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AbstratThis work onerns the solution of delayed Reinforement Learning problems having on-tinuous ation spaes. The problems assoiated with ontinuous ation spaes are disussedand various existing algorithms for solving the problem are presented. A extension of Q{learning for solving delayed RL problems having ontinuous ation spaes is proposed whihoveromes drawbaks assoiated with existing methods. Simulation results are presented todemonstrate the working of the proposed algorithm.



Chapter 1
Introdution
Reinforement Learning (RL), a term borrowed from animal learning literature by Min-sky(1954;1961), refers to a lass of learning tasks and algorithms in whih the learningsystem learns an assoiative mapping, � : X!A by maximizing a salar evaluation (re-inforement) of its performane from the environment (user). RL problems are modelledusually as follows. We have an agent interating in a losed loop with an environment (see�gure 1.1.1). The agent reeives as input the urrent state of the environment and outputsa suitable ation. The environment takes as input the ation from the agent and outputsthe next state and also a salar evaluation (reinforement) of the ation. The agent's taskis to learn an assoiative mapping, �, from state spae X to the ation spae A, so as tomaximize the reinforement it reeives from the environment. RL problems are very dif-�ult sine we have very little feedbak from the environment as ompared to supervisedlearning, another popular learning paradigm, in whih the environment provides the orretvalue of �(x). Many problems enountered in pratie annot be modelled as supervisedlearning problems either beause �(x) is unavailable or is too ostly to ompute.One example of a RL problem is the two{armed bandit problem. The agent is requiredto hoose between two ations at a given time step. It is then supplied with a salarreinforement r 2 f0; 1g, by the environment. In this ase the state spae X is taken to bea singleton. The task of the agent is to learn the probabilitites of hoosing either ation, soas to maximize the reinforement reeived from the environment.In the two{armed bandit problem, the agent reeives the reinforement as soon as it1
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Figure 1.1.1. Model of RL problemshooses an ation. Suh problems are known as Immediate RL problems in whih if, at sometime, given an x 2 X, the learning system tries an a 2 A and, the environment immediatelyreturns a salar reinforement evaluation, r, of the (x; a) pair (that indiates how far a isfrom �(x)). A more diÆult RL task is delayed RL, in whih the environment only gives asingle salar reinforement evaluation, olletively for f(xt; at)g, a sequene of (x; a) pairsouring in time during the system operation. Delayed RL tasks ommonly arise in optimalontrol of dynami systems and planning problems of AI and are the main fous of thisthesis.Delayed RL problems are muh harder to solve than immediate RL problems for thefollowing reason.The total reward obtained gives only the umulative e�et of all ationsperformed. Some sheme must be found to reasonably apportion the umulative evaluationto the individual ations. This is referred to as the temporal redit assignment problem. Atypial example of a delayed RL problem is game playing. In game playing the reinforementavailable to the agent is the result of the game, say, a 1 for a win and 0 for a loss. Theagent does not get any immediate evaluation of its moves but only a umulative worth ofthe sequene of moves played by it.Dynami Programming (DP) is a well-known tool for solving suh problems but it



CHAPTER 1. INTRODUCTION 3requires that a omplete model of the environment in whih the agent is operating beavailable. Value Iteration and Poliy Iteration are two partiular iterative DP algorithmsthat have been popularly used over four deades for o�-line solution of delayed RL problems.A model may not be available in many problems, or even if it is available, might be soomplex that using it may be infeasible. Delayed RL methods are partiularly suited forsuh situations.Two suh delayed RL methods, namely Ator-riti of Barto, Sutton and Anderson(1983) and Q{learning of Watkins (1989), have made powerful impat on delayed RL re-searh. These algorithms an be interpreted as modi�ation of poliy iteration and valueiteration respetively.AI researhers have long been interested in developing game playing mahines. Gamesare well suited for formulating as RL problems and Bakgammon is a popular appliationin whih RL methods have proved to be very suessful. The TD{Gammon program ofTesauro (1995) plays at near grandmaster level, and has performed reasonably well againstthe top player in the world, losing just a single point. Other suessful appliations of RLhave been in Robot motion planning (Thrun 1993, Mahadevan & Connell 1991), elevatorontrol (Crites & Barto 1996) and proess ontrol (Sofge & White 1990).Most of the RL algorithms developed so far assume that the system operates in adisrete world: disrete state and ation spaes and with the system operating in disretetime. In fat, nie onvergene results have been established for the disrete ase. Butmost of the typial ontrol problems enountered in pratie have ontinuous state andation spaes and operate in ontinuous time. With some are, extension of disrete-timedelayed RL methods to ontinuous-time an be easily done (Baird 1993). Also if funtionapproximation tehniques are arefully used then the extension of these methods to dealwith ontinuous state spaes is also not diÆult. However, extension to ontinuous ationspaes turns out to be non-trivial; this is the problem that we are interested in solving inthis thesis.Little work has been done in takling problems having a ontinuous ation spae. Gulla-palli has developed a new stohasti algorithm for immediate RL having ontinuous ationspaes and used it to extend the disrete ator-riti method to ontinuous ation spaes.



CHAPTER 1. INTRODUCTION 4Werbos's bakpropagated adaptive-riti makes use of a model of the environment and de-terministi gradient asent to operate in ontinuous ation spaes. To overome the needfor a model Brody suggested a modi�ation to it whih tries to learn the model on{line.Bradtke has developed a speial method of solving Linear Quadrati Regulator problemswhih have ontinuous ation spaes based on poliy iteration and making use of the nieproperties of the problem being takled.Gullapalli's method is slow beause it does stohasti searh in the ation spae usingon-line experienes. On the other hand, Werbos' method is fast; however, sine it is basedon gradient asent it faes the problem of getting aught in loal maxima. Bradtke's methodis diÆult to extend to general delayed RL problems.All the above methods are based on poliy iteration. We are not aware of any valueiteration based method for ontinuous ation spaes. In this thesis we propose a simple ideain this diretion. We point out how Q{learning an be extended to ontinuous ation spaesand how the extension overomes the problems faed by the other three methods mentionedabove. To test the working of our method we onsider the Linear Quadrati Regulatorproblem sine it enjoys a losed form solution. We devise speial funtion approximatorsfor this problem and demonstrate, by simulations, that our method works well.This thesis is organized as follows. In the next hapter we present a brief overview ofvarious RL algorithms that are available today and also present a extensive survey of existinglitreature. In hapter 3 we disuss in detail the problem of operating with ontinuousations and present our algorithm with some simulation results. We onlude with hapter4 pointing out some diretions for further researh.



Chapter 2
Survey of Reinforement LearningMethods
2.1 IntrodutionIn this hapter we survey some of the existing RL algorithms. As mentioned in the previoushapter, we are interested in delayed RL problems, as these arise in pratie more oftenthan immediate RL problems. In this work unless we expliitly state otherwise RL meansdelayed RL.Delayed RL algorithms enompass a diverse olletion of ideas having roots in animallearning (Barto 1985; Sutton & Barto 1987), ontrol theory (Bertsekas 1989; Kumar 1985),and AI (Dean & Wellman 1991). Delayed RL algorithms were �rst employed by Samuel(1959, 1967) in his elebrated work on playing hekers. However, it was only muh later,after the publiation of Barto, Sutton and Anderson's work (Barto et al 1983) on a delayedRL algorithm alled adaptive heuristi riti and its appliation to the ontrol problem ofpole balaning, that researh on RL got o� to a ying start. Watkins' Q-Learning algorithm(Watkins 1989) made another impat on the researh. A number of signi�ant ideas haverapidly emerged during the past �ve years and the �eld has reahed a ertain level ofmaturity. In this hapter we provide a omprehensive survey of various ideas and methodsof delayed RL. To avoid distrations and unneessary lutter of notations, we present allideas in an intuitive, not-so-rigorous fashion. In preparing this hapter, we have obtained5
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Figure 2.1.1 Navigating in a grid world.a lot of guidane from the works of Watkins (1989), Barto, Sutton and Watkins (1990),Barto, Bradtke and Singh (1992), Bradtke (1994), and Barto (1992).To illustrate the key features of a delayed RL task let us onsider a simple example.Example 2.1.1 Navigating a RobotFigure 2.1.1 illustrates a grid world in whih a robot navigates. Eah blank ell on thegrid is alled a state. Shaded ells represent barriers; these are not states. Let X be thestate spae, i.e., the set of states. The ell marked G is the goal state. The aim is to reahG from any state in the least number of time steps. Navigation is done using four ations:A = fN;S;E;Wg, the ations denoting the four possible movements along the oordinatediretions.Rules of transition are de�ned as follows. Suppose that the robot is in state x and ationN is hosen. Then the resulting next state, y is the state diretly to the north of x, if thereis suh a state; otherwise y = x. For instane, hoosing W at the x shown in �gure 2.1.1will lead to the system staying at x. The goal state is a speial ase. By de�nition we willtake it that any ation taken from the goal state results in a transition bak to the goalstate. In more general problems, the rules of transition an be stohasti.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 7The robot moves at disrete (integer) time points starting from t = 0. At a time step t,when the robot is at state, xt, we de�ne an immediate reward1 asr(xt) = 8><>: 0 if xt = G;�1 otherwise:In e�et, the robot is penalized for every time step spent at non-goal states. It is simple toverify that maximizing the total reward over time,V (x) = 1Xt=0 r(xt)is equivalent to ahieving minimum time navigation from the starting state, x0 = x. LetV ?(x) denote the maximum ahievable (optimal) value of V (x).We are interested in �nding a feedbak poliy, � : X!A suh that, if we start from anystarting state and selet ations using � then we will always reah the goal in the minimumnumber of time steps.The usefulness of immediate RL methods in delayed RL an be roughly explained asfollows. Typial delayed RL methods maintain V̂ , an approximation of the optimal funtion,V ?. If ation a is performed at state x and state y results, then V̂ (y) an be taken asan (approximate) immediate evaluation of the (x; a) pair.2 By solving an immediate RLproblem that uses this evaluation funtion we an obtain a good sub{optimal poliy for thedelayed RL problem. We present relevant immediate RL algorithms in setion 2.2. 2Delayed RL problems are muh harder to solve than immediate RL problems for thefollowing reason. Suppose, in example 2.1.1 , performane of a sequene of ations, seletedaording to some poliy, leads the robot to the goal. To improve the poliy using theexperiene, we need to evaluate the goodness of eah ation performed. But the totalreward obtained gives only the umulative e�et of all ations performed. Some shememust be found to reasonably apportion the umulative evaluation to the individual ations.This is referred to as the temporal redit assignment problem.1Sometimes r is referred to as the primary reinforement. In more general situations, r is a funtion ofxt as well as at, the ation at time step t.2An optimal ation at x is one that gives the maximum value of V ?(y).



