For instance, communities in a collaboration network correspond to research

area of the members forming that community.

Finding important nodes/edges in the network is one of the chief challenges ad-

dressed by social network analysis. The measure of importance of nodes/edges, known

as centrality, varies depending on the context. Generally, a centrality measure which is

optimal in one of the context will be sub-optimal in a different context. This structural

property is significant in applications such as viral marketing where the initial set of

influencers are crucial for the success, modeling the epidemic spread and identifying

critical nodes in power systems where the failure of these critical nodes may create a

cascading failure.

1.1 Need for a new community detection algorithm

Most of the community detection algorithms reported in the literature do not scale well.

The Louvain method [2] is the fastest known algorithm to find communities. But modu-

larity [22], the objective function which the Louvain method optimizes, suffers from the

problem of resolution limit, i.e., one cannot detect communities which are much smaller

in size when compared to the size of the network using modularity. For instance, con-

sider two communities which are connected to each other by a single edge. Also, each

of them are connected to rest of the network by a single edge. Modularity maximization

cannot find communities which are of size less than
√

L
2

in this case where L represents

the total number of edges in the network. In many real world networks, community size

does not grow in proportion to the network size [13]. This implies that resolution limit

is a serious problem in large networks. Conductance is another popular scoring func-

tion used to measure the quality of communities. But, optimization of conductance will

always give one community which is the graph itself and hence it is used mainly as a rel-

ative comparative measure and not as an objective function. Surprise is another scoring

function which does not suffer from resolution limit but is computationally intensive.

Label propagation algorithm proposed by Raghavan et al. is simple and each iteration

2

takes little time. But the number of iterations is prohibitively large. Clique percola-

tion technique is another popular algorithm but is mainly used to find the overlapping

communities. The iterative ensemble method proposed by Ovelgonne and Schulz finds

natural communities but is computationally very expensive. Hence, there is a need for

a newer community detection algorithm which is free from resolution limit, yet easy to

compute and scalable.

1.2 Need for parallelizing game theoretic centrality al-

gorithms

The traditional centrality measures including betweenness centrality, closeness central-

ity and eigen vector centrality measures fail to identify the collective importance of

several nodes. Game theoretic centrality measures proposed in [19], [14] overcome this

problem and have polynomial time complexity. Hadoop is a open source implementa-

tion of the widely used map-reduce parallelization framework. Though these algorithms

are inherently parallelizable, hadoop is not the ideal platform for parallelizing graph al-

gorithms. Since hadoop is widely used, we have used it to parallelize five of the game

theoretic centrality measures which has allowed us to have a better scaling behavior in

these algorithms.

1.3 Contribution of the thesis

The contributions of this thesis are :

• Identification of the necessary features that a good scoring function should incor-
porate in order to find the relative ordering of communities in a network.

3

• Introduction of a new scoring function which captures all the features of com-
munities and a theoretical proof that this scoring function does not suffer from
resolution limit.

• A good alternative algorithm to Louvain method for finding communities in large
networks.

• Parallelization of the polynomial time game-theoretic algorithms for finding cen-
tralities of nodes in large networks.

1.4 Outline of the thesis

Rest of this thesis is organized as follows:

• Chapter 2 introduces the related community detection algorithms and the existing
centrality measures.

• Chapter 3 characterizes the necessary features that are required for a good scoring
function, proposes a new scoring function which confirms to the characterization
and compares it with the existing scoring functions.

• Chapter 4 presents an algorithm to find communities and applies it on synthetic
and real world networks and compares it’s performance with other algorithms.

• Chapter 5 talks about the parallelization of the game theoretic centrality algo-
rithms using hadoop.

• Chapter 6 gives a summary of the work done.

4

CHAPTER 2

Background and Related Work

In this chapter, we discuss about the various techniques which are used to find commu-

nities in networks and the existing measures of centrality.

2.1 Related algorithms to find communities

Existing approaches to find communities

Several approaches are existing to find communities in a network. We describe most of

the widely used methods in this section.

Divisive Algorithms : Inter community edges are the edges which go from a node be-

longing to one community to another node which belongs to a different community.

Divisive algorithms identifies such edges and removes them one by one. The algorithm

can either have a stopping criteria or remove all the edges and then construct a dendo-

gram using the order of removal of edges.

Agglomeration Algorithms : In agglomeration algorithms, each node in the network

is assumed to be of individual community i.e., we will have as many communities as

the number of nodes in the network. Every community is merged with the neighboring

communities based on a criteria. The merging of communities is stopped once the

stopping criteria is reached.

Random Walk : In random walk based methods, similarity between vertices are calcu-

lated based on the probability of a random walker choosing that path. This probability

will generally be high for vertices which are closer than the ones farther apart. The

similarity score is then used to find communities by either divisive or agglomeration

technique.

Spectral Methods : Spectral methods transform the adjacency matrix of the network

into a suitable form. Then, it uses the values of the eigen vectors of this matrix to find

communities.

Optimization of an objective function : Scoring functions came into existence to eval-

uate the goodness of the communities given by various community detection algorithms.

Scoring functions quantifies the quality of communities i.e., they differentiate good and

bad communities by assigning them a score. A partition of the network having the best

score according to a scoring function is the best partition of the network. Finding the

partition which gets the best score according to scoring functions among all such parti-

tions is an NP-hard problem. So, this class of algorithms find communities by greedy

optimization of the scoring functions.

Existing algorithms to find communities

Girvan and Newman proposed a divisive algorithm which uses betweenness score to find

the inter community edges [21]. Betweenness score for an edge is calculated based on

the fraction of the shortest path between all pairs of nodes in the network that contains

this edge. Inter community edges will have high betweenness score as it will be the part

of many shortest paths in the network. So, in this algorithm, the edge with the highest

betweenness score is removed. Then, the betweenness scores of the edges affected due

to the removal of this edge are recalculated. This process is repeated until there is

no edge remaining in the graph and the order of removal of edges is used to built the

dendogram. This method suffers from high computational cost. The algorithm runs

6

with a worst case time complexity of O(m2n) where m is the number of edges in the

network and n is the number of nodes in the network. This algorithm is parallelizable

and the parallel version [33] has an improved running time.

Newman proposed another algorithm which greedily optimizes a scoring function

named moudlarity [22]. The exact maximization of modularity is hard [4]. It falls into

the general category of agglomerative hierarchical clustering. Initially, all the nodes

in the network are considered to be a community on its own. Then, the pairs of com-

munities are merged which will give a greatest increase or smallest decrease to the

modularity score of the network. Then, the order of merging of communities is used to

built the dendogram. Partition at every level of this dendogram gives different number

of communities. But, the algorithm selects the partition that gives the maximal value

of modularity score. This running time of this algorithm is O((n +m)n). The increase

in speed of this algorithm over the betweenness algorithm can be partly attributed to

the faster calculation of change in the modularity value whenever two communities are

merged.

A randomized greedy algorithm whose aim was to improve the running time of

the plain greedy algorithm without much decline in the performance was proposed by

Ovelgonne and Geyer-Schulz [24]. This is also an agglomerative hierarchical clustering

wherein one best pair of nodes are merged after every iteration. The randomized greedy

algorithm chooses k random nodes from the network and searches for best pair of nodes

to be merged only from among the random nodes and their neighbors and not from all

pair of nodes in the network like the plain greedy algorithm. This method improves the

running time of the algorithm and as well makes it stochastic.

Ovelgonne and Geyer-Schulz also proposed an ensemble method to find commu-

nities using the randomized greedy algorithm [24]. Initially, a set S of k partitions of

the same network G is obtained by running the randomized greedy algorithm k times.

7

Then, the partition P̂ is formed which is the maximal overlap of all the partitions in

set S. An induced graph Ĝ is formed from the partition P̂ . A final algorithm is used

on this induced graph to find the communities of Ĝ which is then projected back on

to G. Note that the initial set S can be constructed either by running any stochastic

algorithm k times or by running k deterministic algorithms or by any combination of

both which makes this a generic framework. They also proposed an iterative ensemble

method to improve the performance of this algorithm by repeating the steps before the

final algorithm is run [25].

A very fast method to maximize modularity was introduced by Blondel et al. [2].

This method uses a simple heuristic to maximize modularity. This method consists of

two phases. Initially, all the nodes in the network are assigned to its own community.

Then, every node in the network is considered in a sequential order and are merged

with their neighbors such that it gives a maximal increase to the modularity score of the

partition. This process is repeated until the modularity value reaches a local maxima. In

the second phase, an induced graph is constructed using the partition obtained from the

first phase. This induced graph can be given as input to the first phase and thus the two

phases are iterated until the modularity value of the partition reaches a maximal value.

Modularity maximization to find communities can also be done using spectral meth-

ods [23]. Let A be the adjacency matrix of the network, D be the diagonal matrix with

degree of nodes in the diagonal and L = D−frac12AD−frac12 be the normalized Lapla-

cian matrix. The eigen vector x corresponding to the second largest eigen value λ is

considered. The network is partitioned into two groups based on the signs of the ele-

ments of x. This process is repeated and a dendogram is built.

Despite several methods were developed to find communities by maximizing mod-

ularity, optimization of modularity was proven to suffer from resolution limit [8]. At-

tempts were made to circumvent resolution limit based on the concept of multi-resolution

8

[1]. But, Lancichinetti and Fortunato proved that multi-resolution suffers from two op-

posite co-existing problems [12]. At low resolution, small sub graphs will be merged.

At high resolution, large sub graphs will get split. Since the resolution has to be either

low or high at a time, multi-resolution algorithms will always suffer from at least one of

the two problems.

Tanmoy et al. proposed a novel approach to find communities by taking into con-

sideration of not only the number of inter community edges going out of a community

but also the distribution of inter community edges to all the neighboring communities

[5]. This method is proved empirically to produce a better community structure than

modularity maximization algorithms.

Label propagation method was proposed by Raghavan et al. [29]. In this method,

all the nodes are assigned an unique label at the initial step. Then, every node in the

network is considered in a random order and it is assigned the label which majority of

its neighbors have. This process is repeated until all the nodes in the network gets a

label which at least half of its neighbors have.

Pons and Latapy proposed a random walk based method to find communities [27].

They find the similarity of nodes based on the random walk and then use this knowledge

to build a hierarchical agglomeration algorithm.

Palla et al. proposed a clique percolation technique which is mainly used to find

overlapping communities in networks [26]. Two k-cliques are said to be adjacent if they

share k-1 nodes between them. The maximal union of such k-cliques that are adjacent to

each other is defined as a community. Though this method is computationally expensive,

it uncovers the natural overlap between communities as a node is allowed to part of any

number of communities.

9

2.2 Related measures of centrality

The popular centrality measures are degree centrality, closeness centrality, betweenness

centrality and page rank centrality.

Degree centrality of a node is the number of links incident upon that node. It is

useful in the context of finding the single node which gets affected by the diffusion of

any information in the network. It follows from the fact that the node with high degree

centrality has the chance of getting affected from many number of sources.

Closeness centrality of a node is the sum of the inverse of the shortest distance from

the node to every other node in the network. In applications such as package delivery, a

node with high closeness centrality can be considered as the central point.

Betweenness centrality of an edge is the fraction of shortest paths between all pairs

of nodes in the network that passes through this edge. A node with high betweenness

centrality will typically be the one which acts as a bridge between many pairs of nodes.

Page rank centrality of a node depends on the number and the quality of the neigh-

bors who have links to the node. One of the popular application of page rank centrality

is finding the relevant page from the web. Initially, all the web pages are assumed to

have an equal page rank value. Then, page rank value of every web page is divided

equally to each of the outgoing links from that web page. Page rank value of a web page

after the above step is the sum of the values obtained from all the incoming links to that

web page. This process is repeated iteratively until the page rank values of all the web

pages do not change by a large margin in any two subsequent iterations.

