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ABSTRACT

KEYWORDS: Object detection, visual operators, Frequent pattern, FP min-

ing on images, Incremental object detection

Visual object detection is the problem of identifying an object from a visual

scene or more generally, addressing object queries like, What are the objects present

in the scene ? How many objects are there in the scene ?, etc. Performing reliable object

detection is an important task as it is one of the key requirements for realizing a

fully autonomous, general purpose robotic agent. Activities like playing a game,

navigating a road, looking for a book in library, etc., are examples involving object

detection. Humans perform these tasks incredibly well. But this is a very hard

problem for a learning agent. Part of the difficulties arise from the visual processing

involved as the objects can appear in different scale, lighting conditions, rotation,

occlusion etc. Vision researchers have come up with representations which are

robust to these visual variations and can reliably detect objects even in the case

of noise. Apart from the visual challenges, there are machine learning challenges

of generalization, discrimination and incremental addition. From the training

samples the agent has to learn representations which can generalize well over

objects within the class and discriminate between objects of different classes. For

example, the representation learned for class cup should generalize various cups

of different size, and shape model and should distinguish it from other classes say

ball. As the agent interacts with the environment, it may encounter new objects. It

needs to learn and update its knowledge base so that it can detect the new object

class. This incremental update of knowledge base is very desirable for a vision

system and the re-learning involved should be minimal.
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In this work we propose a system which addresses the learning challenges

explained above. The key idea here is to learn those visual properties which

are common among the objects of the same class so that these properties can be

later used for detecting the class. Shape, color, size, texture, etc., are examples

of visual properties. A combination of these properties can represent each class

and the learning is done in three phases - pattern mining phase, scoring phase

and re-scoring phase. In the pattern mining phase, training image of each class

is processed and the various visual properties are extracted. From these visual

properties, those patterns that frequently occur are learned using frequent pattern

mining. Since we are considering the frequency alone, it might happen that the

operators learned will include those which covers more background pixels than

the foreground ones or whose coverage is superseded by other operators. The

scoring phase is used to eliminate such erroneous or extra operators. To handle

discrimination and incremental addition, we have the re-scoring phase, which re-

scores the operator sets learned based on how popular the operator sets are among

other classes. Generally those operators which are common among many classes

are considered as bad choices for discriminating the classes. Re-scoring phase tries

to remove such operators by switching themwith other alternatives. The system is

empirically evaluated with the Caltech-101 data set and the results are presented.
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CHAPTER 1

INTRODUCTION

Vision is one of the most heavily used sensors by humans. We interact with our

environment mainly using visual sensors. Out of many high-level tasks that we

can accomplish with vision, object detection stands out. Every day we recognize a

multitude of familiar and novel objects. Many of the high-level tasks we perform

are seamlessly integrated with object detection and in-fact we don’t realize them.

Object detection helps us to do a wide range of daily activities like moving

around, interacting with people, reading, playing, etc. For better understanding,

these tasks can be divided into those which involve implicit and explicit object

detection.

In explicit object detection tasks, the objective is to find an object like a book

from a book shelf or a commodity from a store. Whereas in an implicit task, the

objective would be to perform higher level tasks like crossing a road, interacting

with friends, etc.

Let’s look at an example of navigating a road. Here the high level task is to

reach the other end of the road without hitting obstacles like cars, other persons,

etc. We start by looking towards both sides of the road one by one and if they are

clear we go ahead. If you look at this task more closely, it can be seen that, we are

detecting cars, buses, familiar faces, friends, traffic signals, pedestrians, etc. All

this involves object detection but themain task thatwe are interested in is different,

crossing the road. Figure 1.1 shows some examples.

We do object detection with little effort despite the fact that the object can

appear in various conditions of illumination, rotation, size, etc. Objects can even



Figure 1.1: Various tasks involving explicit and implicit object detection

be recognized under different viewpoints and also under partial occlusion. Such

robust object detection helps us to easily tackle the uncertainty of the environment.

1.1 Why is Object detection important ?

In computer vision and robotics, object detection is of great importance. Applica-

tions in computer vision include video surveillance, traffic monitoring, industrial

inspection, digital libraries, gadgets like mobiles, cameras etc. In robotics, the task

of navigation, object manipulation, interaction with humans and environment, all

requires object detection. Object detection serves as the most important goal to be

realized for a fully autonomous agent.

Object detection can pave theway for building hybrid systemswhich use object

detectionwith sophisticated cameras like long-range zoom,wide panorama, night-

vision, etc., which can be used for surveillance and military applications. Many

of the modern day techniques of visual detection is inspired by the processing

involved in brain. Thus tackling object detection will give us better insights about
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how vision is processed in different regions of brain. This can help us devise

various remedies for vision related ailments.

1.2 Scope of the work

The scope of this thesis is to study the problem of visual object detection system

from a machine learning perspective. The reason why this is challenging and

interesting is that even if we are given highly reliable visual processing routines,

the problem of addressing visual queries is still hard. Research [Yarbus [1967]] has

shown that humans learn the sequence of visual operations to be performed in a

task dependent manner. Yarbus conducted experiments, tracking eye movements

of human subjects while they view images. He observed that as different tasks

are given to the viewer, the eye-movement patterns and gazing time differed

considerably. Another interesting aspect is to see how we combine our top level

knowledge of the object and the bottom up cues from the scene [Itti et al. [1998],

Itti and Koch [2000]].

Although this work uses various vision routines, it won’t be discussing about

the computer vision perspective of object detectionwhere the emphasis is to devise

more reliable and easy to compute visual features and routines.

1.3 Contribution of the thesis

In this work we present a novel idea of using data mining for object representation

and detection in images. The main motivation of applying data mining is to

find useful patterns that occur in images of a class. There can be multiple such

patterns appearing in the images and the hope is that learning all such patterns

will help us predict the unknown image. The patterns here can refer to color,

shape, texture, spatial organization, depth, etc. For example, green-5polygon on
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top of red-8polygon can be learned as a pattern for strawberry class. Mapping

the image classification to data mining allows us to have more control over the

data representation and organization. Emphasizing this, the thesis provides the

following key contributions:

• A dynamically extensible visual object detection system using frequent pat-
tern mining.

• New object classes can be incrementally added to the system.

• Majority of the computation involved is localized and independent of other
class data and hence can be processed in parallel.

1.4 Organization

Chapter 2 gives a brief overview about visual systems and the various challenges

involved. Themotivation for thiswork is discussed and examines variousmethods

present in the literature. This is followed by a short introduction on data mining

and frequent pattern mining.

Chapter 3 discusses the proposed system. FP mining on images is introduced.

Various phases of the general system are explained and how each phase helps in

feature selection and classification is described.

Chapter 4 shows the explained system built with basic shape, color and spatial

operators. Modification for each phase of the system is explained in detail. The

system is evaluated on selected labels of Caltech-101 data set and results are

discussed. Also performance of the system is compared with SVMs and decision

trees.

Finally Chapter 5 summarizes the work carried out and the conclusions drawn

from the thesis as a whole. Future research directions are also discussed.
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CHAPTER 2

BACKGROUND AND RELATEDWORK

In this chapter we discuss about visual systems in general. The various challenges

in building a visual system includes feature extraction, object representation, and

inferencing. This chapter gives a detailed analysis on these challenges and dis-

cusses various methods that are currently used. A brief overview of our approach

towards solving the problem is also discussed towards the end of this chapter.

2.1 Introduction to Visual System

Although object detection forms an important part of the scene information, it is

not the only information that the agent might be interested in. According to the

task, the agent might require to know the different objects present in the scene (not

looking for a particular object), spatial organization of various objects, similarity

of objects, etc. Such an entire information system can be called as a visual system.

In general, a visual system should be capable of addressing different types of

visual queries. The types of queries addressed in an object detection task is of the

form, What is the object present in the scene ? or Is the object present of type X ?. For

the system to be more useful wemight also be interested in other queries like,How

many objects are there in the scene ?,What is the object towards the left of object X ? Find

the object(s) which are of cylindrical shape ?, etc. Such queries depend on the task the

agent is trying to solve.

In this thesiswewill be concentrating on object detection query of the type Is the

object present is of type X ?. Our method learns a symbolic representation and hence

suitable modifications can be made to address other queries like Find the objects



with a particular property (among the symbols that we learn).Throughout this thesis,

the following terms are used interchangeably: visual actions, visual operators and

operators.