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 8Dynami programming (DP) (Bertsekas 1989; Ross 1983) is a well{known tool for solvingproblems suh as the one in example 2.1.1. It is an o�{line method that requires theavailability of a omplete model of the environment. But the onerns of delayed RL arevery di�erent. To see this learly let us return to example 2.1.1 and impose the requirementthat the robot has no knowledge of the environment and that the only way of learning is byon{line experiene of trying various ations3 and thereby visiting many states. Delayed RLalgorithms are partiularly meant for suh situations and have the following general format.Delayed RL AlgorithmInitialize the learning system.Repeat1. With the system at state x, hoose an ation a aording to an exploration poliy andapply it to the system.2. The environment returns a reward, r, and also yields the next state, y.3. Use the experiene, (x; a; r; y) to update the learning system.4. Set x := y.Even when a model of the environment is available, it is often advantageous to avoid ano�{line method suh as DP and instead use a delayed RL algorithm. This is beause, inmany problems the state spae is very large; while a DP algorithm operates with the entirestate spae, a delayed RL algorithm only operates on parts of the state spae that are mostrelevant to the system operation. When a model is available, delayed RL algorithms anemploy simulation mode of operation instead of on{line operation so as to speed{up learningand avoid doing experiments using hardware. We will use the term, real time operation tomean that either on{line operation or simulation mode of operation is used.In most appliations, representing funtions suh as V ? and � exatly is infeasible. Abetter alternative is to employ parametri funtion approximators, e.g., neural networks.3During learning this is usually ahieved by using a (stohasti) exploration poliy for hoosing ations.Typially the exploration poliy is hosen to be totally random at the beginning of learning and made toapproah an optimal poliy as learning nears ompletion.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 9Suh approximators must be suitably hosen for use in a delayed RL algorithm. To larifythis, let us take V ? for instane and onsider a funtion approximator, V̂ (�;w) : X!R, forit. Here R denotes the real line and w denotes the vetor of parameters of the approximatorthat is to be learnt so that V̂ approximates V ? well. Usually, at step 3 of the delayed RLalgorithm, the learning system uses the experiene to ome up with a diretion, � in whihV̂ (x;w) has to be hanged for improving performane. Given a step size, �, the funtionapproximator must alter w to a new value, wnew so thatV̂ (x;wnew) = V̂ (x;w) + �� (2:1:1)For example, in multilayer pereptrons (Hertz et al 1991, Haykin 1994) w denotes the setof weights and thresholds in the network and, their updating an be arried out usingbakpropagation so as to ahieve (2.1.1). In the rest of the hapter we will denote theupdating proess in (2.1.1) as V̂ (x;w) := V̂ (x;w) + �� (2:1:2)and refer to it as a learning rule.The hapter is organized as follows. Setion 2.2 disusses immediate RL. In setion 2.3we formulate Delayed RL problems and mention some basi results. Methods of estimatingtotal reward are disussed in setion 2.4. These methods play an important role in delayedRL algorithms. DP tehniques and delayed RL algorithms are presented in setion 2.5.Setions 2.6 to 2.8 address various pratial issues.2.2 Immediate Reinforement LearningImmediate RL refers to the learning of an assoiative mapping, � : X!A given a rein-forement evaluator. To learn, the learning system interats in a losed loop with theenvironment. At eah time step, the environment hooses an x 2 X and, the learning sys-tem uses its funtion approximator, �̂(�;w) to selet an ation: a = �̂(x;w). Based on bothx and a, the environment returns an evaluation or \reinforement", r(x; a) 2 R. Ideally,the learning system has to adjust w so as to produe the maximum possible r value for eah



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 10x; in other words, we would like �̂ to solve the parametri global optimization problem,r(x; �̂(x;w)) = r?(x) def= maxa2A r(x; a) 8x 2 X (2:2:1)Supervised learning is a popular paradigm for learning assoiative mappings (Hertz etal 1991, Haykin 1994). In supervised learning, for eah x shown the supervisor provides thelearning system with the value of �(x). Immediate RL and supervised learning di�er in thefollowing two important ways.� In supervised learning, when an x is shown and the supervisor provides a = �(x), thelearning system forms the direted information, � = a� �̂(x;w) and uses the learningrule: �̂(x;w) := �̂(x;w) + ��, where � is a small (positive) step size. For immediateRL suh direted information in not available and so it has to employ some strategyto obtain suh information.� In supervised learning, the learning system an simply hek if � = 0 and hene deidewhether the orret map value has been formed by �̂ at x. However, in immediateRL, suh a onlusion on orretness annot be made without exploring the values ofr(x; a) for all a.Therefore, immediate RL problems are muh more diÆult to solve than supervised learningproblems.A number of immediate RL algorithms have been desribed in the literature. Stohastilearning automata algorithms (Narendra & Thathahar 1989) deal with the speial ase inwhih X is a singleton, A is a �nite set, and r 2 [0; 1℄.4 The Assoiative Reward-Penalty(AR�P ) algorithm (Barto & Anandan 1985; Barto et al 1985; Barto & Jordan 1987; Mazzoniet al 1990) extends the learning automata ideas to the ase where X is a �nite set. Williams(1986, 1987) has proposed a lass of immediate RL methods and has presented interestingtheoretial results. Gullapalli (1990, 1992a) has developed algorithms for the general asein whih X, A are �nite-dimensional real spaes and r is real valued. Here we will disussonly algorithms whih are most relevant to, and useful in delayed RL.4Stohatsti Learning Automata algorithms an also be used when X is not a singleton, by employingteams of o{operating automata (Phansalkar & Thathahar 1995, Thathahar & Phansalkar 1995). Formore details on suh algorithms see Narendra & Thathahar (1989).



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 11One simple way of solving (2.2.1) is to take one x at a time, use a global optimizationalgorithm (e.g., omplete enumeration) to explore the A spae and obtain the orret afor the given x, and then make the funtion approximator learn this (x; a) pair. However,suh an idea is not used for the following reason. In most situations where immediateRL is used as a tool (e.g., to approximate a poliy in delayed RL), the learning systemhas little ontrol over the hoie of x. When, at a given x, the learning system hooses apartiular a and sends it to the environment for evaluation, the environment not only sendsa reinforement evaluation but also alters the x value. Immediate RL seeks approaheswhih are appropriate to these situations.Let us �rst onsider the ase in whih A is a �nite set: A = fa1; a2; � � � ; amg. LetRm denote the m{dimensional real spae. The funtion approximator, �̂ is usually formedas a omposition of two funtions: a funtion approximator, g(�;w) : X!Rm and a �xedfuntion, M : Rm!A. The idea behind this set-up is as follows. For eah given x, z =g(x;w) 2 Rm gives a vetor of merits of the various ai values. Let zk denote the k{thomponent of z. Given the merit vetor z, a =M(z) is formed by the max seletor,a = ak where zk = max1�i�m zi (2:2:2)Let us now ome to the issue of learning (i.e., hoosing a w). At some stage, let xbe the input, z be the merit vetor returned by g, and ak be the ation having the largestmerit value. The environment returns the reinforement, r(x; ak). In order to learn we needto evaluate the goodness of zk (and therefore, the goodness of ak). Obviously, we annotdo this using existing information. We need an estimator, all it r̂(x; v), that provides anestimate of r?(x). The di�erene, r(x; ak)� r̂(x; v) is a measure of the goodness of ak. Thena simple learning rule isgk(x;w) := gk(x;w) + �(r(x; ak)� r̂(x; v)) (2:2:3)where � is a small (positive) step size. If r̂(�; v) � r? and (2.2.3) is repeated a number oftimes for eah (x; k) ombination, then it should be lear that all non{optimal aks will getlarge negative merit values while an optimal ak will retain its initial merit value.Learning r̂ requires that all members of A are evaluated by the environment at eahx. Clearly, the max seletor, (2.2.2) is not suitable for suh exploration. For instane, if



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 12at some stage of learning, for some x, g assigns the largest merit to a wrong ation, sayak, and r̂ gives, by mistake, a value smaller than r(x; ak), then no ation other than ak isgoing to be generated by the learning system at the given x. So we replae (2.2.2) by aontrolled stohasti ation seletor that generates ations randomly when learning beginsand approahes (2.2.2) as learning is ompleted. A popular stohasti ation seletor isbased on the Boltzmann distribution,pi(x) def= Probfa = aijxg = exp(zi=T )Pj exp(zj=T ) (2:2:4)where T is a nonnegative real parameter (temperature) that ontrols the stohastiity ofthe ation seletor. For a given x the expeted reinforement of the ation seletor is~r(x) def= E(r(x; a)jx) =Xi pi(x)r(x; ai)As T!0 the stohasti ation seletor approahes the max seletor, (2.2.2), and,~r(x)!r?(x). The ideas here are somewhat similar to those of simulated annealing. Thereforewe train r̂ to approximate ~r (instead of r?). This is easy to do beause, for any �xed valueof T , ~r an be estimated by the average of the performane of the stohasti ation seletorover time. A simple learning rule that ahieves this isr̂(x; v) := r̂(x; v) + �(r(x; a) � r̂(x; v)) (2:2:5)where � is a small (positive) step size.Remark Two important omments should be made regarding the onvergene of learn-ing rules suh as (2.2.5) (we will ome aross many suh learning rules later) whih aredesigned to estimate an expetation by averaging over time.� Even if r̂(�; v) � ~r, r(x; a) � r̂(x; v) an be non-zero and even large in size. This isbeause a is only an instane generated by the distribution, p(x). Therefore, to avoidunlearning as r̂ omes lose to ~r, the step size, � must be ontrolled properly. Thevalue of � may be hosen to be slightly smaller than 1 when learning begins, and thenslowly dereased to 0 as learning progresses.� For good learning to take plae, the sequene of x values at whih (2.2.5) is arried outmust be suh that it overs all parts of the spae, X as often as possible. Of ourse,



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 13when the learning system has no ontrol over the hoie of x, it an do nothing toahieve suh an exploration. To explore, the following is usually done. Learning isdone over a number of trials. A trial onsists of beginning with a random hoie ofx and operating the system for several time steps. At any one time step, the systemis at some x and the learning system hooses an ation, a and learns using (2.2.5).Depending on x, a and the rules of the environment a new x results and the next timestep begins. Usually, when learning is repeated over multiple trials, the X spae isthoroughly explored.Let us now onsider the ase in whih A is ontinuous, say a �nite dimensional realspae. The idea of using merit values is not suitable. It is better to diretly deal with afuntion approximator, h(�;w) from X to A. In order to do exploration a ontrolled randomperturbation, � is added to h(x;w) to form a = �̂(x). A simple hoie is to take � to be aGaussian with zero mean and having a standard deviation, �(T ) that satis�es: �(T )!0 asT!0. The setting-up and training of the reinforement estimator, r̂ is as in the ase whenA is disrete. The funtion approximator, h an adopt the following learning rule:h(x;w) := h(x;w) + �(r(x; a) � r̂(x; v))� (2:2:6)where � is a small (positive) step size. In problems where a bound on r? is available, thisbound an be suitably employed to guide exploration, i.e., to hoose � (Gullapalli 1990).Gullapalli proposed the Stohasti Real Valued (SRV) algorithm as an extension of theAssoiative Reward-Penalty algorithm. The SRV unit uses two internal parameters � and� for estimating the ation and reward respetively. Let the system be at some state xsay and let ~x be a representation of this state. The output of the unit, y, is generated bya Gaussian distribution having � = �T ~x, as the mean. The standard deviation, �, givenby a monotonially dereasing, non{negative funtion s of r̂ = �T ~x, is used to ontrol theamount of exploration. The more the expeted reinforement in that state the the lesserthe amount of exploration. The following learning rule is used to update �:� := � + �(r(y; x)� r̂)�y � �� � ~x� is updated with a rule similar to (2.2.6) as follows:� := �+ �(r(y; x)� r̂)~x



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 14Gullapalli (1992a) has also attempted to show that the SRV algorithm belongs to a lass ofREINFORCE algorithms (Williams 1986, 1987) whih have ertain onvergene properties.Shantaram, Shasty and Thathahar (1994) have given a ontinuous ation set learningautomata for stohasti optimization, whih ombined with ideas of teams of automata anbe extended to assoiative learning tasks. The idea used here is similar to SRV but uses adi�erent sheme to update the parameters � and �.Jordan and Rumelhart (1990) have suggested a method of `forward models' for on-tinuous ation spaes. If r is a known di�erentiable funtion, then a simple, deterministilearning law based on gradient asent an be given to update �̂:�̂(x;w) := �̂(x;w) + ��r(x; a)�a (2:2:7)If r is not known, Jordan and Rumelhart suggest that it is learnt using on{line data, and(2.2.7) be used using this learnt r. If for a given x, the funtion r(x; �) has loal maximathen the �̂(x) obtained using learning rule, (2.2.7) may not onverge to �(x). Typially thisis not a serious problem. The stohasti approah disussed earlier does not su�er fromloal maxima problems. However, we should add that, beause the deterministi methodexplores in systemati diretions and the stohasti method explores in random diretions,the former is expeted to be muh faster. The omparison is very similar to the omparisonof deterministi and stohasti tehniques of ontinuous optimization.2.3 Delayed Reinforement LearningDelayed RL onerns the solution of stohasti optimal ontrol problems. In this setionwe formulate and disuss the basis of suh problems. Solution methods for delayed RLwill be presented in setion 2.4 and setion 2.5. In these three setions we will mainlyonsider problems in whih the state and ontrol spaes are �nite sets. This is beause themain issues and solution methods of delayed RL an be easily explained for suh problems.Problems with ontinuous state and/or ation spaes will be dealt with in detail in the nexthapter.Consider a disrete-time stohasti dynami system with a �nite set of states, X. Let