10

CHAPTER 3

Introduction and Analysis of CEIL Score

In this chapter, we characterize the features of a good scoring function, propose a new

scoring which confirms to our characterization and compare it with the existing scoring

functions. The intuition behind a community is that it should be well connected inter-

nally and well separated from rest of the network, i.e., it should have more number of

intra community edges and less number of inter community edges. A scoring function

is the mathematical formulation of the quality of a community.

3.1 Introduction of CEIL score

In this section, we introduce our new scoring function which we call as CEIL(Community

detection using External and Internal scores in Large networks).

Characterization of a good scoring function

A community is characterized by the following three features.

• Number of nodes forming the community.

• Number of intra community edges present in the community.

• Number of inter community edges incident on the community.

A scoring function should incorporate all these three features of the communities

because numerous examples can be constructed such that there are two communities in

(a) Community A (b) Community B

Figure 3.1: Communities differing only in the parameter ‘Number of nodes forming the
community’

(a) Community A (b) Community B

Figure 3.2: Communities differing only in the parameter ‘Number of intra community
edges present in the community’

(a) Community A
(b) Community B

Figure 3.3: Communities differing only in the parameter ‘Number of inter community
edges incident on the community’

the same network which differ in only one of the above three features in which case

the third feature becomes necessary to distinguish between those two communities. For

example, consider a scoring function which do not include the feature ‘number of nodes

forming the community’. It will give same score to a community A in a network having

10 intra community edges, 2 inter community edges and 5 nodes and to a community B

12

in the same network having 10 intra community edges, 2 inter community edges and 10

nodes. But community A has higher internal density than community B and should be

given higher score than community B. Similarly, other two features are also essential in

assigning scores to communities in order to find the relative order of communities in a

network.

Notations

G− A simple, unweighted network.

N − Number of nodes in G.

E − Number of edges in G.

L− Set of edges in G.

S − Set of all communities in G.

C − Number of communities in G.

s− One of the communities in S.

as − Number of intra community edges in s.

bs − Number of inter community edges incident on s.

ns − Number of nodes forming the community s.

ξ − Community link matrix for communities in G.

Existing scoring functions

Few of the widely used scoring functions are conductance, triad participation ratio and

modularity.

13

A

B

C

D

E

Figure 3.4: An example network with 5 communities

Definition 1. Conductance is given by the ratio of number of inter community edges to

the total degree of all nodes in the community [31].

Conductance(s) =
bs

2as + bs

Conductance ranges from 0 to 1 with 0 representing the good community.

In Figure 3.4,

For community A,

as = 6

bs = 2

Conductance(A) = 2
14

= 0.1428

For community B,

as = 5

bs = 1

Conductance(B) = 1
11

= 0.0909

14

Definition 2. Triad Participation Ratio is given by the fraction of nodes in the commu-

nity that are participating in at least one triad.

Triad Participation Ratio(s) =

|{u : u ∈ s, {(v, w) : v, w ∈ s, (u, v) ∈ L, (u,w) ∈ L, (v, w) ∈ L} 6= ∅}|
ns

Triad participation ratio ranges from 0 to 1 with 1 representing the good community. In

Figure 3.4,

For community A,

Number of nodes participating in at least one triad = 4

Total number of nodes = 4

TPR(A) = 4
4

= 1

For community B,

Number of nodes participating in at least one triad = 3

Total number of nodes = 4

TPR(B) = 3
4

= 0.75

Definition 3. Modularity is given by the difference between the actual number of intra

community edges present in the community and the expected number of intra community

edges that would be present in the community if the edges in the network are distributed

randomly with identical degree distribution [22].

Modularity(s) =
as
E
−
(
2as + bs

2E

)2

Modularity ranges from -0.5 to 1 with 1 representing the good community. A modularity

value of 0 indicates that the edges in the network are uniformly distributed and there is

15

no community structure in the network.

In Figure 3.4,

For community A,

as = 6

bs = 2

E = 34

Modularity(A) = 6
34
−
(
14
68

)2 = 0.1340

For community B,

as = 5

bs = 1

E = 34

Modularity(B) = 5
34
−
(
11
68

)2 = 0.1208

We find that none of these existing scoring functions take into account all the three

necessary features to characterize the communities. Modularity and conductance do

not consider the parameter ‘number of nodes forming the community’ while Triad Par-

ticipation Ratio does not consider the parameter ‘number of inter community edges

incident on the community’. So, we propose a new scoring function characterizing the

communities by taking into account all the necessary features enabling us to rank the

communities in a network better than the existing scoring functions.

CEIL score

A community is expected to be well connected within itself as well as well separated

from rest of the network. We define internal score to model the connectedness within

the community and external score to model its separability from rest of the network.

A community is said to be well connected internally, if a large fraction of pair of

16

nodes belonging to the community are connected, i.e., internal well connectedness of a

community increases with the increase in number of intra community edges.

Definition 4. Internal score of a community is the internal edge density of the commu-

nity.

Internal Score(s) =

as

(ns
2)

if ns ≥ 2

0 if ns = 1

Internal score ranges from 0 to 1. It takes the value of 0 when there are no intra commu-

nity edges in the community and takes the value of 1 when every node in the community

is connected to every other node in the community.

A community is said to be well separated from rest of the network, if the number

of connections between nodes belonging to the community and to those belonging to

other communities is less, i.e., external well separability increases with decrease in the

number of inter community edges.

Definition 5. External score of a community is the fraction of total number of edges

that are intra community edges in the community.

External Score(s) =
as

as + bs

External score ranges from 0 to 1. It takes the value of 0 when every edge which is

incident on the community is an inter community edge and takes the value of 1 when

every edge which is incident on the community is an intra community edge.

CEIL score of a community is the score given to one community in the network. A

community structure is said to be good, if it is well connected within itself and is well

separated from rest of the network, i.e., if it gets a high value in internal and external

17

scores. So, we chose the geometric mean of the internal and external score as commu-

nity score. Since we are interested in the relative order of communities and not on the

absolute score a community gets, we chose product over geometric mean.

Definition 6. CEIL score of a community is product of internal and external score of

the community.

CEIL Score(s) = Internal Score(s)× External Score(s) (3.1)

CEIL score of a community ranges from 0 to 1. It takes the value of 0 when the com-

munity has no intra community edge and takes the value of 1 when the community is a

clique as well as it has no inter community edge. A high community score represents a

good community as it can be obtained only when both the internal and external scores

are high.

A network typically has many communities.

Definition 7. CEIL score of a network is the weighted sum of scores of all the commu-

nities in the network.

CEIL Score(G,S) =
∑
s∈S

ns
n
× Community Score(s) (3.2)

CEIL score of a network ranges from 0 to 1 in a simple, unweighted network.

Lemma 1. Computational complexity of CEIL score is O(E+C) and it can be approx-

imated as O(E).

Proof. Computationally, CEIL score has the same asymptotic complexity as that of

modularity and conductance. We need to calculate an additional parameter for each

18

community namely the number of nodes belonging to the community. A community

link matrix ξ is a C × C matrix where the entries represent the number of edges going

from one community to another. The diagonal elements of ξ represent the intra com-

munity edges while non-diagonal elements represent the inter community edges in the

network. It takes O(E) computation to compute ξ from a labeled network and O(C)

computation to compute the CEIL score of the network from the community link matrix.

The additional parameter, ‘number of nodes forming the community’ can be calculated

along with the calculation of the community link matrix. So, the computation of the

network score takes O(E + C) which can be approximated as O(E) as the number of

communities in most of the networks is very small when compared to the number of

edges in the network.

Example calculation of CEIL score

Figure 3.5: An example network with 2 communities

In Figure 3.5, all dots represent nodes and all lines represent edges of the network.

This network consists of two communities - community 1 and community 2. Red dots

belong to community 1 while blue dots belong to community 2. Red edges are in-

tra community edges of community 1 while blue edges are intra community edges of

community 2. Green edges are the inter community edges between community 1 and

19

community 2. Now,

• Number of nodes in the network(N) = 9

• Number of intra community edges in community 1(a1) = 5

• Number of inter community edges in community 1(b1) = 2

• Number of nodes in community 1(n1) = 4

• Number of intra community edges in community 2(a2) = 8

• Number of inter community edges in community 2(b2) = 2

• Number of nodes in community 2(n2) = 5

CEIL score of community 1 =

(
a1(
n1

2

)) a1
a1 + b1

=

(
5

6

)(
5

7

)
= 0.5952

CEIL score of community 2 =

(
a2(
n2

2

)) a2
a2 + b2

=

(
8

10

)(
8

10

)
= 0.64

20

CEIL score of the network =
∑
s∈S

ns
n
× CEIL Score(s)

=

(
4

9
∗ 0.5952

)
+

(
5

9
∗ 0.64

)
= 0.2645 + 0.36

= 0.6245

Table 3.1: Features that are captured by different scoring functions

Scoring
Functions

Intra
community

edges

Inter
community

edges

Number
of

nodes
Scalable Optimizable

No
Resolution

limit
CEIL score X X X X X X
Modularity X X 7 X X 7

Conductance X X 7 X 7 X
TPR X 7 X 7 X X

In Table 3.1, we compare the various desirable features of the different community

scoring functions. We note that CEIL score have all the features mentioned in Table 3.1

while other scoring functions do not have all the features.

3.2 Analysis of CEIL score

In this section, we analyze the nature of CEIL score and show that it does not suffer

from resolution limit.

21

Resolution Limit

Resolution limit is the inability of an algorithm to detect communities which are much

smaller in size when compared to the size of the network, i.e, there exists a lower limit

on the size of the detectable communities as a function of the network size. Modularity

maximization suffers from resolution limit [8].

Theorem 2. CEIL score does not suffer from resolution limit.

Proof. Consider the same network which was used to prove the resolution limit of mod-

ularity maximization. The network consists of two communities - 1 and 2. They are

connected to each other as well as to the rest of the network as in Figure 3.6. Let n1

and a1 be the number of nodes and the number of intra community edges of community

1. Similarly, let n2 and a2 be the number of nodes and the number of intra community

edges of community 2. In order to express the number of inter community edges of both

the communities in terms of their respective intra community edges, we consider four

positive constants x1, y1, x2 and y2. Let x1a1 represent the number of inter community

edges going from community 1 to community 2 and y1a1 represent the number of inter

community edges going from community 1 to rest of the network. Similarly, let x2a2

represent the number of inter community edges going from community 2 to community

1 and y2a2 represent the number of inter community edges going from community 2 to

rest of the network. Let N represent total number of nodes in the network.

We will consider two different partitions of this network. Partition A, in which 1

and 2 are considered as two different communities and Partition B, in which 1 and 2 are

considered as a single community. The partition of the rest of the network can be done

in anyway but identical in partitions A and B. Let NA and NB be the network scores

of partitions A and B respectively. Let N0 be the network score of rest of the network

and is same for both the partitions A and B since the partition of rest of the network is

22

Community 1

Community 2

Rest
of
the
Network

Figure 3.6: Outline of a network with atleast 3 communities

identical in both the cases.