2.2 Challenges involved

Object detection can be considered as a pattern recognition task, where the input

representation is mapped to an output label. But the image domain makes the

problem much harder to solve. A visual scene contains a lot of information. From

the processing point of view it is just a collection of pixels with color and location

information. Group of such pixels forms objects or object parts. These objects/parts

combine to form bigger objects and they together define a scene. The object itself

can appear in different color, texture, size or even shape. Many of these variations

can occur combined in a scene, which makes it harder to detect these properties.

It can be quickly seen that learning just the pixels are not useful for defining a

scene. Different distribution of the same pixel set can completely redefine a scene

and convey a different meaning. Learning all such possible pixel distribution for

a particular object or scene are also not possible as such data may not be available

all the time and that the data involved is enormous. Also there can be completely

different images which map to the same label. See the different types of cups

shown in figure 2.1.

The various challenges explained above can be broadly classified into Visual

Processing challenges and Machine Learning challenges. We will go through each

of these in the subsequent sections.
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Figure 2.1: Different varieties of cups

2.2.1 Visual processing challenges

First and foremost, the major hindrance for a reliable object detection is the dif-

ficulty posed by the visual appearance of the object. The same object can appear

different while scaled, translated and rotated. The appearance might also change

with different illuminations. In addition to this, there are view point changes

where the objects appear differently from different viewpoint locations. Figure 2.2

shows the various visual challenges.

Figure 2.2: Image: Original, Scaled, Rotated and Change in Illumination

2.2.2 Machine learning challenges

Apart from the visual appearance changes, there aremany other interesting aspects

of computer vision research. Object tracking in videos, object activity recognition,

7



Figure 2.3: Images from Caltech-101 showing: view, scale, noise and occlusion.

spatial blur detection, Content Based Image retrieval are a few. The main learning

challenges with regard to object detection are posed by generalization, discrimi-

nation and incremental addition.

Generalization requires to have a representation that can capture different vari-

ations of an object under a single label (Remember the cups example). This is

usually very difficult as it is very hard to explain what constitutes an object (Try

describing a cup class).

Generalization is complemented by discrimination where the aim is to well

discriminate different objects. The representation shouldn’t over generalise objects

so as to not differentiate between a cup and a mug.

Another important requirement of a visual learning system is that it should

be able to incrementally update its knowledge base. It might not be possible to

have all object classes during the training phase. The agent might encounter new

object classes during its life time. Also due to the resource (memory, computation)

constrained environment or real time requirements, it might not be feasible to save
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all training data and re-train with the new object. Knowledge of this new object

should be updated such that the re-learning involved is minimal. As we will be

interested on these challenges, a simple illustration is given below.

Illustration

Let’s say the agent wants to learn the class apple from the image sample given in

2.4.

Figure 2.4: A sample from class apple

A possible representation of the object is shown in table 2.1,

class hypothesis
apple shape = round

Table 2.1: Hypothesis for class apple

Discrimination - now to accommodate a class orange, the shape attribute is not

sufficient as it is satisfied by both the classes. Now to discriminate class apple and

orangewe have,

class hypothesis
apple shape = round & color = red
orange shape = round & color = orange

Table 2.2: Hypothesis for class apple and orange
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Figure 2.5: New class orange

Figure 2.6: Third class ball

Incremental Learning - the agent now wants to learn class ball

From the agents hypothesis, shape = round & color = red, will satisfy classes

apple and ball.

A possible representation to accommodate all three classes is shown in table

2.3,

class hypothesis
apple texture =
orange shape = round and color = orange
ball texture =

Table 2.3: Hypothesis for class apple, orange and ball

Here the hypothesis for class apple was modified to accommodate new class

incrementally. Note that this assumes that texture property was also learned for

10



all classes.

2.3 Current approaches

Finding an interest point and a feature vector around the interest point (describing

the locality) is one of the widely used methods for solving appearance differences.

Here the emphasis is to learn features which are scale, translation and illumination

invariant. It essentially builds the object detection on local features.

State of the art in this method include Scale Invariant feature transform (SIFT

Lowe [2004]), Maximally stable extremal regions (MSER Forssen and Lowe [2007]),

Speeded Up Robust Features (SURF Bay et al. [2008]), etc. Most popular among

these is the SIFT features.

SIFT extracts a large collection of feature vectors which are invariant to image

translation, scaling and rotation and partially invariant to illumination changes.

Key locations are defined as maxima and minima of the result of difference of

Gaussians (DOG) function, applied in scale-space to a series of smoothed and

resampled images. Low contrast candidate points and edge response points along

an edge are discarded. Dominant orientations are assigned to localized keypoints.

The feature vector is formed by specifying the orientation relative to the keypoint,

essentially making the vector rotation invariant.

Many variants to the SIFT method are also proposed like RIFT (Lazebnik et al.

[2004]), which is rotation invariant SIFT, PCA-SIFT (Ke and Sukthankar [2004]),

GLOH (Mikolajczyk and Schmid [2005]), etc.

The whole approach of building object detection on local features is challenged

by researchers who have shown that extracting global features along with local

features might help in better detection-accuracy and speeds (Oliva and Torralba

[2006]). They argue that the ambiguity in local features can be reduced by global

features of the image - gist of the scene.
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Figure 2.7: Image fromDickinson [2009]. From the image we can easily detect two
humanoids facing each other but mapping the image into local features
is very difficult.

Another line of approach in object detection is to consider part-based repre-

sentation for objects. Felzenszwalb et al. [2008] describes object detection system

which uses multi scale deformable part models. In this model, each part encodes

local appearance properties of an object and the deformable configuration is char-

acterized by spring like connections between certain pair of parts. Agarwal and

Awan [2004] describes object detection using a sparse part-based representation.

Here a vocabulary of distinctive object parts are automatically constructed from

the set of sample images of the object class and the objects are represented using

this vocabulary together with the spatial relation among these parts.

Object detection using shape context is another popular approach. Mori et al.

[2005] discuss about using similarity between shapes for object recognition. A

measurement of similarity between shapes is estimated by finding an aligning

transform for correspondences between points on the two shapes. Each point is

associated with a descriptor - the shape context and the remaining points are de-

scribed relative to the shape context. Given the point correspondences, a transfor-

mation that best aligns the two shapes is found. For recognition a nearest-neighbor

classifier is used which finds the maximally similar prototype to that in the image.

Researchers have also tried developing a visual grammar for object representa-
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tion. The visual grammar describes an object using variable hierarchical structures.

The object will be represented in terms of parts and each part is again described

by sub-parts or by properties of that part. Zhu and Mumford [2006] explain such

an approach but the major difficulty is defining what constitutes the various parts.

Many hybrid systems have also been proposed. Frintrop [2006] describes a

visual detection system in which the object training and detection happens in two

phases. Initially the object class is trained to find out how the object “stands out”

from its surroundings. This is done by learning the weights for various Gabor

filters which responds to variations in intensity, color and orientation. These

potential object areas are later fed to a Viola-Jones classifier which identifies the

features of the object.

There has been work from the machine learning community with emphasis

on learning visual operators for object detection and gaze control. Minut and

Mahadevan [2001] have proposed a selective visual attention model based on

reinforcement learning in which the agent has to choose the next fixation point

(action) based only upon the visual information.

Sridharan et al. [2008] proposes a Hierarchical POMDP system called HiPPO

which plans a sequence of visual operators associated with a task. It is a proba-

bilistic planning frame work that enables the agent to plan a sequence of visual

operators, whichwhen applied on an input scene enable it to determine the answer

to a visual querywith high confidence. The unreliability of the visual operators are

captured using a POMDP framework. Plan execution corresponds to traversing

a policy tree, repeatedly choosing the action with the highest value at the current

belief state, and updating the belief state after executing that action and getting a

particular observation. As solving POMDP becomes exponential in the combined

space of visual actions and ROIs, they propose a hierarchical POMDP framework.

A lower level (LL) POMDP is used for the visual actions to be taken and a higher

level (HL) POMDP describing the various ROIs to choose from. The actions in the

LL POMDP depends on the agents task and the HL POMDP maintains the belief

13



over the entire scene. The visual operators used include various colors and shapes.

The result of their experiments has shown that it is computationally more efficient

to plan a set of operators for the visual query rather than doing the naive exhaus-

tive search. In order to add new labels to HiPPO, it would require reformulating

the model with new states, actions, and observations and do re-planning on the

query.

2.4 Motivation

In this work we describe an object detection system which tries to extract the

common visual properties among a set of images. The approach is motivated

by Shimon Ullman’s visual routines theory (Ullman [1984]) which states that the

human vision system is composed of basic visual operators which are combined

in different ways for complex object detection tasks. Visual operators can extract

properties like color, shape, texture, etc.

