
Solution of Delayed Reinfor
ement Learning Problems HavingContinuous A
tion Spa
esB. RavindranDepartment of Computer S
ien
e and AutomationIndian Institute of S
ien
eBangalore, IndiaApril, 1996

Contents
1 Introdu
tion 12 Survey of Reinfor
ement Learning Methods 52.1 Introdu
tion . 52.2 Immediate Reinfor
ement Learning . 92.3 Delayed Reinfor
ement Learning . 142.4 Methods of Estimating V � and Q� . 172.5 Delayed Reinfor
ement Learning Methods 242.5.1 Model Based Methods . 252.5.1.1 Value Iteration . 262.5.1.2 Poli
y Iteration . 292.5.2 Model{Free Methods . 312.5.2.1 A
tor-Criti
 Method . 312.5.2.2 Q{Learning . 332.6 Fun
tion{Approximators in RL . 362.7 Modular and Hierar
hi
al Ar
hite
tures . 392.8 Speeding{Up Learning . 402.9 Con
lusion . 413 RL for Continuous A
tion Spa
es 433.1 Introdu
tion . 433.2 Existing methods . 443.2.1 A Model-based Method: The Ba
k-propagated Adaptive Criti
 . . . 44i

3.2.2 Model{free methods . 453.2.3 SRV{based algorithm . 453.2.4 Bradtke's Poli
y Iteration S
heme based on Q{fun
tions 463.3 Extension of Q{learning to Continuous A
tion Spa
es 463.4 Comparison with Earlier Works . 493.5 Testing . 503.5.1 Linear Regulation Problem . 503.5.2 Representation of Fun
tions for the LQR Problem 523.5.3 Numeri
al Results . 533.6 Con
lusion . 574 Con
lusion 58

ii

A
knowledgements
I would �rst like to express my extreme gratitude to Prof. S. Sathiya Keerthi.Without his un
agging patien
e and ex
ellent guidan
e this thesis would never have been
ompleted. He is not only an out-standing tea
her and a wonderful advisor, but also a greatperson to move with. The days I have spent, and will spend, with him will be some of themost
herished in my life.I would like to thank Prof. M. A. L. Thatha
har for providing me with somereferen
es readily. I would also like to thank Prof. M. Narasimha Murthy for providingme a

ess to the Arti�
ial Intelligen
e Lab. I also thank the CSA oÆ
e sta� (present andA
har) for their smiling fa
es and ready-to-help nature.To thank all my friends who made my stay at IIS
 worthwhile and enjoyable would bea her
ulian task. I will just mention those who have had a dire
t impa
t on this thesis andhope the others will understand :-). First I would like to thank Phani, Prem and Prakashfor the numerous dis
ussions we have had on this parti
ular problem and various questionsin general. Espe
ially Phani for initially guiding me as to what resear
h should be like.Thanks are also due to Shantaram and Krishna for taking valuble time o� to explain to metheir results.To Naga goes the
redit of making me work on the implementation of an algorithm forthe �rst time, modi�
ations of whi
h I have been using till the end of the work. Pazhanilistened to my woes patiently when ever I wanted to vent my feelings and
ame up with anuseful idea, whi
h though I didn't adopt triggered o� other things. Suba listened to manya boring le
ture on my problem and gave me a
on�den
e boost whenever I needed it.Last but not the least
ome my lab mates: Abhi, Chiru, Krish and Shirish, whose pa-tien
e has been tested to the limits by me. Whenever I wanted to monopolise the
omputingpower in the lab, they a
quies
ed to my demands though with a lot of grumbling. :-). Chirureally egged me on to �nish my thesis, and Abhi tried to shame me into �nishing it. I reallyadmired their un
agging enthusiasm in the absen
e of su

ess. :-).

There are few others who did not
ontribute to the thesis dire
tly but were instrumentalin my being able to
on
entrate on my thesis. I would like to thank my one time room-mates Navaraj and Srinivas for putting up with my idiosyn
rasies; my bat
h mates andwingmates Jayku, Yuva and Maggi for the wonderful atmosphere they provided; also Yuvafor the numerous talks we have had on questions of intelligen
e, learning, quantum physi
sand su
h things; KVS and Barda for the numerous o

asions they have helped out witha lot of things; and the Co�ee Board for helping me to sleep pea
efully on many a day (Imean day :-) with the assuran
e that it was always there.

Abstra
tThis work
on
erns the solution of delayed Reinfor
ement Learning problems having
on-tinuous a
tion spa
es. The problems asso
iated with
ontinuous a
tion spa
es are dis
ussedand various existing algorithms for solving the problem are presented. A extension of Q{learning for solving delayed RL problems having
ontinuous a
tion spa
es is proposed whi
hover
omes drawba
ks asso
iated with existing methods. Simulation results are presented todemonstrate the working of the proposed algorithm.

Chapter 1
Introdu
tion
Reinfor
ement Learning (RL), a term borrowed from animal learning literature by Min-sky(1954;1961), refers to a
lass of learning tasks and algorithms in whi
h the learningsystem learns an asso
iative mapping, � : X!A by maximizing a s
alar evaluation (re-infor
ement) of its performan
e from the environment (user). RL problems are modelledusually as follows. We have an agent intera
ting in a
losed loop with an environment (see�gure 1.1.1). The agent re
eives as input the
urrent state of the environment and outputsa suitable a
tion. The environment takes as input the a
tion from the agent and outputsthe next state and also a s
alar evaluation (reinfor
ement) of the a
tion. The agent's taskis to learn an asso
iative mapping, �, from state spa
e X to the a
tion spa
e A, so as tomaximize the reinfor
ement it re
eives from the environment. RL problems are very dif-�
ult sin
e we have very little feedba
k from the environment as
ompared to supervisedlearning, another popular learning paradigm, in whi
h the environment provides the
orre
tvalue of �(x). Many problems en
ountered in pra
ti
e
annot be modelled as supervisedlearning problems either be
ause �(x) is unavailable or is too
ostly to
ompute.One example of a RL problem is the two{armed bandit problem. The agent is requiredto
hoose between two a
tions at a given time step. It is then supplied with a s
alarreinfor
ement r 2 f0; 1g, by the environment. In this
ase the state spa
e X is taken to bea singleton. The task of the agent is to learn the probabilitites of
hoosing either a
tion, soas to maximize the reinfor
ement re
eived from the environment.In the two{armed bandit problem, the agent re
eives the reinfor
ement as soon as it1

CHAPTER 1. INTRODUCTION 2
reinforcement

Environment

Agent

r

State Action x a

Figure 1.1.1. Model of RL problems
hooses an a
tion. Su
h problems are known as Immediate RL problems in whi
h if, at sometime, given an x 2 X, the learning system tries an a 2 A and, the environment immediatelyreturns a s
alar reinfor
ement evaluation, r, of the (x; a) pair (that indi
ates how far a isfrom �(x)). A more diÆ
ult RL task is delayed RL, in whi
h the environment only gives asingle s
alar reinfor
ement evaluation,
olle
tively for f(xt; at)g, a sequen
e of (x; a) pairso

uring in time during the system operation. Delayed RL tasks
ommonly arise in optimal
ontrol of dynami
 systems and planning problems of AI and are the main fo
us of thisthesis.Delayed RL problems are mu
h harder to solve than immediate RL problems for thefollowing reason.The total reward obtained gives only the
umulative e�e
t of all a
tionsperformed. Some s
heme must be found to reasonably apportion the
umulative evaluationto the individual a
tions. This is referred to as the temporal
redit assignment problem. Atypi
al example of a delayed RL problem is game playing. In game playing the reinfor
ementavailable to the agent is the result of the game, say, a 1 for a win and 0 for a loss. Theagent does not get any immediate evaluation of its moves but only a
umulative worth ofthe sequen
e of moves played by it.Dynami
 Programming (DP) is a well-known tool for solving su
h problems but it

CHAPTER 1. INTRODUCTION 3requires that a
omplete model of the environment in whi
h the agent is operating beavailable. Value Iteration and Poli
y Iteration are two parti
ular iterative DP algorithmsthat have been popularly used over four de
ades for o�-line solution of delayed RL problems.A model may not be available in many problems, or even if it is available, might be so
omplex that using it may be infeasible. Delayed RL methods are parti
ularly suited forsu
h situations.Two su
h delayed RL methods, namely A
tor-
riti
 of Barto, Sutton and Anderson(1983) and Q{learning of Watkins (1989), have made powerful impa
t on delayed RL re-sear
h. These algorithms
an be interpreted as modi�
ation of poli
y iteration and valueiteration respe
tively.AI resear
hers have long been interested in developing game playing ma
hines. Gamesare well suited for formulating as RL problems and Ba
kgammon is a popular appli
ationin whi
h RL methods have proved to be very su

essful. The TD{Gammon program ofTesauro (1995) plays at near grandmaster level, and has performed reasonably well againstthe top player in the world, losing just a single point. Other su

essful appli
ations of RLhave been in Robot motion planning (Thrun 1993, Mahadevan & Connell 1991), elevator
ontrol (Crites & Barto 1996) and pro
ess
ontrol (Sofge & White 1990).Most of the RL algorithms developed so far assume that the system operates in adis
rete world: dis
rete state and a
tion spa
es and with the system operating in dis
retetime. In fa
t, ni
e
onvergen
e results have been established for the dis
rete
ase. Butmost of the typi
al
ontrol problems en
ountered in pra
ti
e have
ontinuous state anda
tion spa
es and operate in
ontinuous time. With some
are, extension of dis
rete-timedelayed RL methods to
ontinuous-time
an be easily done (Baird 1993). Also if fun
tionapproximation te
hniques are
arefully used then the extension of these methods to dealwith
ontinuous state spa
es is also not diÆ
ult. However, extension to
ontinuous a
tionspa
es turns out to be non-trivial; this is the problem that we are interested in solving inthis thesis.Little work has been done in ta
kling problems having a
ontinuous a
tion spa
e. Gulla-palli has developed a new sto
hasti
 algorithm for immediate RL having
ontinuous a
tionspa
es and used it to extend the dis
rete a
tor-
riti
 method to
ontinuous a
tion spa
es.

CHAPTER 1. INTRODUCTION 4Werbos's ba
kpropagated adaptive-
riti
 makes use of a model of the environment and de-terministi
 gradient as
ent to operate in
ontinuous a
tion spa
es. To over
ome the needfor a model Brody suggested a modi�
ation to it whi
h tries to learn the model on{line.Bradtke has developed a spe
ial method of solving Linear Quadrati
 Regulator problemswhi
h have
ontinuous a
tion spa
es based on poli
y iteration and making use of the ni
eproperties of the problem being ta
kled.Gullapalli's method is slow be
ause it does sto
hasti
 sear
h in the a
tion spa
e usingon-line experien
es. On the other hand, Werbos' method is fast; however, sin
e it is basedon gradient as
ent it fa
es the problem of getting
aught in lo
al maxima. Bradtke's methodis diÆ
ult to extend to general delayed RL problems.All the above methods are based on poli
y iteration. We are not aware of any valueiteration based method for
ontinuous a
tion spa
es. In this thesis we propose a simple ideain this dire
tion. We point out how Q{learning
an be extended to
ontinuous a
tion spa
esand how the extension over
omes the problems fa
ed by the other three methods mentionedabove. To test the working of our method we
onsider the Linear Quadrati
 Regulatorproblem sin
e it enjoys a
losed form solution. We devise spe
ial fun
tion approximatorsfor this problem and demonstrate, by simulations, that our method works well.This thesis is organized as follows. In the next
hapter we present a brief overview ofvarious RL algorithms that are available today and also present a extensive survey of existinglitreature. In
hapter 3 we dis
uss in detail the problem of operating with
ontinuousa
tions and present our algorithm with some simulation results. We
on
lude with
hapter4 pointing out some dire
tions for further resear
h.

Chapter 2
Survey of Reinfor
ement LearningMethods
2.1 Introdu
tionIn this
hapter we survey some of the existing RL algorithms. As mentioned in the previous
hapter, we are interested in delayed RL problems, as these arise in pra
ti
e more oftenthan immediate RL problems. In this work unless we expli
itly state otherwise RL meansdelayed RL.Delayed RL algorithms en
ompass a diverse
olle
tion of ideas having roots in animallearning (Barto 1985; Sutton & Barto 1987),
ontrol theory (Bertsekas 1989; Kumar 1985),and AI (Dean & Wellman 1991). Delayed RL algorithms were �rst employed by Samuel(1959, 1967) in his
elebrated work on playing
he
kers. However, it was only mu
h later,after the publi
ation of Barto, Sutton and Anderson's work (Barto et al 1983) on a delayedRL algorithm
alled adaptive heuristi

riti
 and its appli
ation to the
ontrol problem ofpole balan
ing, that resear
h on RL got o� to a
ying start. Watkins' Q-Learning algorithm(Watkins 1989) made another impa
t on the resear
h. A number of signi�
ant ideas haverapidly emerged during the past �ve years and the �eld has rea
hed a
ertain level ofmaturity. In this
hapter we provide a
omprehensive survey of various ideas and methodsof delayed RL. To avoid distra
tions and unne
essary
lutter of notations, we present allideas in an intuitive, not-so-rigorous fashion. In preparing this
hapter, we have obtained5

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 6

G

 x

Figure 2.1.1 Navigating in a grid world.a lot of guidan
e from the works of Watkins (1989), Barto, Sutton and Watkins (1990),Barto, Bradtke and Singh (1992), Bradtke (1994), and Barto (1992).To illustrate the key features of a delayed RL task let us
onsider a simple example.Example 2.1.1 Navigating a RobotFigure 2.1.1 illustrates a grid world in whi
h a robot navigates. Ea
h blank
ell on thegrid is
alled a state. Shaded
ells represent barriers; these are not states. Let X be thestate spa
e, i.e., the set of states. The
ell marked G is the goal state. The aim is to rea
hG from any state in the least number of time steps. Navigation is done using four a
tions:A = fN;S;E;Wg, the a
tions denoting the four possible movements along the
oordinatedire
tions.Rules of transition are de�ned as follows. Suppose that the robot is in state x and a
tionN is
hosen. Then the resulting next state, y is the state dire
tly to the north of x, if thereis su
h a state; otherwise y = x. For instan
e,
hoosing W at the x shown in �gure 2.1.1will lead to the system staying at x. The goal state is a spe
ial
ase. By de�nition we willtake it that any a
tion taken from the goal state results in a transition ba
k to the goalstate. In more general problems, the rules of transition
an be sto
hasti
.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 7The robot moves at dis
rete (integer) time points starting from t = 0. At a time step t,when the robot is at state, xt, we de�ne an immediate reward1 asr(xt) = 8><>: 0 if xt = G;�1 otherwise:In e�e
t, the robot is penalized for every time step spent at non-goal states. It is simple toverify that maximizing the total reward over time,V (x) = 1Xt=0 r(xt)is equivalent to a
hieving minimum time navigation from the starting state, x0 = x. LetV ?(x) denote the maximum a
hievable (optimal) value of V (x).We are interested in �nding a feedba
k poli
y, � : X!A su
h that, if we start from anystarting state and sele
t a
tions using � then we will always rea
h the goal in the minimumnumber of time steps.The usefulness of immediate RL methods in delayed RL
an be roughly explained asfollows. Typi
al delayed RL methods maintain V̂ , an approximation of the optimal fun
tion,V ?. If a
tion a is performed at state x and state y results, then V̂ (y)
an be taken asan (approximate) immediate evaluation of the (x; a) pair.2 By solving an immediate RLproblem that uses this evaluation fun
tion we
an obtain a good sub{optimal poli
y for thedelayed RL problem. We present relevant immediate RL algorithms in se
tion 2.2. 2Delayed RL problems are mu
h harder to solve than immediate RL problems for thefollowing reason. Suppose, in example 2.1.1 , performan
e of a sequen
e of a
tions, sele
teda

ording to some poli
y, leads the robot to the goal. To improve the poli
y using theexperien
e, we need to evaluate the goodness of ea
h a
tion performed. But the totalreward obtained gives only the
umulative e�e
t of all a
tions performed. Some s
hememust be found to reasonably apportion the
umulative evaluation to the individual a
tions.This is referred to as the temporal
redit assignment problem.1Sometimes r is referred to as the primary reinfor
ement. In more general situations, r is a fun
tion ofxt as well as at, the a
tion at time step t.2An optimal a
tion at x is one that gives the maximum value of V ?(y).