Partition A : 1 and 2 are two different communities in partition A. The properties

of community 1 are,

Intra community edges = a1

Inter community edges = x1a1 + y1a1

Number of nodes = n1

CEIL score(1) =

(
a1

a1 + x1a1 + y1a1

)(
a1(
n1

2

))

Similarly,

CEIL score(2) =

(
a2

a2 + x2a2 + y2a2

)(
a2(
n2

2

))

CEIL score of the network for partition A is given by,

NA = N0 +
n1

N

(
a1

a1 + x1a1 + y1a1

)(
a1(
n1

2

))+
n2

N

(
a2

a2 + x2a2 + y2a2

)(
a2(
n2

2

))

23

Partition B : 1 and 2 are considered as a single community. The properties of that

community are,

Intra community edges = a1 + x1a1 + a2

Inter community edges = y1a1 + y2a2

Number of nodes = n1 + n2

CEIL score(community) =

(
a1 + x1a1 + a2

a1 + x1a1 + a2 + y1a1 + y2a2

)(
a1 + x1a1 + a2(

(n1+n2)
2

))

CEIL score of the network for partition B is given by,

NB = N0 +
n1 + n2

N

(
a1 + x1a1 + a2

a1 + x1a1 + a2 + y1a1 + y2a2

)(
a1 + x1a1 + a2(

(n1+n2)
2

))

Comparison of partition A and B : For 1 and 2 to be communities, NA should be

greater than NB, i.e.,

(
n1a

2
1

(a1 + x1a1 + y1a1)
(
n1

2

))+

(
n2a

2
2

(a2 + x2a2 + y2a2)
(
n2

2

))

>

(
(n1 + n2) (a1 + x1a1 + a2)

2

(a1 + x1a1 + a2 + y1a1 + y2b2)
(
(n1+n2)

2

)) (3.3)

Note that the above inequality does not depend on any parameter which is related

to size of the network. This means that CEIL score does not suffer from resolution

limit.

A similar analysis for modularity has led to the inequality having local parameters

on one side and number of edges in the network on the other side [8] i.e., modularity

maximization takes the decision to split a community into two or not based on the

24

relationship between the local parameters of the community and the number of edges in

the network.

Nature of CEIL score

We assume, for simplicity in calculations, that communities 1 and 2 in Figure 3.6 are

similar, i.e, they have equal number of nodes, equal number of intra community edges

and equal number of inter community edges. So, n1 = n2 = n, x1 = x2 = x and y1 =

y2 = y. This makes (3.3) as,(
na2

(a+ xa+ ya)
(
n
2

))+(na2

(a+ xa+ ya)
(
n
2

)) >

(
(n+ n) (a+ xa+ a)2

(a+ xa+ a+ ya+ ya)
(
(n+n)

2

))

On simplification and rearrangement we get,

2× 2n− 1

n− 1
>

(x+ 2)2 (x+ y + 1)

x+ 2y + 2

The term 2n−1
n−1 takes the minimum value of 2 at n = ∞. This makes the expression

to be,
(x+ 2)2 (x+ y + 1)

x+ 2y + 2
< 4 (3.4)

We will consider several cases for different values of the total number of inter commu-

nity edges. Our analysis of these cases are in line with the method which was used to

prove the resolution limit modularity [8]. However, we differ from them by finding the

distribution of inter community edges of the communities 1 and 2 for which they will

be found as two different communities. This is because the worst case scenario x = 2,

y = 0 considered to prove the resolution limit in modularity actually connects commu-

nity 1 and 2 enough to make them into a single community. Also, none of the existing

25

structural definitions of community discuss the distribution of inter community edges.

Hence, we find the constraints to be put in the distribution of inter community edges for

which CEIL score is free from resolution limit.

Trivial cases : An isolated community, i.e., one with no inter community edges (x=0

and y=0), would be the strongest community. The expression (3.4) always holds under

this condition. This means that the CEIL algorithm will find communities 1 and 2 as two

different communities as opposed to combining them together into a single community

in the trivial case when both the communities have no inter community edges.

We connect both the communities by a single edge and also connect each of the

community to rest of the network by a single edge. This makes both the community

to have two inter community edges. Now, x = 1
a

and y = 1
a
. The expression (3.4)

becomes, (
1
a
+ 2
)2 (2

a
+ 1
)

3
a
+ 2

< 4

The above equation holds for all a ≥ 2. a needs to be positive as it represents

the number of intra community edges in the community and a = 1 represents a poor

community structure as it is make the community to have 1 intra community edge and

2 inter community edges. This means that CEIL score is free from the resolution limit

in this case.

Community in strong sense : One of the definitions of a community in strong

sense is that the number of inter community edges should not be more than the number

of intra community edges. In particular, we consider the extreme case where the number

of inter community edges is equal to the number of intra community edges. This makes

x+ y = 1. Upon substituting this and simplifying, expression (3.4) becomes,

x2 + 6x− 4 < 0

26

Considering that x is positive, range of x is [0,0.6]. This means that CEIL algorithm

will find communities 1 and 2 to be two different communities if, not more than 60% of

the inter community edges go to a single community which is of equal size.

Community in weak sense : A community in weak sense is one in which the

number of inter community edges is not more than twice the number of intra community

edges [28]. We consider the extreme case where the number of inter community edges

is exactly twice the number of intra community edges. This makes x + y = 2. Upon

substituting this and simplifying, expression (3.4) becomes,

3x2 + 16x− 12 < 0

Considering that x is positive, range of x is [0,2
3
]. This means that CEIL algorithm will

find communities 1 and 2 to be two different communities if, not more than 33% of the

inter community edges go to a single community which is of equal size.

In the above analysis, we have assumed that the communities 1 and 2 in Figure 3.6

are equal in the number of nodes, the number of intra community edges and the number

of inter community edges. They can differ in any or all of these parameters. In these

cases, the above constraints will also vary.

3.3 Comparison of several scoring functions

In this section, we compare CEIL score with other popular scoring functions. Yang

and Leskovec [32] compared the performance of several scoring functions using pertur-

bation experiments and have reported that Conductance and Triad Participation Ratio

are the best performers. Modularity is the most widely used definition. So, we com-

pare CEIL score against these three scoring functions. In addition to the perturbation

27

experiment, we also compare the scoring functions using a few community goodness

metrics.

Datasets

We used four ground truth community datasets from Stanford large network data. The

statistics of the networks are listed in Table 3.2.

Table 3.2: Networks with ground-truth communities

Networks Nodes Edges Number of communities
LiveJournal 3,997,962 34,681,189 5000

Youtube 1,134,890 2,987,624 5000
DBLP 317,080 1,049,866 5000

Amazon 334,863 925,872 5000

Perturbation Experiment

Perturbation experiments were introduced for comparative study of different scoring

functions in [32]. In these experiments, ground-truth communities are perturbed us-

ing few perturbation techniques to degrade their quality. The scores given by various

scoring functions for the ground-truth as well as the perturbed communities are then

compared. A good scoring function is expected not only to give high scores for ground-

truth communities and is also expected to give low scores for perturbed communities.

We consider a ground-truth community s and do the following perturbations on the

community.

• NODESWAP - We randomly select an inter community edge (u, v) and swap the
memberships of u and v i.e., we remove a node which is part of community s
and add a node which is not a part of community s. This perturbation technique
preserves the size of the community but affects the fringe of the community.

28

http://snap.stanford.edu/data/#communities

• RANDOM - We randomly select a node in community s and swap it’s member-
ship with another node in the network which belongs to a different community.
This perturbation technique also preserves the size of community s. However, it
affects the community more than the NODESWAP perturbation.

• EXPAND - We randomly select an edge (u, v) such that u ∈ s and v /∈ s. We add
the node v to community s. This perturbation increases the size of community s.

• SHRINK - We randomly select an edge (u, v) such that u ∈ s and v /∈ s. We
remove the node u from community s. This perturbation decreases the size of
community s.

Let f be a scoring function and f(s) be the community score of the community s

under f . Let s be a ground-truth community and h(s, p) be the perturbed community

obtained by perturbing s using the perturbation technique h for a perturbation intensity

of p. The perturbation intensity p is the fraction of nodes in the community that gets

affected by our perturbation techniques. We measure f(h(s, p)) by taking the average

over 20 trials. Z-score, which measures the difference of scores in units of standard

deviation is given by,

Z(f, h, p) =
Es[f(s)− f(h(s, p))]√

V ars[f(h(s, p))]

where Es[.],V ars[.] are respectively the mean and variance over communities s. Note

that we negate the value of conductance because it gives low score to ground-truth

communities and high score to perturbed communities.

We measure the Z-score of the four scoring functions for several perturbation in-

tensities. At small perturbation intensities, Z-score is expected to be low indicating the

robustness of the definition. At high perturbation intensities, Z-score is expected to be

high indicating the reactivity of the definition. Table 3.3 shows the average of absolute

difference of Z-score between small and large perturbation across the 3 networks we

have considered : Z(f, h, 0.4)− Z(f, h, 0.05).

29

Figure 3.7: Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under NodeSwap perturbation.

Figure 3.8: Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Random perturbation.

Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 shows the plot of Z-score as a

function of perturbation intensity in the LiveJournal network. For the plots in other

networks, refer appendix A. CEIL score performs significantly better in RANDOM and

considerably better in NODESWAP and EXPAND. We obtained similar performance in

30

Figure 3.9: Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Expand perturbation.

Figure 3.10: Z-score given by various scoring functions as a function of perturbation
intensity in LiveJournal network under Shrink perturbation.

Youtube and DBLP datasets also. In SHRINK, we obtained mixed results as CEIL score

does better in LiveJournal network while modularity does better in Youtube network and

conductance does better in DBLP network.

Table 3.3 shows that CEIL score performs well under all the different perturbations

31

Table 3.3: Absolute difference in Z score between the large and small perturbation. Best
scores are bolded.

Definitions NodeSwap Random Expand Shrink
Modularity 0.2123 0.2512 0.0350 0.9994

Conductance 1.1308 1.4024 0.3876 0.7101
TPR 1.1134 4.7466 0.2189 0.5555

CEIL Score 2.7035 12.4463 0.8545 0.8490

unlike other scoring functions. The reason for the poor performance of other scoring

functions is that they do not include at least one of the three features necessary to char-

acterize a community in their definition. We also note that modularity is not suitable

for EXPAND and SHRINK perturbations since these perturbations affect the size of the

community. The score given by modularity to a community depends on the size of the

network in which the community is present. EXPAND perturbation affects it adversely

as it increases the relative size of the community to size of the network and hence it per-

forms poorly under EXPAND perturbation. On the other hand, SHRINK perturbation

affects it favorably and hence it performs better under SHRINK perturbation.

Community Goodness Metrics

A community structure possesses the following two characteristics.

• Nodes in the community should be well connected to each other.

• A Community should be well separated from rest of the network.

Internal density and separability respectively are the goodness metrics which cap-

tures these two characteristics [9] [32]. These community goodness metrics are not

community scoring functions. According to [32], “community scoring function quanti-

fies how community-like a set is, while a goodness metric in an axiomatic way quantifies

a desirable property of a community". Let s be a community, as be the number of intra

32

community edges in the community, bs be the number of inter community edges incident

on the community and ns be the number of nodes forming the community. Then,

Internal density(s) =
as

ns (ns − 1)

Separability(s) =
as
bs

We rank the ground-truth communities based on the density, separability as well as the

score given by the scoring functions. We measure the correlation of the ranks given by

the scoring functions and the ranks obtained through density and separability. We use

spearman’s rank correlation coefficient to find the correlation between the ranks [16].

It ranges from +1 to -1. A value of +1 indicate the highest positive correlation and a

value of -1 indicate the highest negative correlation. Let the n raw scores Xi and Yi be

converted to ranks xi and yi respectively. Then,

Spearman’s rank correlation coefficient, ρ =
∑

i (xi − x) (yi − y)√∑
i (xi − x)

2 (yi − y)2

Table 3.4: Spearman’s rank correlation coefficient for density

Networks LiveJournal Youtube DBLP Amazon
Modularity -0.3751 -0.9017 -0.2313 -0.9070

Conductance 0.1963 0.5762 0.1736 -0.5676
TPR 0.4386 -0.5124 0.4052 0.4714

CEIL score 0.5363 0.8279 0.7034 0.9474

Table 3.5: Spearman’s rank correlation coefficient for separability

Networks LiveJournal Youtube DBLP Amazon
Modularity 0.0600 -0.4854 0.0687 0.5791

Conductance 1.0000 1.0000 1.0000 1.0000
TPR -0.0482 -0.4782 -0.0240 -0.3891

CEIL score 0.9002 0.9192 0.7954 -0.3513

33

From Table 3.4 and Table 3.5, we have the following conclusions. Modularity do

not correlate well with both density and separability except in Amazon network where

it has a reasonably good correlation in separability. Conductance absolutely correlates

with separability but it doesn’t correlate with density except in Youtube network where

it is the second best. Triad participation ratio overall has the second best correlation

with density but no correlation with separability. CEIL score has the highest correlation

with density and has the second highest correlation with separability except in Amazon

network. In the amazon network, communities with high internal density have low

separability and vice versa. This is the reason for the negative correlation of CEIL score

with separability in Amazon network. This correlation experiment also shows that the

poor correlation of conductance with density is due to the fact that it does not consider

the ‘number of nodes forming the community’. Similarly, the poor correlation of triad

participation ratio with separability is due to the fact that it do not consider the ‘number

of inter community edges incident on the community’. Since CEIL score takes into

account all the features, it correlates well with both the goodness measures.