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 15the system begin its operation at t = 0. At time t the agent (ontroller) observes state5 xtand, selets (and performs) ation at from a �nite set, A(xt), of possible ations. Assumethat the system is Markovian and stationary, i.e.,Probfxt+1 = y j x0; a0; x1; a1; � � � ; xt = x; at = ag= Probfxt+1 = yjxt = x; at = ag def= Pxy(a)A poliy is a method adopted by the agent to hoose ations. The objetive of thedeision task is to �nd a poliy that is optimal aording to a well de�ned sense, desribedbelow. In general, the ation spei�ed by the agent's poliy at some time an depend onthe entire past history of the system. Here we restrit attention to poliies that speifyations based only on the urrent state of the system. A deterministi poliy, � de�nes,for eah x 2 X an ation �(x) 2 A(x). A stohasti poliy, � de�nes, for eah x 2 Xa probability distribution on the set of feasible ations at x, i.e., it gives the values ofProbf�(x) = ag for all a 2 A(x). For the sake of keeping the notations simple we onsideronly deterministi poliies in this setion. All ideas an be easily extended to stohastipoliies using appropriate detailed notations.Let us now preisely de�ne the optimality riterion. While at state x, if the agentperforms ation a, it reeives an immediate payo� or reward, r(x; a). Given a poliy � wede�ne the value funtion, V � : X!R as follows:6V �(x) = Ef 1Xt=0 tr(xt; �(xt))jx0 = xg (2:3:1)Here future rewards are disounted by a fator  2 [0; 1). The ase  = 1 is avoidedonly beause it leads to some diÆulties assoiated with the existene of the summation in(2.3.1). Of ourse, these diÆulties an be handled by putting appropriate assumptions onthe problem solved. But, to avoid unneessary distration we do not go into the details; see(Bradtke 1994; Bertsekas & Tsitsiklis 1989).5If the state is not ompletely observable then a method that uses the observable states and retains pastinformation has to be used; see (Baharah 1991; Baharah 1992; Chrisman 1992; Mozer & Baharah1990a, 1990b; Whitehead and Ballard 1990). See Jaakkola, Singh and Jordan 1995, and Singh, Jaakkolaand Jordan 1994, for a diret treatment of partially observable Markovian deision proesses.6Most RL researhers have onerned themselves with the optimization of the expeted total disountedreward in (2.3.1). See Heger 1994, for a disussion of an alternative objetive funtion: the minimax riterion.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 16The expetation in (2.3.1) should be understood asV �(x) = limN!1 EfN�1Xt=0 tr(xt; �(xt))jx0 = xgwhere the probability with whih a partiular state sequene, fxtgN�1t=0 ours is taken inan obvious way using x0 = x and repeatedly employing � and P . We wish to maximize thevalue funtion: V ?(x) = max� V �(x) 8x (2:3:2)V ? is referred to as the optimal value funtion. Beause 0 �  < 1, V �(x) is bounded.Also, sine the number of �'s is �nite V ?(x) exists.How do we de�ne an optimal poliy, �?? For a given x let �x;? denote a poliy thatahieves the maximum in (2.3.2). Thus we have a olletion of poliies, f�x;? : x 2 Xg.Now �? is de�ned by piking only the �rst ation from eah of these poliies:�?(x) = �x;?(x) ; x 2 XIt turns out that �? ahieves the maximum in (2.3.2) for every x 2 X. In other words,V ?(x) = V �?(x) ; x 2 X (2:3:3)This result is easy to see if one looks at Bellman's optimality equation { an importantequation that V ? satis�es:V ?(x) = maxa2A(x)24r(x; a) +  Xy2X Pxy(a)V ?(y)35 (2:3:4)The fat that V ? satis�es (2.3.4) an be explained as follows. The term within squarebrakets on the right hand side is the total reward that one would get if ation a is hosenat the �rst time step and then the system performs optimally in all future time steps.Clearly, this term annot exeed V ?(x) sine that would violate the de�nition of V ?(x)in (2.3.2); also, if a = �x;?(x) then this term should equal V ?(x). Thus (2.3.4) holds. Italso turns out that V ? is the unique funtion from X to R that satis�es (2.3.4) for allx 2 X. This fat, however, requires a non-trivial proof; details an be found in (Ross 1983;Bertsekas 1989; Bertsekas & Tsitsiklis 1989).



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 17The above disussion also yields a mehanism for omputing �? if V ? is known:�?(x) = arg maxa2A(x)24r(x; a) +  Xy2X Pxy(a)V ?(y)35A diÆulty with this omputation is that the system model, i.e., the funtion, Pxy(a) mustbe known. This diÆulty an be overome if, instead of the V {funtion we employ anotherfuntion alled the Q-funtion. Let U = f(x; a) : x 2 X; a 2 A(x)g, the set of feasible(state,ation) pairs. For a given poliy �, let us de�ne Q� : U!R byQ�(x; a) = r(x; a) +  Xy2X Pxy(a)V �(y) (2:3:5)Thus Q�(x; a) denotes the total reward obtained by hoosing a as the �rst ation and thenfollowing � for all future time steps. Let Q? = Q�? . By Bellman's optimality equation and(2.3.3) we get V ?(x) = maxa2A(x)[Q?(x; a)℄ (2:3:6)It is also useful to rewrite Bellman's optimality equation using Q? alone:Q?(x; a) = r(x; a) +  Xy2X Pxy(a)f maxb2A(y)Q?(y; b)g (2:3:7)Using Q? we an ompute �?: �?(x) = arg maxa2A(x)[Q?(x; a)℄ (2:3:8)Thus, if Q? is known then �? an be omputed without using a system model. This advan-tage of the Q{funtion over the V {funtion will play a ruial role in setion 2.5 for derivinga model{free delayed RL algorithm alled Q{Learning (Watkins 1989).2.4 Methods of Estimating V � and Q�Delayed RL methods use a knowledge of V � (Q�) in two ruial ways: (1) the optimalityof � an be heked by seeing if V � (Q�) satis�es Bellman's optimality equation; and (2)if � is not optimal then V � (Q�) an be used to improve �. We will elaborate on thesedetails in the next setion. In this setion we disuss, in some detail, methods of estimatingV � for a given poliy, �. (Methods of estimating Q� are similar and so we will deal with



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 18them briey at the end of the setion.) Our aim is to �nd V̂ (�; v), a funtion approximatorthat estimates V �. Muh of the material in this setion is taken from the works of Watkins(1989), Sutton (1984, 1988) and Jaakkola et al (1994).To avoid lumsiness we employ some simplifying notations. Sine � is �xed we will omitthe supersript from V � and so all it as V . We will refer to r(xt; �(xt)) simply as rt. If p isa random variable, we will use p to denote both, the random variable as well as an instaneof the random variable.A simple approximation of V (x) is the n{step trunated return,V [n℄(x) = n�1X�=0 �r� ; V̂ (x; v) = E(V [n℄(x)) (2:4:1)(Here it is understood that x0 = x. Thus, throughout this setion � will denote the numberof time steps elapsed after the system passed through state x. It is for stressing this pointthat we have used � instead of t. In a given situation, the use of time { is it `atual systemtime' or `time relative to the ourene of x' { will be obvious from the ontext.) If rmax isa bound on the size of r then it is easy to verify thatmaxx jV̂ (x; v)� V (x)j � nrmax(1� ) (2:4:2)Thus, as n!1, V̂ (x; v) onverges to V (x) uniformly in x.But (2.4.1) su�ers from an important drawbak. The omputation of the expetationrequires the omplete enumeration of the probability tree of all possible states reahable inn time steps. Sine the breadth of this tree may grow very large with n, the omputationsan beome very burdensome. One way of avoiding this problem is to setV̂ (x; v) = V [n℄(x) (2:4:3)where V [n℄(x) is obtained via either Monte-Carlo simulation or experiments on the realsystem (the latter hoie is the only way to systems for whih a model is unavailable.)The approximation, (2.4.3) su�ers from a di�erent drawbak. Beause the breadth of theprobability tree grows with n, the variane of V [n℄(x) also grows with n. Thus V̂ (x; v) in(2.4.3) will not be a good approximation of E(V [n℄(x)) unless it is obtained as an average



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 19over a large number of trials.7 Averaging is ahieved if we use a learning rule (similar to(2.2.5)): V̂ (x; v) := V̂ (x; v) + � hV [n℄(x)� V̂ (x; v)i (2:4:4)where � is a small (positive) step size. Learning an begin with a random hoie of v.Eventually, after a number of trials, we expet the V̂ resulting from (2.4.4) to satisfy (2.4.2).In the above approah, an approximation of V , V̂ is always available. Therefore, anestimate that is more appropriate than V [n℄(x) is the orreted n{step trunated return,V (n)(x) = n�1X�=0 � r� + nV̂ (xn; v) (2:4:5)where xn is the state that ours n time steps after the system passed through state x. Letus do some analysis to justify this statement.First, onsider the ideal learning rule,V̂ (x; v) := E(V (n)(x)) 8 x (2:4:6)Suppose v gets modi�ed to vnew in the proess of satisfying (2.4.6). Then, similar to (2.4.2)we an easily derivemaxx jV̂ (x; vnew)� V (x)j � nmaxx jV̂ (x; v) � V (x)jThus, as we go through a number of learning steps we ahieve V̂!V . Note that thisonvergene is ahieved even if n is �xed at a small value, say n = 1. On the other hand,for a �xed n, the learning rule based on V [n℄, i.e., (2.4.1), is only guaranteed to ahieve thebound in (2.4.2). Therefore, when a system model is available it is best to hoose a smalln, say n = 1, and employ (2.4.6).Now suppose that, either a model is unavailable or (2.4.6) is to be avoided beause it isexpensive. In this ase, a suitable learning rule that employs V (n) and uses real{time datais: V̂ (x; v) := V̂ (x; v) + � hV (n)(x)� V̂ (x; v)i (2:4:7)Whih is better: (2.4.4) or (2.4.7)? There are two reasons as to why (2.4.7) is better.7As already mentioned, a trial onsists of starting the system at a random state and then running thesystem for a number of time steps.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 20� Suppose V̂ is a good estimate of V . Then a small n makes V (n) ideal: V (n)(x) hasa mean lose to V (x) and it also has a small variane. Small variane means that(2.4.7) will lead to fast averaging and hene fast onvergene of V̂ to V . On the otherhand n has to be hosen large for V [n℄(x) to have a mean lose to V (x); but then,V [n℄(x) will have a large variane and (2.4.4) will lead to slow averaging.� If V̂ is not a good estimate of V then both V (n) and V [n℄ will require a large n fortheir means to be good. If a large n is used, the di�erene between V (n) and V [n℄,i.e., nV̂ is negligible and so both (2.4.4) and (2.4.7) will yield similar performane.The above disussion implies that it is better to employ V (n) than V [n℄. It is also learthat, when V (n) is used, a suitable value of n has to be hosen dynamially aording tothe goodness of V̂ . To aid the manipulation of n, Sutton (1988) suggested a new estimateonstruted by geometrially averaging fV (n)(x) : n � 1g:V �(x) = (1� �) 1Xn=1�n�1V (n)(x) (2:4:8)Here (1� �) is a normalizing term. Sutton referred to the learning algorithm that uses V �as TD(�). Here TD stands for `Temporal Di�erene'. The use of this name will be justi�edbelow. Expanding (2.4.8) using (2.4.5) we getV �(x) = (1� �) hV (1)(x) + �V (2)(x) + �2V (3)(x) + � � �i= r0 + (1� �)V̂ (x1; v) +� hr1 + (1� �)V̂ (x2; v) +� hr2 + (1� �)V̂ (x3; v) +� � � (2:4:9)
Using the fat that r0 = r(x; �(x)) the above expression may be rewritten reursively asV �(x) = r(x; �(x)) + (1� �)V̂ (x1; v) + �V �(x1) (2:4:10)where x1 is the state ouring a time step after x. Putting � = 0 gives V 0 = V (1) andputting � = 1 gives V 1 = V , whih is the same as V (1). Thus, the range of values obtainedusing V (n) and varying n from 1 to 1 is approximately ahieved by using V � and varying� from 0 to 1. A simple idea is to use V � instead of V (n), begin the learning proess with