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 8Dynami
 programming (DP) (Bertsekas 1989; Ross 1983) is a well{known tool for solvingproblems su
h as the one in example 2.1.1. It is an o�{line method that requires theavailability of a
omplete model of the environment. But the
on
erns of delayed RL arevery di�erent. To see this
learly let us return to example 2.1.1 and impose the requirementthat the robot has no knowledge of the environment and that the only way of learning is byon{line experien
e of trying various a
tions3 and thereby visiting many states. Delayed RLalgorithms are parti
ularly meant for su
h situations and have the following general format.Delayed RL AlgorithmInitialize the learning system.Repeat1. With the system at state x,
hoose an a
tion a a

ording to an exploration poli
y andapply it to the system.2. The environment returns a reward, r, and also yields the next state, y.3. Use the experien
e, (x; a; r; y) to update the learning system.4. Set x := y.Even when a model of the environment is available, it is often advantageous to avoid ano�{line method su
h as DP and instead use a delayed RL algorithm. This is be
ause, inmany problems the state spa
e is very large; while a DP algorithm operates with the entirestate spa
e, a delayed RL algorithm only operates on parts of the state spa
e that are mostrelevant to the system operation. When a model is available, delayed RL algorithms
anemploy simulation mode of operation instead of on{line operation so as to speed{up learningand avoid doing experiments using hardware. We will use the term, real time operation tomean that either on{line operation or simulation mode of operation is used.In most appli
ations, representing fun
tions su
h as V ? and � exa
tly is infeasible. Abetter alternative is to employ parametri
 fun
tion approximators, e.g., neural networks.3During learning this is usually a
hieved by using a (sto
hasti
) exploration poli
y for
hoosing a
tions.Typi
ally the exploration poli
y is
hosen to be totally random at the beginning of learning and made toapproa
h an optimal poli
y as learning nears
ompletion.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 9Su
h approximators must be suitably
hosen for use in a delayed RL algorithm. To
larifythis, let us take V ? for instan
e and
onsider a fun
tion approximator, V̂ (�;w) : X!R, forit. Here R denotes the real line and w denotes the ve
tor of parameters of the approximatorthat is to be learnt so that V̂ approximates V ? well. Usually, at step 3 of the delayed RLalgorithm, the learning system uses the experien
e to
ome up with a dire
tion, � in whi
hV̂ (x;w) has to be
hanged for improving performan
e. Given a step size, �, the fun
tionapproximator must alter w to a new value, wnew so thatV̂ (x;wnew) = V̂ (x;w) + �� (2:1:1)For example, in multilayer per
eptrons (Hertz et al 1991, Haykin 1994) w denotes the setof weights and thresholds in the network and, their updating
an be
arried out usingba
kpropagation so as to a
hieve (2.1.1). In the rest of the
hapter we will denote theupdating pro
ess in (2.1.1) as V̂ (x;w) := V̂ (x;w) + �� (2:1:2)and refer to it as a learning rule.The
hapter is organized as follows. Se
tion 2.2 dis
usses immediate RL. In se
tion 2.3we formulate Delayed RL problems and mention some basi
 results. Methods of estimatingtotal reward are dis
ussed in se
tion 2.4. These methods play an important role in delayedRL algorithms. DP te
hniques and delayed RL algorithms are presented in se
tion 2.5.Se
tions 2.6 to 2.8 address various pra
ti
al issues.2.2 Immediate Reinfor
ement LearningImmediate RL refers to the learning of an asso
iative mapping, � : X!A given a rein-for
ement evaluator. To learn, the learning system intera
ts in a
losed loop with theenvironment. At ea
h time step, the environment
hooses an x 2 X and, the learning sys-tem uses its fun
tion approximator, �̂(�;w) to sele
t an a
tion: a = �̂(x;w). Based on bothx and a, the environment returns an evaluation or \reinfor
ement", r(x; a) 2 R. Ideally,the learning system has to adjust w so as to produ
e the maximum possible r value for ea
h

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 10x; in other words, we would like �̂ to solve the parametri
 global optimization problem,r(x; �̂(x;w)) = r?(x) def= maxa2A r(x; a) 8x 2 X (2:2:1)Supervised learning is a popular paradigm for learning asso
iative mappings (Hertz etal 1991, Haykin 1994). In supervised learning, for ea
h x shown the supervisor provides thelearning system with the value of �(x). Immediate RL and supervised learning di�er in thefollowing two important ways.� In supervised learning, when an x is shown and the supervisor provides a = �(x), thelearning system forms the dire
ted information, � = a� �̂(x;w) and uses the learningrule: �̂(x;w) := �̂(x;w) + ��, where � is a small (positive) step size. For immediateRL su
h dire
ted information in not available and so it has to employ some strategyto obtain su
h information.� In supervised learning, the learning system
an simply
he
k if � = 0 and hen
e de
idewhether the
orre
t map value has been formed by �̂ at x. However, in immediateRL, su
h a
on
lusion on
orre
tness
annot be made without exploring the values ofr(x; a) for all a.Therefore, immediate RL problems are mu
h more diÆ
ult to solve than supervised learningproblems.A number of immediate RL algorithms have been des
ribed in the literature. Sto
hasti
learning automata algorithms (Narendra & Thatha
har 1989) deal with the spe
ial
ase inwhi
h X is a singleton, A is a �nite set, and r 2 [0; 1℄.4 The Asso
iative Reward-Penalty(AR�P) algorithm (Barto & Anandan 1985; Barto et al 1985; Barto & Jordan 1987; Mazzoniet al 1990) extends the learning automata ideas to the
ase where X is a �nite set. Williams(1986, 1987) has proposed a
lass of immediate RL methods and has presented interestingtheoreti
al results. Gullapalli (1990, 1992a) has developed algorithms for the general
asein whi
h X, A are �nite-dimensional real spa
es and r is real valued. Here we will dis
ussonly algorithms whi
h are most relevant to, and useful in delayed RL.4Sto
hatsti
 Learning Automata algorithms
an also be used when X is not a singleton, by employingteams of
o{operating automata (Phansalkar & Thatha
har 1995, Thatha
har & Phansalkar 1995). Formore details on su
h algorithms see Narendra & Thatha
har (1989).

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 11One simple way of solving (2.2.1) is to take one x at a time, use a global optimizationalgorithm (e.g.,
omplete enumeration) to explore the A spa
e and obtain the
orre
t afor the given x, and then make the fun
tion approximator learn this (x; a) pair. However,su
h an idea is not used for the following reason. In most situations where immediateRL is used as a tool (e.g., to approximate a poli
y in delayed RL), the learning systemhas little
ontrol over the
hoi
e of x. When, at a given x, the learning system
hooses aparti
ular a and sends it to the environment for evaluation, the environment not only sendsa reinfor
ement evaluation but also alters the x value. Immediate RL seeks approa
heswhi
h are appropriate to these situations.Let us �rst
onsider the
ase in whi
h A is a �nite set: A = fa1; a2; � � � ; amg. LetRm denote the m{dimensional real spa
e. The fun
tion approximator, �̂ is usually formedas a
omposition of two fun
tions: a fun
tion approximator, g(�;w) : X!Rm and a �xedfun
tion, M : Rm!A. The idea behind this set-up is as follows. For ea
h given x, z =g(x;w) 2 Rm gives a ve
tor of merits of the various ai values. Let zk denote the k{th
omponent of z. Given the merit ve
tor z, a =M(z) is formed by the max sele
tor,a = ak where zk = max1�i�m zi (2:2:2)Let us now
ome to the issue of learning (i.e.,
hoosing a w). At some stage, let xbe the input, z be the merit ve
tor returned by g, and ak be the a
tion having the largestmerit value. The environment returns the reinfor
ement, r(x; ak). In order to learn we needto evaluate the goodness of zk (and therefore, the goodness of ak). Obviously, we
annotdo this using existing information. We need an estimator,
all it r̂(x; v), that provides anestimate of r?(x). The di�eren
e, r(x; ak)� r̂(x; v) is a measure of the goodness of ak. Thena simple learning rule isgk(x;w) := gk(x;w) + �(r(x; ak)� r̂(x; v)) (2:2:3)where � is a small (positive) step size. If r̂(�; v) � r? and (2.2.3) is repeated a number oftimes for ea
h (x; k)
ombination, then it should be
lear that all non{optimal aks will getlarge negative merit values while an optimal ak will retain its initial merit value.Learning r̂ requires that all members of A are evaluated by the environment at ea
hx. Clearly, the max sele
tor, (2.2.2) is not suitable for su
h exploration. For instan
e, if

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 12at some stage of learning, for some x, g assigns the largest merit to a wrong a
tion, sayak, and r̂ gives, by mistake, a value smaller than r(x; ak), then no a
tion other than ak isgoing to be generated by the learning system at the given x. So we repla
e (2.2.2) by a
ontrolled sto
hasti
 a
tion sele
tor that generates a
tions randomly when learning beginsand approa
hes (2.2.2) as learning is
ompleted. A popular sto
hasti
 a
tion sele
tor isbased on the Boltzmann distribution,pi(x) def= Probfa = aijxg = exp(zi=T)Pj exp(zj=T) (2:2:4)where T is a nonnegative real parameter (temperature) that
ontrols the sto
hasti
ity ofthe a
tion sele
tor. For a given x the expe
ted reinfor
ement of the a
tion sele
tor is~r(x) def= E(r(x; a)jx) =Xi pi(x)r(x; ai)As T!0 the sto
hasti
 a
tion sele
tor approa
hes the max sele
tor, (2.2.2), and,~r(x)!r?(x). The ideas here are somewhat similar to those of simulated annealing. Thereforewe train r̂ to approximate ~r (instead of r?). This is easy to do be
ause, for any �xed valueof T , ~r
an be estimated by the average of the performan
e of the sto
hasti
 a
tion sele
torover time. A simple learning rule that a
hieves this isr̂(x; v) := r̂(x; v) + �(r(x; a) � r̂(x; v)) (2:2:5)where � is a small (positive) step size.Remark Two important
omments should be made regarding the
onvergen
e of learn-ing rules su
h as (2.2.5) (we will
ome a
ross many su
h learning rules later) whi
h aredesigned to estimate an expe
tation by averaging over time.� Even if r̂(�; v) � ~r, r(x; a) � r̂(x; v)
an be non-zero and even large in size. This isbe
ause a is only an instan
e generated by the distribution, p(x). Therefore, to avoidunlearning as r̂
omes
lose to ~r, the step size, � must be
ontrolled properly. Thevalue of � may be
hosen to be slightly smaller than 1 when learning begins, and thenslowly de
reased to 0 as learning progresses.� For good learning to take pla
e, the sequen
e of x values at whi
h (2.2.5) is
arried outmust be su
h that it
overs all parts of the spa
e, X as often as possible. Of
ourse,

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 13when the learning system has no
ontrol over the
hoi
e of x, it
an do nothing toa
hieve su
h an exploration. To explore, the following is usually done. Learning isdone over a number of trials. A trial
onsists of beginning with a random
hoi
e ofx and operating the system for several time steps. At any one time step, the systemis at some x and the learning system
hooses an a
tion, a and learns using (2.2.5).Depending on x, a and the rules of the environment a new x results and the next timestep begins. Usually, when learning is repeated over multiple trials, the X spa
e isthoroughly explored.Let us now
onsider the
ase in whi
h A is
ontinuous, say a �nite dimensional realspa
e. The idea of using merit values is not suitable. It is better to dire
tly deal with afun
tion approximator, h(�;w) from X to A. In order to do exploration a
ontrolled randomperturbation, � is added to h(x;w) to form a = �̂(x). A simple
hoi
e is to take � to be aGaussian with zero mean and having a standard deviation, �(T) that satis�es: �(T)!0 asT!0. The setting-up and training of the reinfor
ement estimator, r̂ is as in the
ase whenA is dis
rete. The fun
tion approximator, h
an adopt the following learning rule:h(x;w) := h(x;w) + �(r(x; a) � r̂(x; v))� (2:2:6)where � is a small (positive) step size. In problems where a bound on r? is available, thisbound
an be suitably employed to guide exploration, i.e., to
hoose � (Gullapalli 1990).Gullapalli proposed the Sto
hasti
 Real Valued (SRV) algorithm as an extension of theAsso
iative Reward-Penalty algorithm. The SRV unit uses two internal parameters � and� for estimating the a
tion and reward respe
tively. Let the system be at some state xsay and let ~x be a representation of this state. The output of the unit, y, is generated bya Gaussian distribution having � = �T ~x, as the mean. The standard deviation, �, givenby a monotoni
ally de
reasing, non{negative fun
tion s of r̂ = �T ~x, is used to
ontrol theamount of exploration. The more the expe
ted reinfor
ement in that state the the lesserthe amount of exploration. The following learning rule is used to update �:� := � + �(r(y; x)� r̂)�y � �� � ~x� is updated with a rule similar to (2.2.6) as follows:� := �+ �(r(y; x)� r̂)~x

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 14Gullapalli (1992a) has also attempted to show that the SRV algorithm belongs to a
lass ofREINFORCE algorithms (Williams 1986, 1987) whi
h have
ertain
onvergen
e properties.Shantaram, Shasty and Thatha
har (1994) have given a
ontinuous a
tion set learningautomata for sto
hasti
 optimization, whi
h
ombined with ideas of teams of automata
anbe extended to asso
iative learning tasks. The idea used here is similar to SRV but uses adi�erent s
heme to update the parameters � and �.Jordan and Rumelhart (1990) have suggested a method of `forward models' for
on-tinuous a
tion spa
es. If r is a known di�erentiable fun
tion, then a simple, deterministi
learning law based on gradient as
ent
an be given to update �̂:�̂(x;w) := �̂(x;w) + ��r(x; a)�a (2:2:7)If r is not known, Jordan and Rumelhart suggest that it is learnt using on{line data, and(2.2.7) be used using this learnt r. If for a given x, the fun
tion r(x; �) has lo
al maximathen the �̂(x) obtained using learning rule, (2.2.7) may not
onverge to �(x). Typi
ally thisis not a serious problem. The sto
hasti
 approa
h dis
ussed earlier does not su�er fromlo
al maxima problems. However, we should add that, be
ause the deterministi
 methodexplores in systemati
 dire
tions and the sto
hasti
 method explores in random dire
tions,the former is expe
ted to be mu
h faster. The
omparison is very similar to the
omparisonof deterministi
 and sto
hasti
 te
hniques of
ontinuous optimization.2.3 Delayed Reinfor
ement LearningDelayed RL
on
erns the solution of sto
hasti
 optimal
ontrol problems. In this se
tionwe formulate and dis
uss the basi
s of su
h problems. Solution methods for delayed RLwill be presented in se
tion 2.4 and se
tion 2.5. In these three se
tions we will mainly
onsider problems in whi
h the state and
ontrol spa
es are �nite sets. This is be
ause themain issues and solution methods of delayed RL
an be easily explained for su
h problems.Problems with
ontinuous state and/or a
tion spa
es will be dealt with in detail in the next
hapter.Consider a dis
rete-time sto
hasti
 dynami
 system with a �nite set of states, X. Let