34

CHAPTER 4

CEIL Algorithm to Find Communities

In this chapter, we introduce the CEIL algorithm and compare it with other algorithms

experimentally.

4.1 CEIL Algorithm

A greedy approach to find communities by efficiently maximizing an objective function

is already proposed in [2]. Since it is one of the fastest known heuristic, we use the same

method to maximize CEIL score. The algorithm has two phases. In the first phase, we

assign each node to its own community. Then, we consider every node in the network

in a sequential manner, remove it from its original community and add it either to the

community of one of its neighbors or back to the original community, whichever will

result in a greater increase in the CEIL score of the network. The newer properties of a

community when a node n is added to the community is calculated as,

as = as + intran + incidentn,s

degs = degs + degn

ns = ns + nn

where intran is the number of intra community edges in the community represented by

node n, incidentn,s is the sum of weights of the edges incident from node n to commu-

nity s, degs is the sum of degree of all nodes in the community s, degn is the sum of

degree of all nodes in the community represented by node n and nn is the number of

nodes in the community represented by node n.

With the updated as, degs and ns, the newer score and hence the increase is calcu-

lated. In a similar way, the decrease in score of a community when a node is removed

from it is calculated. We repeat this process iteratively until there is no increase in the

score given by the scoring function. At this time, the scoring function will reach its

local maxima and the first phase ends.

Algorithm 1 Pseudocode of CEIL algorithm
Input: A graph G = (V,E)
Output: Label - A map from node to community
while True do

for all v ∈ V do
Label[v] = v

end for
while Modified do

Modified = False
for all v ∈ V do

PreviousLabel = Label[v]
Label[v] = Label of it’s own or any of it’s neighbors whichever gives a

greater increase to the CEIL score.
if PreviousLabel 6= Label[v] then

Modified = True
end if

end for
end while
if New CEIL Score > Previous CEIL Score then

Ĝ = An induced graph where nodes are communities of G.
G = Ĝ

else
Terminate the algorithm.

end if
end while

In the second phase, we construct an induced graph of the network by using the

community labels of nodes obtained from the first phase. Each community in the first

36

0

1

2

4 5

3

7

6

11

13

12

10

8
15

14

9

1 0

32

(4,15,4)(4,12,4)

(7,20,5) (2,9,3)

4

4

12

0

1

2

4 5

3

7

6

11

13

12

10

8
15

14

9

First
Phase

Second
Phase

First
Pass

Figure 4.1: The network on the left side is an example network with 16 nodes. At
the end of the first phase, which is the maximization of CEIL score, four
communities are formed. In the diagram at the top, they are marked by
four different colors. The second phase is to construct the induced graph
using the labels of the first phase. It reduced the graph to 4 nodes. The
numbers inside the parenthesis are the properties of the nodes - Number of
intra community edges, Sum of degree of all nodes and Number of nodes
of the community in the original graph which the node represents in the
induced graph. One pass represents one iteration of the algorithm.

phase is represented by a node in the induced graph. Number of nodes in the community,

sum of degree of all nodes in the community and the number of intra community edges

37

1 0

32

(4,15,4)(4,12,4)

(7,20,5) (2,9,3)

4

4

12
0 1(12,27,8) (13,29,8)3

Second
Pass

Figure 4.2: The second pass reduces the graph to two nodes. After this, merging of
nodes decreases the score given by CEIL score to the network. So, the
algorithm stops.

are all preserved in the induced graph by associating them with the respective node.

Weight of an edge between two nodes in the induced graph is equal to the sum of weights

of all edges between those two communities in the original graph. The second phase

ends after the construction of the induced graph. We keep track of the scores of all the

communities, i.e., update the scores of the communities as and when a change (addition

or deletion of nodes) is made to the community. This will help in faster calculation

of the increase or decrease to the community score whenever a change is made to the

community.

The induced graph obtained as output of the second phase is given as the input to the

first phase. The two phases are thus iterated until there is no increase in the score. At this

time, it will reach a maximum value. Figure 4.1 and Figure 4.2 pictorially represents

the working of CEIL algorithm.

In weighted networks, the number of edges is calculated as the sum of weights on

all the edges. CEIL score of the network takes the low value of 0 but the high value is

dependent on weights on the edges of the network. Nevertheless, the relative ordering

of communities in a network will not get affected and so CEIL algorithm can be used

in weighted networks also. By calculating only the edges going out from the nodes

belonging to a community while calculating the number of intra and inter community

edges, CEIL algorithm can be extended to directed graphs also. CEIL algorithm cannot

be applied without modifications to find overlapping communities. But, CEIL score can

38

still be used to rank the overlapping communities.

4.2 Empirical validation of CEIL algorithm

One of our objectives is to develop a community detection algorithm that can scale to

large networks. Hence, in this chapter, we restrict the comparison of CEIL algorithm to

representative algorithms that exhibit good scaling behavior. Louvain method is a fast

algorithm [2] which is used to find communities in large networks. Label propagation

algorithm is simple and each iteration takes little time. But the number of iterations is

prohibitively large. 95% of the nodes in the network happen to agree with the labels

of atleast half of it’s neighbors in 5 iterations in typical networks [29]. So, we have

stopped the label propagation algorithm as soon as 95% of the nodes agree with the

labels of atleast half of it’s neighbors.

The experiments in this section are designed to show that CEIL algorithm finds,

• communities of different sizes.

• different number of communities.

• communities of varying size in the same network.

• communities in networks with different edge densities.

• communities in real world networks that matches closely with the ground-truth
communities.

39

Evaluation Measures

We use Rand index [30] to compare the labels generated by the algorithms with the

ground-truth labels. Rand Index is given by,

Rand Index =
a+ b

a+ b+ c+ d

Rand Index considers all the
(
n
2

)
possible pairs of n nodes of a network. a is the number

of pairs where both the nodes belong to same community in ground-truth network as

well as in the labels generated by the algorithm, b is the number of pairs where both

the nodes belong to different community in ground-truth label as well as in the labels

generated by the algorithm, c is the number of pairs where both the nodes belong to

same community in ground-truth label but belongs to different community in the labels

generated by the algorithm and d is the number of pairs where both the nodes belong to

different community in ground-truth label but belongs to same community in the labels

generated by the algorithm.

We define Eres to be the errors due to the classification of a pair of nodes into the

same community which are actually in different communities in the ground-truth.

Eres =
d

a+ b+ c+ d

Apart from rand index, there are several other measures with which we can mea-

sure the overlap between ground-truth communities and the communities given by al-

gorithms. We have chosen RAND index as the comparison metric since it penalizes

incorrect assignments and rewards correct assignments. Further, Rand index is more

forgiving when you report more communities than in the ground truth. Few of the no-

table measures are as below.

40

Normalized Mutual Information [6] measures the mutual dependence of two random

variables. It is given by,

NMI(X, Y) =
I(X, Y)√
H(X)H(Y)

The normalization variables H(X) and H(Y) are entropies of random variables X and

Y respectively.

F-measure or F-score is another evaluation measure which is harmonic mean of

precision and recall. It is given by,

F-score = 2 ∗ Precision ∗ Recall
Precision + Recall

Experimental demonstration of resolution limit

In [8], synthetic networks with specific structural properties were used to prove the

resolution limit in modularity. We use similar networks to show that CEIL algorithm

finds the expected communities as opposed to modularity maximization.

Circle of cliques :

Figure 4.3: Circle of Cliques

Several equal sized cliques are arranged in a circle. Each clique is then connected

to the neighbors on either side by an edge. The intuitive number of communities in

41

this network is the number of cliques with each clique being a community. Figure 4.3

shows an example network of circle of cliques. Each dot correspond to a clique. The

line between any two dots is a single edge connecting the corresponding cliques.

• Consider such a network of 30 cliques with each clique having 5 nodes. CEIL al-
gorithm gave 30 communities with each clique being a separate community. Lou-
vain method was shown to give only 15 communities with two adjacent cliques
belonging to a single community [8].

• To show that CEIL algorithm finds communities in networks irrespective of the
number of communities, we repeated this experiment with 300, 3000 and 30000
cliques of size 5. In all the cases, CEIL algorithm was able to find each of the
cliques as a separate community.

• To show that CEIL algorithm finds communities irrespective of the size, we kept
the number of communities in this network to a fixed value of 10 and generated
this network with size of cliques as 50, 500 and 1000. In all these networks, CEIL
algorithm was able to find the correct communities.

Two Pair of cliques :

A B

C

D

Figure 4.4: Two Pair of Cliques

To show that CEIL algorithm finds communities in networks where the communities

differ in size, we generated the two pair of cliques network. Two pair of cliques network

consists of a pair of big sized cliques and a pair of small sized cliques. In Figure 4.4, A

and B are cliques of size 20, i.e., 20 nodes and 190 edges while C and D are cliques of

size 5. The line between any two dots is the single edge connecting two cliques. CEIL

algorithm gave 4 communities with each clique being a community. Louvain method

was shown to give only 3 communities [8]. They are A, B and a third community

42

encompassing C and D. We kept the size of the two small cliques as constant at a size

of 5 and generated three networks with size of the big cliques as 200, 2000 and 5000.

In each of these cases, CEIL algorithm is able to find the four cliques as four different

communities.

Note that we can construct numerous such examples where modularity maximiza-

tion fails due to the resolution limit while maximization of CEIL score does not fail.

The above experiments also show that CEIL algorithm will be able to identify commu-

nities irrespective of their size and number provided that a strong community structure

is present in the network.

Four Community Network

To show that CEIL algorithm performs well on graphs with different densities, we gen-

erated a synthetic network consisting of four communities [6] where the density of the

networks can be varied. The nodes belonging to a community are linked with proba-

bility Pin to nodes belonging to the same community and are linked with probability

Pout to the nodes belonging to other communities. The probabilities Pin and Pout are

chosen such that the average degree of nodes in the network is fixed to a certain value

and thereby the density of edges in the network is fixed. By varying the probabilities

Pin and Pout, the average number of links a node has to the nodes belonging to the same

community, Zin, and the average number of links a node has to the nodes belonging

to the other communities, Zout, can be controlled. As the value of Zout increases, it is

difficult for the algorithms to identify the communities.

We generated a network consisting of 128 nodes having 4 communities with 32

nodes for each communities as described in the benchmark proposed by Danon et al. [6].

We varied the density of edges in this network by controlling the sum of Zin and Zout.

43

The density of edges in the resulted networks are 25.19%, 12.59%, and 6.29%. In the

network with density 25.19%, we were able to recover the 4 ground-truth communities

for all Zin > Zout. In the network with density 12.59%, we were able to identify the

communities fully when Zout was 0 and 1. We obtained a rand index of 0.9922 and 0.93

whenZout was 2 and 3. In the network with density 6.29%, we were able to obtain a rand

index of 0.9506 when Zout was 0. We note that the ability to recover the communities

goes down as the density of edges in the network decreases. This is because we put a

tighter constraint on what a community is. When Zout was zero, the external score will

be 1 but the internal score will be very less due to the lesser density of edges. This leads

to some nodes being excluded from the community. We note that Louvain method was

able to recover the communities even in the network with density of 6.29% when Zout

was zero. But, it is debatable that at this density whether any community structure exists

or not.