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 21� = 1, and redue � towards zero as learning progresses and V̂ beomes a better estimateof V . If � is properly hosen8 then a signi�ant betterment of omputational eÆieny isusually ahieved when ompared to simply using � = 0 or � = 1 (Sutton 1988). In a reentpaper, Sutton and Singh (1994) have developed automati shemes for doing this assumingthat no yles are present in state trajetories.The de�nition of V � involves all V (n)s and so it appears that we have to wait for ever toompute it. However, omputations involving V � an be niely rearranged and then suitablyapproximated to yield a pratial algorithm that is suited for doing learning onurrentlywith real time system operation. Consider the learning rule in whih we use V � instead ofV (n): V̂ (x; v) := V̂ (x; v) + � hV �(x)� V̂ (x; v)i (2:4:11)De�ne the temporal di�erene operator, � by�(x) = r(x; �(x)) + V̂ (x1; v)� V̂ (x; v) (2:4:12)�(x) is the di�erene of preditions (of V �(x)) at two onseutive time steps: r(x; �(x)) +V̂ (x1; v) is a predition based on information at � = 1, and V̂ (x; v) is a predition basedon information at � = 0. Hene the name, `temporal di�erene'. Note that �(x) an beeasily omputed using the experiene within a time step. A simple rearrangement of theterms in the seond line of (2.4.9) yieldsV �(x)� V̂ (x; v) = �(x) + (�)�(x1) + (�)2�(x2) + � � � (2:4:13)Even (2.4.13) is not in a form suitable for use in (2.4.11) beause it involves future terms,�(x1), �(x2), et., extending to in�nite time. One way to handle this problem is to hoosea large N , aumulate �(x), �(x1), � � �, �(xN�1) in memory, trunate the right hand sideof (2.4.13) to inlude only the �rst N terms, and apply (2.4.11) at � = N + 1, i.e., (N + 1)time steps after x oured. However, a simpler and approximate way of ahieving (2.4.13)is to inlude the e�ets of the temporal di�erenes as and when they our in time. Let ussay that the system is in state x at time t. When the systems transits to state x1 at time8For example, if the underlying dynami system is deterministi then a value of � lose to 1 is appropriate;on the other hand, if the system is highly stohasti then a value of � near zero is better.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 22(t+1), ompute �(x) and update V̂ aording to: V̂ (x; v) := V̂ (x; v)+�(�)�(x1). Whenthe system transits to state x2 at time (t+ 2), ompute �(x1) and update V̂ aording to:V̂ (x; v) := V̂ (x; v)+�(�)2�(x2) and so on. The reason why this is approximate is beauseV̂ (x; v) is ontinuously altered in this proess whereas (2.4.13) uses the V̂ (x; v) existing attime t. However, if � is small and so V̂ (x; v) is adapted slowly, the approximate updatingmethod is expeted to be lose to (2.4.11).One way of implementing the above idea is to maintain an eligibility trae, e(x; t), foreah state visited (Klopf 1972; Klopf 1982; Klopf 1988; Barto et al 1983; Watkins 1989),and use the following learning rule at time t:V̂ (x; v) := V̂ (x; v) + �e(x; t)�(xt) 8 x (2:4:14)where xt is the system state at time t. The eligibility traes an be adapted aording toe(x; t) = 8>>>><>>>>: 0 if x has never been visited�e(x; t � 1) if xt 6= x1 + �e(x; t� 1) if xt = x (2:4:15)Two important remarks must be made regarding this implementation sheme.� Whereas the previous learning rules (e.g., (2.4.4), (2.4.7) and (2.4.11)) update V̂ onlyfor one x at a time step, (2.4.14) updates the V̂ of all states with positive eligibilitytrae, at a time step. Rule (2.4.14) is suitable for neural hardware implementation,but not so for implementations on sequential omputers. In that ase one of thefollowing ideas an be tried.1. Keep trak of the last k states visited and update V̂ for them only. The value ofk should depend on �. If � is small, k should be small. If � = 0 then k = 1.2. The following idea is due to Cihosz (1995). Choose a nonnegative integer mdepending on the deay rate �) and trunate the right hand side of (2.4.13) tokeep only the �rst (m+ 1) terms and getV̂ (x; v) := V̂ (x; v) + � Æ(x)where Æ(x) = �(x) + (�)�(x1) + � � � + (�)m�(xm)



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 23Thus, if x is the state ouring at time step t, V̂ (x; v) gets updated at the endof time step (t +m) and, more importantly, x is the only state for whih V̂ isupdated at time step (t+m). The reursion,Æ(x1) = [Æ(x)��(x)℄ =(�) + (�)m�(xm+1)an be employed so that the Æ omputation an be done in onstant time even ifm is large. Cihosz (1995) has also suggested (with good justi�ation) anotherupdate rule based on trunation whih is even better than the idea desribedabove.� The rule for updating eligibility traes, (2.4.15) assumes that learning takes plae ina single trial. If learning is done over multiple trials then all eligibility traes must bereset to zero just before eah new trial is begun.The remark made below equation (2.2.5) applies as well to the learning rules, (2.4.4),(2.4.7), (2.4.11) and, (2.4.14). Dayan and Sejnowski (1993), and Jaakkola et al (1994) haveshown that, if the real time TD(�) learning rule, (2.4.14) is used, then under appropriateassumptions on the variation of � in time, as t!1, V̂ onverges to V � with probabilityone. Pratially, learning an be ahieved by doing multiple trials and dereasing � towardszero as learning progresses.Thus far in this setion we have assumed that the poliy, � is deterministi. If � is astohasti poliy then all the ideas of this setion still hold with appropriate interpretations:all expetations should inlude the stohastiity of �, and, the �(x) used in (2.4.10), (2.4.12)et. should be taken as instanes generated by the stohasti poliy.Let us now ome to the estimation of Q�. Reall from (2.3.5) that Q�(x; a) denotes thetotal reward obtained by hoosing a as the �rst ation and then following � for all futuretime steps. Details onerning the extension of Q� are learly desribed in a reent reportby Rummery and Niranjan (1994). Let Q̂(x; a; v) be the estimator of Q�(x; a) that is to belearnt onurrently with real time system operation. Following the same lines of argumentas used for the value funtion, we obtain a learning rule similar to (2.4.14):Q̂(x; a; v) := Q̂(x; a; v) + �eQ(x; a; t)�Q(xt; at) 8 (x; a) (2:4:16)



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 24where: xt and at are, respetively, the system state and the ation hosen at time t;�Q(x; a) = r(x; a) + Q̂(x1; �(x1); v) � Q̂(x; a; v); (2:4:17)andeQ(x; a; t) = 8>>>><>>>>: 0 if (x; a) has never been visited�eQ(x; a; t� 1) if (xt; at) 6= (x; a)1 + �eQ(x; a; t � 1) if (xt; at) = (x; a) (2:4:18)As with e, all eQ(x; a; t)'s must be reset to zero whenever a new trial is begun from a randomstarting state.If � is a stohasti poliy then it is better to replae (2.4.17) by�Q(x; a) = r(x; a) +  ~V (x1)� Q̂(x; a; v) (2:4:19)where ~V (x1) = Xb2A(x1)Probf�(x) = bgQ̂(x1; b; v) (2:4:20)Rummery and Niranjan (1994) suggest the use of (2.4.17) even if � is stohasti; in thatase, the �(x1) in (2.4.17) orresponds to an instane generated by the stohasti poliy atx1. We feel that, as an estimate of V �(x1), ~V (x1) is better than the term Q̂(x1; �(x1); v)used in (2.4.17), and so it �ts-in better with the de�nition of Q� in (2.3.5). Also, if the thesize of A(x1) is small then the omputation of ~V (x1) is not muh more expensive than thatof Q̂(x1; �(x1); v).2.5 Delayed Reinforement Learning MethodsDynami Programming (DP) methods (Ross 1983; Bertsekas 1989) are well known lassialtools for solving the stohasti optimal ontrol problem formulated in setion 2.3. Sinedelayed RL methods also solve the same problem, how do they di�er from DP methods?9Following are the main di�erenes.9The onnetion between DP and delayed RL was �rst established by Werbos (1987, 1989, 1992) andWatkins (1989).



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 25� Whereas DP methods simply aim to obtain the optimal value funtion and an optimalpoliy using o�{line iterative methods, delayed RL methods aim to learn the sameonurrently with real time system operation and improve performane over time.� DP methods deal with the omplete state spae, X in their omputations, whiledelayed RL methods operate on ~X, the set of states that our during real time systemoperation. In many appliations X is very large, but ~X is only a small, manageablesubset of X. Therefore, in suh appliations, DP methods su�er from the urse ofdimensionality, but delayed RL methods do not have this problem. Also, typiallydelayed RL methods employ funtion approximators (for value funtion, poliy et.)that generalize well, and so, after learning, they provide near optimal performaneeven on unseen parts of the state spae.� DP methods fundamentally require a system model. On the other hand, the maindelayed RL methods are model-free; hene they are partiularly suited for the on-linelearning ontrol of ompliated systems for whih a model is diÆult to derive.� Beause delayed RL methods ontinuously learn in time they are better suited than DPmethods for adapting to situations in whih the system and goals are non-stationary.Although we have said that delayed RL methods enjoy ertain key advantages, we shouldalso add that DP has been the fore-runner from whih delayed RL methods obtained lues.In fat, it is orret to say that delayed RL methods are basially rearrangements of theomputational steps of DP methods so that they an be applied during real time systemoperation.Delayed RL methods an be grouped into two ategories: model-based methods andmodel{free methods. Model based methods have diret links with DP. Model{free methodsan be viewed as appropriate modi�ations of the model based methods so as to avoid themodel requirement. These methods will be desribed in detail below.2.5.1 Model Based MethodsIn this subsetion we disuss DP methods and their possible modi�ation to yield delayedRL methods. There are two popular DP methods: value iteration and poliy iteration.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 26Value iteration easily extends to give a delayed RL method alled `real time DP'. Poliyiteration, though it does not diretly yield a delayed method, it forms the basis of animportant model{free delayed RL method alled ator{riti.2.5.1.1 Value IterationThe basi idea in value iteration is to ompute V ?(x) asV ?(x) = limn!1V ?n (x) (2:5:1)where V ?n (x) is the optimal value funtion over a �nite-horizon of length n, i.e., V ?n (x) isthe maximum expeted return if the deision task is terminated n steps after starting instate x. For n = 1, the maximum expeted return is just the maximum of the expetedimmediate payo�: V ?1 (x) = maxa2A(x) r(x; a) 8 x (2:5:2)Then, the reursion,10V ?n+1(x) = maxa2A(x) "r(x; a) + Xy Pxy(a)V ?n (y)# 8 x (2:5:3)an be used to ompute V ?n+1 for n = 1; 2; � � �. (Iterations an be terminated after a largenumber (N) of iterations, and V ?N an be taken to be a good approximation of V ?.)In value iteration, a poliy is not involved. But it is easy to attah a suitable poliywith a value funtion as follows. Assoiated with eah value funtion, V : X!R is a poliy,� that is greedy with respet to V , i.e.,�(x) = arg maxa2A(x) "r(x; a) + Xy Pxy(a)V (y)# 8 x (2:5:4)If the state spae, X has a very large size (e.g., size=kd, where d= number of omponentsof x, k=number of values that eah omponent an take, d � 10, k � 100) then valueiteration is prohibitively expensive. This diÆulty is usually referred to as the urse ofdimensionality.10One an also view the reursion as doing a �xed-point iteration to solve Bellman's optimality equation,(2.3.4).