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 15the system begin its operation at t = 0. At time t the agent (
ontroller) observes state5 xtand, sele
ts (and performs) a
tion at from a �nite set, A(xt), of possible a
tions. Assumethat the system is Markovian and stationary, i.e.,Probfxt+1 = y j x0; a0; x1; a1; � � � ; xt = x; at = ag= Probfxt+1 = yjxt = x; at = ag def= Pxy(a)A poli
y is a method adopted by the agent to
hoose a
tions. The obje
tive of thede
ision task is to �nd a poli
y that is optimal a

ording to a well de�ned sense, des
ribedbelow. In general, the a
tion spe
i�ed by the agent's poli
y at some time
an depend onthe entire past history of the system. Here we restri
t attention to poli
ies that spe
ifya
tions based only on the
urrent state of the system. A deterministi
 poli
y, � de�nes,for ea
h x 2 X an a
tion �(x) 2 A(x). A sto
hasti
 poli
y, � de�nes, for ea
h x 2 Xa probability distribution on the set of feasible a
tions at x, i.e., it gives the values ofProbf�(x) = ag for all a 2 A(x). For the sake of keeping the notations simple we
onsideronly deterministi
 poli
ies in this se
tion. All ideas
an be easily extended to sto
hasti
poli
ies using appropriate detailed notations.Let us now pre
isely de�ne the optimality
riterion. While at state x, if the agentperforms a
tion a, it re
eives an immediate payo� or reward, r(x; a). Given a poli
y � wede�ne the value fun
tion, V � : X!R as follows:6V �(x) = Ef 1Xt=0
tr(xt; �(xt))jx0 = xg (2:3:1)Here future rewards are dis
ounted by a fa
tor
 2 [0; 1). The
ase
 = 1 is avoidedonly be
ause it leads to some diÆ
ulties asso
iated with the existen
e of the summation in(2.3.1). Of
ourse, these diÆ
ulties
an be handled by putting appropriate assumptions onthe problem solved. But, to avoid unne
essary distra
tion we do not go into the details; see(Bradtke 1994; Bertsekas & Tsitsiklis 1989).5If the state is not
ompletely observable then a method that uses the observable states and retains pastinformation has to be used; see (Ba
hara
h 1991; Ba
hara
h 1992; Chrisman 1992; Mozer & Ba
hara
h1990a, 1990b; Whitehead and Ballard 1990). See Jaakkola, Singh and Jordan 1995, and Singh, Jaakkolaand Jordan 1994, for a dire
t treatment of partially observable Markovian de
ision pro
esses.6Most RL resear
hers have
on
erned themselves with the optimization of the expe
ted total dis
ountedreward in (2.3.1). See Heger 1994, for a dis
ussion of an alternative obje
tive fun
tion: the minimax
riterion.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 16The expe
tation in (2.3.1) should be understood asV �(x) = limN!1 EfN�1Xt=0
tr(xt; �(xt))jx0 = xgwhere the probability with whi
h a parti
ular state sequen
e, fxtgN�1t=0 o

urs is taken inan obvious way using x0 = x and repeatedly employing � and P . We wish to maximize thevalue fun
tion: V ?(x) = max� V �(x) 8x (2:3:2)V ? is referred to as the optimal value fun
tion. Be
ause 0 �
 < 1, V �(x) is bounded.Also, sin
e the number of �'s is �nite V ?(x) exists.How do we de�ne an optimal poli
y, �?? For a given x let �x;? denote a poli
y thata
hieves the maximum in (2.3.2). Thus we have a
olle
tion of poli
ies, f�x;? : x 2 Xg.Now �? is de�ned by pi
king only the �rst a
tion from ea
h of these poli
ies:�?(x) = �x;?(x) ; x 2 XIt turns out that �? a
hieves the maximum in (2.3.2) for every x 2 X. In other words,V ?(x) = V �?(x) ; x 2 X (2:3:3)This result is easy to see if one looks at Bellman's optimality equation { an importantequation that V ? satis�es:V ?(x) = maxa2A(x)24r(x; a) +
 Xy2X Pxy(a)V ?(y)35 (2:3:4)The fa
t that V ? satis�es (2.3.4)
an be explained as follows. The term within squarebra
kets on the right hand side is the total reward that one would get if a
tion a is
hosenat the �rst time step and then the system performs optimally in all future time steps.Clearly, this term
annot ex
eed V ?(x) sin
e that would violate the de�nition of V ?(x)in (2.3.2); also, if a = �x;?(x) then this term should equal V ?(x). Thus (2.3.4) holds. Italso turns out that V ? is the unique fun
tion from X to R that satis�es (2.3.4) for allx 2 X. This fa
t, however, requires a non-trivial proof; details
an be found in (Ross 1983;Bertsekas 1989; Bertsekas & Tsitsiklis 1989).

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 17The above dis
ussion also yields a me
hanism for
omputing �? if V ? is known:�?(x) = arg maxa2A(x)24r(x; a) +
 Xy2X Pxy(a)V ?(y)35A diÆ
ulty with this
omputation is that the system model, i.e., the fun
tion, Pxy(a) mustbe known. This diÆ
ulty
an be over
ome if, instead of the V {fun
tion we employ anotherfun
tion
alled the Q-fun
tion. Let U = f(x; a) : x 2 X; a 2 A(x)g, the set of feasible(state,a
tion) pairs. For a given poli
y �, let us de�ne Q� : U!R byQ�(x; a) = r(x; a) +
 Xy2X Pxy(a)V �(y) (2:3:5)Thus Q�(x; a) denotes the total reward obtained by
hoosing a as the �rst a
tion and thenfollowing � for all future time steps. Let Q? = Q�? . By Bellman's optimality equation and(2.3.3) we get V ?(x) = maxa2A(x)[Q?(x; a)℄ (2:3:6)It is also useful to rewrite Bellman's optimality equation using Q? alone:Q?(x; a) = r(x; a) +
 Xy2X Pxy(a)f maxb2A(y)Q?(y; b)g (2:3:7)Using Q? we
an
ompute �?: �?(x) = arg maxa2A(x)[Q?(x; a)℄ (2:3:8)Thus, if Q? is known then �?
an be
omputed without using a system model. This advan-tage of the Q{fun
tion over the V {fun
tion will play a
ru
ial role in se
tion 2.5 for derivinga model{free delayed RL algorithm
alled Q{Learning (Watkins 1989).2.4 Methods of Estimating V � and Q�Delayed RL methods use a knowledge of V � (Q�) in two
ru
ial ways: (1) the optimalityof �
an be
he
ked by seeing if V � (Q�) satis�es Bellman's optimality equation; and (2)if � is not optimal then V � (Q�)
an be used to improve �. We will elaborate on thesedetails in the next se
tion. In this se
tion we dis
uss, in some detail, methods of estimatingV � for a given poli
y, �. (Methods of estimating Q� are similar and so we will deal with

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 18them brie
y at the end of the se
tion.) Our aim is to �nd V̂ (�; v), a fun
tion approximatorthat estimates V �. Mu
h of the material in this se
tion is taken from the works of Watkins(1989), Sutton (1984, 1988) and Jaakkola et al (1994).To avoid
lumsiness we employ some simplifying notations. Sin
e � is �xed we will omitthe supers
ript from V � and so
all it as V . We will refer to r(xt; �(xt)) simply as rt. If p isa random variable, we will use p to denote both, the random variable as well as an instan
eof the random variable.A simple approximation of V (x) is the n{step trun
ated return,V [n℄(x) = n�1X�=0
�r� ; V̂ (x; v) = E(V [n℄(x)) (2:4:1)(Here it is understood that x0 = x. Thus, throughout this se
tion � will denote the numberof time steps elapsed after the system passed through state x. It is for stressing this pointthat we have used � instead of t. In a given situation, the use of time { is it `a
tual systemtime' or `time relative to the o

uren
e of x' { will be obvious from the
ontext.) If rmax isa bound on the size of r then it is easy to verify thatmaxx jV̂ (x; v)� V (x)j �
nrmax(1�
) (2:4:2)Thus, as n!1, V̂ (x; v)
onverges to V (x) uniformly in x.But (2.4.1) su�ers from an important drawba
k. The
omputation of the expe
tationrequires the
omplete enumeration of the probability tree of all possible states rea
hable inn time steps. Sin
e the breadth of this tree may grow very large with n, the
omputations
an be
ome very burdensome. One way of avoiding this problem is to setV̂ (x; v) = V [n℄(x) (2:4:3)where V [n℄(x) is obtained via either Monte-Carlo simulation or experiments on the realsystem (the latter
hoi
e is the only way to systems for whi
h a model is unavailable.)The approximation, (2.4.3) su�ers from a di�erent drawba
k. Be
ause the breadth of theprobability tree grows with n, the varian
e of V [n℄(x) also grows with n. Thus V̂ (x; v) in(2.4.3) will not be a good approximation of E(V [n℄(x)) unless it is obtained as an average

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 19over a large number of trials.7 Averaging is a
hieved if we use a learning rule (similar to(2.2.5)): V̂ (x; v) := V̂ (x; v) + � hV [n℄(x)� V̂ (x; v)i (2:4:4)where � is a small (positive) step size. Learning
an begin with a random
hoi
e of v.Eventually, after a number of trials, we expe
t the V̂ resulting from (2.4.4) to satisfy (2.4.2).In the above approa
h, an approximation of V , V̂ is always available. Therefore, anestimate that is more appropriate than V [n℄(x) is the
orre
ted n{step trun
ated return,V (n)(x) = n�1X�=0
� r� +
nV̂ (xn; v) (2:4:5)where xn is the state that o

urs n time steps after the system passed through state x. Letus do some analysis to justify this statement.First,
onsider the ideal learning rule,V̂ (x; v) := E(V (n)(x)) 8 x (2:4:6)Suppose v gets modi�ed to vnew in the pro
ess of satisfying (2.4.6). Then, similar to (2.4.2)we
an easily derivemaxx jV̂ (x; vnew)� V (x)j �
nmaxx jV̂ (x; v) � V (x)jThus, as we go through a number of learning steps we a
hieve V̂!V . Note that this
onvergen
e is a
hieved even if n is �xed at a small value, say n = 1. On the other hand,for a �xed n, the learning rule based on V [n℄, i.e., (2.4.1), is only guaranteed to a
hieve thebound in (2.4.2). Therefore, when a system model is available it is best to
hoose a smalln, say n = 1, and employ (2.4.6).Now suppose that, either a model is unavailable or (2.4.6) is to be avoided be
ause it isexpensive. In this
ase, a suitable learning rule that employs V (n) and uses real{time datais: V̂ (x; v) := V̂ (x; v) + � hV (n)(x)� V̂ (x; v)i (2:4:7)Whi
h is better: (2.4.4) or (2.4.7)? There are two reasons as to why (2.4.7) is better.7As already mentioned, a trial
onsists of starting the system at a random state and then running thesystem for a number of time steps.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 20� Suppose V̂ is a good estimate of V . Then a small n makes V (n) ideal: V (n)(x) hasa mean
lose to V (x) and it also has a small varian
e. Small varian
e means that(2.4.7) will lead to fast averaging and hen
e fast
onvergen
e of V̂ to V . On the otherhand n has to be
hosen large for V [n℄(x) to have a mean
lose to V (x); but then,V [n℄(x) will have a large varian
e and (2.4.4) will lead to slow averaging.� If V̂ is not a good estimate of V then both V (n) and V [n℄ will require a large n fortheir means to be good. If a large n is used, the di�eren
e between V (n) and V [n℄,i.e.,
nV̂ is negligible and so both (2.4.4) and (2.4.7) will yield similar performan
e.The above dis
ussion implies that it is better to employ V (n) than V [n℄. It is also
learthat, when V (n) is used, a suitable value of n has to be
hosen dynami
ally a

ording tothe goodness of V̂ . To aid the manipulation of n, Sutton (1988) suggested a new estimate
onstru
ted by geometri
ally averaging fV (n)(x) : n � 1g:V �(x) = (1� �) 1Xn=1�n�1V (n)(x) (2:4:8)Here (1� �) is a normalizing term. Sutton referred to the learning algorithm that uses V �as TD(�). Here TD stands for `Temporal Di�eren
e'. The use of this name will be justi�edbelow. Expanding (2.4.8) using (2.4.5) we getV �(x) = (1� �) hV (1)(x) + �V (2)(x) + �2V (3)(x) + � � �i= r0 +
(1� �)V̂ (x1; v) +
� hr1 +
(1� �)V̂ (x2; v) +
� hr2 +
(1� �)V̂ (x3; v) +� � � (2:4:9)
Using the fa
t that r0 = r(x; �(x)) the above expression may be rewritten re
ursively asV �(x) = r(x; �(x)) +
(1� �)V̂ (x1; v) +
�V �(x1) (2:4:10)where x1 is the state o

uring a time step after x. Putting � = 0 gives V 0 = V (1) andputting � = 1 gives V 1 = V , whi
h is the same as V (1). Thus, the range of values obtainedusing V (n) and varying n from 1 to 1 is approximately a
hieved by using V � and varying� from 0 to 1. A simple idea is to use V � instead of V (n), begin the learning pro
ess with

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 21� = 1, and redu
e � towards zero as learning progresses and V̂ be
omes a better estimateof V . If � is properly
hosen8 then a signi�
ant betterment of
omputational eÆ
ien
y isusually a
hieved when
ompared to simply using � = 0 or � = 1 (Sutton 1988). In a re
entpaper, Sutton and Singh (1994) have developed automati
 s
hemes for doing this assumingthat no
y
les are present in state traje
tories.The de�nition of V � involves all V (n)s and so it appears that we have to wait for ever to
ompute it. However,
omputations involving V �
an be ni
ely rearranged and then suitablyapproximated to yield a pra
ti
al algorithm that is suited for doing learning
on
urrentlywith real time system operation. Consider the learning rule in whi
h we use V � instead ofV (n): V̂ (x; v) := V̂ (x; v) + � hV �(x)� V̂ (x; v)i (2:4:11)De�ne the temporal di�eren
e operator, � by�(x) = r(x; �(x)) +
V̂ (x1; v)� V̂ (x; v) (2:4:12)�(x) is the di�eren
e of predi
tions (of V �(x)) at two
onse
utive time steps: r(x; �(x)) +
V̂ (x1; v) is a predi
tion based on information at � = 1, and V̂ (x; v) is a predi
tion basedon information at � = 0. Hen
e the name, `temporal di�eren
e'. Note that �(x)
an beeasily
omputed using the experien
e within a time step. A simple rearrangement of theterms in the se
ond line of (2.4.9) yieldsV �(x)� V̂ (x; v) = �(x) + (
�)�(x1) + (
�)2�(x2) + � � � (2:4:13)Even (2.4.13) is not in a form suitable for use in (2.4.11) be
ause it involves future terms,�(x1), �(x2), et
., extending to in�nite time. One way to handle this problem is to
hoosea large N , a

umulate �(x), �(x1), � � �, �(xN�1) in memory, trun
ate the right hand sideof (2.4.13) to in
lude only the �rst N terms, and apply (2.4.11) at � = N + 1, i.e., (N + 1)time steps after x o

ured. However, a simpler and approximate way of a
hieving (2.4.13)is to in
lude the e�e
ts of the temporal di�eren
es as and when they o

ur in time. Let ussay that the system is in state x at time t. When the systems transits to state x1 at time8For example, if the underlying dynami
 system is deterministi
 then a value of �
lose to 1 is appropriate;on the other hand, if the system is highly sto
hasti
 then a value of � near zero is better.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 22(t+1),
ompute �(x) and update V̂ a

ording to: V̂ (x; v) := V̂ (x; v)+�(
�)�(x1). Whenthe system transits to state x2 at time (t+ 2),
ompute �(x1) and update V̂ a

ording to:V̂ (x; v) := V̂ (x; v)+�(
�)2�(x2) and so on. The reason why this is approximate is be
auseV̂ (x; v) is
ontinuously altered in this pro
ess whereas (2.4.13) uses the V̂ (x; v) existing attime t. However, if � is small and so V̂ (x; v) is adapted slowly, the approximate updatingmethod is expe
ted to be
lose to (2.4.11).One way of implementing the above idea is to maintain an eligibility tra
e, e(x; t), forea
h state visited (Klopf 1972; Klopf 1982; Klopf 1988; Barto et al 1983; Watkins 1989),and use the following learning rule at time t:V̂ (x; v) := V̂ (x; v) + �e(x; t)�(xt) 8 x (2:4:14)where xt is the system state at time t. The eligibility tra
es
an be adapted a

ording toe(x; t) = 8>>>><>>>>: 0 if x has never been visited
�e(x; t � 1) if xt 6= x1 +
�e(x; t� 1) if xt = x (2:4:15)Two important remarks must be made regarding this implementation s
heme.� Whereas the previous learning rules (e.g., (2.4.4), (2.4.7) and (2.4.11)) update V̂ onlyfor one x at a time step, (2.4.14) updates the V̂ of all states with positive eligibilitytra
e, at a time step. Rule (2.4.14) is suitable for neural hardware implementation,but not so for implementations on sequential
omputers. In that
ase one of thefollowing ideas
an be tried.1. Keep tra
k of the last k states visited and update V̂ for them only. The value ofk should depend on �. If � is small, k should be small. If � = 0 then k = 1.2. The following idea is due to Ci
hosz (1995). Choose a nonnegative integer mdepending on the de
ay rate
�) and trun
ate the right hand side of (2.4.13) tokeep only the �rst (m+ 1) terms and getV̂ (x; v) := V̂ (x; v) + � Æ(x)where Æ(x) = �(x) + (
�)�(x1) + � � � + (
�)m�(xm)