Real World Graphs

To show that CEIL algorithm matches the ground-truth communities in real networks,

we ran CEIL algorithm, Louvain method and Label Propagation algorithm in real world

graphs and generated community labels for all the nodes in the networks. Few nodes

in the network have no ground-truth label while few others have multiple ground-truth

labels. We have only considered the nodes which have exactly one ground-truth com-

munity label for calculating the rand index. Essentially, the nodes which we consider

are the core of the ground-truth communities. This process has resulted in many small

communities. So, we have removed the communities which have less than 3 nodes.

Table 4.1 shows the rand index.

From Table 4.1, we see that CEIL algorithm captures the ground-truth communities

better than Louvain method. Though the label propagation algorithm gives a better

44

Table 4.1: Rand index

Networks Louvain method Label Propagation(95%) CEIL algorithm
Youtube 0.8957 0.6915 0.9959
DBLP 0.9702 0.9818 0.9828

Amazon 0.9910 0.9953 0.9938

Table 4.2: Running Time

Networks Louvain method Label Propagation(95%) CEIL algorithm
Youtube 321.25s 30.03s 395.25s
DBLP 134.39s 571.69s 77.77s

Amazon 81.17s 10.76s 80.68s

match to ground-truth communities in Amazon network, it’s performs poorly in Youtube

network. Since we have stopped this algorithm earlier, there is no guarantee for the

performance of this algorithm on all the networks.

The errors Eres for Louvain method are 0.1026, 0.0145 and 0.0087 on Youtube,

DBLP and Amazon networks while they are only 0.000015, 0.000002 and 0.00 for

CEIL algorithm. Since we are not considering the nodes having multiple labels for the

calculation of rand index, this type of mis-classification occurs only due to the resolution

limit of the modularity.

We also note from Table 4.2 that the running time of CEIL algorithm is on par with

the Louvain method. Only difference between Louvain method and CEIL algorithm is

the scoring function which is maximized. The computation of both the scoring functions

using the pre-computed parameters requires O(1) time. So, the empirical running time

of both the algorithms is the same. But both the algorithms generate different number

and size of communities depending on the topology of the networks. This is the reason

for small differences in the running time of the algorithms. Label propagation has a

much better running time in two of the networks. This is due to the reason that we have

stopped the algorithm as soon as the 95% of the nodes in the network agree with the

45

labels of atleast half of their neighbors. It takes several hours in many networks for

100% of the nodes to agree with the labels of atleast half of their neighbors. Since we

are considering only the core members of each of the community, all the algorithms give

a higher value of rand index.

46

CHAPTER 5

Parallelization of Centrality Algorithms

Game theoretic centrality algorithms model the importance of nodes when combined

with other nodes in the network [18], [19]. This makes it suitable to be applied in

the context of information diffusion. Polynomial time algorithms to compute game

theoretic centrality were introduced by Aadithya et al. [14]. In this chapter, we discuss

the parallelization techniques which we had used to parallelize these game-theoretic

centrality algorithms.

5.1 Map-Reduce and Hadoop

Map-Reduce : Map-reduce [7] is a parallel programming model for data intensive

applications. Every map-reduce task starts with a map phase. The input and output to

this phase are key-value pairs. One key-value pair is read at a time and one or many

key-value pairs are written in the output.

(Key1, V alue1)→ (list(Key2, V alue2))

An optional combiner can be used at the end of the map phase to reduce the size of the

output of the map phase. This reduces the amount of data to be transferred over the

network which otherwise would be a bottleneck. This phase is followed by the sort and

shuffle phase. The output of the map (or combiner) is sorted and then are sent to the

respective reducers based on a partition algorithm. The default partition algorithm just

shuffles the map output to reducers but it can can be overridden by a custom partitioning

algorithm. Once the sort and shuffle phase ends, the reduce phase begins. The input to

this phase is the key and the list of values corresponding to that key. For each key, one

or many key-value pairs are written into the output by the reducer.

(Key2, list(V alue2))→ (list(Key3, V alue3))

Figure 5.1: Map-Reduce model with 3 mappers and 2 reducers

Hadoop : Hadoop[10] is an open source implementation of the map-reduce pro-

gramming model. It also encompasses the Hadoop distributed file system(HDFS) [3].

Hadoop follows a master slave architecture where the master(Job Tracker) takes up a

job, assigns part of the tasks to each of the slaves(Task Tracker) and tracks the progress

of the job from the reports of the slaves to the master. Generally, slaves are the data

nodes wherein the input data is stored and processed. But, master can also act as a

data node and do computation. The input file is broken into several chunks of equal

size(except the last chunk) and are distributed among the data nodes. Each block or a

chunk is replicated and are stored at different machines providing fault tolerance. Every

machine can run any number of map or reduce tasks at a time. This framework is used

to parallelize the five centrality algorithms proposed in [14] to run them on big data.

Challenges in parallelization : In general, large graphs are represented in the edge-

48

list format. In this format, each line of the input file is an edge. For example, edge AB

is represented by "A [space] B" where A and B are the nodes forming the edge.

1 2

3

5

4

Figure 5.2: An example network which is unweighted

Input format for the graph represented in Figure 5.2 could be:

1 2

2 3

2 4

2 5

3 5

49

1 2

3

5

4

2

2

3

1

1

Figure 5.3: An example network which is weighted

Input format for the graph represented in Figure 5.3 could be:

1 2

1 2

2 3

2 4

2 5

2 5

5 2

3 5

5 3

Challenges: The challenges from programming perspective are,

1. The input file is partitioned into equal chunks and the chunks are distributed across
the machines in the cluster. So, the information related to a particular node may
be stored partially in many machines. For example, edges "1 2" and "1 3"

50

may be present in two different machines. In this case, we say that the information
about node 1 is partially available in each of the two machines.

2. The mapper reads the input chunk (or an input file) in a sequential manner such
that it reads only one line at a time. In our case, since each line corresponds to an
edge, we say that a mapper processes one edge at a time. Essentially, a mapper
will have knowledge only about the edge which is getting processing at that time
and will not have any information about the other edges in the network. Similarly,
a reducer processes one key at a time and will have information about only that
particular key and its values at a time.

3. The number of map-reduce phases have to be less. As the number of map-reduce
phases reduce, amount of computation decreases and hence there will be a de-
crease in the running time of the algorithm.

4. The amount of intermediate data, i.e., the output of map has to be less. This
intermediate data have to be shuffled and sorted and have to be sent to the reducer
through the network. If the intermediate data is large, it will become a bottleneck
and the algorithm slows down.

5.2 Parallelization of game theoretic centrality algorithms

In this section, we describe the five game theoretic centrality algorithms proposed in

[14] and the techniques to parallelize them. The class of centrality measures proposed

in [14] are defined using cooperative games on networks. The following definitions

describe the general methodology used for characterizing these measures.

Definition: A cooperative game is characterized by a set of players N and a payoff

function ν : 2N → R, that assigns a real value to any subset of players, or coalition.

Definition: The set of nodes influenced by a coalition is known as the fringe of

the coalition. By changing the definition of a fringe we can mode different influence

propagation mechanisms.

51

Definition: The Shapley value of a node in a cooperative game is the expected

marginal contribution of the node to any coalition. This is determined by computing the

expected increase in the value of a randomly chosen coalition when this node is added

to it.

The definitions of fringe in the different network games used in [14] capture different

models of information/influence propagation in a network. The Shapely value of a node

can then be used as a centrality measure in the context of information diffusion. For

more details of the approach, please refer to [14].

An Example: Degree Centrality

Degree centrality is the easiest of the centralities in terms of computation. The degree

centrality of a node is defined as the degree of the node. Let the input file be in the

edgelist format. The degree centrality can be calculated in one map-reduce phase as in

Algorithm 2.

The input file gets partitioned into several chunks and every machine in the cluster

will have few chunks of this file. In the map phase, mapper is started in every machine

and each mapper processes one chunk of the input file. Each chunk comprises a portion

of the edgelist and all the chunks together forms the edgelist of the network. The mapper

processes one line at a time i.e., the map function gets called for every input line. In this

case, since each line is an edge of the network, we can say that it processes one edge at

a time. The map function tokenizes the input line into tokens. The tokens are the two

nodes(say A and B) which had formed the edge. For every edge, two (key,value) pairs

52

are written to the output. They are,

A 1

B 1

Algorithm 2 Degree Centrality

Input: Edgelist of G(V,E)
Output: Degree Centrality

class MAPPER
method MAP(lineNumber, edge)

(nodeA,nodeB) = edge.split()
EMIT(nodeA, 1)
EMIT(nodeB, 1)

class REDUCER
method REDUCE(node, list(values))

degree = 0
for all value ∈ values do

degree += value
end for
EMIT(node, degree)

Once every mapper in all the machines has completed processing their chunk, the

output of all the mappers go to a sorting and shuffle phase. In this phase, all the map

outputs are sorted and a partitioner sends them to the reducer. The partitioner uses a hash

function and makes sure that all the (key,value) pairs which have the same key goes to

the same reducer. In reducer, the values corresponding to a single key are put together

in a list. The reduce function gets called for every (key, value) pair. It aggregates the

values in the list corresponding to each key. Each key here is a node in the network and

the aggregated sum is the degree of that node. So, the output of the reducer is just the

pair (node, degree). The output file from all the machines are concatenated which gives

53

the degree centrality of all nodes in the network.

Game 1: Number of agents at-most 1 degree away

The first game theoretic centrality algorithm computes centrality by considering the

fringe as the set of all nodes that are reached in at-most one hop. Algorithm 3 gives the

steps to calculate this centrality. It has a running time of O(V + E).

Algorithm 3 Game 1

Input: Unweighted graph G(V,E)
Output: Centrality values of all nodes

for all v ∈ V do
Centrality(v) = 1

1+degree(v)
for all u ∈ Neighbors(v) do

Centrality(v) += 1
1+degree(u)

end for
end for

From Algorithm 3, we observe that in order to compute the centrality of a node, we

need to find degree of the node and its neighbors. The intuition behind this algorithm

is that the centrality of a node will be higher not just when the node has a high degree

but also when the node has more neighbors who have low degree. We parallelize this

algorithm using two map-reduce phases.

In the first map-reduce phase, we calculate degree of all the nodes and their neigh-

bors in a parallel fashion as described in Algorithm 4 . The map-phase of this stage do

not do any computation but modifies the input edge in such a way that degree of nodes

can be calculated from the edgelist. For every edge in the input file, two lines are written

in the output. Let "A B" be the line which is getting processed by the mapper. The

first line of the output will have A as the key and B as the value. This indicates that B is

54

a neighbor of A. Since the graph is undirected, A is a neighbor of B. So, the second line

of the output will have B as the key and A as the value. The combiner is not needed in

this phase since we are not interesting in merging the values corresponding to the same

key. We use the default partitioner which makes sure that all the (key, value) pairs with

the same key goes to the same reducer.

Algorithm 4 First Map-Reduce Phase of Game 1
class MAPPER

method MAP(lineNumber, edge)
(nodeA, nodeB) = edge.split()
EMIT(nodeA, nodeB)
EMIT(nodeB, nodeA)

class REDUCER
method REDUCE(node, list(neighbors))

degree = length(neighbors)
marginalContribution = 1

1+degree

EMIT(node, marginalContribution)
for all neighbor ∈ neighbors do

EMIT(neighbor, marginalContribution)
end for

The reducer in this stage receives nodes as keys and their neighbors as values. We

calculate the degree of nodes by counting the number of their neighbors. Note that, if

a weighted graph is given as input, duplicate representations of the same neighbor will

be found. We find the duplicates using the hash value of the neighbors and ignore the

duplicates while counting the number of neighbors.