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 27In the above, we have assumed that (2.5.1) is orret. Let us now prove this onvergene.It turns out that onvergene an be established for a more general algorithm, of whih valueiteration is a speial ase. We all this algorithm as generalized value iteration.Generalized Value IterationSet n = 1 and V ?1 = an arbitrary funtion over states.Repeat1. Choose a subset of states, Bn and setV ?n+1(x) = 8><>: maxa2A(x) hr(x; a) + Py Pxy(a)V ?n (y)i if x 2 BnV ?n (x) otherwise (2:5:5)2. Reset n := n+ 1.If we hoose V ?1 as in (2.5.2) and take Bn = X for all n, then the above algorithm reduesto value iteration. Later we will go into other useful ases of generalized value iteration.But �rst, let us onern ourselves with the issue of onvergene. If x 2 Bn, we will say thatthe value of state x has been baked up at the n-th iteration. Proof of onvergene is basedon the following result (Bertsekas & Tsitsiklis 1989; Watkins 1989; Barto et al 1992).Loal Value Improvement TheoremLet Mn = maxx jV ?n (x)� V ?(x)j. Then maxx2Bn jV ?n+1(x)� V ?(x)j � Mn.Proof: Take any x 2 Bn. Let a? = �?(x) and a?n = �?n(x), where �?n is a poliy that isgreedy with respet to V ?n . ThenV ?n+1(x) � r(x; a?) + Py Pxy(a?)V ?n (y)� r(x; a?) + Py Pxy(a?) [V ?(y)�M ℄= V ?(x)� MnSimilarly, V ?n+1(x) = r(x; a?n) + Py Pxy(a?n)V ?n (y)� r(x; a?n) + Py Pxy(a?n) [V ?(y) +M ℄= V ?(x) + Mnand so the theorem is proved. 2



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 28The theorem implies that Mn+1 �Mn where Mn+1 = maxx jV ?n+1(x)� V ?(x)j. A littlefurther thought shows that the following is also true. If, at the end of iteration k, K furtheriterations are done in suh a way that the value of eah state is baked up at least onein these K iterations, i.e., [k+Kn=k+1Bn = X, then we get Mk+K � Mk. Therefore, if thevalue of eah state is baked up in�nitely often, then (3.5.1) holds.11 In the ase of valueiteration, the value of eah state is baked up at eah iteration and so (2.5.1) holds.Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed byBertsekas and Tsitsiklis (1989) as a suitable method of solving stohasti optimal ontrolproblems on multi-proessor systems with ommuniation time delays and without a om-mon lok. If N proessors are available, the state spae an be partitioned into N sets {one for eah proessor. The times at whih eah proessor baks up the values of its statesan be di�erent for eah proessor. To bak up the values of its states, a proessor uses the\present" values of other states ommuniated to it by other proessors.Barto, Bradtke and Singh (1992) suggested the use of generalized value iteration as a wayof learning during real time system operation. They alled their algorithm as Real TimeDynami Programming (RTDP). In generalized value iteration as speialized to RTDP,n denotes system time. At time step n, let us say that the system resides in state xn.Sine V ?n is available, an is hosen to be an ation that is greedy with respet to V ?n , i.e.,an = �?n(xn). Bn, the set of states whose values are baked up, is hosen to inlude xn and,perhaps some more states. In order to improve performane in the immediate future, onean do a lookahead searh to some �xed searh depth (either exhaustively or by followingpoliy, �?n) and inlude these probable future states in Bn. Beause the value of xn is goingto undergo hange at the present time step, it is a good idea to also inlude, in Bn, themost likely predeessors of xn (Moore & Atkeson 1993).One may ask: sine a model of the system is available, why not simply do value iterationor, do generalized value iteration as Bertsekas and Tsitsiklis suggest? In other words, whatis the motivation behind RTDP? The answer, whih is simple, is something that we havestressed earlier. In most problems (e.g., playing games suh as hekers and bakgammon)11If  = 1, then onvergene holds under ertain assumptions. The analysis required is more sophistiated.See (Bertsekas & Tsitsiklis 1989; Bradtke 1994) for details.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 29the state spae is extremely large, but only a small subset of it atually ours duringusage. Beause RTDP works onurrently with atual system operation, it fousses onregions of the state spae that are most relevant to the system's behaviour. For instane,suessful learning was aomplished in the hekers program of Samuel (1959) and in thebakgammon program, TDgammon of Tesauro (1992) using variations of RTDP. In (Bartoet al 1992), Barto, Bradtke and Singh also use RTDP to make interesting onnetions anduseful extensions to learning real time searh algorithms in Arti�ial Intelligene (Korf1990).The onvergene result mentioned earlier says that the values of all states have to bebaked up in�nitely often12 in order to ensure onvergene. So it is important to suitablyexplore the state spae in order to improve performane. Barto, Bradtke and Singh havesuggested two ways of doing exploration13: (1) adding stohastiity to the poliy; and (2)doing learning umulatively over multiple trials.If, only an inaurate system model is available then it an be updated in real time usinga system identi�ation tehnique, suh as maximum likelihood estimation method (Bartoet al 1992). The urrent system model an be used to perform the omputations in (2.5.5).Convergene of suh adaptive methods has been proved by Gullapalli and Barto (1994).2.5.1.2 Poliy IterationPoliy iteration operates by maintaining a representation of a poliy and its value funtion,and forming an improved poliy using them. Suppose � is a given poliy and V � is known.How an we improve �? An answer will beome obvious if we �rst answer the followingsimpler question. If � is another given poliy then when isV �(x) � V �(x) 8 x (2:5:6)i.e., when is � uniformly better than �? The following simple theorem (Watkins 1989) givesthe answer.12For good pratial performane it is suÆient that states that are most relevant to the system's behaviourare baked up repeatedly.13Thrun (1986) has disussed the importane of exploration and suggested a variety of methods for it



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 30Poliy Improvement TheoremThe poliy � is uniformly better than poliy � ifQ�(x; �(x)) � V �(x) 8 x (2:5:7)Proof: To avoid lumsy details let us give a not-so-rigorous proof (Watkins 1989).Starting at x, it is better to follow � for one step and then to follow �, than it is to follow� right from the begining. By the same argument, it is better to follow � for one furtherstep from the state just reahed. Repeating the argument we get that it is always better tofollow � than �. See Bellman and Dreyfus (1962) and Ross (1983) for a detailed proof. 2Let us now return to our original question: given a poliy � and its value funtion V �,how do we form an improved poliy, �? If we de�ne � by�(x) = arg maxa2A(x)Q�(x; a) 8 x (2:5:8)then (2.5.7) holds. By the poliy improvement theorem � is uniformly better than �. Thisis the main idea behind poliy iteration.Poliy IterationSet � := an arbitrary initial poliy and ompute V �.Repeat1. Compute Q� using (2.3.5).2. Find � using (2.5.8) and ompute V �.3. Set: � := � and V � := V �.until V � = V � ours at step 2.Nie features of the above algorithm are: (1) it terminates after a �nite number ofiterations beause there are only a �nite number of poliies; and (2) when terminationours we get V �(x) = maxa Q�(x; a) 8x(i.e., V � satis�es Bellman's optimality equation) and so � is an optimal poliy. But thealgorithm su�ers from a serious drawbak: it is very expensive beause the entire value



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 31funtion assoiated with a poliy has to be realulated at eah iteration (step 2). Eventhough V � may be lose to V �, unfortunately there is no simple short ut to ompute it.In setion 2.5.2.1 we will disuss a well-known model{free method alled the ator-ritimethod whih gives an inexpensive approximate way of implementing poliy iteration.2.5.2 Model{Free MethodsModel{free delayed RL methods are derived by making suitable approximations to theomputations in value iteration and poliy iteration, so as to eliminate the need for asystem model. Two important methods result from suh approximations: Barto, Suttonand Anderson's ator{riti (Barto et al 1983), and Watkins' Q{Learning (Watkins 1989).These methods are milestone ontributions to the optimal feedbak ontrol of dynamisystems.2.5.2.1 Ator-Criti MethodThe ator-riti method was proposed by Barto, Sutton and Anderson (1983) (in theirpopular work on balaning a pole on a moving art) as a way of ombining, on a step-by-step basis, the proess of forming the value funtion with the proess of forming a newpoliy. The method an also be viewed as a pratial, approximate way of doing poliyiteration: perform one step of an on-line proedure for estimating the value funtion for agiven poliy, and at the same time perform one step of an on-line proedure for improvingthat poliy. The ator-riti method14 is best derived by ombining the ideas of setion 2.2and setion 2.4 on immediate RL and estimating value funtion, respetively. Details areas follows.Ator (�) Letm denote the total number of ations. Maintain an approximator, g(�;w) :X!Rm so that z = g(x;w) is a vetor of merits of the various feasible ations at state x.In order to do exploration, hoose ations aording to a stohasti ation seletor suh as(2.2.4).1514A mathematial analysis of this method has been done by Williams and Baird (1993a).15In their original work on pole-balaning, Barto, Sutton and Anderson suggested a di�erent way ofinluding stohastiity.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 32Criti (V �) Maintain an approximator, V̂ (�;w) : X!R that estimates the value fun-tion (expeted total reward) orresponding to the stohasti poliy mentioned above. Theideas of setion 2.4 an be used to update V̂ .Let us now onsider the proess of learning the ator. Unlike immediate RL, learning ismore ompliated here for the following reason. Whereas, in immediate RL the environmentimmediately provides an evaluation of an ation, in delayed RL the e�et of an ation on thetotal reward is not immediately available and has to be estimated appropriately. Suppose,at some time step, the system is in state x and the ation seletor hooses ation ak. For gthe learning rule that parallels (2.2.3) would begk(x;w) := gk(x;w) + � h�(x; ak)� V̂ (x; v)i (2:5:9)where �(x; ak) is the expeted total reward obtained if ak is applied to the system at statex and then poliy � is followed from the next step onwards. An approximation is�(x; ak) � r(x; ak) + Xy Pxy(ak)V̂ (y; v) (2:5:10)This estimate is unavailable beause we do not have a model. A further approximation is�(x; ak) � r(x; ak) + V̂ (x1; v) (2:5:11)where x1 is the state ouring in the real time operation when ation ak is applied at statex. Sine the right hand side of (2.5.11) is an unbiased estimate of the right hand side of(2.5.10), using this approximation in the averaging learning rule (2.5.9) will not lead toerrors. Using (2.5.11) in (2.5.9) givesgk(x;w) := gk(x;w) + ��(x) (2:5:12)where � is as de�ned in (2.4.12). The following algorithm results.Ator{Criti TrialSet t = 0 and x =a random starting state.Repeat (for a number of time steps)1. With the system at state, x, hoose ation a aording to (2.2.4) and apply it to thesystem. Let x1 be the resulting next state.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 332. Compute �(x) = r(x; a) + V̂ (x1; v) � V̂ (x; v)3. Update V̂ using V̂ (x; v) := V̂ (x; v) + ��(x)4. Update gk using (2.5.12) where k is suh that a = ak.The above algorithm uses the TD(0) estimate of V �. To speed{up learning the TD(�)rule, (2.4.14) an be employed. Barto, Sutton and Anderson (1983) and others (Gullapalli1992a; Gullapalli et al 1994) use the idea of eligibility traes for updating g also. They giveonly an intuitive explanation for this usage. Lin (1992) has suggested the aumulation ofdata until a trial is over, update V̂ using (2.4.11) for all states visited in the trial, and thenupdate g using (2.5.12) for all (state,ation) pairs experiened in the trial.2.5.2.2 Q{LearningJust as the ator{riti method is a model-free, on-line way of approximately implementingpoliy iteration, Watkins' Q{Learning (Watkins 1989) algorithm is a model-free, on-line wayof approximately implementing generalized value iteration. Though the RTDP algorithmdoes generalized value iteration onurrently with real time system operation, it requiresthe system model for doing a ruial operation: the determination of the maximum on theright hand side of (2.5.5). Q{Learning overomes this problem elegantly by operating withthe Q{funtion instead of the value funtion. (Reall, from setion 2.3, the de�nition ofQ{funtion and the omment on its advantage over value funtion.)The aim of Q{Learning is to �nd a funtion approximator, Q̂(�; �; v) that approximatesQ?, the solution of Bellman's optimality equation, (2.3.7), in on-line mode without em-ploying a model. However, for the sake of developing ideas systematially, let us begin byassuming that a system model is available and onsider the modi�ation of the ideas ofsetion 2.5.1.1 to use the Q{funtion instead of the value funtion. If we think in terms ofa funtion approximator, V̂ (x; v) for the value funtion, the basi update rule that is usedthroughout setion 2.5.1.1 isV̂ (x; v) := maxa2A(x) "r(x; a) + Xy Pxy(a)V̂ (y; v)#