2.5 Our approach

The main idea of our approach is to identify the common properties that exist

among the set of images in a class. The properties can be color, texture, shape, spa-

tial orientation, etc. These properties can occur in different combinations within

the same class. The learning phase for an object class tries to find out the common

visual properties that occur in the set of images within the class. The representa-

tion learned is later combined with other object classes for discriminating among

them. The combining step is done incrementally so that the re-learning involved is

minimal. Object in an unknown image can be later verified by checking for these

properties.

The main difference from the existing approach is that, we use FP mining for
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feature selection. The features selected for each class are later combined incremen-

tally with other classes and used for classification. Typically incremental learning

adds the data points of a class incrementally to the training set but in our case the

classes themselves are added incrementally.

For learning the common properties in an object class, we use Frequent Pattern

(FP)mining, which is awell-known technique in datamining. Subsequent sections

will provide a brief overview on FP mining and its application on images.

2.6 Introduction on Data mining

Data mining comprises of a set of machine learning techniques which can be used

to find patterns from large sets of data, which otherwise is very difficult to find

manually. It has immense applications in the field of data analysis like customer

purchase patterns, medical diagnosis, text analysis, etc. These patternswill contain

useful information which can be used to predict the future occurrences of data.

Data mining initially found its application in market analysis which was later

known asmarket-basket analysis. It was used to find interesting customer purchase

patterns from purchase transactions. The various commodities in a transaction is

known as items and set of items present in a transaction is termed as the itemset.

The transactions are analyzed for the occurrence of patterns in the items and the

co-occurrence of these patterns. This helps to better understand customer purchase

patterns and is used in marketing.

Today data mining has evolved into an important machine learning technique

for analysis and prediction of data.

Data mining mainly involves four classes of tasks,

• Clustering is the task of finding groups or structures in the data. Usually
a measure of similarity is defined between the data and this is used for the
grouping. This is completely unsupervised approach.
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• Classification is the task of generalizing learned structure of data to newdata.
Common algorithms include decision tree learning, kNN, SVM etc.

• Regression analysis finds a function that can model the data. There will
be measure of error defined on the training samples and the objective is to
minimize this error.

• Pattern analysis or Rule learning is the task of learning useful patterns or se-
quences from the data. Finding such frequent patterns plays an essential role
inmining associations, correlations, andmany other interesting relationships
among data.

We will be more interested in Pattern analysis also known as Frequent Pattern

(FP) mining.

2.6.1 FP mining

Frequent patterns are patterns (or itemsets) that occur more than a minimum

number of times in a data set. For example, a set of items, such as milk and bread,

which appear frequently together in a transaction data set is a frequent itemset.

Finding such frequent patterns plays an essential role in mining associations,

correlations, and many other interesting relationships among data.

Terminology

Considering themarket-basket analysis, a commodity in a transaction (T) is known

as an item(i). The set of items present in a transaction is termed as the itemset(I).

The itemset with n items is known as an n-itemset. The set of transactions forms

the transaction database (D).

For example: milk, bread, jam, etc., are items, and 〈milk, bread〉, 〈bread, jam〉,

〈bread, eggs〉 are examples of 2-itemsets.

The number of times an itemset occurs in a transaction database is known as

the count or support of that itemset. An itemset is said to be “frequent” if its
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occurrence in the transaction database are more than aminimum number of times,

known as the ‘minimum support’ or ‘min-support’.

Let A be an itemset such that A ⊆ I then,

support(A) =| A ∩D |

f requent(A) =



















1 if support(A) ≥ n

0 if support(A) < n

where n is the min-support.

FP mining can be defined as finding all such itemsets which have support

greater than the min-support. i.e., for a given database D and value of minimum

support nwe have,

FP(D,n) = {F | ∀A ⊆ D, f requent(A)⇔ A ∈ F}

where F denotes the frequent patterns identified from D.

Basedon the completeness ofpatterns tobemined,we canmine the complete set

of frequent itemsets, or the maximal frequent itemsets, given a minimum support

threshold. In the maximal frequent itemsets mining, only itemsets of length k

are considered such that there are no k+1 frequent itemsets. In complete set of

frequent itemsets, itemset of length 1 to k (both inclusive) are considered.

In the next section twopopular algorithmsused for FPminingwill bediscussed.

2.6.2 Algorithm

An exhaustive approach of finding all subsets of itemsets and checking if it is

frequent is exponential in time. There are many algorithms proposed for frequent

pattern mining and one of the earliest and simplest of these is the Apriori Pattern

Mining algorithm (Agarwal and Awan [2004].)
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Apriori Algorithm

This is a basic FPmining algorithmwhich uses prior knowledge of frequent itemset

properties. Apriori employs an iterative approach known as a level-wise search,

wherek-itemsets areused to explore (k+ 1)-itemsets. Let all the frequentpatterns in

level k be noted as Lk. The finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an

important observation that, All nonempty subsets of a frequent itemset must also be

frequent is used. This implies that a k-itemset is frequent if and only if all of its

(k-1) subsets are frequent. This is called the Apriori property. This property can

be used to reduce the search space of finding frequent itemsets.

The procedure starts by finding the set of frequent 1-itemsets by scanning the

database to accumulate the count for each item, and collecting those items that

satisfy minimum support. The resulting set is denoted L1. These 1-itemsets are

combined together to form2-itemsets. These are knownas the candidate 2-itemsets

denoted as C2. The database is scanned for the occurrence of these 2-itemsets to

find the actual support. The support of each of 2-itemsets are recorded and those

2-itemsets are pruned which have support less than the min-support. From these

frequent 2-itemsets, candidate 3-itemsets are generated and so on and so forth until

no more frequent itemsets can be found. The steps are enumerated in algorithm 1.

The routine apriori combine combines all frequent Lk−1 items to form Ck.

The caveats here are that the scanning of database can be huge. Also the

candidate generation step might result in a large number of candidates, making

it practically infeasible. There are several enhancements proposed for Apriori

algorithm like hash based buckets for looking up FPs, scanning and recording

support of more than one itemset etc.
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Algorithm 1: Apriori FP mining

Input: Database D, min-support n
Output: set of frequent itemsets FP
L1 = f ind all 1 itemsets(D) ;1

for k=2; Lk−1 , φ; k++ do2

Ck = apriori combine(Lk−1);3

Lk ← φ ;4

for c ∈ Ck do5

if support(c) ≥ n then6

Lk ← Lk ∪ c ;7

L← ∪i=k
i=1

Li8

FP growth

Another interesting algorithm for FP mining is the Frequent pattern growth algo-

rithm (Han et al. [2000]). FP growth algorithm constructs a tree representing the

database and finding frequent pattern is by scanning this tree recursively. Advan-

tage here is that the whole process employs a divide-and-conquer strategy. The

main motivation of including this algorithm is that it is highly scalable for large

databases and for resource constrained environments.

The FP-tree algorithm constructs all frequent 1-itemset (L1). Each item is or-

dered according to its support and the items in a transaction are considered in this

order. Each transaction in the database is scanned and a tree is constructed by

inserting nodes for items. Initially the root of the tree is marked as null and for

the first transaction all items are inserted as nodes with their count marked. Now

it considers the second transaction starting from the root, traversing down and

checking if the nodes and incoming items match. If there is no node for an incom-

ing item, a new node is created and its count initialized to 1. Remember that we are

considering the transactions in a sorted order of the items and all common prefixes

get accumulated starting from the root and becoming more specific towards the

leaves. Each time the node is scanned for a place, the corresponding count is also

incremented. A item header table which points to the items occurrences in the tree
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is build using a chain of node links.

FP construction is done by considering the items with lowest support first and

upwards. Each item is taken and there conditional FP tree is constructed. This can

be done by enumerating all paths which leads to the current item using the link

pointers. Once we have the conditional tree, the FPs are generated recursively by

concatenating the FP tree prefix and the item. A detailed algorithm of FP growth

can be found in the original publication Han et al. [2000].

2.7 Summary

In this chapter we discussed about visual systems. Visual systems are generic

systems which can answer a variety of visual queries about a scene or object. The

various challenges we saw in building such a system are the visual challenges

which included the difference in scale, orientation, view point variations, etc.

Apart from the visual changes are the machine learning challenges which ensure

that the representation learned can be generalized and discriminated over a range

of examples and different classes. Another important requirement of a vision

system is incremental learning. The agent should be able to update its knowledge

base such that its existing knowledge about the objects are preserved and there is

minimal processing involved in this process of re-learning.