Since, we are interested in the calculation of the marginal contributions of each node,

which is 1
1+degree

in this case, we write the marginal contributions of the nodes in the

output instead of their degrees. Every node needs it’s marginal contribution in order to

calculate it’s own centrality. So, the reducer writes the node as the key and it’s marginal

contribution as value. Also, all the neighbors need the marginal contribution of the node

55

in order to calculate their centrality. So, the reducer writes every neighbor as key and

marginal contribution of the node as value for all the neighbors.

Algorithm 5 Second Map-Reduce Phase of Game 1
class MAPPER

method MAP(lineNumber, value)
(node, marginalContribution) = value.split()
EMIT(node, marginalContribution)

class REDUCER
method REDUCE(node, marginalContributions)

centrality = 0
for all marginalContribution ∈ marginalContributions do

centrality += marginalContribution
end for
EMIT(node, centrality)

In the second map-reduce phase, centrality values of all the nodes are calculated.

The mapper in this phase does not do any computation. It reads the input from the

file written by the reducer of first phase and tokenizes them into (key,value) pairs and

writes them to the output. The reducer in this phase gets nodes as keys and the marginal

contributions of all their neighbors as values. So, the reducer aggregates the values

corresponding to the nodes which will give the centrality of the nodes. A combiner is

used in this phase which does the same computation as the reducer.

Game 2: Number of agents with at least k neighbors in C

The second game theoretic centrality algorithm computes centrality by considering the

fringe as the set of all nodes that are either in the coalition or that are adjacent to at least

k nodes which are already in the coalition. Algorithm 6 gives the steps to calculate this

centrality. It has a running time of O(V + E).

56

Algorithm 6 Game 2

Input: Unweighted graph G(V,E)
Output: Centrality values of all nodes

for all v ∈ V do
k(v) = Random(1,degree(v)+1)

end for
for all v ∈ V do

Centrality(v) = min
(
1, k(v)

1+degree(v)

)
for all u ∈ Neighbors(v) do

Centrality(v) += max
(
0, degree(u)−k(v)+1

degree(u)(1+degree(u))

)
end for

end for

From Algorithm 6, we observe that in order to compute the centrality of a node,

we need to find the degree of the node and its neighbors. The intuition behind this

algorithm is that every node will be influenced only when k of it’s neighbors are already

influenced. This k is the threshold which varies from 1 to degree(node)+1. A threshold

of degree(node)+1 for a node indicates that the node cannot be influenced even when

all its neighbors are influenced. We parallelize this algorithm using two map-reduce

phases.

The first map-reduce phase of this algorithm is given in Algorithm 7 . The only dif-

ference between the first phase of game 1 and game 2 algorithms is the way in which the

marginal contributions are calculated. So, the mapper does the same job as Algorithm 4

. In the reduce phase, marginal contributions for a node is calculated by the formula
k

1+degree
and the marginal contribution of its neighbors are calculated by the formula

degree−k+1
degree(1+degree)

.

57

Algorithm 7 First Map-Reduce Phase of Game 2
class MAPPER

method MAP(lineNumber, edge)
(nodeA, nodeB) = edge.split()
EMIT(nodeA, nodeB)
EMIT(nodeB, nodeA)

class REDUCER
method REDUCE(node, list(neighbors))

degree = length(neighbors)
marginalContribution = k

1+degree

EMIT(node, marginalContribution)
marginalContribution = degree−k+1

degree(1+degree)

for all neighbor ∈ neighbors do
EMIT(neighbor, marginalContribution)

end for

The second map-reduce phase of this algorithm is essentially the same as that of the

second phase of game 1 (Algorithm 5) which aggregates the marginal contributions to

obtain the centrality.

Game 3: Number of agents at-most dcutoff away

The third game theoretic centrality algorithm computes centrality by considering the

fringe as the set of all nodes that are within the distance of dcutoff from the node. Al-

gorithm 8 gives the steps to calculate this centrality. It has a running time of O(V E +

V 2log(v)).

58

Algorithm 8 Game 3

Input: Weighted graph G(V,E)
Output: Centrality values of all nodes

for all v ∈ V do
extNeighbors(v) = {}
extDegree(v) = 0
for all u ∈ V such that u6=v do

if Distance(u) < dcutoff then
extNeighbors(v).push(u)
extDegree(v)++

end if
end for

end for
for all v ∈ V do

Centrality(v) = 1
1+extDegeee(v)

for all u ∈ extNeighbors(v) do
Centrality(v) += 1

1+extDegree(u)

end for
end for

From Algorithm 8, we observe that in order to compute the centrality of a node,

we need to find the extDegree and extNeighbors of every node. This algorithm is an

extension of game 1 to the weighted networks. The intuition behind this algorithm is

that a node can be influenced by an influencer only when the distance between the node

and the influencer is not more than dcutoff. This dcutoff is generally fixed to a constant

value and we have fixed it as 2 in our parallelization. For an unweighted graph, all the

nodes which are one and two hops away will form the extNeighbors but for a weighted

graph, it depends on the weights of the edges of the graph. We parallelize this algorithm

using four map-reduce phases.

The first map-reduce phase of this algorithm is given in Algorithm 9 . The map phase

of this algorithm does the same job as the map phase of the first map-reduce phase of

game 1 and game 2 algorithms. The reducer in this phase gets nodes as keys and list

59

of their neighbors as values. These neighbors are one hop neighbors i.e., they are con-

nected to the node by a single edge. The number of times a neighbor appears in the list

is the weight of the edge between the node and neighbor. So, the number of occurrences

of each of the neighbors is calculated and is stored in map named neighbor2weight. The

key to this map is the neighbor and the value to this map will be the weight of the edge

between the node and the neighbor. We create another map named weight2neighbors

using this map where key is weight of the edge between node and neighbor and value is

the list of neighbors who are connected to the node with that weight.

Two hop neighbors are the neighbors who are reachable in at most two hops. Let A

and B be two nodes which are two hops away i.e., A and B are not connected directly

but connected through another node. Let the node through which A and B are connected

be C. Now, A and B are one hop neighbors of C and similarly all the pair of nodes which

are two hops away will have a common neighbor from which both of them will be one

hop away. So, each node in the list of neighbors(input to the reducer of this stage) are

two hops away from every other node in the same list of neighbors. Also, some of

the nodes which are two hops away might as well be connected by a single edge. In

this case, the shortest distance between them is 1 and not 2. So, whenever a reducer

encounters a neighbor having two different values as weight for a same edge, it always

has to choose the least value. Also, the edges may have weights. So, the reducer also

has to check whether the sum of weights of edges is less than the dcutoff. The reducer

is this phase essentially finds the neighbors which are one hop more than what it has

received as input. In the current map-reduce phase, reducer has received the neighbors

which are one hops away and has found the neighbors which are two hops away. This

can be extended further for higher hops in the same way. 1

1Map(a→b) used in the algorithms of this thesis represents the mapping from a to b. Here, a is the
key and b is the value. The key is always unique and it can have multiple values.

60

Algorithm 9 First Map-Reduce Phase of Game 3
class MAPPER

method MAP(lineNumber, Edge)
(nodeA, nodeB) = Edge.split()
EMIT(nodeA, nodeB)
EMIT(nodeB, nodeA)

class REDUCER
method REDUCE(node, list(neighbors))

for all neighbor ∈ neighbors do
currentWeight = Map(neighbor→weight).get(neighbor)
Map(neighbor→weight).delete(neighbor,currentWeight)
Map(neighbor→weight).add(neighbor,currentWeight+1)

end for
for all neighbor ∈ neighbors do

EMIT(node, neighbor)
weight = Map(neighbor→weight).get(neighbor)
Map(weight→neighbors).add(weight, neighbor)

end for
weights = keys(Map(weight→neighbors))
for all weight ∈ weights do

neighborString = null
for all neighbor ∈ neighbors do

neighborWeight = Map(neighbor→weight).get(neighbor)
newWeight = weight + neighborWeight
if newWeight < dcutoff then

neighborString.concat(neighbor+":"+newWeight+":")
end if

end for
Map(weight→neighborString).add(weight, neighborString)

end for
for all neighbor ∈ neighbors do

neighborWeight = Map(neighbor→weight).get(neighbor)
neighborString = Map(weight→neighborString).get(neighborWeight)
EMIT(neighbor, neighborString)

end for

The reducer constructs a neighborString which contains neighbors that one more hop

away and whose path length is less than or equal to the dcutoff. So, for every neighbor

61

in the list of neighbors, the reducer writes the neighbor as key and a neighborString as

value depending on the weight of the neighbor to the node(input to the reducer of this

phase).

Algorithm 10 Second Map Phase of Game 3
class MAPPER

method MAP(lineNumber, Edge)
index = Edge.find(":")
node = Edge.substring(0,index)
listOfNeighbors = Edge.substring(index+1,end)
EMIT(node, listOfNeighbors)

The second map-reduce phase of this algorithm makes the neighborhood grow by

one more hop. The mapper in this phase is given in Algorithm 10 . It reads the output of

the previous phase and breaks the line into (key,value) pairs and sends it to the reducer.

The reducer in this phase is essentially the same as that of the previous map-reduce

phase. This map-reduce phase is run iteratively until all the neighbors which are within

dcutoff away are visited.

Algorithm 11 Third Map-Reduce Phase of Game 3
class MAPPER

method MAP(lineNumber, Edge)
index = Edge.find(":")
node = Edge.substring(0,index)
listOfNeighbors = Edge.substring(index+1,end)
EMIT(node, listOfNeighbors)

class REDUCER
method REDUCE(node, list(extNeighbors))

extNeighbors = set(list(extNeighbors))
extDegree = length(extNeighbors)
marginalContribution = 1

1+extDegree

EMIT(node, marginalContribution)
for all extNeighbor ∈ extNeighbors do

EMIT(extNeighbor, marginalContribution)
end for

62

The third map-reduce phase of this algorithm is given in Algorithm 11 . The mapper

in this phase reads the input from the file and splits them into (key, value) pairs. The

reducer in this stage receives nodes as keys and their extNeighbors as values. We calcu-

late the extDegree of nodes by removing the duplicates and then counting the number

of extNeighbors. Once the extDegree is calculated, marginal contribution is calculated

by the formula 1
1+extDegree

. The reducer writes the marginal contributions to the output

similar to game 1.

The fourth and the final map-reduce phase of this algorithm is essentially the same

as that of the second phase of game 1 (Algorithm 5) which aggregates the marginal

contributions to obtain the centrality.

Game 4: Number of agents in the network

The fourth game theoretic centrality algorithm computes centrality by considering the

fringe as the set of all nodes in the network. Algorithm 12 gives the steps to calculate

this centrality. It has a running time of O(V E + V 2log(v)).

From Algorithm 12, we observe that in order to compute the centrality of a node,

we need to find the extNeighbors and the distance to the extNeighbors for every node.

This algorithm is an extension of game 3. The intuition behind this algorithm is that

the power of influence decreases as the distance increases. Generally, the extNeighbors

are all the nodes in the network for this game. But the contribution of neighbors who

are farther away is not highly significant and so in our parallelization, we have fixed the

dcutoff to be 2. We parallelize this algorithm using four map-reduce phases.

63

Algorithm 12 Game 4

Input: Weighted graph G(V,E)
Output: Centrality values of all nodes

for all v ∈ V do
(Distances, Nodes)← Dijkstra(v,G)
sum = 0
prevDistance = -1
prevContribution = -1
for all index ∈ |V-1| to 1 do

if Distances(index) = prevDistance then
contribution = prevContribution

else
contribution = f(D(index))

1+index
- sum

end if
centrality[w(index)] += contribution
sum += f(D(index))

index(1+index)

prevDistance = Distances(index)
prevContribution = contribution

end for
centrality(v) += f(0) - sum

end for

The first and second phase of this algorithm is essentially the same as game 3

(Algorithm 9 and Algorithm 10). In these phases, the neighbors of each of the nodes

are found. Each map-reduce phase extends the neighborhood by one hop. This process

is repeated iteratively until there is no more unvisited neighbors within the dcutoff.