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 34For the Q{funtion, the orresponding rule isQ̂(x; a; v) := r(x; a) + Xy Pxy(a) maxb2A(y) Q̂(y; b; v) (2:5:13)Using this rule, all the ideas of setion 2.5.1.1 an be easily modi�ed to employ the Q{funtion.However, our main onern is to derive an algorithm that avoids the use of a systemmodel. A model an be avoided if we: (1) replae the summation term in (2.5.13) bymaxb2A(x1) Q̂(x1; b; v) where x1 is an instane of the state resulting from the appliationof ation a at state x; and (2) ahieve the e�et of the update rule in (2.5.13) via the\averaging" learning rule,Q̂(x; a; v) := Q̂(x; a; v) + � "r(x; a) +  maxb2A(x1) Q̂(x1; b; v)� Q̂(x; a; v)# (2:5:14)If (2.5.14) is arried out we say that the Q{value of (x; a) has been baked up. Using (2.5.14)in on-line mode of system operation we obtain the Q{Learning algorithm.Q{Learning TrialSet t = 0 and x = a random starting state.Repeat (for a number of time steps)1. Choose ation a 2 A(x) and apply it to the system. Let x1 be the resulting state.2. Update Q̂ using (2.5.14).3. Reset x := x1.The remark made below equation, (2.2.5) in setion 2.2 is very appropriate for thelearning rule, (2.5.14). Watkins showed16 that if the Q{value of eah admissible (x; a) pairis baked up in�nitely often, and if the step size, � is dereased to zero in a suitable waythen as t!1, Q̂ onverges to Q? with probability one. Pratially, learning an be ahievedby: (1) using, in step 1, an appropriate exploration poliy that tries all ations;17 (2) doing16A revised proof was given by Watkins and Dayan (1992). Tsitsiklis (1993) and Jaakkola et al (1994)have given other proofs.17Note that step 1 does not put any restrition on hoosing a feasible ation. So, any stohasti explorationpoliy that, at every x generates eah feasible ation with positive probability an be used. When learning isomplete, the greedy poliy, �(x) = argmaxa2A(x) Q̂(x; a; v) should be used for optimal system performane.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 35multiple trials to ensure that all states are frequently visited; and (3) dereasing � towardszero as learning progresses.We now disuss a way of speeding up Q{Learning by using the TD(�) estimate of theQ{funtion, derived in setion 2.4. If TD(�) is to be employed in a Q{Learning trial, afundamental requirement is that the poliy used in step 1 of the Q{Learning Trial and thepoliy used in the update rule, (2.5.14) should math (note the use of � in (2.4.17) and(2.4.20)). Thus TD(�) an be used if we employ the greedy poliy,�(x) = arg maxa2A(x) Q̂(x; a; v) (2:5:15)in step 1.18 19 But, this leads to a problem: use of the greedy poliy will not allowexploration of the ation spae, and hene poor learning an our. Rummery and Niranjan(1994) give a nie omparitive aount of various attempts desribed in the literature fordealing with this onit. Here we only give the details of an approah that Rummery andNiranjan found to be very promising.Consider the stohasti poliy (based on the Boltzmann distribution and Q-values),Probf�(x) = ajxg = exp(Q̂(x; a; v)=T )Pb2A(x) exp(Q̂(x; b; v)=T ) ; a 2 A(x) (2:5:16)where T 2 [0;1). When T!1 all ations have equal probabilities and, when T!0 thestohasti poliy tends towards the greedy poliy in (2.5.15). To learn, T is started with asuitable large value (depending on the initial size of the Q{values) and is dereased to zerousing an annealing rate; at eah T thus generated, multiple Q{learning trials are performed.This way, exploration takes plae at the initial large T values. The TD(�) learning rule,(2.4.19) estimates expeted returns for the poliy at eah T , and, as T!0, Q̂ will onvergeto Q?.An important remark needs to be made regarding the appliation of Q{Learning to RLproblems whih result from the time-disretization of ontinuous-time problems. As the18Although the greedy poliy de�ned by (2.5.15) keeps hanging during a trial, the TD(�) estimate anstill be used beause Q̂ is varied slowly.19If more than one ation attains the maximum in (2.5.15) then for onveniene we take � to be a stohastipoliy that makes all suh maximizing ations equally probable.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 36disretization time period goes to zero it turns out that the Q funtion tends to beome aonstant for all a for a given x and hene it is unsuitable to use Q{Learning for ontinuous-time problems. For suh problems Baird (1993) has suggested the use of an appropriatemodi�ation of the Q funtion alled the Advantage funtion. See Harmon et al (1995) also.2.6 Funtion{Approximators in RLA variety of funtion approximators has been employed by researhers to pratially solveRL problems. When the input spae of the funtion approximator is �nite, the moststraight{forward method is to use a look{up table (Singh 1992a; Moore & Atkeson 1993).Almost all theoretial results on the onvergene of RL algorithms assume this representa-tion. The disadvantage of using look{up table is that if the input spae is large then thememory requirement beomes prohibitive.20 Continuous input spaes have to be disretizedwhen using a look{up table. If the disretization is done �nely so as to obtain good au-ray we have to fae the `urse of dimensionality'. One way of overoming this is to do aproblem{dependent disretization; see, for example, the `BOXES' representation used byBarto, Sutton and Anderson (1983) and others (Mihie & Chambers 1968; Gullapalli et al1994; Rosen et al 1991) to solve the pole balaning problem.Non look{up table approahes use parametri funtion approximation methods. Thesemethods have the advantage of being able to generalize beyond the training data and henegive reasonable performane on unvisited parts of the input spae. Among these, neuralmethods are the most popular. Connetionist methods that have been employed for RLan be lassi�ed into four groups: multi{layer pereptrons; methods based on lustering;CMAC; and reurrent networks. Multi{layer pereptrons have been suessfully used byAnderson (1986, 1989) for pole balaning, Lin (1991a, 1991b, 1991, 1992) for a omplextest problem, Tesauro (1992) for bakgammon, Thrun (1993) and Millan and Torras (1992)for robot navigation, and others (Boyen 1992; Gullapalli et al 1994). On the other hand,Watkins (1989), Chapman (1991), Kaelbling (1990, 1991), and Shepanski and May (1987)20Bukland and Lawrene (1994) have proposed a new delayed RL method alled Transition point DPwhih an signi�antly redue the memory requirement for problems in whih optimal ations hange infre-quently in time.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 37have reported bad results. A modi�ed form of Platt's Resoure Alloation Network (RAN)(Platt 1991), a method based on radial basis funtions, has been used by Anderson (1993) forpole balaning. Many researhers have used CMAC (Albus 1975) for solving RL problems:Watkins (1989) for a test problem; Singh (1991, 1992b, 1992d) and Tham and Prager (1994)for a navigation problem; Lin and Kim (1991) for pole balaning; and Sutton (1990, 1991b)in his `Dyna' arhiteture. Reurrent networks with ontext information feedbak have beenused by Baharah (1991, 1992) and Mozer and Baharah (1990a, 1990b) in dealing withRL problems with inomplete state information.A few non{neural methods have also been used for RL. Mahadevan and Connell (1991)have used statistial lustering in assoiation with Q{Learning for the automati program-ming of a mobile robot. A novel feature of their approah is that the number of lustersis dynamially varied. Chapman and Kaelbling (1991) have used a tree{based lusteringapproah in ombination with a modi�ed Q{Learning algorithm for a diÆult test problemwith a huge input spae.The funtion approximator has to exerise are to ensure that learning at some inputpoint, x does not seriously disturb the funtion values for y 6= x. It is often advantageous tohoose a funtion approximator and employ an update rule in suh a way that the funtionvalues of x and states `near' x are modi�ed similarly while the values of states `far' from x areleft unhanged.21 Suh a hoie usually leads to good generalization, i.e., good performaneof the learnt funtion approximator even on states that are not visited during learning. Inthis respet, CMAC and methods based on lustering, suh as RBF, statistial lustering,et., are more suitable than multi{layer pereptrons. Sutton (1996), in an e�ort to studythis problem, has used CMACs suessfully in problems where MLPs have been reportedto have failed (Boyen & Moore 1995).When methods based on lustering are employed for funtion approximation it wouldbe helpful to know where to put the lusters. CMACs and RBF based methods start with21The riterion for `nearness' must be hosen properly depending on the problem being solved. Forinstane, in example 2.1.1 (see �gure 2.1.1) two states on opposite sides of the barrier but whose oordinatevetors are near, have vastly di�erent optimal `ost-to-go' values. Hene the funtion approximator shouldnot generalize the value at one of these states using the value at the other. Dayan (1993) gives a generalapproah for hoosing a suitable `nearness' riterion so as to improve generalization.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 38a �xed number of lusters and though one an hange the position and size of the lusters,they do not perform well when the nature of the problem is suh that many small lusters areneeded in some regions and few large ones at most other plaes, like in example 2.1.1. Oneway of overoming this problem would be to use ontogeni networks in whih the numberand position of lusters is varied dynamially and lusters are added whenever and whereverthey are needed. One suh ontogeni algorithm is RAN. Anderson has used a variation ofRANs in whih he �xes the number of lusters. The lusters are dynamially deleted andadded as needed, keeping the number of lusters onstant. We have done some preliminaryinvestigation into the use of a more diret RAN based method on the problem presented inexample 2.1.1. We found that RANs performed muh better than a RBF network with a�xed number of nodes (omparable to the number of nodes inserted typially by a RAN)distributed uniformly over the entire input spae.The e�et of errors introdued by funtion approximators on the optimal performane ofthe ontroller has not been well understood.22 It has been pointed out by Watkins (1989),Bradtke (1993), Bertsekas (1994) and others (Barto 1992), that, if funtion approximation isnot done in a areful way, poor learning an result. In the ontext of Q{Learning, Thrun andShwartz (1993) have shown that errors in funtion approximation an lead to a systematiover estimation of theQ{funtion. Linden (1993) points out that in many problems the valuefuntion is disontinuous and so using ontinuous funtion approximators is inappropriate.But he does not suggest any lear remedies for this problem.Mane Harmon of Wright-Patterson Air Fore Base, Ohio, has pointed out the followingexplanation as to why funtion approximators used with RL have diÆulties. The gener-alization that takes plae when updating the approximation systems an, as a side e�et,hange the target value. For instane, when the update rule (2.4.14), whih is based on�(xt), is performed, the resulting hange in V̂ together with generalization an lead to asizeable hange in �(xt). We are then, in e�et, shooting at a moving target. This is aause of instability, and the propensity of the weights, in many ases, to grow to in�nity.22Bertsekas(1989), Singh and Yee (1993), and Williams and Baird (1993b) have derived some generaltheoretial bounds for errors in value funtion in terms of funtion approximator error. Tsitsiklis and VanRoy (1994) have derived bounds for errors when feature-based funtion approximators are used.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 39To overome this problem Baird and Harmon (1993) have suggested a residual gradientapproah in whih gradient desent is performed on the mean square of residuals suh as�(xt). Then one an expet onvergene in a way similar to how onvergene takes plaein the bakpropagation algorithm. A similar approah has also been suggested by Werbos(1987).Overall, it must be mentioned that muh work needs to be done on the use of funtionapproximators for RL, and lear guidelines are yet to emerge.2.7 Modular and Hierarhial ArhiteturesWhen applied to problems with large task spae or sparse rewards, RL methods are terriblyslow to learn. Dividing the problem into simpler subproblems, using a hierarhial ontrolstruture, et., are ways of overoming this.Sequential task deomposition is one suh method. This method is useful when a numberof omplex tasks an be performed making use of a �nite number of \elemental" tasks orskills, say, T1; T2; � � � ; Tn. The original objetive of the ontroller an then be ahievedby temporally onatenating a number of these elemental tasks to form what is alled a\omposite" task. For example,Cj = [T (j; 1); T (j; 2); � � � ; T (j; k)℄ ; where T (j; i) 2 fT1; T2; � � � ; Tngis a omposite task made up of k elemental tasks that have to be performed in the orderlisted. Reward funtions are de�ned for eah of the elemental tasks, making them moreabundant than in the original problem de�nition.Singh (1992a, 1992b) has proposed an algorithm based on a modular neural network(Jaobs et al 1991), making use of these ideas. In his work the ontroller is unaware ofthe deomposition of the task and has to learn both the elemental tasks, and the deom-position of the omposite tasks simultaneously. Tham and Prager (1994) and Lin (1993)have proposed similar solutions. Mahadevan and Connell (1991) have developed a methodbased on the subsumption arhiteture (Brooks 1986) where the deomposition of the task isspei�ed by the user before hand, and the ontroller learns only the elemental tasks, whileMaes and Brooks (1990) have shown that the ontroller an be made to learn the deom-



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 40position also, in a similar framework. All these methods require some external ageny tospeify the problem deomposition. Can the ontroller itself learn how the problem is to bedeomposed? Though Singh (1992d) has some preliminary results, muh work needs to bedone here.Another approah to this problem is to use some form of hierarhial ontrol (Watkins1989). Here there are di�erent \levels" of ontrollers23, eah learning to perform a moreabstrat task than the level below it and direting the lower level ontrollers to ahieve itsobjetive. For example, in a ship a navigator deides in what diretion to sail so as to reahthe port while the helmsman steers the ship in the diretion indiated by the navigator.Here the navigator is the higher level ontroller and the helmsman the lower level ontroller.Sine the higher level ontrollers have to work on a smaller task spae and the lower levelontrollers are set simpler tasks improved performane results.Examples of suh hierarhial arhitetures are Feudal RL by Dayan and Hinton (1993)and Hierarhial planning by Singh (1992a, 1992). These methods too, require an externalageny to speify the hierarhy to be used. This is done usually by making use of some\struture" in the problem.Training ontrollers on simpler tasks �rst and then training them to perform progres-sively more omplex tasks using these simpler tasks, an also lead to better performane.Here at any one stage the ontroller is faed with only a simple learning task. This tehniqueis alled shaping in animal behaviour literature. Gullapalli (1992a) and Singh (1992d) havereported some suess in using this idea. Singh shows that the ontroller an be made to\disover" a deomposition of the task by itself using this tehnique.2.8 Speeding{Up LearningApart from the ideas mentioned above, various other tehniques have been suggested forspeeding{up RL. Two novel ideas have been suggested by Lin (1991a, 1991b, 1991, 1992):experiene playbak; and teahing. Let us �rst disuss experiene playbak. An experieneonsists of a quadruple (ouring in real time system operation), (x; a; y; r), where x is a23Controllers at di�erent levels may operate at di�erent temporal resolutions.