In this thesis we will be concentrating on the machine learning challenges. We

also discussed about data mining concepts especially frequent pattern mining. FP

mining involves finding frequent patterns in data. The idea is that this patterns can

be later used for detection in unknown samples. FP mining algorithms, Apriori

pattern mining and FP tree mining were also discussed.
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CHAPTER 3

OBJECT DETECTION SYSTEM

One of the major contributions of this work is the application of frequent pattern

mining for object detection. So far there has been little work done on pattern

mining in images for object detection. In this chapter we will discuss on extending

FP mining to images. A detailed explanation on the proposed object detection

system is provided. The chapter is concluded with some initial approaches that

we tried and which helped in evolving the current FP mining method. For ease of

understanding, most of the examples use the features: shape and spatial-relation.

But the methodology is generic and the system can be extended to use different

pattern mining algorithms or image features as applicable.

3.1 FP mining on Images

As previously seen, raw image data is of very high dimension and low dimension

feature vectors need to be extracted for any useful processing. Most of the data

mining algorithms (including those we have seen) do not work on real features.

Thus the feature vectors need to be “itemized” so that the data mining algorithms

can work.

Analogous to the FP mining terminology (see section 2.6.1), we define a visual

operator (o) as an item. That is to say, any feature vector that we use is to be

mapped as an item. A set of visual operators(O) forms a visual itemset. The

visual operators identified for an image forms a visual transaction and the set of

visual transactions identified for all the training samples in a class forms the visual

database of that particular class.



For example: square, circle, square-inside-circle, etc., are examples of visual

items. 〈square, circle〉, 〈circle, rectangle〉 are examples of 2-itemsets.

Similarly, the number of times a visual itemset occurs in a transaction database

is known as the count or support of that itemset. A frequent visual itemset is

an itemset with support greater than or equal to the minimum support. The FP

mining process is defined as the process which finds visual patterns in an image

database.

3.2 Proposed System

In this work we explore the theme of using of FP mining for selection of image

features, how to rank these features and finally use them for object detection. We

assume a supervised setup where a set of images with class labels are provided

for training. We also assume that the training samples have the pixels marked as

foreground and background.

Our system can be logically partitioned into feature selection and classification.

Feature selection includes 3 phases. The FP mining phase, which finds useful

patterns from the images, Scoring phase to rank the operator sets depending on its

coverage and finally a re-scoring phase which re-scores the operators based on its

discriminative qualities among the given set of classes. Classification phase does

the actual classification task using the operators selected from the feature selection

phase. Subsequent sections describe each phase in detail.

Feature Selection Classification

Figure 3.1: Different phases of the system
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Figure 3.2: Input image with fg pixels highlighted

3.2.1 FP mining phase

FP mining phase includes the feature extraction or visual database creation and

pattern mining the data. Feature extraction is the process of mapping images into

a set of features or visual properties (o). The input of this phase is the set of images

and output is the frequent patterns extracted for each class. Even though the

images are grouped with class label, this phase does not use the label information

to correlate with other classes. Since there is no dependency with other classes,

this processing can be done in parallel for all the classes.

The feature extraction is usually done by a set of routines which can extract

specific properties known as visual operators. The operators can be simple prop-

erty operators which extract features like color, shape, texture, etc., or relational

operators like spatial relations, ternary relation operators, etc.

A property operator is said to have fired (or relevant) on an image i.e., the

operator is included as an item in the visual transaction of an image, if it selects

at least some minimum number of pixels from the foreground. This condition

is to make sure that we include only foreground selection operators and discard

background operators. All available property operators are applied on an image

and those which fire are found.

The relationship among the instances identified by the property operators are

determined by applying the relational operators on them. Thus the property

operators together with the relational operators form the visual transaction for
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Figure 3.3: Relevant 6polygon operator and a discarded triangle bg operator

that image. This procedure is repeated for all available images in the class and the

identified visual transactions constitute the visual database of the class.

Figure 3.4 shows an example of visual transactions extracted for an image of

stop sign class from the Caltech-101 dataset.

Figure 3.4: Property operators, Relational operators and the visual transaction for
stop sign image

Algorithm

The algorithm starts by constructing the visual database for each class as explained

above. Apriori frequent pattern mining (refer section 2.6.2) is used on these trans-

actions to find the frequently occurring visual itemsets. Candidate generation is

done on the apriori property which states that, for an itemset to be a frequent item-

set candidate, all its subsets should also be frequent. For bigger itemsets where
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candidate generation is expensive, FP tree algorithm can be used for mining.

Similarly the frequent patterns are found for each class independently and

these FPs forms the input to the next phase, viz. Scoring phase. Apart from fixing

the values of parameters like minimum-support, thresholds for visual operators,

etc., no user intervention is required in this phase. Algorithm 2 outlines the steps

required for a single class.

Routine apply operator applies the property operator on to the image and returns

a score proportional to the foreground pixels it selected. find relational opers is

used to find the relational operators among the identified property operators. The

pseudo-code of these routines is not shownas they are very specific to the operators

that we use.

Algorithm 2: FP mining

Input: label L, Training Data T
Output: set of frequent operators, FP
for each image i and foreground info. f ∈ T do1

O[i]← NIL ;2

for each property operator p ∈ P do3

fgpixels← apply operator(p, i, f);4

if fgpixels > select threshold then5

O[i]← O[i] ∪ p6

O[i]← O[i] ∪ find relational opers(O[i], R);7

FP← Apriori FPMine(O, minsupport);8

Regarding the mode of mining, we consider only maximal FPs. Also FP min-

ing can give multiple frequent visual patterns which show the different object

configurations. Choosing the min-support value here can be tricky as it controls

how much generalization we want with the training samples. Too high a value

can cause very generalized representation to be learned which might miss some

specifics. Too low a value can causemany different object configurations including

some noisy configurations to be learned. More about this value is discussed in the

experiments section of chapter 4.
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Figure 3.5: Multiple configurations detected for scissor class

Figure 3.6: Learning features using Pattern mining

The set of FPs thus forms a AND-OR graph where each configuration is OR-ed

together with its parts AND-ed to its parent. Figure 3.5 shows a sample AND-OR

graph.

Thus to summarize this phase, the input is the sample images grouped in

classes. The feature extraction is done, creating a feature database of that class.

Frequent pattern mining is done on this database and the output is the frequent

patterns thus identified. Figure 3.6 summarizes the processing involved in this

phase.
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Figure 3.7: Brain image showing 8poly and square operator

3.2.2 Scoring of frequent operators

Now we have represented an image class with a set of frequent visual patterns.

While adding anoperator in the frequent patternminingphase,we consideredonly

the coverage of the operator. The FP mining procedure ensures that the patterns

obtained would be present at least in minimum-support images of the class. But

this does not say how accurate the operator sets are. An operator may select more

background pixels than foreground pixels and this operator might be selected as a

frequent pattern because the object is usually shown in a similar background (like

a soccer ball usually shown in a play ground).

Figure 3.7 shows brain image with the left most one showing the foreground

pixels and others showing operators 8polygon and square respectively. Here you

can see that even though both operators are relevant (as they select fg pixels) the

square operator selects more bg pixels than the 8polygon operator.

Another scenario is that the coverage of an operator might be superseded by

some other operator. Here both operators might be frequent but we want to rank

the higher operator more than the lower operator in terms of its coverage.

For pruning such inefficient operators or ranking the extra operators from the

set of identified frequent operators, we attach a score with each of the property

operators. The score is defined as the accuracy measure, i.e. the ratio of sum of
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true positives (tp) and true negatives (tn) detected by an operator to the total pixels

of the image. The true positives for an operator are those pixels selected by the

operator which are true fg pixels (as per the object foreground information) and

the true negatives are true bg pixels.

score =
tp + tn

total pixels

Figure 3.8 shows example for both cases mentioned above and how the scoring

helps. Here operator o1 has a relatively lower score than o2 or o3 as it selects more

bg pixels. Also operators o2 and o3 overlaps in their coverage but o2 has a better

score.

Figure 3.8: Operators showing the scoring scenarios

It must also be noted that neither the scoring phase can be combined with

the frequent pattern mining phase nor they can be swapped (fp mining accurate

operators). FPmining among the accurate operatorsmight fail to capture operators

which are frequent but not very accurate (due to noise or operator errors). Whereas

the approach of selecting accurate among the frequent operators will capture all

operators and then rank them with their accuracy. Figure 3.9 shows a simple

illustration. Here the score of the pentagons and hexagons might be less than

the outer circle and mining-scored-operators will fail to capture the pentagons
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and hexagons. Detecting them as frequent operators is very crucial as in the next

section we will see that these operators give a better discrimination.

Figure 3.9: Soccer ball with detected 5polygon and 6polygons

Algorithm

From the identified set of frequent patterns (FP), we have to find those subsets

which give the maximum score (FPmax) for the class. This is done by constructing

a lattice of frequent operator sets by considering inclusion on the FPs (see figures

3.10, 3.11).