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 23Thus, if x is the state o

uring at time step t, V̂ (x; v) gets updated at the endof time step (t +m) and, more importantly, x is the only state for whi
h V̂ isupdated at time step (t+m). The re
ursion,Æ(x1) = [Æ(x)��(x)℄ =(
�) + (
�)m�(xm+1)
an be employed so that the Æ
omputation
an be done in
onstant time even ifm is large. Ci
hosz (1995) has also suggested (with good justi�
ation) anotherupdate rule based on trun
ation whi
h is even better than the idea des
ribedabove.� The rule for updating eligibility tra
es, (2.4.15) assumes that learning takes pla
e ina single trial. If learning is done over multiple trials then all eligibility tra
es must bereset to zero just before ea
h new trial is begun.The remark made below equation (2.2.5) applies as well to the learning rules, (2.4.4),(2.4.7), (2.4.11) and, (2.4.14). Dayan and Sejnowski (1993), and Jaakkola et al (1994) haveshown that, if the real time TD(�) learning rule, (2.4.14) is used, then under appropriateassumptions on the variation of � in time, as t!1, V̂
onverges to V � with probabilityone. Pra
ti
ally, learning
an be a
hieved by doing multiple trials and de
reasing � towardszero as learning progresses.Thus far in this se
tion we have assumed that the poli
y, � is deterministi
. If � is asto
hasti
 poli
y then all the ideas of this se
tion still hold with appropriate interpretations:all expe
tations should in
lude the sto
hasti
ity of �, and, the �(x) used in (2.4.10), (2.4.12)et
. should be taken as instan
es generated by the sto
hasti
 poli
y.Let us now
ome to the estimation of Q�. Re
all from (2.3.5) that Q�(x; a) denotes thetotal reward obtained by
hoosing a as the �rst a
tion and then following � for all futuretime steps. Details
on
erning the extension of Q� are
learly des
ribed in a re
ent reportby Rummery and Niranjan (1994). Let Q̂(x; a; v) be the estimator of Q�(x; a) that is to belearnt
on
urrently with real time system operation. Following the same lines of argumentas used for the value fun
tion, we obtain a learning rule similar to (2.4.14):Q̂(x; a; v) := Q̂(x; a; v) + �eQ(x; a; t)�Q(xt; at) 8 (x; a) (2:4:16)

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 24where: xt and at are, respe
tively, the system state and the a
tion
hosen at time t;�Q(x; a) = r(x; a) +
Q̂(x1; �(x1); v) � Q̂(x; a; v); (2:4:17)andeQ(x; a; t) = 8>>>><>>>>: 0 if (x; a) has never been visited
�eQ(x; a; t� 1) if (xt; at) 6= (x; a)1 +
�eQ(x; a; t � 1) if (xt; at) = (x; a) (2:4:18)As with e, all eQ(x; a; t)'s must be reset to zero whenever a new trial is begun from a randomstarting state.If � is a sto
hasti
 poli
y then it is better to repla
e (2.4.17) by�Q(x; a) = r(x; a) +
 ~V (x1)� Q̂(x; a; v) (2:4:19)where ~V (x1) = Xb2A(x1)Probf�(x) = bgQ̂(x1; b; v) (2:4:20)Rummery and Niranjan (1994) suggest the use of (2.4.17) even if � is sto
hasti
; in that
ase, the �(x1) in (2.4.17)
orresponds to an instan
e generated by the sto
hasti
 poli
y atx1. We feel that, as an estimate of V �(x1), ~V (x1) is better than the term Q̂(x1; �(x1); v)used in (2.4.17), and so it �ts-in better with the de�nition of Q� in (2.3.5). Also, if the thesize of A(x1) is small then the
omputation of ~V (x1) is not mu
h more expensive than thatof Q̂(x1; �(x1); v).2.5 Delayed Reinfor
ement Learning MethodsDynami
 Programming (DP) methods (Ross 1983; Bertsekas 1989) are well known
lassi
altools for solving the sto
hasti
 optimal
ontrol problem formulated in se
tion 2.3. Sin
edelayed RL methods also solve the same problem, how do they di�er from DP methods?9Following are the main di�eren
es.9The
onne
tion between DP and delayed RL was �rst established by Werbos (1987, 1989, 1992) andWatkins (1989).

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 25� Whereas DP methods simply aim to obtain the optimal value fun
tion and an optimalpoli
y using o�{line iterative methods, delayed RL methods aim to learn the same
on
urrently with real time system operation and improve performan
e over time.� DP methods deal with the
omplete state spa
e, X in their
omputations, whiledelayed RL methods operate on ~X, the set of states that o

ur during real time systemoperation. In many appli
ations X is very large, but ~X is only a small, manageablesubset of X. Therefore, in su
h appli
ations, DP methods su�er from the
urse ofdimensionality, but delayed RL methods do not have this problem. Also, typi
allydelayed RL methods employ fun
tion approximators (for value fun
tion, poli
y et
.)that generalize well, and so, after learning, they provide near optimal performan
eeven on unseen parts of the state spa
e.� DP methods fundamentally require a system model. On the other hand, the maindelayed RL methods are model-free; hen
e they are parti
ularly suited for the on-linelearning
ontrol of
ompli
ated systems for whi
h a model is diÆ
ult to derive.� Be
ause delayed RL methods
ontinuously learn in time they are better suited than DPmethods for adapting to situations in whi
h the system and goals are non-stationary.Although we have said that delayed RL methods enjoy
ertain key advantages, we shouldalso add that DP has been the fore-runner from whi
h delayed RL methods obtained
lues.In fa
t, it is
orre
t to say that delayed RL methods are basi
ally rearrangements of the
omputational steps of DP methods so that they
an be applied during real time systemoperation.Delayed RL methods
an be grouped into two
ategories: model-based methods andmodel{free methods. Model based methods have dire
t links with DP. Model{free methods
an be viewed as appropriate modi�
ations of the model based methods so as to avoid themodel requirement. These methods will be des
ribed in detail below.2.5.1 Model Based MethodsIn this subse
tion we dis
uss DP methods and their possible modi�
ation to yield delayedRL methods. There are two popular DP methods: value iteration and poli
y iteration.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 26Value iteration easily extends to give a delayed RL method
alled `real time DP'. Poli
yiteration, though it does not dire
tly yield a delayed method, it forms the basis of animportant model{free delayed RL method
alled a
tor{
riti
.2.5.1.1 Value IterationThe basi
 idea in value iteration is to
ompute V ?(x) asV ?(x) = limn!1V ?n (x) (2:5:1)where V ?n (x) is the optimal value fun
tion over a �nite-horizon of length n, i.e., V ?n (x) isthe maximum expe
ted return if the de
ision task is terminated n steps after starting instate x. For n = 1, the maximum expe
ted return is just the maximum of the expe
tedimmediate payo�: V ?1 (x) = maxa2A(x) r(x; a) 8 x (2:5:2)Then, the re
ursion,10V ?n+1(x) = maxa2A(x) "r(x; a) +
Xy Pxy(a)V ?n (y)# 8 x (2:5:3)
an be used to
ompute V ?n+1 for n = 1; 2; � � �. (Iterations
an be terminated after a largenumber (N) of iterations, and V ?N
an be taken to be a good approximation of V ?.)In value iteration, a poli
y is not involved. But it is easy to atta
h a suitable poli
ywith a value fun
tion as follows. Asso
iated with ea
h value fun
tion, V : X!R is a poli
y,� that is greedy with respe
t to V , i.e.,�(x) = arg maxa2A(x) "r(x; a) +
Xy Pxy(a)V (y)# 8 x (2:5:4)If the state spa
e, X has a very large size (e.g., size=kd, where d= number of
omponentsof x, k=number of values that ea
h
omponent
an take, d � 10, k � 100) then valueiteration is prohibitively expensive. This diÆ
ulty is usually referred to as the
urse ofdimensionality.10One
an also view the re
ursion as doing a �xed-point iteration to solve Bellman's optimality equation,(2.3.4).

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 27In the above, we have assumed that (2.5.1) is
orre
t. Let us now prove this
onvergen
e.It turns out that
onvergen
e
an be established for a more general algorithm, of whi
h valueiteration is a spe
ial
ase. We
all this algorithm as generalized value iteration.Generalized Value IterationSet n = 1 and V ?1 = an arbitrary fun
tion over states.Repeat1. Choose a subset of states, Bn and setV ?n+1(x) = 8><>: maxa2A(x) hr(x; a) +
Py Pxy(a)V ?n (y)i if x 2 BnV ?n (x) otherwise (2:5:5)2. Reset n := n+ 1.If we
hoose V ?1 as in (2.5.2) and take Bn = X for all n, then the above algorithm redu
esto value iteration. Later we will go into other useful
ases of generalized value iteration.But �rst, let us
on
ern ourselves with the issue of
onvergen
e. If x 2 Bn, we will say thatthe value of state x has been ba
ked up at the n-th iteration. Proof of
onvergen
e is basedon the following result (Bertsekas & Tsitsiklis 1989; Watkins 1989; Barto et al 1992).Lo
al Value Improvement TheoremLet Mn = maxx jV ?n (x)� V ?(x)j. Then maxx2Bn jV ?n+1(x)� V ?(x)j �
Mn.Proof: Take any x 2 Bn. Let a? = �?(x) and a?n = �?n(x), where �?n is a poli
y that isgreedy with respe
t to V ?n . ThenV ?n+1(x) � r(x; a?) +
Py Pxy(a?)V ?n (y)� r(x; a?) +
Py Pxy(a?) [V ?(y)�M ℄= V ?(x)�
MnSimilarly, V ?n+1(x) = r(x; a?n) +
Py Pxy(a?n)V ?n (y)� r(x; a?n) +
Py Pxy(a?n) [V ?(y) +M ℄= V ?(x) +
Mnand so the theorem is proved. 2

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 28The theorem implies that Mn+1 �Mn where Mn+1 = maxx jV ?n+1(x)� V ?(x)j. A littlefurther thought shows that the following is also true. If, at the end of iteration k, K furtheriterations are done in su
h a way that the value of ea
h state is ba
ked up at least on
ein these K iterations, i.e., [k+Kn=k+1Bn = X, then we get Mk+K �
Mk. Therefore, if thevalue of ea
h state is ba
ked up in�nitely often, then (3.5.1) holds.11 In the
ase of valueiteration, the value of ea
h state is ba
ked up at ea
h iteration and so (2.5.1) holds.Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed byBertsekas and Tsitsiklis (1989) as a suitable method of solving sto
hasti
 optimal
ontrolproblems on multi-pro
essor systems with
ommuni
ation time delays and without a
om-mon
lo
k. If N pro
essors are available, the state spa
e
an be partitioned into N sets {one for ea
h pro
essor. The times at whi
h ea
h pro
essor ba
ks up the values of its states
an be di�erent for ea
h pro
essor. To ba
k up the values of its states, a pro
essor uses the\present" values of other states
ommuni
ated to it by other pro
essors.Barto, Bradtke and Singh (1992) suggested the use of generalized value iteration as a wayof learning during real time system operation. They
alled their algorithm as Real TimeDynami
 Programming (RTDP). In generalized value iteration as spe
ialized to RTDP,n denotes system time. At time step n, let us say that the system resides in state xn.Sin
e V ?n is available, an is
hosen to be an a
tion that is greedy with respe
t to V ?n , i.e.,an = �?n(xn). Bn, the set of states whose values are ba
ked up, is
hosen to in
lude xn and,perhaps some more states. In order to improve performan
e in the immediate future, one
an do a lookahead sear
h to some �xed sear
h depth (either exhaustively or by followingpoli
y, �?n) and in
lude these probable future states in Bn. Be
ause the value of xn is goingto undergo
hange at the present time step, it is a good idea to also in
lude, in Bn, themost likely prede
essors of xn (Moore & Atkeson 1993).One may ask: sin
e a model of the system is available, why not simply do value iterationor, do generalized value iteration as Bertsekas and Tsitsiklis suggest? In other words, whatis the motivation behind RTDP? The answer, whi
h is simple, is something that we havestressed earlier. In most problems (e.g., playing games su
h as
he
kers and ba
kgammon)11If
 = 1, then
onvergen
e holds under
ertain assumptions. The analysis required is more sophisti
ated.See (Bertsekas & Tsitsiklis 1989; Bradtke 1994) for details.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 29the state spa
e is extremely large, but only a small subset of it a
tually o

urs duringusage. Be
ause RTDP works
on
urrently with a
tual system operation, it fo
usses onregions of the state spa
e that are most relevant to the system's behaviour. For instan
e,su

essful learning was a

omplished in the
he
kers program of Samuel (1959) and in theba
kgammon program, TDgammon of Tesauro (1992) using variations of RTDP. In (Bartoet al 1992), Barto, Bradtke and Singh also use RTDP to make interesting
onne
tions anduseful extensions to learning real time sear
h algorithms in Arti�
ial Intelligen
e (Korf1990).The
onvergen
e result mentioned earlier says that the values of all states have to beba
ked up in�nitely often12 in order to ensure
onvergen
e. So it is important to suitablyexplore the state spa
e in order to improve performan
e. Barto, Bradtke and Singh havesuggested two ways of doing exploration13: (1) adding sto
hasti
ity to the poli
y; and (2)doing learning
umulatively over multiple trials.If, only an ina

urate system model is available then it
an be updated in real time usinga system identi�
ation te
hnique, su
h as maximum likelihood estimation method (Bartoet al 1992). The
urrent system model
an be used to perform the
omputations in (2.5.5).Convergen
e of su
h adaptive methods has been proved by Gullapalli and Barto (1994).2.5.1.2 Poli
y IterationPoli
y iteration operates by maintaining a representation of a poli
y and its value fun
tion,and forming an improved poli
y using them. Suppose � is a given poli
y and V � is known.How
an we improve �? An answer will be
ome obvious if we �rst answer the followingsimpler question. If � is another given poli
y then when isV �(x) � V �(x) 8 x (2:5:6)i.e., when is � uniformly better than �? The following simple theorem (Watkins 1989) givesthe answer.12For good pra
ti
al performan
e it is suÆ
ient that states that are most relevant to the system's behaviourare ba
ked up repeatedly.13Thrun (1986) has dis
ussed the importan
e of exploration and suggested a variety of methods for it

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 30Poli
y Improvement TheoremThe poli
y � is uniformly better than poli
y � ifQ�(x; �(x)) � V �(x) 8 x (2:5:7)Proof: To avoid
lumsy details let us give a not-so-rigorous proof (Watkins 1989).Starting at x, it is better to follow � for one step and then to follow �, than it is to follow� right from the begining. By the same argument, it is better to follow � for one furtherstep from the state just rea
hed. Repeating the argument we get that it is always better tofollow � than �. See Bellman and Dreyfus (1962) and Ross (1983) for a detailed proof. 2Let us now return to our original question: given a poli
y � and its value fun
tion V �,how do we form an improved poli
y, �? If we de�ne � by�(x) = arg maxa2A(x)Q�(x; a) 8 x (2:5:8)then (2.5.7) holds. By the poli
y improvement theorem � is uniformly better than �. Thisis the main idea behind poli
y iteration.Poli
y IterationSet � := an arbitrary initial poli
y and
ompute V �.Repeat1. Compute Q� using (2.3.5).2. Find � using (2.5.8) and
ompute V �.3. Set: � := � and V � := V �.until V � = V � o

urs at step 2.Ni
e features of the above algorithm are: (1) it terminates after a �nite number ofiterations be
ause there are only a �nite number of poli
ies; and (2) when terminationo

urs we get V �(x) = maxa Q�(x; a) 8x(i.e., V � satis�es Bellman's optimality equation) and so � is an optimal poli
y. But thealgorithm su�ers from a serious drawba
k: it is very expensive be
ause the entire value