The third map-reduce phase of this algorithm is given in Algorithm 13 . The mapper

in this phase reads the input from the file and splits them into (key, value) pairs such that

every node in the graph is the key and the list of neighbors and weights as values. The

weight here represents the distance from the node to the neighbor. Once the neighbors

and weights are known, the marginal contributions are calculated according to the lines

3 to 17 of Algorithm 12 . The reducer writes the nodes and the marginal contributions

to the output.

64

Algorithm 13 Third Map-Reduce Phase of Game 4
class MAPPER

method MAP(lineNumber, Edge)
index = Edge.find(":")
node = Edge.substring(0,index)
listOfNeighbors = Edge.substring(index+1,end)
EMIT(node, listOfNeighbors)

class REDUCER
method REDUCE(node, list(neighbors,distances))

index = length(neighbors)
sum = 0
prevDistance = -1
prevContribution = -1
for all neighbor ∈ neighbors do

if distances(index) == prevDistance then
contribution = prevContribution

else
contribution = f(D(index))

1+index
- sum

end if
EMIT(neighbor, contribution)
sum += f(D(index))

index(1+index)

prevDistance = Distances(index)
prevContribution = contribution
index = index - 1

end for
contribution = f(0) - sum
EMIT(node, contribution)

The fourth and the final map-reduce phase of this algorithm is essentially the same

as that of the second phase of game 1 (Algorithm 5) which aggregates the marginal

contributions to obtain the centrality.

65

Game 5: Number of agents with
∑

(weights inside C)≥ Wcutoff(agent)

The fifth game theoretic centrality algorithm computes centrality by considering the

fringe as the set of all nodes whose agent specific threshold is less than the sum of

influences on the node by the nodes who are already in the coalition. Algorithm 14

gives the steps to calculate this centrality. It has a running time of O(V + E2).

Algorithm 14 Game 5

Input: Weighted graph G(V,E)
Output: Centrality values of all nodes

for all v ∈ V do
Wcutoff(v) = Random(1,degree(v)+1)

end for
for all v ∈ V do

centrality(v) = 0
for all m in 0 to deg(v) do

µ = µ(Xvv
m)

σ = σ(Xvv
m)

p = Pr{N (µ, σ2) < Wcutoff(v)}
centrality(v) += p

1+deg(v)

end for
for all u ∈ Neighbors(v) do

p = 0
for all m in 0 to deg(v)− 1 do

µ = µ(Xuv
m)

σ = σ(Xuv
m)

Z = Zuv
m

p += z deg(u)−m
deg(u)(deg(u)+1)

end for
centrality(v) += p

end for
end for

From Algorithm 14, we observe that in order to compute the centrality of a node,

we need to find the degree of the node and it’s neighbors. This algorithm is an extension

66

of Game 2 (Algorithm 6) for weighted networks. The intuition behind this algorithm

is that every node will be influenced only when the sum of weights to all the active

neighbors is greater than the cutoff of the node. Let αv be the sum of weights of edges

to all the neighbors of node v and βv be the sum of squares of weights of edges to all

the neighbors of v. Then, the results of the analysis done in [14] for this algorithm are

as follows:

µ(Xvv
m) =

m

deg(v)
αv

σ(Xvv
m) =

m(deg(v)−m)

deg(v)(deg(v)− 1)

(
βv −

α2
v

deg(v)

)
µ(Xuv

m) =
m

deg(v)− 1
(αv − w(u, v))

σ(Xuv
m) =

m(deg(v)− 1−m)

(deg(v)− 1)(deg(v)− 2)

(
βv − w(u, v)2 −

(αv − w(u, v))2

deg(v)− 1

)
Zuv
m =

1

2

[
erf

(
Wcutoff(v)− µ(Xuv

m)√
2σ(Xuv

m)

)
− erf

(
Wcutoff(v)− w(u, v)− µ(Xuv

m)√
2σ(Xuv

m)

)]

We parallelize this algorithm using two map-reduce phases.

The first map-reduce phase of this algorithm is given in Algorithm 15. The only

difference between the first phase of game 1 and game 5 algorithms is the way in which

the marginal contributions are calculated. So, the mapper does the same job as Algo-

rithm 4. The input to the reducer is nodes and their neighbors. Since, weighted graphs

will be the input for Game 5, we take the count of the occurrences of neighbor which

will give the weight of the edge between the node and the neighbor. Marginal contribu-

tion of a node to itself is calculated as per the lines 5-11 of Algorithm 14 in lines 5-6

of the reduce phase of Algorithm 15. Marginal contribution of a node to its neighbor

is calculated as per the lines 12-21 of Algorithm 14 in lines 7-10 of the reduce phase

67

of Algorithm 15. Once the marginal contributions are calculated, the reducer writes the

nodes and the corresponding marginal contributions to the output.

Algorithm 15 First Map-Reduce Phase of Game 5
class MAPPER

method MAP(lineNumber, edge)
(nodeA, nodeB) = edge.split()
EMIT(nodeA, nodeB)
EMIT(nodeB, nodeA)

class REDUCER
method REDUCE(node, list(neighbors))

(neighbor,edgeWeight)← neighbors
degree = length(neighbor)
weightedDegree = sum(edgeWeight)
marginalContribution = contribution(threshold)
EMIT(node, marginalContribution)
for all neighbor ∈ neighbors do

marginalContribution = contribution(threshold, edgeWeight)
EMIT(neighbor, marginalContribution)

end for

The second map-reduce phase of this algorithm is essentially the same as that of the

second phase of game 1 (Algorithm 5) which aggregates the marginal contributions to

obtain the centrality.

5.3 Experimental Results

The experiments in this section are designed to show

1. that the game-theoretic centrality measures perform on par with the greedy algo-
rithm in the context of information diffusion.

2. the scalability of the parallelized algorithms with respective to the size of the input
graph.

68

3. the scalability of the algorithms with respect to the number of machines in the
hadoop cluster.

Cascade Experiment

Influence spread was explored in the literature in two different contexts. One is top k

problem and the other is λ coverage problem. In the top k problem, a set of k nodes that

will maximize the influence spread in the network has to be selected. In the λ coverage

problem, the minimum value of k that is needed to obtain the desired influence spread

has to be found. We have chosen the context of top k problem for our experiment. We

did the cascade experiment to find the influence spread of the top k nodes given by five

game theory based centrality algorithms and the greedy algorithm. We have used the

linear threshold model to find the influence spread.

Influence Model : In this model every node can influence the neighbor nodes and

every neighbor node can influence the node. Consider the edge (u, v) from node u to

node v in a graph. Let dv be the sum of weights of incoming edges of node v. In an

unweighted network, dv becomes degree of node v. Let Cu,v be the weight of the edge

from u to v. Then, node u has an influence of Cu,v

dv
on node v. Note that the sum of

influences on any node is 1. A node can influence its neighbors only if it is influenced

already. There will be initial set of influencers who are assumed to be influenced by

external forces. This model assumes that every node in graph has a threshold associate

with it. A node is said to be influenced if sum of influences on that node by its neighbors

is greater than threshold of the node. Neighbors of the newly influenced node might get

influenced based on the above criteria. The influence spread stops when there is no more

node in the graph which could be influenced. The threshold of the nodes assumed by this

model cannot be determined in the real world scenarios. So, a number of different sets

of thresholds are sampled from an appropriate probability distribution and the influence

69

spread is run for every set of threshold. The average of all these runs gives the number of

nodes influenced. Typically, several different thresholds are sampled and run to cancel

out the effect of threshold.

Greedy Algorithm : Consider a network with n nodes. Greedy algorithm runs the

cascade spread n times with every node as a initial influencer. The node which is able to

influence most number of nodes in the network is considered to be the top 1 influencer.

Then it considers the rest of n−1 nodes and runs the cascade experiment n-1 times with

top 1 influencer and every one of the n-1 nodes as initial influencers. The node which

when combined with the top 1 influencer influences most number of nodes is added to

the set of top influencers and thus top 2 influencers are formed. This process is repeated

k times to find the top k influencers of the network. The problem of finding the exact

top k nodes is hard. Greedy algorithm is the best approximation for this problem [11] .

We ran the cascade experiment in the collaboration network data. The network data

can be obtained from http://snap.stanford.edu/data/ca-GrQc.html.

This network is between collaborations of authors. Nodes in the network correspond

to the authors. If an author u had collaborated with an author v in at least one paper,

then an undirected edge is established between nodes u and v in the network. This

network consists of 5242 nodes and 14496 edges. Figure 5.4 shows the plot of the num-

ber of nodes influenced against the number of initial influencers in this network. We

observe that greedy algorithm performs well when the number of initial influencers is

very less and the performance of game theoretic centrality algorithms increases as the

number of initial influencers is increased. At k = 30, Game 4 and Game 5 perform

marginally better than the greedy algorithm while Game 1 performs close to the greedy

algorithm. Though Game 2 and Game 3 (dotted lines in Figure 5.4) algorithms give a

slightly lesser performance than greedy algorithm, the difference is not enormous. We

also note that the greedy algorithm doesn’t scale well in terms of size of the network

70

http://snap.stanford.edu/data/ca-GrQc.html

Figure 5.4: Result of cascade experiment in collaboration network

size as well as the number of initial influencers. Detailed analysis of the game theoretic

centrality algorithms is done by Aadithya et al. [14] and Narayanam and Narahari [19].

Scalability Experiments

We generated synthetic networks to analyze the scalability of our algorithms. The syn-

thetic networks were generated using the barabasi-albert model and Erdos-Renyi model.

Barabasi-Albert model: This model starts with small seed graph. This seed graph

71

needs to be connected i.e.,there should be a path from every node in the graph to every

other node in the graph, to make sure that the final graph will be connected. The average

degree of nodes in the network can calculated by the formula,

Average Degree =
2 ∗ Number of edges in the graph

Number of nodes in the graph

Let x denote half of the average degree. The number of nodes in the seed graph should

be a little higher than x. For every other node in the network, x nodes have to be chosen

from the seed graph and all the x nodes should be connected to this new node. The seed

graph grows with the addition of every node and once every node gets added to the seed

graph, it becomes the final graph. Note that the probability with which the x nodes in

the seed graph gets selected is proportional to the degree of the nodes of the seed graph

i.e., higher the degree, more is the probability of getting selected. So, the resulting graph

will have few nodes with high degree and many nodes with average degree.

Erdos-Renyi(E-R) model: This model generates network with the probability of ex-

istence of the edge. Depending on the density of the edges needed in the graph, the

probability of existence of an edge can be calculated as follows.

Probability of existence an edge, P =
2 ∗ Number of edges in the graph

Number of possible edges in the graph

Every edge in the graph is included with probability P and discarded otherwise. We

observe that the graph will have no edges if P is zero and all the edges if P is 1.

Scalability with respect to input size: We ran our parallelized algorithms in a hadoop

cluster having 10 machines with each machine having 8 cores. We have varied the size

of the input graph and have calculated the running time of these parallelized algorithms.

Table 5.1, Table 5.2, Table 5.3, Table 5.4, Table 5.5 and Table 5.6 shows the running

time of parallelized version of the Game 1, Game 2, Game 3, Game 4 and Game 5

72

algorithms in seconds for different input sizes and densities of the graphs.