Each node in this lattice is frequent because they themselves are subsets of the

frequent itemsets and is associated with a score. The score is computed as the

average accuracy of the operator set computed across all the images of that class.

The search for the maximum-score operator set starts from the first level (single

operators). In each level the operator set which has the maximum score (maximal

operator set) is found. This maximal operator set is compared with the maximal

operator set of second level and so on. The search continues till no improvement

in the maximum score is seen i.e., till the score of ithlevel is less than or equal to

i-1thlevel. Once the maximal operator set is found out, it is included to the FPmax

set and the maximal operator set along with all of its subsets and supersets are

not further considered in the search process. As the maximal operator set had the

maximum score within the level and among the different levels, there is no need to
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Figure 3.10: Lattice constructed for 3 operator sets abc, abd and efg

consider its subsets or supersets during further search. The maximal operator set

covers for its supersets and its subsets and hence they are removed from further

analysis. The above steps are repeated until all the nodes of lattice are removed.

Algorithm 3 enumerates the steps involved in scoring the frequent patterns.

Routine find max finds the maximum scored operator set among all the operator

sets in the specified level. Theprocessing involved in this phase is also independent

with other classes and all the processing can be done in parallel with other classes.

Algorithm 3: Scoring the FPs

Input: set of frequent operators, FP
Output: set of operators, FPmax

construct the lattice for FP ;1

while there are still nodes in the lattice do2

max← find max(O1, T) ;3

for level← 2 to max do4

max curr← find max(Olevel, T) ;5

if max curr.score ≤ max.score then6

break ;7

max←max curr ;8

FPmax ← FPmax∪max.op ;9

Remove max, its subsets and supersets from further consideration;10
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Nodes not considered for next level Maximal operator set

Figure 3.11: Lattice considered for second iteration of algorithm, maximum oper-
ator set in first iteration is abc

3.2.3 Re-scoring of operators

To summarize the processing so far, we have frequent visual patterns among the

images of a class and we have ranked them according to their accuracy. We still

have processed object classes independent of each other and have not considered

the discrimination and incremental requirement of the system.

While adding new classes to the system, it might happen that the operator set

with themaximum score identified for one classwould be popular for other classes

too. For example, a circle operator will have a good score for detecting a pizza

class and a soccer ball class.

In such cases the “popular operators” must be replaced with other alternatives

(if present). This has to be done in an online fashion as all the object classes

may not be present during training. Thus in the pizza-soccer ball example, the

system should identify a slightly less scored frequent operator setwhich detects the

various hexagons and pentagons in the soccer ball. This rescoring of the operator

sets should be done as and when new labels are added to the system.
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Figure 3.12: Circle as the highest score operator for both pizza and socccer ball
class

Algorithm

From the previous scoring phase, we have identified the frequently occurring

maximum scored operator sets. From the frequency of occurrence of an operator

set in a class, we can calculate the probability of the operator set given the label i.e

P(FPi|L) where L is a label and FPi a frequent operator set. This probability can be

written as,

P(FPi|L) =
NFPi

ΣiNFPi

where NFPi
is the number of images FPi has fired for the class.

For testing the presence of a label in an image, we require the probability of a

label given that we observed a particular operator set. Using Bayes rule, we can

find the probability of label given the observation of a frequent pattern FPi as,

P(L|FPi) =
P(FPi|L) ∗ P(L)

P(FPi)

P(L) is the probability of the label which is assumed constant, given by NL/T

whereNL is the number of images of the class L, and T is the total number of images

across all classes. We assume equal number of training images for all classes i.e,

NLi = NL j . With the above assumption P(FPi|L) can be rewritten as NL
FPi
/NL. The

probability of observing a frequent pattern P(FPi) is NFPi
/T i.e., the number of

images on which FPi fired regardless of the label, divided by the total number of
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Figure 3.13: Soccer ball with alternate operator set and pizza with circle operator

images. Substituting all of these in the above equation we have,

P(L|FPi) =
P(FPi|L) ∗ P(L)

P(FPi)

=
NL

FPi

NL
×
NL

T
×

T

NFPi

=
NL

FPi

/NL
×
/NL

/T
×
/T

NFPi

∴ P(L|FPi) =
NL

FPi

NFPi

The above result shows that for testing a label, the operator sets should be

ordered according to the ascending order of
NL

FPi

NFPi

. Thus for an operator set to get

a better score in this phase, either the frequency of observing the operator set FPi

for the particular label is high or that the probability of the operator set FPi firing

for other classes is less.
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Algorithm 4 enumerates the steps.

Algorithm 4: Re-scoring the FPs

Input: FPmaxfor all classes

Output:

for each class, c ∈ C do1

for each FP ∈ c.FPmax do2

f req[FP]← f req[FP] + FP.freq3

for each class, c ∈ C do4

sort(c.FPmax) by
c.FPmax. f req

f req[FPmax]
5

3.2.4 Classification task

As already seen, for testing the presence of a label in an image, we need to check

the presence of operator set in the descending order of rescore value,
NL

FPi

NFPi
.

A re-score value of 1 ( NL
FPi
= NFPi

) indicates that the operator set fires only

for the label under consideration. Firing of such an operator set on the test image

gives a full confidence of that label. But if the value is less than 1, it signifies the

cross-firing of the operator set on other labels ( NFPi
< NL

FPi
). Firing of such an

operator indicates that the label can be either of those labels on which FPi fires.

We call these labels as confused labels for operator set FPi denoted as C(FPi).

Let’s assume that for a particular label, all the operator sets that we have are

confused with more than 1 label. So with the above method, there will be no

single operator set which can give us full confidence for the label. But we can use

the partial information of multiple operator sets and improve the detection of the

labels. The justification here is that if multiple operator sets for the query label fire

on the test image, it gives more evidence on the presence of that label.

To make use of this information, we keep a list of confused labels. We start off
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by adding all labels to this list. As each operator set fires, the new set of confused

labels will be those which are common in the current set of confused labels and

those for which the operator set fires (C(FPi)). The subsequent operators for the

queried label is re-scored only on these confused set of labels. So the next operator

set for the label would be the one which tries to discriminate only among the

confused labels as opposed to all available labels. This procedure is continued

until the label is finalized or until the operator sets are exhausted.

Even with this procedure, if we don’t have enough discriminating operator

sets, we could still end upwith a set of confused labels. Note that the rescore value

of such confused labels is an approximation of P(L|O) and it would be equal when

the operator set O fires only for those confused operator sets.

Algorithm 5 enumerates the various steps.

3.3 Initial approaches

This section talks about some of the initial ideas that we tried before the current FP

mining approach. Although they were failed attempts it nevertheless contributed

to the current thoughts and ideas.

3.3.1 Heuristic Operator Search

We started off with the idea of abstracting the image class with visual operators

and to find out the combination of these operators whichwill help in classification.

We assume that we have a set of labeled images with background and fore-

ground information for training. We define a set of visual operators (O) which

included shape and color features.

The initial method we tried was to find out the set of operators present in an
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Algorithm 5: Algorithm used for testing object presence

Input: FPs for query class,Q and Image M
Output: Class
Test(FP, M)1

begin2

for each f←1 to size(FP) do3

FP← FPs( f )4

if FP fires on image then5

if Pr(Q | FP) == 1 then6

return Q ;7

else8

// let C’ be the set of confused labels

associated with FP

FPs’ = { FPs(f+1) , ... FPs(n)) } ;9

for FP’ ∈ FPs’ do10

// rescore based on the universe of confused

labels

score(FP’, Q) = NQ
FP′
/Σc∈C′(N

c
FP)11

sort(FP’, score);12

return Test(FP, M);13

// no operator set fires14

return NIL;15

end16

image. Each visual operator when applied to an image or more generally to a

ROI, select certain pixels. The score of the operator is calculated as proportional to

the true foreground pixels it selected on the image. The fg, bg information of the

image is obtained from the training data.

The operator search procedure tries each operator one by one on the image and

finds the score of the operator. The best operator and the best score is found out

for the single operator case. Then the procedure is repeated for 2 operator case,

finding the best 2 operator representation of the image and so on. The procedure

is repeated until the score is less or is the same between two consecutive levels.

This procedure is repeated for each image in the training set and the operator sets

with score greater than a certain threshold are selected.
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The number of times the selected operator sets fired on the images are found

and it gives the probability of finding the image given the operator set, i.e., P(O|L).

For the classification, the operator sets are applied on the images in the order of

P(O|L).

Some of the caveats are, each level requires
(n
m

)

operator checks where n is the

total number of operators and m is the level thus making the search exponential.