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 41state, a is the ation applied at state x, y is the resulting state, and r is r(x; a). Pastexperienes are stored in a �nite memory bu�er, P. An appropriate strategy an be usedto maintain P. At some point in time let � be the \urrent" (stohasti) poliy. LetE = f(x; a; y; r) 2 P j Probf�(x) = ag � �gwhere � is some hosen tolerane. The learning update rule is applied, not only to theurrent experiene, but also to a hosen subset of E . Experiene playbak an be espeiallyuseful in learning about rare experienes. In teahing, the user provides the learning systemwith experienes so as to expedite learning.Inorporating domain spei� knowledge also helps in speeding{up learning. For exam-ple, for a given problem, a \nominal" ontroller that gives reasonable performane may beeasily available. In that ase RL methods an begin with this ontroller and improve itsperformane (Singh et al 1994). Domain spei� information an also greatly help in hoos-ing state representation and setting up the funtion approximators (Barto 1992; Millan &Torras 1992).In many appliations an inaurate system model is available. It turns out to be veryineÆient to disard the model and simply employ a model{free method. An eÆientapproah is to interweave a number of \planning" steps between every two on-line learningsteps. A planning step may be one of the following: a time step of a model{based methodsuh as RTDP; or, a time step of a model{free method for whih experiene is generatedusing the available system model. In suh an approah, it is also appropriate to adaptthe system model using on{line experiene. These ideas form the basis of Sutton's Dynaarhitetures (Sutton 1990, 1991b) and related methods (Moore & Atkeson 1993; Peng &Williams 1993).2.9 ConlusionIn this hapter we have given a ohesive overview of existing RL algorithms. Though re-searh has reahed a mature level, RL has been suessfully demonstrated only on a fewpratial appliations (Gullapalli et al 1994; Tesauro 1992; Mahadevan & Connell 1991;Thrun 1993), and lear guidelines for its general appliability do not exist. The onnetion



CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 42between DP and RL has niely bridged ontrol theorists and AI researhers. With ontri-butions from both these groups on the pipeline, more interesting results are forthomingand it is expeted that RL will make a strong impat on the intelligent ontrol of dynamisystems.



Chapter 3
RL for Continuous Ation Spaes
3.1 IntrodutionTypial optimal ontrol problems involve ontinuous state and ation spaes. It is easy toextend the algorithms disussed in the previous hapter to ontinuous state spaes by theuse of appropriate funtion approximators that generalize a real-time experiene at a stateto all topologially nearby states. Many suh funtion approximators and the aveats inusing them have been disussed in setion 2.6. But the extension of existing algorithms toontinuous ations is diÆult. There are two diÆulties assoiated with this. If one triesto extend, say, Q{learning to ontinuous ation spaes then the following diÆulties areimmediately obvious:1. The max operation in (2.5.14) is now diÆult.2. De�ning a poliy in terms of the value funtion is also non-trivial sine that too needsthe max operation. (see (2.5.15)).Hene some speial ideas are needed for operating with ontinuous ation spaes. All theexisting algorithms take are of these problems by adopting sutiable tehniques.In this hapter we survey the existing model-free and model-based methods for ontin-uous ation spaes. We present a new algorithm whih is an extension of Q{learning toontinuous ation spaes. We also present a modi�ation of the algorithm appliable inases where the Q(x; a) funtion is unimodal in a for eah �xed x. This, to the best of our43



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 44knowledge, is the �rst attempt to extend value-iteration based methods like Q{learning toontinuous ation spaes. We then present simulation results to show that our algorithmworks.3.2 Existing methodsIn this setion we present some of the existing methods of handling ontinuous ationspaes. Just to make the presentation easy, we will make the assumption that the systembeing ontrolled is deterministi. Let xt+1 = f(xt; at) (3:2:1)desribe the transition.3.2.1 A Model-based Method: The Bak-propagated Adaptive CritiLet us �rst onsider model-based methods. Werbos (1990b) has proposed a variety ofalgorithms. Here we will desribe only one important algorithm, the one that Werbos refersto as Bakpropagated Adaptive Criti. The algorithm is of the ator{riti type, but it issomewhat di�erent from the ator{riti method desribed in the previous hapter. Thereare two funtion approximators: �̂(�;w) for ation; and, V̂ (�; v) for riti. The riti ismeant to approximate V �̂; at eah time step, it is updated using the TD(�) learning rule,(2.4.14) of setion 2.4. The ator tries to improve the poliy at eah time step using thehint provided by the poliy improvement theorem in (2.5.7). To be more spei�, let usde�ne Q(x; a) def= r(x; a) + V̂ (f(x; a); v) (3:2:2)At time t, when the system is at state xt, we hoose the ation, at = �̂(xt;w), leading tothe next state, xt+1 given by (3.2.1). Let us assume V̂ = V �̂, so that V �̂(xt) = Q(xt; at)holds. Using the hint from (2.5.7), we aim to adjust �̂(xt;w) to give a new value, anew suhthat Q(xt; anew) > Q(xt; at) (3:2:3)



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 45For a ontrol problem in whih Q is di�erentiable and there are no ation onstraints, asimple learning rule that ahieves this requirement is�̂(xt;w) := �̂(xt;w) + ��Q(xt; a)�a ja=at (3:2:4)where � is a small (positive) step size. The partial derivative in (3.2.4) an be evaluatedusing �Q(xt; a)�a = �r(xt; a)�a +  �V̂ (y; v)�y jy=f(xt;a) �f(xt; a)�a (3:2:5)3.2.2 Model{free methodsLet us now ome to model{free methods. A simple idea is to adapt a funtion approximator,f̂ for the system model funtion, f , and use f̂ instead of f in Werbos' algorithm. On{lineexperiene, i.e., the ombination, (xt; at; xt+1), an be used to learn f̂ . This method wasproposed by Brody (1992), atually as a way of overoming a serious de�ieny1 assoiatedwith an ill{formed model{free method suggested by Jordan and Jaobs (1990). A keydiÆulty assoiated with Brody's method is that, until the learning system adapts a goodf̂ , system performane does not improve at all; in fat, at the early stages of learning themethod an perform in a onfused way. To overome this problem Brody suggests that f̂be learnt well, before it is used to train the ator and the riti.3.2.3 SRV{based algorithmA more diret model{free method an be derived using the ideas of ator{riti method ofsetion 2.5.2.1. One diÆulty in extending those ideas to ontinuous aiton spaes is thatwe now annot maintain a di�erent funtion approximator to give the value of eah ationinvolved. (See (2.5.9).) We an overome this by employing ideas from setion 2.2. We anuse a learning rule similar to the SRV algorithm for adapting �̂. This method was proposedand suessfully demonstrated by Gullapalli on some pratial problems (Gullapalli 1992a;Gullapalli et al 1994).1This de�ieny was also pointed out by Gullapalli (1992b).



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 463.2.4 Bradtke's Poliy Iteration Sheme based on Q{funtionsBradtke (1993) has hosen a speial problem, Linear Quadrati Regulation (LQR), and hasdeveloped a modi�ation of the Q{learning algorithm whih is lose to poliy iteration andis appliable to this spei� problem. Instead of trying to learn the optimal Q funtionright away using the learning rule in (2.5.14), whih he alls the optimizing Q{learning rule,Bradtke �rst �xes a poliy, �, and then learns the Q funtion orresponding to that poliyusing the following rule:Q̂(x; a; v) := Q̂(x; a; v) + � hr(x; a) + Q̂(x1; �(x1); v)� Q̂(x; a; v)i (3:2:6)After the Q funtion for that poliy is learnt suÆiently well he performs a poliy improve-ment step so as to arrive at a better poliy. This is done by making use of some nieproperties of the LQR problem. He has also shown that, theoretially, this algorithm on-verges to the optimal Q funtion when applied to the LQR problem. It should be mentionedthat this is the only theoretial onvergene result that has been established thus far fordelayed RL problems involving ontinuous ation spaes.3.3 Extension of Q{learning to Continuous Ation SpaesIn this setion we propose a new model{free method based on Q{learning. The optimizimgQ{learning rule introdued in setion 2.5.2.2 is as follows:Q̂(xt; at; v) := Q̂(xt; at; v) + � "r(xt; at) +  maxb2A(xt+1) Q̂(xt+1; b; v) � Q̂(xt; at; v)# (3:3:1)As mentioned in the beginning of this hapter the max operation in the above equationis non-trivial in ase of ontinuous ation spaes. In order to overome this diÆulty wemaintain another funtion approximator, �̂, that learns the ation orresponding to thebest Q̂ value for a given state x. In other words, �̂ is a poliy network that learns a poliythat is optimal with respet to Q̂. We now employ the learning rule:Q̂(xt; at; v) := Q̂(xt; at; v) + � hr(xt; at) + Q̂(xt+1; �̂(xt+1); v) � Q̂(xt; at; v)i (3:3:2)Let us now see how �̂ an be adapted. The aim is to have�̂(xt;w) = a?



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 47where, a? def= arg maxa2A(xt) Q̂(xt; a; v)A simple general sheme is to atually ompute a? using a global optimization algorithmand then adapt w so that �̂(xt; w) moves towards a?. Note that, the running of the globaloptimization algorithm uses Q̂ only and does not require any on-line experienes fromthe environment. Given the availability of fast and inexpensive proessors and the fatthat the dimension of a is usually small in most ontrol appliations, solving a globaloptimization problem in the ation spae within one disretization period of the ontrolsystem is omputationally feasible. This is espeially true in the ase of hemial proessontrol systems for whih the disretization period is in the order of minutes.There is an interesting and useful lass of problems (see setion 3.5.1) for whih theoptimal Q funtion is unimodal (e.g. onave) in a for eah �xed x. For suh ases, foreah �xed x, a loal maximum of the Q funtion is also a global maximum and hene agradient asent sheme an be used to learn �̂:�̂(xt;w) := �̂(xt;w) + ��Q̂(xt; a)�a ja=at (3:3:3)The partial derivative an be easily omputed if we employ a suitable funtion approximator.We employ onnetionist networks in this work. As shown in �gure 3.3.1, the output ofthe �̂ network ats as an input to the Q̂ network. The derivative of the output of the Q̂network with respet to one of its inputs, namely a, is easy to ompute by tehniques suhas bak-propagation (Haykin 1994).



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 48

t+1
π(x     )

t+1
π(x     )

t+1     t+1 t tFor generating the error term, r +   Q(x      ,   (x      )) - Q(x   ,a   )πγ

x
a

Q(x  , a  )

r

noise

+
Policy

t

t

Environment

Network

t t

t

Network
x

Q

Q

Policy
t+1

t+1Q(x     , )

^

^

^

^

^

^

^^

^

Figure 3.3.1 Q{learning in ontinuous ation spaes



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 49Learning TrialSet t = 0.Initialize the Q̂ and �̂ networks.Repeat (for a number of time steps)1. Choose input xt2. ompute at aording to an exploration poliy2 andapply it to the system. Let xt+1 be the resulting state.3. ompute qt = Q̂(xt; at).4. Update Q̂ using (3.3.3).5. update �̂ using (3.3.2)6. set t = t+ 1
3.4 Comparison with Earlier WorksIn this setion we ompare our work with the earlier attempts to takle problems withontinuous ation spaes. First let us onsider Werbos' Bak-propagated adaptive-riti. Itonverges to the solution quikly sine a gradient asent is performed (see (3.2.4)). Thedrawbak of doing this is that gradient asent su�ers from loal maxima problems and mightnot onverge to the optimal values if loal maxima exist.Gullapalli's SRV{based algorithm overomes the loal maxima problem sine it does astohasti searh of the a spae. This means that a lot of diretions have to be tried out in2The exploration poliy an be di�erent from �̂; however, if TD(�) updates are to be performed for fasterlearning then the exploration poliy should be the same as �̂. See the omments made after (2.5.15).