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 31fun
tion asso
iated with a poli
y has to be re
al
ulated at ea
h iteration (step 2). Eventhough V � may be
lose to V �, unfortunately there is no simple short
ut to
ompute it.In se
tion 2.5.2.1 we will dis
uss a well-known model{free method
alled the a
tor-
riti
method whi
h gives an inexpensive approximate way of implementing poli
y iteration.2.5.2 Model{Free MethodsModel{free delayed RL methods are derived by making suitable approximations to the
omputations in value iteration and poli
y iteration, so as to eliminate the need for asystem model. Two important methods result from su
h approximations: Barto, Suttonand Anderson's a
tor{
riti
 (Barto et al 1983), and Watkins' Q{Learning (Watkins 1989).These methods are milestone
ontributions to the optimal feedba
k
ontrol of dynami
systems.2.5.2.1 A
tor-Criti
 MethodThe a
tor-
riti
 method was proposed by Barto, Sutton and Anderson (1983) (in theirpopular work on balan
ing a pole on a moving
art) as a way of
ombining, on a step-by-step basis, the pro
ess of forming the value fun
tion with the pro
ess of forming a newpoli
y. The method
an also be viewed as a pra
ti
al, approximate way of doing poli
yiteration: perform one step of an on-line pro
edure for estimating the value fun
tion for agiven poli
y, and at the same time perform one step of an on-line pro
edure for improvingthat poli
y. The a
tor-
riti
 method14 is best derived by
ombining the ideas of se
tion 2.2and se
tion 2.4 on immediate RL and estimating value fun
tion, respe
tively. Details areas follows.A
tor (�) Letm denote the total number of a
tions. Maintain an approximator, g(�;w) :X!Rm so that z = g(x;w) is a ve
tor of merits of the various feasible a
tions at state x.In order to do exploration,
hoose a
tions a

ording to a sto
hasti
 a
tion sele
tor su
h as(2.2.4).1514A mathemati
al analysis of this method has been done by Williams and Baird (1993a).15In their original work on pole-balan
ing, Barto, Sutton and Anderson suggested a di�erent way ofin
luding sto
hasti
ity.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 32Criti
 (V �) Maintain an approximator, V̂ (�;w) : X!R that estimates the value fun
-tion (expe
ted total reward)
orresponding to the sto
hasti
 poli
y mentioned above. Theideas of se
tion 2.4
an be used to update V̂ .Let us now
onsider the pro
ess of learning the a
tor. Unlike immediate RL, learning ismore
ompli
ated here for the following reason. Whereas, in immediate RL the environmentimmediately provides an evaluation of an a
tion, in delayed RL the e�e
t of an a
tion on thetotal reward is not immediately available and has to be estimated appropriately. Suppose,at some time step, the system is in state x and the a
tion sele
tor
hooses a
tion ak. For gthe learning rule that parallels (2.2.3) would begk(x;w) := gk(x;w) + � h�(x; ak)� V̂ (x; v)i (2:5:9)where �(x; ak) is the expe
ted total reward obtained if ak is applied to the system at statex and then poli
y � is followed from the next step onwards. An approximation is�(x; ak) � r(x; ak) +
Xy Pxy(ak)V̂ (y; v) (2:5:10)This estimate is unavailable be
ause we do not have a model. A further approximation is�(x; ak) � r(x; ak) +
V̂ (x1; v) (2:5:11)where x1 is the state o

uring in the real time operation when a
tion ak is applied at statex. Sin
e the right hand side of (2.5.11) is an unbiased estimate of the right hand side of(2.5.10), using this approximation in the averaging learning rule (2.5.9) will not lead toerrors. Using (2.5.11) in (2.5.9) givesgk(x;w) := gk(x;w) + ��(x) (2:5:12)where � is as de�ned in (2.4.12). The following algorithm results.A
tor{Criti
 TrialSet t = 0 and x =a random starting state.Repeat (for a number of time steps)1. With the system at state, x,
hoose a
tion a a

ording to (2.2.4) and apply it to thesystem. Let x1 be the resulting next state.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 332. Compute �(x) = r(x; a) +
V̂ (x1; v) � V̂ (x; v)3. Update V̂ using V̂ (x; v) := V̂ (x; v) + ��(x)4. Update gk using (2.5.12) where k is su
h that a = ak.The above algorithm uses the TD(0) estimate of V �. To speed{up learning the TD(�)rule, (2.4.14)
an be employed. Barto, Sutton and Anderson (1983) and others (Gullapalli1992a; Gullapalli et al 1994) use the idea of eligibility tra
es for updating g also. They giveonly an intuitive explanation for this usage. Lin (1992) has suggested the a

umulation ofdata until a trial is over, update V̂ using (2.4.11) for all states visited in the trial, and thenupdate g using (2.5.12) for all (state,a
tion) pairs experien
ed in the trial.2.5.2.2 Q{LearningJust as the a
tor{
riti
 method is a model-free, on-line way of approximately implementingpoli
y iteration, Watkins' Q{Learning (Watkins 1989) algorithm is a model-free, on-line wayof approximately implementing generalized value iteration. Though the RTDP algorithmdoes generalized value iteration
on
urrently with real time system operation, it requiresthe system model for doing a
ru
ial operation: the determination of the maximum on theright hand side of (2.5.5). Q{Learning over
omes this problem elegantly by operating withthe Q{fun
tion instead of the value fun
tion. (Re
all, from se
tion 2.3, the de�nition ofQ{fun
tion and the
omment on its advantage over value fun
tion.)The aim of Q{Learning is to �nd a fun
tion approximator, Q̂(�; �; v) that approximatesQ?, the solution of Bellman's optimality equation, (2.3.7), in on-line mode without em-ploying a model. However, for the sake of developing ideas systemati
ally, let us begin byassuming that a system model is available and
onsider the modi�
ation of the ideas ofse
tion 2.5.1.1 to use the Q{fun
tion instead of the value fun
tion. If we think in terms ofa fun
tion approximator, V̂ (x; v) for the value fun
tion, the basi
 update rule that is usedthroughout se
tion 2.5.1.1 isV̂ (x; v) := maxa2A(x) "r(x; a) +
Xy Pxy(a)V̂ (y; v)#

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 34For the Q{fun
tion, the
orresponding rule isQ̂(x; a; v) := r(x; a) +
Xy Pxy(a) maxb2A(y) Q̂(y; b; v) (2:5:13)Using this rule, all the ideas of se
tion 2.5.1.1
an be easily modi�ed to employ the Q{fun
tion.However, our main
on
ern is to derive an algorithm that avoids the use of a systemmodel. A model
an be avoided if we: (1) repla
e the summation term in (2.5.13) bymaxb2A(x1) Q̂(x1; b; v) where x1 is an instan
e of the state resulting from the appli
ationof a
tion a at state x; and (2) a
hieve the e�e
t of the update rule in (2.5.13) via the\averaging" learning rule,Q̂(x; a; v) := Q̂(x; a; v) + � "r(x; a) +
 maxb2A(x1) Q̂(x1; b; v)� Q̂(x; a; v)# (2:5:14)If (2.5.14) is
arried out we say that the Q{value of (x; a) has been ba
ked up. Using (2.5.14)in on-line mode of system operation we obtain the Q{Learning algorithm.Q{Learning TrialSet t = 0 and x = a random starting state.Repeat (for a number of time steps)1. Choose a
tion a 2 A(x) and apply it to the system. Let x1 be the resulting state.2. Update Q̂ using (2.5.14).3. Reset x := x1.The remark made below equation, (2.2.5) in se
tion 2.2 is very appropriate for thelearning rule, (2.5.14). Watkins showed16 that if the Q{value of ea
h admissible (x; a) pairis ba
ked up in�nitely often, and if the step size, � is de
reased to zero in a suitable waythen as t!1, Q̂
onverges to Q? with probability one. Pra
ti
ally, learning
an be a
hievedby: (1) using, in step 1, an appropriate exploration poli
y that tries all a
tions;17 (2) doing16A revised proof was given by Watkins and Dayan (1992). Tsitsiklis (1993) and Jaakkola et al (1994)have given other proofs.17Note that step 1 does not put any restri
tion on
hoosing a feasible a
tion. So, any sto
hasti
 explorationpoli
y that, at every x generates ea
h feasible a
tion with positive probability
an be used. When learning is
omplete, the greedy poli
y, �(x) = argmaxa2A(x) Q̂(x; a; v) should be used for optimal system performan
e.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 35multiple trials to ensure that all states are frequently visited; and (3) de
reasing � towardszero as learning progresses.We now dis
uss a way of speeding up Q{Learning by using the TD(�) estimate of theQ{fun
tion, derived in se
tion 2.4. If TD(�) is to be employed in a Q{Learning trial, afundamental requirement is that the poli
y used in step 1 of the Q{Learning Trial and thepoli
y used in the update rule, (2.5.14) should mat
h (note the use of � in (2.4.17) and(2.4.20)). Thus TD(�)
an be used if we employ the greedy poli
y,�(x) = arg maxa2A(x) Q̂(x; a; v) (2:5:15)in step 1.18 19 But, this leads to a problem: use of the greedy poli
y will not allowexploration of the a
tion spa
e, and hen
e poor learning
an o

ur. Rummery and Niranjan(1994) give a ni
e
omparitive a

ount of various attempts des
ribed in the literature fordealing with this
on
i
t. Here we only give the details of an approa
h that Rummery andNiranjan found to be very promising.Consider the sto
hasti
 poli
y (based on the Boltzmann distribution and Q-values),Probf�(x) = ajxg = exp(Q̂(x; a; v)=T)Pb2A(x) exp(Q̂(x; b; v)=T) ; a 2 A(x) (2:5:16)where T 2 [0;1). When T!1 all a
tions have equal probabilities and, when T!0 thesto
hasti
 poli
y tends towards the greedy poli
y in (2.5.15). To learn, T is started with asuitable large value (depending on the initial size of the Q{values) and is de
reased to zerousing an annealing rate; at ea
h T thus generated, multiple Q{learning trials are performed.This way, exploration takes pla
e at the initial large T values. The TD(�) learning rule,(2.4.19) estimates expe
ted returns for the poli
y at ea
h T , and, as T!0, Q̂ will
onvergeto Q?.An important remark needs to be made regarding the appli
ation of Q{Learning to RLproblems whi
h result from the time-dis
retization of
ontinuous-time problems. As the18Although the greedy poli
y de�ned by (2.5.15) keeps
hanging during a trial, the TD(�) estimate
anstill be used be
ause Q̂ is varied slowly.19If more than one a
tion attains the maximum in (2.5.15) then for
onvenien
e we take � to be a sto
hasti
poli
y that makes all su
h maximizing a
tions equally probable.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 36dis
retization time period goes to zero it turns out that the Q fun
tion tends to be
ome a
onstant for all a for a given x and hen
e it is unsuitable to use Q{Learning for
ontinuous-time problems. For su
h problems Baird (1993) has suggested the use of an appropriatemodi�
ation of the Q fun
tion
alled the Advantage fun
tion. See Harmon et al (1995) also.2.6 Fun
tion{Approximators in RLA variety of fun
tion approximators has been employed by resear
hers to pra
ti
ally solveRL problems. When the input spa
e of the fun
tion approximator is �nite, the moststraight{forward method is to use a look{up table (Singh 1992a; Moore & Atkeson 1993).Almost all theoreti
al results on the
onvergen
e of RL algorithms assume this representa-tion. The disadvantage of using look{up table is that if the input spa
e is large then thememory requirement be
omes prohibitive.20 Continuous input spa
es have to be dis
retizedwhen using a look{up table. If the dis
retization is done �nely so as to obtain good a

u-ra
y we have to fa
e the `
urse of dimensionality'. One way of over
oming this is to do aproblem{dependent dis
retization; see, for example, the `BOXES' representation used byBarto, Sutton and Anderson (1983) and others (Mi
hie & Chambers 1968; Gullapalli et al1994; Rosen et al 1991) to solve the pole balan
ing problem.Non look{up table approa
hes use parametri
 fun
tion approximation methods. Thesemethods have the advantage of being able to generalize beyond the training data and hen
egive reasonable performan
e on unvisited parts of the input spa
e. Among these, neuralmethods are the most popular. Conne
tionist methods that have been employed for RL
an be
lassi�ed into four groups: multi{layer per
eptrons; methods based on
lustering;CMAC; and re
urrent networks. Multi{layer per
eptrons have been su

essfully used byAnderson (1986, 1989) for pole balan
ing, Lin (1991a, 1991b, 1991
, 1992) for a
omplextest problem, Tesauro (1992) for ba
kgammon, Thrun (1993) and Millan and Torras (1992)for robot navigation, and others (Boyen 1992; Gullapalli et al 1994). On the other hand,Watkins (1989), Chapman (1991), Kaelbling (1990, 1991), and Shepanski and Ma
y (1987)20Bu
kland and Lawren
e (1994) have proposed a new delayed RL method
alled Transition point DPwhi
h
an signi�
antly redu
e the memory requirement for problems in whi
h optimal a
tions
hange infre-quently in time.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 37have reported bad results. A modi�ed form of Platt's Resour
e Allo
ation Network (RAN)(Platt 1991), a method based on radial basis fun
tions, has been used by Anderson (1993) forpole balan
ing. Many resear
hers have used CMAC (Albus 1975) for solving RL problems:Watkins (1989) for a test problem; Singh (1991, 1992b, 1992d) and Tham and Prager (1994)for a navigation problem; Lin and Kim (1991) for pole balan
ing; and Sutton (1990, 1991b)in his `Dyna' ar
hite
ture. Re
urrent networks with
ontext information feedba
k have beenused by Ba
hara
h (1991, 1992) and Mozer and Ba
hara
h (1990a, 1990b) in dealing withRL problems with in
omplete state information.A few non{neural methods have also been used for RL. Mahadevan and Connell (1991)have used statisti
al
lustering in asso
iation with Q{Learning for the automati
 program-ming of a mobile robot. A novel feature of their approa
h is that the number of
lustersis dynami
ally varied. Chapman and Kaelbling (1991) have used a tree{based
lusteringapproa
h in
ombination with a modi�ed Q{Learning algorithm for a diÆ
ult test problemwith a huge input spa
e.The fun
tion approximator has to exer
ise
are to ensure that learning at some inputpoint, x does not seriously disturb the fun
tion values for y 6= x. It is often advantageous to
hoose a fun
tion approximator and employ an update rule in su
h a way that the fun
tionvalues of x and states `near' x are modi�ed similarly while the values of states `far' from x areleft un
hanged.21 Su
h a
hoi
e usually leads to good generalization, i.e., good performan
eof the learnt fun
tion approximator even on states that are not visited during learning. Inthis respe
t, CMAC and methods based on
lustering, su
h as RBF, statisti
al
lustering,et
., are more suitable than multi{layer per
eptrons. Sutton (1996), in an e�ort to studythis problem, has used CMACs su