The information on best operator from each level cannot be used in the next level.

It need not be the case that the best operator in nthlevel will always have the best

operators from n − 1thlevel. So a greedy algorithm cannot find an optimal solution

in our case.

Figure 3.14 shows an example. Here in level1 - o1 is the best operator and for

level2 - o2, o3 is the best operator set.

We later tried a simple heuristic, for computing the operators for nth level, (n-2)

operators from (n − 2)th level are kept fixed and remaining 2 operators are tried

for all
(n
2

)

combinations. Empirically the results for the exhaustive search and the

heuristic search were similar.

The FP method that we proposed is a modification of the heuristic search

method. To handle the exponential computation complexity, in the FP method,

the search procedure was split in to 2 phases. The FP mining phase finds those

operators which are frequent. Here we exploit the apriori property and incremen-

tally builds the operator set from each level. The scoring phase handles the actual

scoring of the operator by evaluating only those operators which are selected from

the pattern mining phase.

3.3.2 POMDP approach

Extending the idea of HiPPO we decided to model the object representation as a

hierarchical POMDP. Basic features such as color, shape, etc., forms the first level,
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Figure 3.14: Counter example showing search procedure cannot be greedy

combination of these features leads to the second level like spatial relations and so

on. Modeling the features as probabilistic helps to capture the uncertainty of the

operators.1

The whole scene is described as a hierarchical tree. The lowest level POMDP

takes care of the primitive visual operators. The policy of this POMDP will be

the object detection sequence. This can be modeled either as one single large

POMDP whose policy does the classification. Another way to model the same

is to have different POMDP for each object. The initial belief of which POMDP

to be chosen should be either decided by higher POMDPs or from initial proba-

bilities set by the query. We also found similar work from the Machine learning

community. Pineau and Thrun [2001] talks about planning under uncertainty and

hierarchical POMDPs. Simon et al. [2002] proposes amethod for hierarchical object

classification. Dietterich [1998] explains the MAX-Q framework for hierarchical

reinforcement learning which can be used for policy learning.

Figure 3.15 shows a sample hierarchical decomposition of a scene.

One of themajor problemswe encounteredwas the large state space this model

has. We want to represent the fact that objects can be decomposed in different

parts. Each part could be represented by the set of basic features defined above.

1This part of the work was done with the help of Jeremy Wyatt and his PhD student José from
University of Birmingham, UK.
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Figure 3.15: Hierarchical decomposition of a scene

It is also important to define how different parts are related in order to compose

an object. Furthermore, we faced the problem of how to represent the relations

among different objects in the scene. Therefore, the state space would be defined

over all possible trees of scenes, which is too big and possibly infinite too. Also as

new operators are added the lower POMDP also becomes intractable.

3.3.3 Learning visual operators

Learning the visual operators themselves was also an important area that caught

our attention. The system learns the set of visual operators suitable for the image

class from more primitive visual operations like, segmentation, edge detection,

contour detection, etc. The operators need to bemodeled as probabilistic to capture

the uncertainty. The sequence of actions can be learned using planning.

Again the obstacles here are the large number of parameters involved. To tackle

the visual changes like illumination, translation, etc. the plan needs to be executed

on various parameters like edge-thresholds, scale values, etc.
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3.4 Summary

In this chapter we presented a way of extending FP mining on images for object

detection. The various phases of the object detection were discussed. The feature

extraction or the pattern mining phase is used to map the image into feature

vectors. From this feature vectors, the feature selection is done by applying fp

mining algorithms on this visual transaction. To assess the accuracy of the frequent

operators identified, a score is attached to the frequent operator set, which is the

average score of the frequent operator set across all the training images of that

class. Thus the various FP sets are ranked according to their score. Finally to

ensure the discriminative power of the identified operator set, a simple statistical

inferencing is used. Among the set of the FPs those which are popular with other

classes are swapped with lower scoring but more descriptive alternatives. This

is done by considering the firing of the FP across all the classes. Those operators

which have a high occurrence count among other classes are considered bad as

they are too popular. This ordering is done among the present set of classes. As

more classes are added, the operator sets are dynamically re-ordered so that each

class is always tested with the most discriminative operator set the class has.

The various machine learning challenges we discussed in the previous chapter

is answered in different phases. The pattern mining phase controls the gener-

alization of the representation learned. The re-scoring phase takes care of the

discriminative quality of the operator sets. Each class is processed in an incre-

mental manner. The operators re-ordering cost is very less as we require to keep

track of only a global count of the operator sets and the re-computation of the

probabilities.
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CHAPTER 4

DETECTION USING BASIC OPERATORS

This chapter discusses about the experimental validation of our approach. Brief

description on the operators we have chosen, various parameters, test bed, re-

sults and implementation details are provided. A discussion on extending the

experiments with real valued features is given. The chapter concludes with com-

parison of our approach with SVMs and Decision tree and experiments using SIFT

operators.

4.1 Visual operators

For experimental validation of our approach we selected some basic operators. As

property operators we have shape operators like square, triangle, circle, etc., and

color operators red, green, and blue. Relational operators include binary spatial

operators like left, right, top, bottom, inside, distinct, etc.

The shape operators includes circle and a polygon detector. Circle detection

is done using Hough transform for circles (Ballard [1981]) The polygon operator

npoly is a generic n-sided polygon detector (regular or irregular). Actual detectors

we used where 5poly, 6poly, etc., which were instantiations of npoly operator with

corresponding values for n. When applied to an image, shape operator returns all

the instances of the respective shape.

For the color operators, the image colorspace is converted from RGB to HSV

and specific range of values for these channels are used to detect red, green and

blue colors. For detection, color operators are used in conjunction with the shape



Figure 4.1: Rotation invariant spatial operators

operator, i.e., the color operator is applied to only those regions where shape

operator has fired.

Relational operators are binary operators which can detect spatial relations

among two shapes. Relational operators included rotation dependent operators

like left, right, top, bottom and rotation invariant operators (spri) like inside,

distinct, touch and overlap. Figure 4.1 shows the various rotation-invariant spatial

operators used.

For selecting the set of shape operators we did some testing on the data set.

Shape operators for detecting polygons with 3 to 15 sides were used and usage

frequency of various operators were analyzed (training over all labels). It was

found that the usage dropped sharply after 9 sided polygon operator.

The main motivation of selecting these operators is ease of understanding.

The representation learned would be symbolic in terms of these operators and

can be easily verified. Also the shape operators are scale and rotation invariant.

Relational operators had both rotation specific and rotation invariant operators

See table 4.1 for the complete set of operators that we used.

4.2 Dataset

The image data set we used was Caltech 101-object categories (Fei-Fei et al. [2004]).

Thedatabase consisted of 101 classeswith images in each class ranging from30-400.

Each class had a minimum of at least 45-50 images. The images are mainly of size
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Class Operator Description

Shape

triangleop, squareop,

identifies shapes
circleop, 5polyop,
6polyop,7polyop
8polyop, 9polyop

Color
redop

identifies colorgreenop
blueop

Spatial
left,right,top,bottom

defines relation
inside,touch,overlap,distinct

Table 4.1: Visual operators

300x500 pixels and contained various views, scales, orientation of the object. Most

of the images had only single instance of the object and hence single ROI. Many

objects are embedded in real world scenes and are complex (like faces, animals,

etc.)

As there are very few geometrical figures in the real world images, shape

operators fails to capture all the features. There were classes (like cougar) where

none of the shape operators worked. So out of the 101 object labels, we empirically

selected a set of 18 labels in which the operators performed well. Figure 4.2 shows

the various labels that we selected. The system was trained on 30 images from

each class and testing was done on 15 images different from the training set.

4.3 Various Phases

The following sections explains the various modifications and implementation

considerations that we did for each phase explained in the previous chapter.

4.3.1 Visual Pattern Mining

The pattern mining phase has feature extraction and mining stages. Feature ex-

traction (visual database creation) was done by applying each shape operator to
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Figure 4.2: Selected 18 labels from Caltech-101 dataset

the training image and then color operators on these detected shapes. Once we

have all the shapes and colors identified, the spatial operators are applied by con-

sidering the shapes two at a time. The rotation specific and rotation invariant

relations are identified on these shapes and the whole features are saved as the

visual transaction for that image. Similarly the procedure was repeated for all

training images in the class and across all classes.

Apriori mining algorithm was applied on this database and the frequent pat-

terns were recorded. We used 20% as min-support value. Thus any feature which

occurs in more than 20% of the training images is considered to be frequent.