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 50the a spae and everytime a new diretion is to be tried out it needs an on-line experiene.This makes the algorithm very slow.Bradtke's Poliy iteration sheme based on Q funtions does not su�er from these draw-baks, but is speialized only to the LQR problem and hene laks general appliability.In our general sheme we use a global optimization tehnique suh as simulated anneal-ing. We employ the gradient asent sheme only when Q(x; a) is unimodal in a for a givenx. This too is guaranteed to �nd a global maximum. So both the shemes do not su�erfrom the problem of loal maxima. Also the maximization step uses only Q̂ and does notneed any expensive on-line experiene. Hene our algorithm is faster than shemes whihneed on-line experiene. We have not made any speial assumptions about the problemin arriving at our algorithm. Hene our algorithm is not restrited to any speial lass ofproblems.All the existing shemes for solving delayed RL problems with ontinuous ation spaesuse poliy iteration based methods. We have extended Q{learning, a value iteration basedmethod, to ontinuous ation spaes. This is the �rst attempt at employing a value iterationbased method to solve delayed RL problems having ontinuous ation spaes.3.5 TestingMost appliations involving ontinuous ation spaes ome from the design of ontrol sys-tems. Many suh interesting problems have linear dynamis. Even when dynamis arenon-linear, linearization tehniques are often used to obtain exellent linear approxima-tions. Thus it is useful to onsider the appliation of our algorithm to optimal ontrolproblems having linear dynamis. Further, losed form solutions are available for some ofthese problems; for suh problems it is easy to hek if our learning method yields orretsolutions.3.5.1 Linear Regulation ProblemConsider the deterministi, linear, time-invariant, dynamial system given by:xt+1 = Axt +Bat



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 51where A and B are matries of dimensions n�n and n�m respetively. Let r be a onavefuntion3 of (x,a). For suh problems the following an be easily shown:Lemma: V ? and Q? are onave funtions.Proof: Let x and ~x be two states, and, f(xt; at)g and f(~xt; ~at)g be the state-ation sequenesgenerated by the optimal poliy starting from x0 = x and ~x0 = ~x respetively. Let 0 � Æ � 1,x = Æx+ (1� Æ)~x, xt = Æxt + (1� Æ)~xt and at = Æat + (1� Æ)~at. Clearly, x0 = x. Then bythe optimality of V ?(x) and the onavity of r, we get:V ?(x) � Pt tr(xt; at)= Pt tr(Æxt + (1� Æ)~xt; Æat + (1� Æ)~at)� Pt t [Ær(xt; at) + (1� Æ)r(~xt; ~at)℄= ÆV ?(x) + (1� Æ)V ?(~x)A similar proof shows that Q? is also a onave funtion. 2Consider the ase where the ost at every time step is a quadrati funtion of the stateand the ontrol signal: �rt = xTt Ext+aTt Fat, where E is a symmetri positive semi-de�nitematrix of dimension n�n and F is a symmetri positive de�nite matrix of dimensionm�m.This now beomes a Linear Quadrati Regulation (LQR) problem.The value funtion V �(xt) is de�ned in the usual way as the disounted sum of all oststhat will be inurred by using � for all times from t onward. From Linear-quadrati ontroltheory we know that �? is a linear poliy, i.e., �?(x) = U?x for some m�n matrix U?.Hene it is suÆient if we optimize over all linear poliies: �(x) = Ux. For a linear poliyV � is a quadrati funtion of the states and an be expressed as V �(x) = �xTP �x, whereP � is a n�n symmetri positive de�nite matrix. Let P ? denote P �? .P ? is given by the solution of the Riatti equation:P = E �ATPB(F +BTPB)�1BTPA+ATPAand Q? is given by:Q?(x; a) = �( xT aT )0B� E +ATP ?A ATP ?BBTP ?A F +BTP ?B 1CA0B� xa 1CA (3:5:1)3A funtion f : Rk!R is said to be onave if: f(Æy+(1�Æ)~y) � Æf(y)+(1�Æ)f(~y) 8 y; ~y 2 rk; 0 � Æ � 1



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 523.5.2 Representation of Funtions for the LQR ProblemAs mentioned in setion 3.3, we use onnetionist systems to represent the various fun-tions assoiated with our algorithm. The issue of funtion approximation in RL is a veryontentious one. Most RL algorithms assume that a exat representation of the value andpoliy funtions are available and have been shown to onverge only under suh assump-tions. The e�et of funtion approximation errors on the performane of RL algorithmshas not been investigated properly and needs more study. (See disussion in setion 2.6.)If we tie up the issue of funtion approximation with the testing of our algorithm, (for e.g.use a powerful universal funtion approximator suh as a Multi-Layer Peeptron with a lotof hidden neurons, for representing the Q̂ and �̂ funtions) and the resulting ombinationdoes not work well, we would not know whih is the ause. So we arefully hose the formof the funtion approximator based on the form of the Q funtion and the poliy �, of thetest problem. To make this hoie we need the following lemma.Lemma: Consider a quadrati funtion f(y) = yTKy, whereK is a symmetri, positivesemi-de�nite n�n matrix and y 2 Rn This funtion an also represented as follows:f(y) = yTKy = nXi=1 f2i (y) (3:5:2)where, fi(y) is a linear funtion of y.Proof: Sine K is symmetri we an write it as:K = S�STwhere S is an orthogonal matrix and � is a diagonal matrix, with the eigen values of Kalong the diagonal. Sine K is positive semi-de�nite we an write:K = S� 12� 12ST= (S� 12 )(S� 12 )T= RRTwhere, R = S� 12 and � 12 is a diagonal matrix with the square roots of the eigen values ofK along its diagonal. We an now write the funtion f(y) as:f(y) = yTKy = yTRRT y = kRT yk2 2



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 53As an be seen from (3.5.1) the �Q? funtion in this ase is a positive semi-de�nitequadrati funtion and hene an be represented as the sum of squares of n + m linearfuntions. This is the representation we hoose in this work. The Q̂ network onsists oftwo layers as shown in �gure 3.5.1. The �rst layer onsists of n+m fully onneted linearneurons. The seond layer neuron takes the output of the �rst layer neurons, squares andadds them and negates the sum to produe the output. We need to negate the output sinewe are posing this as a maximization problem.The poliy in this ase is de�ned as a linear funtion of the state. Hene we an use asingle layer of m linear neurons for the �̂ network, as shown in �gure 3.5.1. The output ofthe poliy network forms a part of the input to the Q network, while the present state isfed as input to both the networks.3.5.3 Numerial ResultsIn this setion we present simulation results for the hosen test problem. We demonstratethe onvergene of our algorithm on the LQR problem assoiated with the double integratorfor ease of omparison with analytial results. For the double integrator in two dimensions,the matries involved in the problem de�nition are:n = 2 ; m = 1A = 0B� 1 T0 1 1CA ; B = 0B� T 2=2T 1CA ; E = 0B� � 00 � 1CA ; F = 1where T , � and � (2 R) are system parameters.For our simulations we hose arbitrarily the following values:T = 0:7 ; � = 0:1 ; � = 0:5 ;  = 1:0For these values the optimal poliy is given by:U? = 0B� �0:219�0:823 1CA
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CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 55and the Q? funtion is given by:Q?(x; a) = �( xT a )0BBBB� 0:638 0:843 0:4580:843 3:255 1:7220:458 1:722 2:093 1CCCCA0B� xa 1CAThe Q network now has 3 linear neurons in the �rst layer and 1 output neuron of thetype desribed in the previous setion. The poliy network just onsists of 1 linear neuronwhose output is fed to the Q network.When expressed as an atual update rule used in a onnetionist network, (3.3.2) be-omes: v := v + �e�Q̂(x; a)�v jx=xt;a=at (3:5:3)where, e = hr(xt; at) + Q̂(xt+1; �̂(xt+1); v) � Q̂(xt; at; v)iWe deided to adopt the gradient asent sheme outlined in setion 3.3 sine the problemhas a Q funtion that is unimodal in a for a given x. Initially we used the update rule givenin (3.5.3) for the Q network and a orresponding onnetionist update rule to that given in(3.3.3) for the poliy network. We found that even if we �x the poliy network and allowonly the Q̂ network to train the onvergene to Q� was very slow.In the learning rule (3.5.3) we assume that while we update the network at xt, the Q̂values at xt+1 do not hange. In a onnetionist implementation this is obviously not trueand therefore in e�et we are shooting at a moving target. We an overome this problemif we try to minimize: �Q̂(xt; at)� (r(xt; at) + Q̂(xt+1; �̂(xt+1)))�2instead. This is the idea behind the residual gradient approah reommended by Baird andHarmon (1993) and Werbos (1987). The modi�ed learning rule is:v := v � �e  �Q̂(x; a)�v jx=xt+1;a=at+1 � �Q̂(x; a)�v jx=xt;a=at! (3:5:4)Using the modi�ed rule, the Q̂ network onverged to Q� of a �xed poliy about 10 timesfaster than before.



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 56While performing the simulations we found that the poliy network had to be updatedat a muh slower pae than the Q network. We hose learning rates in the ratio of 1 : 10�3for the Q and poliy networks respetively. We also found it advantageous to update thepoliy network only one for every few updates of the Q network.Choosing the initial values for the poliy and Q networks is an important issue. Ifthe initial poliy hosen is not a stabilizing one, the system tends to beome unstable andlearning is impossible. So we hose an arbitrary stabilizing poliy as the initial one. Similarinitializing poliies have been shown by Bradtke (1993) to be essential for the onvergeneof his poliy iteration sheme based on Q funtions. Also we hose the initial Q as:Q?(x; a) = �( xT a )0B� E 00 1 1CA0B� xa 1CAThis amounts to setting Q = r. This was done just for the sake of expediting learning.Over many runs we observed that the learning system onverged to the optimal funtions.Typial values of Q̂ and �̂ networks after a suÆient number of iterations were:Q̂(x; a) = �( xT a )0BBBB� 0:621 0:813 0:4400:813 3:237 1:7210:440 1:721 2:036 1CCCCA0B� xa 1CA�̂(x) = 0B� �0:226�0:820 1CAxWe then deided to try out the general sheme outlined in setion 3.3. In this problem�nding the ation orresponding to the maximum Q turns out to be partiularly easy. Alosed form expression an be derived for the max. ation in terms of the weights of the Qnetwork and the state inputs. We found that provided the network is trained suÆientlyslowly it onverges to the optimal values. In the simulations we onduted we ould not seeany signi�ant advantage of using one sheme over the other. This is learly beause thegradient asent sheme is partiularly good for this problem.



CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 573.6 ConlusionIn this hapter we disussed the diÆulties of solving delayed RL problems having ontin-uous ation spaes. We briey presented previous work done in takling this problem andpointed out their drawbaks. We then proposed a extension of Q{learning appliable toontinuous ation spaes. This method overomes the drawbaks assoiated with the ear-lier attempts. We also proposed a gradient asent sheme appliable in the ase of ertainproblems where the Q funtion is unimodal in a for a �xed x.



Chapter 4
Conlusion
Majority of the optimal ontrol problems arising in engineering appliations have ontinu-ous ation spaes. However very little work has been done to design eÆient delayed RLalgorithms for suh problems. In this thesis we have developed some useful initial ideasfor this design. We have devised a simple sheme for extending Q{learning to ontinuousation spaes by augmenting the Q network with a poliy network that adapts a poliy thatis optimal with respet to th Q funtion. For speial, yet useful, lass of Linear Regulationproblems having onave reward (onvex ost) funtions we have shown that a simple gra-dient asent update rule an be used for the poliy network. We have demonstrated theworking of our method by simulating it on the Linear Quadrati Regulation problem.The thesis has provided only some initial ideas for the extension ofQ{learning to ontinu-ous ation spaes. Muh more work is needed to establish its real usefulness. First, a generalimplementation of our method by employing universal funtion approximation tehniquessuh as Multi-Layer Pereptrons or Radial Basis Funtion networks and demonstrating itsworking on non-trivial appliations has to be arried out. Here, it will be interesting toonsider the use of ontogeni networks suh as the Resoure Alloation Network. Seond,it is important to theoretially investigate issues of onvergene of the various algorithmssuggested for ontinuous ation spaes. The only result available thus far is that of Bradtke(1993), who has onsidered the speial ase of the Linear Quadrati Regulation problemand has shown that if his algorithm is started from a stabilizing poliy then onvegeneours. It appears that proving onvergene of the other general algorithms is a very hard58



CHAPTER 4. CONCLUSION 59and hallenging work. Another diretion for researh is to extend our ideas to ontinuoustime operation. One way of doing this would be to use the advantage funtion (Baird 1993)instead of the Q funtion and suitably modify the learning rules. We hope to take up someof these problems in the future.
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