essfully in problems where MLPs have been reportedto have failed (Boyen & Moore 1995).When methods based on
lustering are employed for fun
tion approximation it wouldbe helpful to know where to put the
lusters. CMACs and RBF based methods start with21The
riterion for `nearness' must be
hosen properly depending on the problem being solved. Forinstan
e, in example 2.1.1 (see �gure 2.1.1) two states on opposite sides of the barrier but whose
oordinateve
tors are near, have vastly di�erent optimal `
ost-to-go' values. Hen
e the fun
tion approximator shouldnot generalize the value at one of these states using the value at the other. Dayan (1993) gives a generalapproa
h for
hoosing a suitable `nearness'
riterion so as to improve generalization.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 38a �xed number of
lusters and though one
an
hange the position and size of the
lusters,they do not perform well when the nature of the problem is su
h that many small
lusters areneeded in some regions and few large ones at most other pla
es, like in example 2.1.1. Oneway of over
oming this problem would be to use ontogeni
 networks in whi
h the numberand position of
lusters is varied dynami
ally and
lusters are added whenever and whereverthey are needed. One su
h ontogeni
 algorithm is RAN. Anderson has used a variation ofRANs in whi
h he �xes the number of
lusters. The
lusters are dynami
ally deleted andadded as needed, keeping the number of
lusters
onstant. We have done some preliminaryinvestigation into the use of a more dire
t RAN based method on the problem presented inexample 2.1.1. We found that RANs performed mu
h better than a RBF network with a�xed number of nodes (
omparable to the number of nodes inserted typi
ally by a RAN)distributed uniformly over the entire input spa
e.The e�e
t of errors introdu
ed by fun
tion approximators on the optimal performan
e ofthe
ontroller has not been well understood.22 It has been pointed out by Watkins (1989),Bradtke (1993), Bertsekas (1994) and others (Barto 1992), that, if fun
tion approximation isnot done in a
areful way, poor learning
an result. In the
ontext of Q{Learning, Thrun andS
hwartz (1993) have shown that errors in fun
tion approximation
an lead to a systemati
over estimation of theQ{fun
tion. Linden (1993) points out that in many problems the valuefun
tion is dis
ontinuous and so using
ontinuous fun
tion approximators is inappropriate.But he does not suggest any
lear remedies for this problem.Man
e Harmon of Wright-Patterson Air For
e Base, Ohio, has pointed out the followingexplanation as to why fun
tion approximators used with RL have diÆ
ulties. The gener-alization that takes pla
e when updating the approximation systems
an, as a side e�e
t,
hange the target value. For instan
e, when the update rule (2.4.14), whi
h is based on�(xt), is performed, the resulting
hange in V̂ together with generalization
an lead to asizeable
hange in �(xt). We are then, in e�e
t, shooting at a moving target. This is a
ause of instability, and the propensity of the weights, in many
ases, to grow to in�nity.22Bertsekas(1989), Singh and Yee (1993), and Williams and Baird (1993b) have derived some generaltheoreti
al bounds for errors in value fun
tion in terms of fun
tion approximator error. Tsitsiklis and VanRoy (1994) have derived bounds for errors when feature-based fun
tion approximators are used.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 39To over
ome this problem Baird and Harmon (1993) have suggested a residual gradientapproa
h in whi
h gradient des
ent is performed on the mean square of residuals su
h as�(xt). Then one
an expe
t
onvergen
e in a way similar to how
onvergen
e takes pla
ein the ba
kpropagation algorithm. A similar approa
h has also been suggested by Werbos(1987).Overall, it must be mentioned that mu
h work needs to be done on the use of fun
tionapproximators for RL, and
lear guidelines are yet to emerge.2.7 Modular and Hierar
hi
al Ar
hite
turesWhen applied to problems with large task spa
e or sparse rewards, RL methods are terriblyslow to learn. Dividing the problem into simpler subproblems, using a hierar
hi
al
ontrolstru
ture, et
., are ways of over
oming this.Sequential task de
omposition is one su
h method. This method is useful when a numberof
omplex tasks
an be performed making use of a �nite number of \elemental" tasks orskills, say, T1; T2; � � � ; Tn. The original obje
tive of the
ontroller
an then be a
hievedby temporally
on
atenating a number of these elemental tasks to form what is
alled a\
omposite" task. For example,Cj = [T (j; 1); T (j; 2); � � � ; T (j; k)℄ ; where T (j; i) 2 fT1; T2; � � � ; Tngis a
omposite task made up of k elemental tasks that have to be performed in the orderlisted. Reward fun
tions are de�ned for ea
h of the elemental tasks, making them moreabundant than in the original problem de�nition.Singh (1992a, 1992b) has proposed an algorithm based on a modular neural network(Ja
obs et al 1991), making use of these ideas. In his work the
ontroller is unaware ofthe de
omposition of the task and has to learn both the elemental tasks, and the de
om-position of the
omposite tasks simultaneously. Tham and Prager (1994) and Lin (1993)have proposed similar solutions. Mahadevan and Connell (1991) have developed a methodbased on the subsumption ar
hite
ture (Brooks 1986) where the de
omposition of the task isspe
i�ed by the user before hand, and the
ontroller learns only the elemental tasks, whileMaes and Brooks (1990) have shown that the
ontroller
an be made to learn the de
om-

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 40position also, in a similar framework. All these methods require some external agen
y tospe
ify the problem de
omposition. Can the
ontroller itself learn how the problem is to bede
omposed? Though Singh (1992d) has some preliminary results, mu
h work needs to bedone here.Another approa
h to this problem is to use some form of hierar
hi
al
ontrol (Watkins1989). Here there are di�erent \levels" of
ontrollers23, ea
h learning to perform a moreabstra
t task than the level below it and dire
ting the lower level
ontrollers to a
hieve itsobje
tive. For example, in a ship a navigator de
ides in what dire
tion to sail so as to rea
hthe port while the helmsman steers the ship in the dire
tion indi
ated by the navigator.Here the navigator is the higher level
ontroller and the helmsman the lower level
ontroller.Sin
e the higher level
ontrollers have to work on a smaller task spa
e and the lower level
ontrollers are set simpler tasks improved performan
e results.Examples of su
h hierar
hi
al ar
hite
tures are Feudal RL by Dayan and Hinton (1993)and Hierar
hi
al planning by Singh (1992a, 1992
). These methods too, require an externalagen
y to spe
ify the hierar
hy to be used. This is done usually by making use of some\stru
ture" in the problem.Training
ontrollers on simpler tasks �rst and then training them to perform progres-sively more
omplex tasks using these simpler tasks,
an also lead to better performan
e.Here at any one stage the
ontroller is fa
ed with only a simple learning task. This te
hniqueis
alled shaping in animal behaviour literature. Gullapalli (1992a) and Singh (1992d) havereported some su

ess in using this idea. Singh shows that the
ontroller
an be made to\dis
over" a de
omposition of the task by itself using this te
hnique.2.8 Speeding{Up LearningApart from the ideas mentioned above, various other te
hniques have been suggested forspeeding{up RL. Two novel ideas have been suggested by Lin (1991a, 1991b, 1991
, 1992):experien
e playba
k; and tea
hing. Let us �rst dis
uss experien
e playba
k. An experien
e
onsists of a quadruple (o

uring in real time system operation), (x; a; y; r), where x is a23Controllers at di�erent levels may operate at di�erent temporal resolutions.

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 41state, a is the a
tion applied at state x, y is the resulting state, and r is r(x; a). Pastexperien
es are stored in a �nite memory bu�er, P. An appropriate strategy
an be usedto maintain P. At some point in time let � be the \
urrent" (sto
hasti
) poli
y. LetE = f(x; a; y; r) 2 P j Probf�(x) = ag � �gwhere � is some
hosen toleran
e. The learning update rule is applied, not only to the
urrent experien
e, but also to a
hosen subset of E . Experien
e playba
k
an be espe
iallyuseful in learning about rare experien
es. In tea
hing, the user provides the learning systemwith experien
es so as to expedite learning.In
orporating domain spe
i�
 knowledge also helps in speeding{up learning. For exam-ple, for a given problem, a \nominal"
ontroller that gives reasonable performan
e may beeasily available. In that
ase RL methods
an begin with this
ontroller and improve itsperforman
e (Singh et al 1994). Domain spe
i�
 information
an also greatly help in
hoos-ing state representation and setting up the fun
tion approximators (Barto 1992; Millan &Torras 1992).In many appli
ations an ina

urate system model is available. It turns out to be veryineÆ
ient to dis
ard the model and simply employ a model{free method. An eÆ
ientapproa
h is to interweave a number of \planning" steps between every two on-line learningsteps. A planning step may be one of the following: a time step of a model{based methodsu
h as RTDP; or, a time step of a model{free method for whi
h experien
e is generatedusing the available system model. In su
h an approa
h, it is also appropriate to adaptthe system model using on{line experien
e. These ideas form the basis of Sutton's Dynaar
hite
tures (Sutton 1990, 1991b) and related methods (Moore & Atkeson 1993; Peng &Williams 1993).2.9 Con
lusionIn this
hapter we have given a
ohesive overview of existing RL algorithms. Though re-sear
h has rea
hed a mature level, RL has been su

essfully demonstrated only on a fewpra
ti
al appli
ations (Gullapalli et al 1994; Tesauro 1992; Mahadevan & Connell 1991;Thrun 1993), and
lear guidelines for its general appli
ability do not exist. The
onne
tion

CHAPTER 2. SURVEY OF REINFORCEMENT LEARNING METHODS 42between DP and RL has ni
ely bridged
ontrol theorists and AI resear
hers. With
ontri-butions from both these groups on the pipeline, more interesting results are forth
omingand it is expe
ted that RL will make a strong impa
t on the intelligent
ontrol of dynami
systems.

Chapter 3
RL for Continuous A
tion Spa
es
3.1 Introdu
tionTypi
al optimal
ontrol problems involve
ontinuous state and a
tion spa
es. It is easy toextend the algorithms dis
ussed in the previous
hapter to
ontinuous state spa
es by theuse of appropriate fun
tion approximators that generalize a real-time experien
e at a stateto all topologi
ally nearby states. Many su
h fun
tion approximators and the
aveats inusing them have been dis
ussed in se
tion 2.6. But the extension of existing algorithms to
ontinuous a
tions is diÆ
ult. There are two diÆ
ulties asso
iated with this. If one triesto extend, say, Q{learning to
ontinuous a
tion spa
es then the following diÆ
ulties areimmediately obvious:1. The max operation in (2.5.14) is now diÆ
ult.2. De�ning a poli
y in terms of the value fun
tion is also non-trivial sin
e that too needsthe max operation. (see (2.5.15)).Hen
e some spe
ial ideas are needed for operating with
ontinuous a
tion spa
es. All theexisting algorithms take
are of these problems by adopting sutiable te
hniques.In this
hapter we survey the existing model-free and model-based methods for
ontin-uous a
tion spa
es. We present a new algorithm whi
h is an extension of Q{learning to
ontinuous a
tion spa
es. We also present a modi�
ation of the algorithm appli
able in
ases where the Q(x; a) fun
tion is unimodal in a for ea
h �xed x. This, to the best of our43

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 44knowledge, is the �rst attempt to extend value-iteration based methods like Q{learning to
ontinuous a
tion spa
es. We then present simulation results to show that our algorithmworks.3.2 Existing methodsIn this se
tion we present some of the existing methods of handling
ontinuous a
tionspa
es. Just to make the presentation easy, we will make the assumption that the systembeing
ontrolled is deterministi
. Let xt+1 = f(xt; at) (3:2:1)des
ribe the transition.3.2.1 A Model-based Method: The Ba
k-propagated Adaptive Criti
Let us �rst
onsider model-based methods. Werbos (1990b) has proposed a variety ofalgorithms. Here we will des
ribe only one important algorithm, the one that Werbos refersto as Ba
kpropagated Adaptive Criti
. The algorithm is of the a
tor{
riti
 type, but it issomewhat di�erent from the a
tor{
riti
 method des
ribed in the previous
hapter. Thereare two fun
tion approximators: �̂(�;w) for a
tion; and, V̂ (�; v) for
riti
. The
riti
 ismeant to approximate V �̂; at ea
h time step, it is updated using the TD(�) learning rule,(2.4.14) of se
tion 2.4. The a
tor tries to improve the poli
y at ea
h time step using thehint provided by the poli
y improvement theorem in (2.5.7). To be more spe
i�
, let usde�ne Q(x; a) def= r(x; a) +
V̂ (f(x; a); v) (3:2:2)At time t, when the system is at state xt, we
hoose the a
tion, at = �̂(xt;w), leading tothe next state, xt+1 given by (3.2.1). Let us assume V̂ = V �̂, so that V �̂(xt) = Q(xt; at)holds. Using the hint from (2.5.7), we aim to adjust �̂(xt;w) to give a new value, anew su
hthat Q(xt; anew) > Q(xt; at) (3:2:3)

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 45For a
ontrol problem in whi
h Q is di�erentiable and there are no a
tion
onstraints, asimple learning rule that a
hieves this requirement is�̂(xt;w) := �̂(xt;w) + ��Q(xt; a)�a ja=at (3:2:4)where � is a small (positive) step size. The partial derivative in (3.2.4)
an be evaluatedusing �Q(xt; a)�a = �r(xt; a)�a +
 �V̂ (y; v)�y jy=f(xt;a) �f(xt; a)�a (3:2:5)3.2.2 Model{free methodsLet us now
ome to model{free methods. A simple idea is to adapt a fun
tion approximator,f̂ for the system model fun
tion, f , and use f̂ instead of f in Werbos' algorithm. On{lineexperien
e, i.e., the
ombination, (xt; at; xt+1),
an be used to learn f̂ . This method wasproposed by Brody (1992), a
tually as a way of over
oming a serious de�
ien
y1 asso
iatedwith an ill{formed model{free method suggested by Jordan and Ja
obs (1990). A keydiÆ
ulty asso
iated with Brody's method is that, until the learning system adapts a goodf̂ , system performan
e does not improve at all; in fa
t, at the early stages of learning themethod
an perform in a
onfused way. To over
ome this problem Brody suggests that f̂be learnt well, before it is used to train the a
tor and the
riti
.3.2.3 SRV{based algorithmA more dire
t model{free method
an be derived using the ideas of a
tor{
riti
 method ofse
tion 2.5.2.1. One diÆ
ulty in extending those ideas to
ontinuous a
iton spa
es is thatwe now
annot maintain a di�erent fun
tion approximator to give the value of ea
h a
tioninvolved. (See (2.5.9).) We
an over
ome this by employing ideas from se
tion 2.2. We
anuse a learning rule similar to the SRV algorithm for adapting �̂. This method was proposedand su

essfully demonstrated by Gullapalli on some pra
ti
al problems (Gullapalli 1992a;Gullapalli et al 1994).1This de�
ien
y was also pointed out by Gullapalli (1992b).

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 463.2.4 Bradtke's Poli
y Iteration S
heme based on Q{fun
tionsBradtke (1993) has
hosen a spe
ial problem, Linear Quadrati
 Regulation (LQR), and hasdeveloped a modi�
ation of the Q{learning algorithm whi
h is
lose to poli
y iteration andis appli
able to this spe
i�
 problem. Instead of trying to learn the optimal Q fun
tionright away using the learning rule in (2.5.14), whi
h he
alls the optimizing Q{learning rule,Bradtke �rst �xes a poli
y, �, and then learns the Q fun
tion
orresponding to that poli
yusing the following rule:Q̂(x; a; v) := Q̂(x; a; v) + � hr(x; a) +
Q̂(x1; �(x1); v)� Q̂(x; a; v)i (3:2:6)After the Q fun
tion for that poli
y is learnt suÆ
iently well he performs a poli
y improve-ment step so as to arrive at a better poli
y. This is done by making use of some ni
eproperties of the LQR problem. He has also shown that, theoreti
ally, this algorithm
on-verges to the optimal Q fun
tion when applied to the LQR problem. It should be mentionedthat this is the only theoreti
al
onvergen
e result that has been established thus far fordelayed RL problems involving
ontinuous a
tion spa
es.3.3 Extension of Q{learning to Continuous A
tion Spa
esIn this se
tion we propose a new model{free method based on Q{learning. The optimizimgQ{learning rule introdu
ed in se
tion 2.5.2.2 is as follows:Q̂(xt; at; v) := Q̂(xt; at; v) + � "r(xt; at) +
 maxb2A(xt+1) Q̂(xt+1; b; v) � Q̂(xt; at; v)# (3:3:1)As mentioned in the beginning of this
hapter the max operation in the above equationis non-trivial in
ase of
ontinuous a
tion spa
es. In order to over
ome this diÆ
ulty wemaintain another fun
tion approximator, �̂, that learns the a
tion
orresponding to thebest Q̂ value for a given state x. In other words, �̂ is a poli
y network that learns a poli
ythat is optimal with respe
t to Q̂. We now employ the learning rule:Q̂(xt; at; v) := Q̂(xt; at; v) + � hr(xt; at) +
Q̂(xt+1; �̂(xt+1); v) � Q̂(xt; at; v)i (3:3:2)Let us now see how �̂
an be adapted. The aim is to have�̂(xt;w) = a?

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 47where, a? def= arg maxa2A(xt) Q̂(xt; a; v)A simple general s
heme is to a
tually
ompute a? using a global optimization algorithmand then adapt w so that �̂(xt; w) moves towards a?. Note that, the running of the globaloptimization algorithm uses Q̂ only and does not require any on-line experien
es fromthe environment. Given the availability of fast and inexpensive pro
essors and the fa
tthat the dimension of a is usually small in most
ontrol appli
ations, solving a globaloptimization problem in the a
tion spa
e within one dis
retization period of the
ontrolsystem is
omputationally feasible. This is espe
ially true in the
ase of
hemi
al pro
ess
ontrol systems for whi
h the dis
retization period is in the order of minutes.There is an interesting and useful
lass of problems (see se
tion 3.5.1) for whi
h theoptimal Q fun
tion is unimodal (e.g.
on
ave) in a for ea
h �xed x. For su
h
ases, forea
h �xed x, a lo
al maximum of the Q fun
tion is also a global maximum and hen
e agradient as
ent s
heme
an be used to learn �̂:�̂(xt;w) := �̂(xt;w) + ��Q̂(xt; a)�a ja=at (3:3:3)The partial derivative
an be easily
omputed if we employ a suitable fun
tion approximator.We employ
onne
tionist networks in this work. As shown in �gure 3.3.1, the output ofthe �̂ network a
ts as an input to the Q̂ network. The derivative of the output of the Q̂network with respe
t to one of its inputs, namely a, is easy to
ompute by te
hniques su
has ba
k-propagation (Haykin 1994).