The value was empirically found out by inspecting the frequent patterns each

value gave. It was seen that a value from 20%-40% did not change the accuracy

much. Although the min-support value selection can be done in a systematic way

using cross validation, we are not aware of a method which can select this non-

empirically. Also it was seen that for some classes a specific value is better than a
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globalminimum support value. For example, in the case of soccer ball class a value

of 20% was too small as it constructed many FPs using pentagons and hexagons

with slight variations in orientation.

Following list shows frequent patterns detected for certain classes.

• pizza
1. 8poly

2. circle, left(circle, circle), distinct(circle,circle), top(circle, circle), bot-
tom(circle,circle)

• stop sign
1. 8poly-red,inside(8poly-red, 8poly-red),left(8poly-red, 8poly-red)

2. 8poly-red,circle-red

• sunflower
1. 8poly, 7poly, inside(8poly,7poly)

2. 7poly, square, inside(7poly, square)

3. 8poly, square, inside(8poly, square)

4. 6poly, square, inside(6poly, square)

• watch
1. circle, 6poly, inside(circle, 6poly)

2. circle,8poly,inside(circle, 8poly)

From the FPs it can be seen that: In the pizza class many instances of circle

operator were detected For stop sign class operator 8poly-red occurred frequently

but for other classes no (available) colors were frequent. Also in the case of classes

watch, and sunflower the FPs included polygons which occurred one inside the

other.

4.3.2 Scoring phase

Each operator were scored according to the scoring method prescribed in section

3.2.2. The scoring lattice was constructed with the frequent operators. The score

of each node was taken as the average score across all the training images of each

class.
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4.3.3 Re-scoring

Maximal FPs found in the previous stage is further scored for discrimination in

this phase. For some labels, the topmost accurate operator set contained only a

single operator. We observed that those operators were re-scored to lower values

as they are too popular. For example, circle operator was popular among classes

soccer ball, pizza and watch. In all the these cases operator sets were re-ranked

for more discriminative operators.

4.3.4 Classification

Classification was done by matching the operators against the unknown image in

the re-scored order of each FP set. The testing algorithm used was the same as

mentioned in section 3.2.4.

4.4 Results

Table 4.2 shows the selected labels and percentage of detection accuracy, top-2,

top-3 and rejection accuracy for the system build with only the shape operators

and no spatial relation operators. The detection accuracy, or recall, for a label is the

percentage of true positives(TP) detected by the classifier among all the positive

image. Note that the TP used here is the true positive images detected. This is

different from tp used in scoring phase which is true positive pixels. The system

was trained on all the 18 labels. The results were generated by doing a 10 fold

cross validation with 27 training images and 18 test images from each class. The

match for a particular label is given as explained in the Classification section. In

top-2 and top-3 matches, the object is considered to be detected if the queried label

occurs at least in the top-2 or top-3 of P(L|FP) ordering of the fired operator set.

The low scores towards the end of the table shows those labels where the
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operator sets learned are similar or same. For example, in the case of labels

umbrella, accordion, etc., the same 5poly operator were learned. We observed that

in those cases there were no alternate operators to apply in the re-scoring phase.

The rejection accuracy, or specificity, is the percentage of true negatives (TN)

detected by the classifier among all the negative samples. The system was trained

on all the labels, and the testing was done on 306 images per class, i.e., 18 images

from each class except the true class. Note that this measure cannot be directly

correlated with the TP%.

Similarly in table 4.3 the results are given for the system built with shape and

spatial operators. Comparing with table 4.2 we can observe that, the labels have

become more selective and in case of dollar bill, pizza, etc., the TN rate improves.

For some labels like soccer ball, scissors, etc., the TP rate decreases because the

labels now impose the spatial constraints also for a successful match.

Class TP% Top-2 TP% Top-3 TP% TN%

soccer ball 72.2 73.3 73.3 79.9
stop sign 52.8 62.8 66.1 98.5
airplanes 49.4 65.6 73.3 75.7
dollar bill 36.1 76.7 78.9 97.5
barrel 35.6 44.4 44.4 76.5
sunflower 27.8 54.4 62.8 95.3
accordion 25.6 66.1 68.3 89.5
scissors 25.6 68.9 68.9 91.8
brain 24.4 45.6 60.6 69.8
camera 23.9 28.9 28.9 89.2
pizza 21.7 74.4 81.7 82.5
metronome 20.0 32.2 53.9 90.4
watch 16.1 46.7 51.7 87.7
strawberry 13.3 25.6 32.8 74.5
yin yang 9.4 76.7 77.2 100.0
lamp 3.3 80.6 93.3 100.0
ceiling fan 2.2 49.4 64.4 100.0
umbrella 1.7 15.6 29.4 100.0

Table 4.2: Selected labels from 101-dataset and their detection/rejection accuracy
with shape operators
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Class TP% Top-2 TP% Top-3 TP% TN%

soccer ball 65.6 66.1 66.1 98.0
stop sign 43.9 44.4 44.4 100.0
airplanes 42.2 56.7 56.7 97.1
dollar bill 46.7 47.8 47.8 99.3
barrel 30.6 43.9 47.2 74.5
sunflower 40.0 57.8 57.8 87.6
accordion 48.9 48.9 48.9 82.7
scissors 21.1 56.1 56.1 99.7
brain 38.9 54.4 54.4 90.8
camera 21.1 21.1 21.1 79.1
pizza 25.6 33.3 35.0 94.4
metronome 26.7 36.7 49.4 90.2
watch 39.4 47.2 47.2 71.2
strawberry 17.8 38.3 45.0 52.6
yin yang 20.6 41.7 41.7 92.8
lamp 2.8 85.0 87.8 100.0
ceiling fan 28.9 47.2 65.0 87.3
umbrella 11.7 42.8 61.1 100.0

Table 4.3: Selected labels from 101-dataset and their detection/rejection accuracy
with shape and spatial operators

8poly

Circle

Square

5poly

Triangle

6poly

7poly

9poly

Figure 4.3: Various object selection masks detected
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SVM shape ri spri shape-fp ri-fp spri-fp

Linear 33.3 50.7 49.6 13.7 24.4 28.5
Polynomial 14.1 8.9 7.0 5.6 5.6 5.6
RBF 28.5 32.2 32.2 5.9 5.6 5.6

Table 4.4: Percentage of accuracy for SVM on full vs. fp-features on different
kernels

4.5 Comparison Experiments

The results discussed here are not state-of-the art in object detection. This ismainly

accounted to the set of operators thatwe chose. Within this limitationwewere keen

to know how well the method performed and we conducted a set of comparative

experiments with Decision trees and SVMs.

4.5.1 Feature performance

To see how well the FP features performed, we compared performance of SVMs

on full data and SVM on FP features using different kernels. In full data case, all

features from the visual database are used for classification, whereas in the latter,

frequent patterns from the scoring phase are used. The problem was setup as a

classification task of 18 classes. Results were gathered for Linear, Polynomial and

RBF kernels.Among them Linear kernel gave the best performance.

Table 4.4 shows the performance of SVM on full data and FP data using various

kernels. Each columndenotes various feature sets. Shapeonly features aredenoted

as shape, shapes and rotation invariant features as ri and finally, shapes, rotation

invariant and rotation dependent relational features as spri. A minimum support

value of 20% was used for frequent pattern extraction.

The performance of SVM using Frequent patterns as features is observed to be

lower than SVM running on full feature set. This is because FPs are not optimized

to run with SVM. Another important aspect to consider here is the computation
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Figure 4.4: Computation time for SVM and our method on various kernels

time required to build themodel. Building themodel from the whole training data

will take more time whereas from the FP operator set is less. In the FP operator

case we have to consider time taken for initial FP mining and scoring phase from

which the FP operator set are obtained.

Figure 4.4 shows the time required for both our method and SVM on different

kernels.

4.5.2 Model performance

To compare the performance of our model, we compared accuracy with SVM. The

problem was formulated as a verification task similar to our original experiment.

The positive samples are taken from the true class. All classes except the true class

forms the negative samples. Since the number of negative samples is more than

the positive ones, a weight of 80% was added for true class and 20% for the other
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Description Accuracy % Time
SVM on data 49.2 3.7
SVM on FP 33.1 2.1
Our method 31.9 1.4

Table 4.5: Accuracy and time comparison for SVM and our method

class. A minimum support value of 20% was used for frequent pattern extraction.

Table 4.5 shows the accuracy and time for SVM on full data, SVM on fp data

and our method for the verification task. From the table it can be seen that the

performance of SVM on FP versus our method is comparable and the time taken is

less in our case. The incremental addition of classes is a harder problem to solve.

For example, Note that for the SVM all the classes are available at the beginning.