Table 5.1: Running time of Game 1 on E-R graphs of different densities in seconds

Network Size
(# of edges)

Density of edges
0.01 0.001 0.0001 0.00001

103 28 28 28 29
104 31 29 29 29
105 31 31 31 33
106 45 46 46 45
107 84 85 79 74

Table 5.2: Running time of Game 2 on E-R graphs of different densities in seconds

Network Size
(# of edges)

Density of edges
0.01 0.001 0.0001 0.00001

103 29 29 30 28
104 30 28 29 29
105 32 29 31 33
106 41 46 45 44
107 83 80 81 74

Table 5.3: Running time of Game 3 on E-R graphs of different densities in seconds

Network Size
(# of edges)

Density of edges
0.01 0.001 0.0001 0.00001

103 43 42 41 43
104 43 45 44 44
105 49 46 49 46
106 109 89 70 70
107 1616 913 301 167

73

Table 5.4: Running time of Game 4 on E-R graphs of different densities in seconds

Network Size
(# of edges)

Density of edges
0.01 0.001 0.0001 0.00001

103 42 43 44 42
104 46 43 45 45
105 51 50 45 46
106 110 89 70 71
107 1735 886 312 176

Table 5.5: Running time of Game 5 on E-R graphs of different densities in seconds

Network Size
(# of edges)

Density of edges
0.01 0.001 0.0001 0.00001

103 30 28 29 28
104 30 30 30 29
105 33 32 30 32
106 45 45 46 43
107 86 114 79 83

Table 5.6: Running time of all the game theoretic algorithms on Barabasi Albert graphs
of density 0.1 in seconds

Network Size Game 1 Game 2 Game 3 Game 4 Game 5
103 33 30 45 46 30
104 31 29 47 48 30
105 31 30 93 90 39
106 60 59 146 141 67
107 73 79 5128 5354 128

Scalability with respect to number of CPUs: We ran our parallelized algorithms in a

hadoop cluster by varying the number of machines in the cluster for a fixed input size.

We chose the number of edges in the input graph to be 1 million for running game 3 and

game 4 while we chose it to be 10 million for game 1, game 2 and game 5. Table 5.7

and Table 5.8 shows the running time of the algorithms when the number of machines

in the cluster is varied. Each machine in our hadoop cluster had an 8 core CPU. So, 64

mappers or reducers can be run at a time.

74

Table 5.7: Running time of game 1, game 2 and game 3 algorithms in seconds on a 10
million edge network

Number of machines Game 1 Game 2 Game 5
1 101 103 167
2 94 82 113
3 92 85 114
4 90 84 102
5 87 84 97
6 84 84 97
7 83 83 96
8 82 84 96

Table 5.8: Running time of game 1, game 2 and game 3 algorithms in seconds on a 1
million edge network

Number of machines Game 3 Game 4
1 632 606
2 289 313
3 206 213
4 176 179
5 166 172
6 146 144
7 137 141
8 146 141

From the above experiments, we observe the following:

- We can process the networks of million edges in few seconds using the paral-
lelization techniques even if the algorithm has a quadratic time complexity(e.g.,
Game 3 and Game 4).

- Game 1, Game 2 and Game 5 are highly scalable as these algorithm take only few
seconds for running on network sizes which are as large as few millions of edges.

- The running time of the algorithms decrease as the density of edges in the graph
decreases. This is due to the fact that every node in the sparse graph will have less
number of neighbors when compared to the nodes in the dense graphs.

- The running time of the reduces as the number of machines in the cluster is in-
creased.

75

CHAPTER 6

Conclusions and Future Work

This thesis has characterized the necessary features required for a good community

scoring function and has shown that both the internal and external properties of the

communities have to be taken into account in order to design a good scoring function.

It is the first to propose a scoring function having explicit components to represent

the internal and external score and then combining them to get the actual community

scoring function. A variable α can be introduced in the external score and it can be

modified as as
as+αbs

. The relative importance of internal score and the external score can

be controlled using this parameter and hence it can be made specific to applications.

Earlier algorithms to find communities were resolution limit free but were non-scalable.

Several methods addressed the problem of scalability but each one of them suffer from

it’s own limitations. CEIL algorithm addresses both the problem of scalability and

resolution limit. Hence, it is a better alternative to find communities in large networks.

The greedy algorithm selects a good top k with a minimum guarantee but has an

exponential complexity. Though the traditional centrality measures are of polynomial

time complexity, the size of the network we come across these days have limited their

applicability also. Parallelization of the polynomial time algorithms has given rise to

a better alternative for degree centrality and page rank centrality to find centralities in

large networks.

Scalability is an issue in every field nowadays. This thesis has addressed it in two

major contexts in the field of social network analysis - community detection and cen-

trality.

APPENDIX A

Results of perturbation experiments

Figure A.1: Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under NodeSwap perturbation.

Figure A.2: Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Random perturbation.

Figure A.3: Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Expand perturbation.

78

Figure A.4: Z-score given by various scoring functions as a function of perturbation
intensity in Youtube network under Shrink perturbation.

Figure A.5: Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under NodeSwap perturbation.

79

Figure A.6: Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Random perturbation.

Figure A.7: Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Expand perturbation.

80

Figure A.8: Z-score given by various scoring functions as a function of perturbation
intensity in DBLP network under Shrink perturbation.

Figure A.9: Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under NodeSwap perturbation.

81

Figure A.10: Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Random perturbation.

Figure A.11: Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Expand perturbation.

82

Figure A.12: Z-score given by various scoring functions as a function of perturbation
intensity in Amazon network under Shrink perturbation.

83

References

[1] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure

of complex networks at different resolution levels. New Journal of Physics, page

053039, 2008.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical Mechan-

ics: Theory and Experiment, page P10008, 2008.

[3] D. Borthakur. The hadoop distributed file system: Architecture and design. Hadoop

Project Website, 2007.

[4] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and

D. Wagner. Maximizing modularity is hard. arXiv:physics/0608255, 2006.

[5] Tanmoy Chakraborty, Sriram Srinivasan, Niloy Ganguly, Animesh Mukherjee, and

Sanjukta Bhowmick. On the permanence of vertices in network communities. Con-

ference on Knowledge Discovery and Data Mining, pages 1396–1405, 2014.

[6] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. Comparing community struc-

ture identification. Journal of Staistical Mechanics, page P09008, 2005.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Conference on Symposium on Operating Systems Design and Imple-

mentation, pages 107–113, 2004.

[8] S. Fortunato and M. Barthélemy. Resolution limit in community detection. Pro-

ceedings of the National Academy of Sciences, pages 36–41, 2007.

[9] Santo Fortunato. Community detection in graphs. Physics Reports, pages 75–174,

2010.

84

[10] Apache Software Foundation. Apache hadoop. http://hadoop.apache.org/, 2011.

[11] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence

through a social network. In Conference on Knowledge Discovery and Data Min-

ing, pages 137–146, 2003.

[12] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in

community detection. Computing Research Repository, abs/1107.1155, 2011.

[13] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Sta-

tistical properties of community structure in large social and information networks.

In Conference on World Wide Web, pages 695–704, 2008.

[14] Tomasz Michalak, Karthik V. Aadithya, L. Szczepanski, Balaraman Ravindran,

and Nicholas R. Jennings. Efficient computation of the shapley value for game-

theoretic network centrality. Journal of Artificial Intelligence Research, pages 607–

650, 2013.

[15] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. Measurement and analysis of online social networks. In Con-

ference on Internet Measurement, pages 29–42, 2007.

[16] J. L. Myers and A. D. Well. Research Design and Statistical Analysis. Lawrence

Erlbaum Associates, 2003.

[17] Amit Anil Nanavati, Siva Gurumurthy, Gautam Das, Dipanjan Chakraborty, Kous-

tuv Dasgupta, Sougata Mukherjea, and Anupam Joshi. On the structural properties

of massive telecom call graphs: findings and implications. In Conference on Infor-

mation and Knowledge Management, pages 435–444, 2006.

[18] Ramasuri Narayanam and Y. Narahari. Determining the top-k nodes in social

networks using the shapley value. The International Foundation for Autonomous

Agents and Multi Agent Systems, pages 1509–1512, 2008.

85

[19] Ramasuri Narayanam and Yadati Narahari. A shapley value-based approach to

discover influential nodes in social networks. IEEE Transactions on Automation

Science and Engineering, pages 130–147, 2011.

[20] M. E. J Newman and Michelle Girvan. Mixing patterns and community structure

in network. arXiv:cond-mat/0210146, 2002.

[21] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical Review E, page 026113, 2004.

[22] M. E. J. Newman. Fast algorithm for detecting community structure in networks.

Physical Review E, page 066133, 2004.

[23] M. E. J. Newman. Spectral methods for network community detection and graph

partitioning. Computing Research Repository, abs/1307.7729, 2013.

[24] Michael Ovelgönne and Andreas Geyer-Schulz. Cluster cores and modularity

maximization. In International Conference on Data Mining Workshops, pages 1204–

1213, 2010.

[25] Michael Ovelgonne and Andreas Geyer-Schulz. An ensemble learning strategy for

graph clustering. American Mathematical Society, pages 187–206, 2013.

[26] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the

overlapping community structure of complex networks in nature and society. Nature,

pages 814–818, 2005.

[27] Pascal Pons and Matthieu Latapy. Computing communities in large networks using

random walks. Journal of Graph Algorithms and Applications, pages 191–218, 2006.

[28] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. Defining and identifying communities in networks. Proceedings

of the National Academy of Sciences, pages 2658–2663, 2004.

[29] Usha N. Raghavan, Reka Albert, and Soundar Kumara. Near linear time algorithm

to detect community structures in large-scale networks. arXiv:0709.2938, 2007.

86

[30] W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, pages 846–850, 1971.

[31] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 888–905, 2000.

[32] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities

based on ground-truth. In International Conference on Data Mining, pages 745–754,

2012.

[33] Qiaofeng Yang and Stefano Lonardi. A parallel edge-betweenness clustering tool

for protein-protein interaction networks. International Journal of Data Mining and

Bioinformatics, pages 241–247, 2007.

87

Publications and Patents

Patent

1. M. Vishnu Sankar, Balaraman Ravindran and S. Shivashankar, “Method for find-
ing communities in large networks," US pat. 14/143283 (Application Number),
2014.

Publication

1. M. Vishnu Sankar, Balaraman Ravindran and S. Shivashankar, “CEIL: A scal-
able, resolution limit free approach for detecting communities in large networks,"
International Joint Conference on Artificial Intelligence, 2015 (Communicated)

2. M. Vishnu Sankar and Balaraman Ravindran, “Parallelization of Game Theoretic
Centrality Algorithms," Sadhana, Academy proceedings in Engineering Sciences,
Special issue on machine learning for big data, 2015 (Communicated)

88

Curriculum Vitae

Name : Vishnu Sankar M

Date of Birth : 15th December 1988

Education : Bachelor of Engineering,

Electronics and Communication Engineering,

College of Engineering, Guindy,

Anna University,

Chennai.

Address : 711 B/5, Ettayapuram Road,

Opposite to Mahindra Two Wheeler,

Kovilpatti - 628501

Tuticorin District.

89

GTC Members

Chairman : Dr. C. Pandu Rangan

Department of Computer Science and Engineering,

Indian Institute of Technology, Madras.

Guide : Dr. Balaraman Ravindran

Department of Computer Science and Engineering,

Indian Institute of Technology, Madras.

Members : Dr. N.S. Narayanaswamy

Department of Computer Science and Engineering,

Indian Institute of Technology, Madras.

: Dr. Ashwin Mahalingam

Department of Civil Engineering,

Indian Institute of Technology, Madras.

90

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Need for a new community detection algorithm
	Need for parallelizing game theoretic centrality algorithms
	Contribution of the thesis
	Outline of the thesis

	Background and Related Work
	Related algorithms to find communities
	Related measures of centrality

	Introduction and Analysis of CEIL Score
	Introduction of CEIL score
	Analysis of CEIL score
	Comparison of several scoring functions

	CEIL Algorithm to Find Communities
	CEIL Algorithm
	Empirical validation of CEIL algorithm

	Parallelization of Centrality Algorithms
	Map-Reduce and Hadoop
	Parallelization of game theoretic centrality algorithms
	Experimental Results

	Conclusions and Future Work
	Results of perturbation experiments