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 48

t+1
π(x)

t+1
π(x)

t+1 t+1 t tFor generating the error term, r + Q(x , (x)) - Q(x ,a)πγ

x
a

Q(x , a)

r

noise

+
Policy

t

t

Environment

Network

t t

t

Network
x

Q

Q

Policy
t+1

t+1Q(x ,)

^

^

^

^

^

^

^^

^

Figure 3.3.1 Q{learning in
ontinuous a
tion spa
es

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 49Learning TrialSet t = 0.Initialize the Q̂ and �̂ networks.Repeat (for a number of time steps)1. Choose input xt2.
ompute at a

ording to an exploration poli
y2 andapply it to the system. Let xt+1 be the resulting state.3.
ompute qt = Q̂(xt; at).4. Update Q̂ using (3.3.3).5. update �̂ using (3.3.2)6. set t = t+ 1
3.4 Comparison with Earlier WorksIn this se
tion we
ompare our work with the earlier attempts to ta
kle problems with
ontinuous a
tion spa
es. First let us
onsider Werbos' Ba
k-propagated adaptive-
riti
. It
onverges to the solution qui
kly sin
e a gradient as
ent is performed (see (3.2.4)). Thedrawba
k of doing this is that gradient as
ent su�ers from lo
al maxima problems and mightnot
onverge to the optimal values if lo
al maxima exist.Gullapalli's SRV{based algorithm over
omes the lo
al maxima problem sin
e it does asto
hasti
 sear
h of the a spa
e. This means that a lot of dire
tions have to be tried out in2The exploration poli
y
an be di�erent from �̂; however, if TD(�) updates are to be performed for fasterlearning then the exploration poli
y should be the same as �̂. See the
omments made after (2.5.15).

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 50the a spa
e and everytime a new dire
tion is to be tried out it needs an on-line experien
e.This makes the algorithm very slow.Bradtke's Poli
y iteration s
heme based on Q fun
tions does not su�er from these draw-ba
ks, but is spe
ialized only to the LQR problem and hen
e la
ks general appli
ability.In our general s
heme we use a global optimization te
hnique su
h as simulated anneal-ing. We employ the gradient as
ent s
heme only when Q(x; a) is unimodal in a for a givenx. This too is guaranteed to �nd a global maximum. So both the s
hemes do not su�erfrom the problem of lo
al maxima. Also the maximization step uses only Q̂ and does notneed any expensive on-line experien
e. Hen
e our algorithm is faster than s
hemes whi
hneed on-line experien
e. We have not made any spe
ial assumptions about the problemin arriving at our algorithm. Hen
e our algorithm is not restri
ted to any spe
ial
lass ofproblems.All the existing s
hemes for solving delayed RL problems with
ontinuous a
tion spa
esuse poli
y iteration based methods. We have extended Q{learning, a value iteration basedmethod, to
ontinuous a
tion spa
es. This is the �rst attempt at employing a value iterationbased method to solve delayed RL problems having
ontinuous a
tion spa
es.3.5 TestingMost appli
ations involving
ontinuous a
tion spa
es
ome from the design of
ontrol sys-tems. Many su
h interesting problems have linear dynami
s. Even when dynami
s arenon-linear, linearization te
hniques are often used to obtain ex
ellent linear approxima-tions. Thus it is useful to
onsider the appli
ation of our algorithm to optimal
ontrolproblems having linear dynami
s. Further,
losed form solutions are available for some ofthese problems; for su
h problems it is easy to
he
k if our learning method yields
orre
tsolutions.3.5.1 Linear Regulation ProblemConsider the deterministi
, linear, time-invariant, dynami
al system given by:xt+1 = Axt +Bat

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 51where A and B are matri
es of dimensions n�n and n�m respe
tively. Let r be a
on
avefun
tion3 of (x,a). For su
h problems the following
an be easily shown:Lemma: V ? and Q? are
on
ave fun
tions.Proof: Let x and ~x be two states, and, f(xt; at)g and f(~xt; ~at)g be the state-a
tion sequen
esgenerated by the optimal poli
y starting from x0 = x and ~x0 = ~x respe
tively. Let 0 � Æ � 1,x = Æx+ (1� Æ)~x, xt = Æxt + (1� Æ)~xt and at = Æat + (1� Æ)~at. Clearly, x0 = x. Then bythe optimality of V ?(x) and the
on
avity of r, we get:V ?(x) � Pt
tr(xt; at)= Pt
tr(Æxt + (1� Æ)~xt; Æat + (1� Æ)~at)� Pt
t [Ær(xt; at) + (1� Æ)r(~xt; ~at)℄= ÆV ?(x) + (1� Æ)V ?(~x)A similar proof shows that Q? is also a
on
ave fun
tion. 2Consider the
ase where the
ost at every time step is a quadrati
 fun
tion of the stateand the
ontrol signal: �rt = xTt Ext+aTt Fat, where E is a symmetri
 positive semi-de�nitematrix of dimension n�n and F is a symmetri
 positive de�nite matrix of dimensionm�m.This now be
omes a Linear Quadrati
 Regulation (LQR) problem.The value fun
tion V �(xt) is de�ned in the usual way as the dis
ounted sum of all
oststhat will be in
urred by using � for all times from t onward. From Linear-quadrati

ontroltheory we know that �? is a linear poli
y, i.e., �?(x) = U?x for some m�n matrix U?.Hen
e it is suÆ
ient if we optimize over all linear poli
ies: �(x) = Ux. For a linear poli
yV � is a quadrati
 fun
tion of the states and
an be expressed as V �(x) = �xTP �x, whereP � is a n�n symmetri
 positive de�nite matrix. Let P ? denote P �? .P ? is given by the solution of the Ri
atti equation:P = E �ATPB(F +BTPB)�1BTPA+ATPAand Q? is given by:Q?(x; a) = �(xT aT)0B� E +ATP ?A ATP ?BBTP ?A F +BTP ?B 1CA0B� xa 1CA (3:5:1)3A fun
tion f : Rk!R is said to be
on
ave if: f(Æy+(1�Æ)~y) � Æf(y)+(1�Æ)f(~y) 8 y; ~y 2 rk; 0 � Æ � 1

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 523.5.2 Representation of Fun
tions for the LQR ProblemAs mentioned in se
tion 3.3, we use
onne
tionist systems to represent the various fun
-tions asso
iated with our algorithm. The issue of fun
tion approximation in RL is a very
ontentious one. Most RL algorithms assume that a exa
t representation of the value andpoli
y fun
tions are available and have been shown to
onverge only under su
h assump-tions. The e�e
t of fun
tion approximation errors on the performan
e of RL algorithmshas not been investigated properly and needs more study. (See dis
ussion in se
tion 2.6.)If we tie up the issue of fun
tion approximation with the testing of our algorithm, (for e.g.use a powerful universal fun
tion approximator su
h as a Multi-Layer Pe
eptron with a lotof hidden neurons, for representing the Q̂ and �̂ fun
tions) and the resulting
ombinationdoes not work well, we would not know whi
h is the
ause. So we
arefully
hose the formof the fun
tion approximator based on the form of the Q fun
tion and the poli
y �, of thetest problem. To make this
hoi
e we need the following lemma.Lemma: Consider a quadrati
 fun
tion f(y) = yTKy, whereK is a symmetri
, positivesemi-de�nite n�n matrix and y 2 Rn This fun
tion
an also represented as follows:f(y) = yTKy = nXi=1 f2i (y) (3:5:2)where, fi(y) is a linear fun
tion of y.Proof: Sin
e K is symmetri
 we
an write it as:K = S�STwhere S is an orthogonal matrix and � is a diagonal matrix, with the eigen values of Kalong the diagonal. Sin
e K is positive semi-de�nite we
an write:K = S� 12� 12ST= (S� 12)(S� 12)T= RRTwhere, R = S� 12 and � 12 is a diagonal matrix with the square roots of the eigen values ofK along its diagonal. We
an now write the fun
tion f(y) as:f(y) = yTKy = yTRRT y = kRT yk2 2

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 53As
an be seen from (3.5.1) the �Q? fun
tion in this
ase is a positive semi-de�nitequadrati
 fun
tion and hen
e
an be represented as the sum of squares of n + m linearfun
tions. This is the representation we
hoose in this work. The Q̂ network
onsists oftwo layers as shown in �gure 3.5.1. The �rst layer
onsists of n+m fully
onne
ted linearneurons. The se
ond layer neuron takes the output of the �rst layer neurons, squares andadds them and negates the sum to produ
e the output. We need to negate the output sin
ewe are posing this as a maximization problem.The poli
y in this
ase is de�ned as a linear fun
tion of the state. Hen
e we
an use asingle layer of m linear neurons for the �̂ network, as shown in �gure 3.5.1. The output ofthe poli
y network forms a part of the input to the Q network, while the present state isfed as input to both the networks.3.5.3 Numeri
al ResultsIn this se
tion we present simulation results for the
hosen test problem. We demonstratethe
onvergen
e of our algorithm on the LQR problem asso
iated with the double integratorfor ease of
omparison with analyti
al results. For the double integrator in two dimensions,the matri
es involved in the problem de�nition are:n = 2 ; m = 1A = 0B� 1 T0 1 1CA ; B = 0B� T 2=2T 1CA ; E = 0B� � 00 � 1CA ; F = 1where T , � and � (2 R) are system parameters.For our simulations we
hose arbitrarily the following values:T = 0:7 ; � = 0:1 ; � = 0:5 ;
 = 1:0For these values the optimal poli
y is given by:U? = 0B� �0:219�0:823 1CA

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 54

a
i

y
i

y
i

x
i

Q Network

Policy

Network

ΣQ=
2

Figure 3.5.1 Conne
tionist network for the LQR problem

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 55and the Q? fun
tion is given by:Q?(x; a) = �(xT a)0BBBB� 0:638 0:843 0:4580:843 3:255 1:7220:458 1:722 2:093 1CCCCA0B� xa 1CAThe Q network now has 3 linear neurons in the �rst layer and 1 output neuron of thetype des
ribed in the previous se
tion. The poli
y network just
onsists of 1 linear neuronwhose output is fed to the Q network.When expressed as an a
tual update rule used in a
onne
tionist network, (3.3.2) be-
omes: v := v + �e�Q̂(x; a)�v jx=xt;a=at (3:5:3)where, e = hr(xt; at) +
Q̂(xt+1; �̂(xt+1); v) � Q̂(xt; at; v)iWe de
ided to adopt the gradient as
ent s
heme outlined in se
tion 3.3 sin
e the problemhas a Q fun
tion that is unimodal in a for a given x. Initially we used the update rule givenin (3.5.3) for the Q network and a
orresponding
onne
tionist update rule to that given in(3.3.3) for the poli
y network. We found that even if we �x the poli
y network and allowonly the Q̂ network to train the
onvergen
e to Q� was very slow.In the learning rule (3.5.3) we assume that while we update the network at xt, the Q̂values at xt+1 do not
hange. In a
onne
tionist implementation this is obviously not trueand therefore in e�e
t we are shooting at a moving target. We
an over
ome this problemif we try to minimize: �Q̂(xt; at)� (r(xt; at) +
Q̂(xt+1; �̂(xt+1)))�2instead. This is the idea behind the residual gradient approa
h re
ommended by Baird andHarmon (1993) and Werbos (1987). The modi�ed learning rule is:v := v � �e
 �Q̂(x; a)�v jx=xt+1;a=at+1 � �Q̂(x; a)�v jx=xt;a=at! (3:5:4)Using the modi�ed rule, the Q̂ network
onverged to Q� of a �xed poli
y about 10 timesfaster than before.

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 56While performing the simulations we found that the poli
y network had to be updatedat a mu
h slower pa
e than the Q network. We
hose learning rates in the ratio of 1 : 10�3for the Q and poli
y networks respe
tively. We also found it advantageous to update thepoli
y network only on
e for every few updates of the Q network.Choosing the initial values for the poli
y and Q networks is an important issue. Ifthe initial poli
y
hosen is not a stabilizing one, the system tends to be
ome unstable andlearning is impossible. So we
hose an arbitrary stabilizing poli
y as the initial one. Similarinitializing poli
ies have been shown by Bradtke (1993) to be essential for the
onvergen
eof his poli
y iteration s
heme based on Q fun
tions. Also we
hose the initial Q as:Q?(x; a) = �(xT a)0B� E 00 1 1CA0B� xa 1CAThis amounts to setting Q = r. This was done just for the sake of expediting learning.Over many runs we observed that the learning system
onverged to the optimal fun
tions.Typi
al values of Q̂ and �̂ networks after a suÆ
ient number of iterations were:Q̂(x; a) = �(xT a)0BBBB� 0:621 0:813 0:4400:813 3:237 1:7210:440 1:721 2:036 1CCCCA0B� xa 1CA�̂(x) = 0B� �0:226�0:820 1CAxWe then de
ided to try out the general s
heme outlined in se
tion 3.3. In this problem�nding the a
tion
orresponding to the maximum Q turns out to be parti
ularly easy. A
losed form expression
an be derived for the max. a
tion in terms of the weights of the Qnetwork and the state inputs. We found that provided the network is trained suÆ
ientlyslowly it
onverges to the optimal values. In the simulations we
ondu
ted we
ould not seeany signi�
ant advantage of using one s
heme over the other. This is
learly be
ause thegradient as
ent s
heme is parti
ularly good for this problem.

CHAPTER 3. RL FOR CONTINUOUS ACTION SPACES 573.6 Con
lusionIn this
hapter we dis
ussed the diÆ
ulties of solving delayed RL problems having
ontin-uous a
tion spa
es. We brie
y presented previous work done in ta
kling this problem andpointed out their drawba
ks. We then proposed a extension of Q{learning appli
able to
ontinuous a
tion spa
es. This method over
omes the drawba
ks asso
iated with the ear-lier attempts. We also proposed a gradient as
ent s
heme appli
able in the
ase of
ertainproblems where the Q fun
tion is unimodal in a for a �xed x.

Chapter 4
Con
lusion
Majority of the optimal
ontrol problems arising in engineering appli
ations have
ontinu-ous a
tion spa
es. However very little work has been done to design eÆ
ient delayed RLalgorithms for su
h problems. In this thesis we have developed some useful initial ideasfor this design. We have devised a simple s
heme for extending Q{learning to
ontinuousa
tion spa
es by augmenting the Q network with a poli
y network that adapts a poli
y thatis optimal with respe
t to th Q fun
tion. For spe
ial, yet useful,
lass of Linear Regulationproblems having
on
ave reward (
onvex
ost) fun
tions we have shown that a simple gra-dient as
ent update rule
an be used for the poli
y network. We have demonstrated theworking of our method by simulating it on the Linear Quadrati
 Regulation problem.The thesis has provided only some initial ideas for the extension ofQ{learning to
ontinu-ous a
tion spa
es. Mu
h more work is needed to establish its real usefulness. First, a generalimplementation of our method by employing universal fun
tion approximation te
hniquessu
h as Multi-Layer Per
eptrons or Radial Basis Fun
tion networks and demonstrating itsworking on non-trivial appli
ations has to be
arried out. Here, it will be interesting to
onsider the use of ontogeni
 networks su
h as the Resour
e Allo
ation Network. Se
ond,it is important to theoreti
ally investigate issues of
onvergen
e of the various algorithmssuggested for
ontinuous a
tion spa
es. The only result available thus far is that of Bradtke(1993), who has
onsidered the spe
ial
ase of the Linear Quadrati
 Regulation problemand has shown that if his algorithm is started from a stabilizing poli
y then
onvegen
eo

urs. It appears that proving
onvergen
e of the other general algorithms is a very hard58

CHAPTER 4. CONCLUSION 59and
hallenging work. Another dire
tion for resear
h is to extend our ideas to
ontinuoustime operation. One way of doing this would be to use the advantage fun
tion (Baird 1993)instead of the Q fun
tion and suitably modify the learning rules. We hope to take up someof these problems in the future.