Whereas in our approach the classes are added incrementally. Hence our approach

is solving a harder problem, which would require us to train the SVM from scratch

for each additional class.

4.5.3 Effect of min-support on accuracy

The selection ofmin-support value for the FPmining process is a crucial parameter.

To show the accuracy variation with minsupport value, we compared accuracy of

our method and SVMs on various value of min-support.

Figure 4.5 shows the performance graph. The performance drops in both cases

where the value is too low or too high. When the value is too low, the FP sets

found will be large and thus might include some noise data points also. Too high

a value will fail to recognize the actual patterns that exist in the data set. For our

experiments we found that a value between 20%-30% worked well.

The computation time for classification is compared with decision trees. As

each class is added, the tree needs to re-build as it is not incremental.

Figure 4.6 compares the computation time to build the decision tree and our
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Figure 4.5: Accuracy vs. Minsupport
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Figure 4.6: Computation time for decision tree as each class is added

method as each new class is added. From the graph it can be seen that our method

have a significant advantage on time as the classes are added incrementally.

We wanted to study the impact of the incremental nature of the problem on

the feature selection process. To this effect we used decision trees as a feature

selection mechanism for SVM classifier. A full decision tree was built on all the

image features and feature selection is done by level wise inclusion of features.

Figure 4.7 shows the decision tree. The X-axis shows the feature sets selected

from each level of the decision tree and the Y-axis shows the corresponding accu-

racy of the SVM classifier.
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Figure 4.7: Accuracy of SVM classifier using Decision Tree for feature selection

As was expected these features resulted in better performance since they op-

erated with the entire data. But surprisingly our FP mining method chose a lot

fewer features (59 out of 864 or 6.8%) compared to the DT method (126 out of 864

or 14.6%).

4.6 Experiments with SIFT

For more robust object detection, more complicated feature extractor operators are

required. To see how the FP mining approach would work with feature extraction

operators, we did the detection experiments with SIFT operators. Here as the

operators are more robust, we conducted detection experiments where the aim

was to actually find the class of object in the image.

For an image usually thousands of SIFT feature vectors would be generated.

54



SIFT features works particularly well for translated, rotated and scaled features

of the same image. SIFT features were designed for high recall accuracy of the

transformed images even in presence of noise.

We included SIFT features to see who the classifier performs. Apart from the

different phases we discussed above, we had a feature extraction phase were SIFT

features from the training set are extracted. The feature vectors from the image are

initially clustered to find the representatives and these representatives are used

to generate the visual transactions. For clustering we tried k-means and density

based clustering DB-scan.

Once we have the visual transactions, the processing is similar to the basic

operator case where we do a FP mining and scoring. We used a KNN lookup for

object classification.

We experimented by extracting SIFT feature of 5, 10, 15 and 20 images and

gathered all the SIFT features. But the results were poor. We found that SIFT

features were not able to generalize well over a set of images. We triedmatching of

the clustered features with unknown image of the same class and unknown image

of a different class. But for both cases the number of matches it found was not

substantially different.

Figures 4.8, 4.9, 4.10 shows some experiments we did with accordion and

airplanes class.

For these images, SIFT features from all the training samples were used for

matching. Matching was done by measuring the ratio of distances from first

neighbour to second neighbour as explained in Lowe [2004] The lines joins the

various keypoint matches in the 2 images.

SIFT features when used on the same image but rotated versions gave high

number of matches, see figure 4.8. SIFT matches for accordion vs. airplanes is

shown in figure 4.9 and accordion vs. unknown-accordion in figure 4.10. The

number of matches in both these cases is not substantially different as compared
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Figure 4.8: Matching accordion with known accordion image, 563 matches were
found

Figure 4.9: Matching accordion with airplane image, 14 matches were found
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Figure 4.10: Matching accordion with unseen accordion image, 16 matches were
found

to accordion vs. known-accordion image. To find features which generalize over

a set of images is an incredibly hard task and SIFT features were not originally

designed for this purpose.

4.7 Summary

In this section we validated our proposed method with a basic set of operators.

The performance of our method in terms of detection accuracy is competitive with

other methods but much more efficient in terms of execution time. With a better

set of operators we can get better results with our approach.

We also tried using SIFT features in conjunctionwith our approach, butwithout

much success. Even though SIFT features are good image features with good

recall and tolerant to scale, view variations, they are not particularly suitable for
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generalizing over a set of images. To find features which generalize over a set of

images is an incredibly hard task and SIFT features were not originally designed

for this purpose.
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CHAPTER 5

CONCLUSION

In this thesis we discussed the problem of object detection and verification using

data mining. We proposed a novel system of feature selection using frequent

pattern mining and using the learned frequent patterns for detecting the object

presence. The following discussion gives a quick recap of the whole process.

5.1 Summary

The main idea of our approach is to identify the common visual properties that

exist among the set of images in a class. The whole detection process was divided

into feature selection and classification task.

The feature selection phase is used to extract useful features from the images

that can be used for object detection. This phase was divided into Frequent pattern

mining phase, Operator scoring phase and Re-scoring phase. In the FP mining

phase, visual operators are applied to the image and the features are extracted.

Visual operators can be color, shape, texture, etc. This constitutes the visual

database of the class and FP mining is applied to this feature database to find

frequently occurring patterns.

The frequent patterns obtained from the FPmining phase might contain opera-

tors that select more background pixels than foreground pixels. Also, it is possible

that the coverage of an operator is superseded by some other operator. Operator

scoring phase was used to remove such extra operators. Each operator is attached

with a score and all the highly scoring operator sets are found using a scoring

lattice.



In the scoring phase we used frequent patterns independently from each class.

It might happen that same operator sets were selected for discriminating different

classes. To use the inter class information we had the re-scoring phase. Re-

scoring phase was used to find more discriminative operator sets for each class

from the learned operator sets. This was done by re-ordering the operator sets

based on the popularity of the operators among the classes. Popular operators,

i.e., those operator sets which appear in more than one class are switched with

more discriminative ones.

Once we have the re-scored operators, these can be used for the classification

task. We use a Bayes classifier for object classification. The presence of the object

class is detected by applying the operators in the re-scored order.

The proposed system was tested using a basic set of operators on the Caltech-

101 dataset. The operator sets we used included basic shapes, colors and spatial

relations. With a better set of operatorswe can get better resultswith our approach.

We also conducted comparison experiments with SVMs and decision trees. We

compared the performance of SVM as a classifier with full feature set, features

from our method and features from Decision tree. We also compared our method

and SVM in the object verification task. The performance of our method in terms

of detection accuracy is competitive with other methods but much more efficient

in terms of execution time. With a better set of operators we can get better results

with our approach. Also SVMs and decision trees require all the classes at once

where as our method processes the classes one at a time.

We also tried using SIFT features in conjunctionwith our approach, butwithout

much success. Even though SIFT features are good image features with good

recall and tolerant to scale, view variations, they are not particularly suitable for

generalizing over a set of images. To find features which generalize over a set of

images is an incredibly hard task and SIFT features were not originally designed

for this purpose.
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Mapping the image classification to data mining allows us to have more con-

trol over the data representation and organization. Emphasizing this, the thesis

provides the following key contributions:

• A dynamically extensible visual object detection system using frequent pat-
tern mining.

• New object classes can be incrementally added to the system, making it
suitable for robotic agents.

• Majority of the computation involved is localized and independent of other
class data and hence can be processed in parallel.

We conclude that FP mining on images have several advantages over the tra-

ditional classification approaches. FP mining learns representation of objects that

can be further used to build systems which can address wide variety of visual

queries.

5.2 Issues and Future Scope of Work

The model proposed is simple and works well for image classification problem,

but the visual operators should be carefully chosen. The selection of operators is

important because many of the tasks like texture detection require very specific

operators. The classification performance would be very poor if the operators

selected are not discriminative enough. Parameters like minimum-support count,

clustering parameters, etc., also require careful attention.

More powerful visual feature detectors like MSER (Forssen and Lowe [2007])

can be used to improve the accuracy of detection. It would be interesting to

model the system to take advantage of multiple feature sets. A cost based system

can be designed where the detection can start with cheap operators and as the

initial “guessing” is done, we could apply more complex operators to finalize the

detection.
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The sequence of operator sets used to detect the class can itself be learned using

sequential decision learners like U-Trees (Mccallum [1996]). The reward function

used here can be modeled such that it considers the computational cost and gain

of information for each operation.

Another possible modification would be to address other visual queries like,

How many objects are there in the scene ?, What is the red-object near to the table ? etc.

Here the operators should be chosen cleverly to abstract the various properties

queried like numerosity, similarity, etc.
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