Bibliography
[1℄ J. S. Albus, 1975, A new approa
h to manipulator
ontrol: The
erebellar model arti
-ulation
ontroller (CMAC). Trans. ASME, J. Dynami
 Sys., Meas., Contr., 97:220{227.[2℄ C. W. Anderson, 1986, Learning and Problem Solving with Mulitlayer Conne
tionistSystems. Ph.D. thesis, University of Massa
husetts, Amherst, MA, USA.[3℄ C. W. Anderson, 1987, Strategy learning with multilayer
onne
tionist representa-tions. Te
hni
al report, TR87{509.3, GTE Laboratories, INC., Waltham, MA, USA.[4℄ C. W. Anderson, April 1989, Learning to
ontrol an inverted pendulum using neuralnetworks. IEEE Control Systems Magazine, pages 31{37.[5℄ C. W. Anderson, 1993, Q{Learning with hidden{unit restarting. In Advan
es in Neu-ral Information Pro
essing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles,editors, pages 81{88, Morgan Kaufmann, San Mateo, CA, USA.[6℄ J. R. Ba
hara
h, 1991, A
onne
tionist learning
ontrol ar
hite
ture for navigation. InAdvan
es in Neural Information Pro
essing Systems 3, R. P. Lippman, J. E. Moody,and D. S. Touretzky, editors, pp. 457{463, Morgan Kaufmann, San Mateo, CA, USA.[7℄ J. R. Ba
hara
h, 1992, Conne
tionist modeling and
ontrol of �nite state environ-ments. Ph.D. Thesis, University of Massa
husetts, Amherst, MA, USA.[8℄ L. C. Baird III, 1993, Advantage updating. Wright-Patterson Air For
e Base, Ohio,USA (Wright Laboratory Te
hni
al Report WL-TR-93-1146, available from the De-60

BIBLIOGRAPHY 61fen
e Te
hni
al Information Center, Cameron Station, Alexandria, VA 22304-6145,USA.)[9℄ L. C. Baird III and M. E. Harmon, In Preparation, Residual gradient algorithms.Te
hni
al Report, Wright-Patterson Air For
e Base, Ohio, USA.[10℄ A. G. Barto, 1985, Learning by statisti
al
ooperation of self{interested neuron{like
omputing elements. Human Neurobiology, 4:229{256.[11℄ A. G. Barto, 1986, Game{theoreti

ooperativity in networks of self interested units.In Neural Networks for Computing, J. S. Denker, editor, pages 41{46, Ameri
an In-stitute of Physi
s, New York, USA.[12℄ A. G. Barto, 1992, Reinfor
ement learning and adaptive
riti
 methods. In Handbookof Intelligent Control: Neural, Fuzzy, and Adaptive Approa
hes, D. A. White and D.A. Sofge, editors, pages 469{491, Van Nostrand Reinhold, New York, USA.[13℄ A. G. Barto and P. Anandan, 1985, Pattern re
ognizing sto
ahsti
 learning automata.IEEE Transa
tions on Systems, Man, and Cybernati
s, 15:360{375.[14℄ A. G. Barto, P. Anandan, and C. W. Anderson, 1985, Cooperativity in networks ofpattern re
ognizing sto
hasti
 learning automata. In Pro
eedings of the Fourth YaleWorkshop on Appli
ations of Adaptive Systems Theory, New Haven, CT, USA.[15℄ A. G. Barto, S. J. Bradtke, and S. P. Singh, 1992, Real{time learning and
ontrol usingasyn
hronous dynami
 programming. Te
hni
al Report COINS 91{57, University ofMassa
husetts, Amherst, MA, USA.[16℄ A. G. Barto and M. I. Jordan, 1987, Gradient following without ba
k{propagationin layered networks. In Pro
eedings of the IEEE First Annual Conferen
e on NeuralNetworks, M. Caudill and C. Butler, editors, pages II629{II636, San Diego, CA, USA.[17℄ A. G. Barto and S. P. Singh, 1991, On the
omputational e
onomi
s of reinfor
e-ment learning. In Conne
tionist Models Pro
eedings of the 1990 Summer S
hool, D.S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, pages 35{44,Morgan Kaufmann, San Mateo, CA, USA.

BIBLIOGRAPHY 62[18℄ A. G. Barto and R. S. Sutton, 1981, Landmark learning: an illustration of asso
iativesear
h. Biologi
al Cyberneti
s, 42:1{8.[19℄ A. G. Barto and R. S. Sutton, 1982, Simulation of anti
ipatory responses in
lassi
al
onditioning by a neuron{like adaptive element. Behavioural Brain Resear
h, 4:221{235.[20℄ A. G. Barto, R. S. Sutton, and C. W. Anderson, 1983, Neuronlike elements that
ansolve diÆ
ult learning
ontrol problems. IEEE Transa
tions on Systems, Man andCyberneti
s, 13:835{846.[21℄ A. G. Barto, R. S. Sutton, and P. S. Brouwer, 1981, Asso
iative sear
h network: areinfor
ement learning asso
iative memory. IEEE Transa
tions on Systems, Man, andCyberneti
s, 40:201{211.[22℄ A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins, 1990, Learning and sequen-tial de
ision making. In Learning and Computational Neuros
ien
e: Foundations ofAdaptive Networks, M. Gabriel and J. Moore, editors, pages 539{602, MIT Press,Cambridge, MA, USA.[23℄ R. E. Bellman and S. E. Dreyfus, 1962, Applied Dynami
 Programming. RAND Cor-poration.[24℄ H. R. Berenji and P. Khedkar, 1992, Learning and tuning fuzzy logi

ontrollersthrough reinfor
ements. IEEE Transa
tions on Neural Networks, 3:724{740.[25℄ D. P. Bertsekas, 1982, Distributed Dynami
 Programming. IEEE Transa
tions onAutomati
 Control, 27:610{616.[26℄ D. P. Bertsekas, 1989, Dynami
 Programming: Deterministi
 and Sto
hasti
 Models.Prenti
e{Hall, Englewood Cli�s, NJ, USA.[27℄ D. P. Bertsekas, 1994, A
ounter example to temporal-di�eren
es learning. NeuralComputation, Vol. 7, No. 2.[28℄ D. P. Bertsekas and J. N. Tsitsiklis, 1989, Parallel and Distributed Computation:Numeri
al Methods. Prenti
e{Hall, Englewood Cli�s, NJ, USA.

BIBLIOGRAPHY 63[29℄ J. Boyen, 1992, Modular Neural Networks for Learning Context{dependent GameStrategies. Masters Thesis, Computer Spee
h and Language Pro
essing, Universityof Cambridge, Cambridge, England.[30℄ J. A. Boyen and A. W. Moore, 1995, Generalization in reinforement learning: Safelyapproximating the value fun
tion, In Advan
es in Neural Information Pro
essing Sys-tems 7, G. Tesauro, D. S. Touretzky and T. K. Leen, editors, pages 369{376, MITPress, Cambridge, MA, USA.[31℄ S. J. Bradtke, 1993, Reinfor
ement learning applied to linear quadrati
 regulation.In Advan
es in Neural Information Pro
essing Systems 5, S. J. Hanson, J. D. Cowanand C. L. Giles, editors, pages 295{302, Morgan Kaufmann, San Mateo, CA, USA.[32℄ S. J. Bradtke, 1994, In
remental Dynami
 Programming for On{line Adaptive OptimalControl. CMPSCI Te
hni
al Report 94{62.[33℄ S. J. Bradtke and M. O. Du�, 1995, Reinfor
ement learning methods for
ontinuous{time Markov de
ision problems. In Advan
es in Neural Information Pro
essing Sys-tems 7, G.Tesauro, D.Touretzky, and T.Leen, editors, MIT Press, Cambridge, MA,USA.[34℄ C. Brody, 1992, Fast learning with predi
tive forward models. In Advan
es in NeuralInformation Pro
essing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann,editors, pages 563{570, Morgan Kaufmann, San Mateo, CA, USA.[35℄ R. A. Brooks, 1986, A
hieving arti�
ial intelligen
e through building robots. Te
hni
alReport, A.I. Memo 899, Massa
husetts Institiute of Te
hnology, Ariti�
ial Intelligen
eLaboratory, Cambridge, MA, USA.[36℄ K. M. Bu
kland and P. D. Lawren
e, 1994, Transition point dynami
 programming. InAdvan
es in Neural Information Pro
essing Systems 6, J. D. Cowan, G. Tesauro, andJ. Alspe
tor, editors, pages 639{646, Morgan Kaufmann, San Fransis
o, CA, USA.[37℄ D. Chapman, 1991, Vision, Instru
tion, and A
tion. MIT Press, MA, USA.

BIBLIOGRAPHY 64[38℄ D. Chapman and L. P. Kaelbling, 1991, Input generalization in delayed reinfor
ementlearning: an algorithm and performan
e
omparisions. In Pro
eedings of the 1991International Joint Conferen
e on Arti�
ial Intelligen
e.[39℄ L. Chrisman, 1992, Planning for
losed{loop exe
ution using partially observablemarkovian de
ision pro
esses. In Pro
eedings of AAAI.[40℄ P. Ci
hosz, 1994, Reinfor
ement learning algorithms based on the methods of temporaldi�eren
es, Masters Thesis, Institute of Computer S
ien
e, Warsaw University ofTe
hnology, Warsaw, Poland.[41℄ P. Ci
hosz, 1995, Trun
ating temporal di�eren
es: On the eÆ
ient implementation ofTD(�) for reinfor
ement learning. Journal of Arti�
ial Intelligen
e Resear
h, 2:287{318.[42℄ R. H. Crites and A. G. Barto, 1996, Improving elevator performan
e using reinfor
e-ment learning. To appear in Advan
es in Neural Information Pro
essing Systems 8,MIT press, 1996.[43℄ P. Dayan, 1991a, Navigating through temporal di�eren
e. In Advan
es in NeuralInformation Pro
essing Systems 3, R. P. Lippmann, J. E. Moody, and D. S. Touretzky,editors, pages 464{470, Morgan Kaufmann, San Mateo, CA, USA.[44℄ P. Dayan, 1991b, Reinfor
ing Conne
tionism: Learning the Statisti
al Way. Ph.D.Thesis, University of Edinburgh, Edinburgh, S
otland.[45℄ P. Dayan, 1993, Improving generalization for temporal di�eren
e learning: The su
-
essor representation. Neural Computation, 5:613{624.[46℄ P. Dayan and G. E. Hinton, 1993, Feudal reinfor
ement learning. In Advan
es inNeural Information Pro
essing Systems 5, S. J. Hanson, J. D. Cowan, and C. L.Giles, editors, pages 271{278, Morgan Kaufmann, San Mateo, CA, USA.[47℄ P. Dayan and T. J. Sejnowski, 1993, TD(�)
onverges with probability 1. Te
hni
alReport, CNL, The Salk Institute, San Diego, CA, USA.

BIBLIOGRAPHY 65[48℄ T. L. Dean and M. P. Wellman, 1991, Planning and Control. Morgan Kaufmann, SanMateo, CA, USA.[49℄ V. Gullapalli, 1990, A sto
hasti
 reinfor
ement algorithm for learning real{valuedfun
tions. Neural Networks, 3:671{692.[50℄ V. Gullapalli, 1992a, Reinfor
ement learning and its appli
ation to
ontrol. Te
hni
alReport, COINS, 92{10, Ph. D. Thesis, University of Massa
husetts, Amherst, MA,USA.[51℄ V. Gullapalli, 1992b, A
omparison of supervised and reinfor
ement learning methodson a reinfor
ment learning task. In Pro
eedings of the 1991 IEEE Symposium onIntelligent Control, Arlignton, VA, USA.[52℄ V. Gullapalli and A. G. Barto, 1994, Convergen
e of indire
t adaptive asyn
hronousvalue iteration algorithms. InAdvan
es in Neural Information Pro
essing Systems 6, J.D. Cowan, G. Tesauro, and J. Alspe
tor, editors, pages 695{702, Morgan Kaufmann,San Fransis
o, CA, USA.[53℄ V. Gullapalli, J. A. Franklin, and H. Benbrahim, February 1994, A
quiring robotskills via reinfor
ement learning. IEEE Control Systems Magazine, pages 13{24.[54℄ M. E. Harmon and L. C. Baird, III, and A. H. Klopf, 1995, Advantage updatingapplied to a di�erential game. In Advan
es in Neural Information Pro
essing Systems7, G.Tesauro, D.Touretzky, and T.Leen, editors, MIT Press, Cambridge, MA, USA.[55℄ S. Haykin, 1994, Neural Networks: A Comprehensive foundation. Ma
millan,NewYork, NY.[56℄ M. Heger, 1994, Consideration of risk in reinfor
ement learning. In Pro
. of 11thInternational Ma
hine Learning Conferen
e, ML-94.[57℄ J. A. Hertz, A. S. Krogh, and R. G. Palmer, 1991, Introdu
tion to the Theory ofNeural Computation. Addison{Wesley, CA, USA.

BIBLIOGRAPHY 66[58℄ T. Jaakkola, M. I. Jordan, and S. P. Singh, 1994, Convergen
e of sto
hasti
 itera-tive dynami
 programming algorithms. In Advan
es in Neural Information Pro
essingSystems 6, J. D. Cowan, G. Tesauro, and J. Alspe
tor, editors, pp. 703{710, MorganKaufmann, San Fransis
o, CA, USA.[59℄ T. Jaakkola, S. P. Singh, and M. I. Jordan, 1995, Reinfor
ement learning algorithmfor partially observable Markov de
ision pro
esses. In Advan
es in Neural Informa-tion Pro
essing Systems 7, G.Tesauro, D.Touretzky, and T.Leen, editors, MIT Press,Cambridge, MA, USA.[60℄ R. A. Ja
obs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, 1991, Adaptive mixturesof lo
al experts. Neural Computation, 3:79{87.[61℄ M. I. Jordan and R. A. Ja
obs, 1990, Learning to
ontrol an unstable system withforward modeling. In Advan
es in Neural Information Pro
essing Systems 2, D. S.Touretzky, editor, Morgan Kaufmann, San Mateo, CA, USA.[62℄ M. I. Jordan and D. E. Rumelhart, 1990, Forward models: Supervised learning witha distal tea
her. Center for Cognitive S
ien
e O

asional Paper # 40, Massa
husettsInstitute of Te
hnology, Cambridge, MA, USA.[63℄ L. P. Kaelbling, 1990, Learning in embedded systems. Te
hni
al Report, TR{90{04,Ph.D. Thesis, Department of Computer S
ien
e, Stanford University, Stanford, CA,USA.[64℄ L. P. Kaelbling, 1991, Learning in Embedded Systems. MIT Press, Cambridge, MA,USA.[65℄ A. H. Klopf, 1972, Brain funtion and adaptive sytems { a heterostati
 theory. Tea
h-ni
al report AFCRL{72{0164, Air For
e Cambridge Resear
h Laboratories, Bedford,MA, USA.[66℄ A. H. Klopf, 1982, The Hedonisti
 Neuron: A Theory of Memory, Learning andIntelligen
e. Hemishere, Washington,D.C., USA.

BIBLIOGRAPHY 67[67℄ A. H. Klopf, 1988, A neuronal model of
lassi
al
onditioning. Psy
hobiology, 16:85{125.[68℄ R. E. Korf, 1990, Real{time heuristi
 sear
h. Ariti�
ial Inteligen
e, 42:189{211.[69℄ P. R. Kumar, 1985, A survey of some results in sto
hasti
 adaptive
ontrol. SIAMJournal of Control and Optimization, 23:329{380.[70℄ L. J. Lin, 1991a, Programming robots using reinfor
ement learning and tea
hing. InPro
eedings of the Ninth National Conferen
e on Arti�
ial Intelligen
e, pages 781{786, MIT Press, Cambridge, MA, USA.[71℄ L. J. Lin, 1991b, Self{improvement based on reinfor
ement learning, planning andtea
hing. In Ma
hine Learning: Pro
eedings of the Eighth International Workshop,L. A. Birnbaum and G. C. Collins, editors, pages 323{327, Morgan Kaufmann, SanMateo, CA, USA.[72℄ L. J. Lin, 1991
, Self{improving rea
tive agents: Case studies of reinfor
ement learn-ing frameworks. In From Animals to Animats: Pro
eedings of the First InternationalConferen
e on Simulation of Adaptive Behaviour, pages 297{305, MIT Press, Cam-bridge, MA, USA.[73℄ L. J. Lin, 1992, Self{improving rea
tive agents based on reinfor
ement learning, plan-ning and tea
hing. Ma
hine Learning, 8(3/4):293{321.[74℄ L. J. Lin, 1993, Hierar
hi
al learning of robot skills by reinfor
ement. In Pro
eedingsof the 1993 International Conferen
e on Neural Networks, pages 181{186.[75℄ C. S. Lin and H. Kim, 1991, CMAC{based adaptive
riti
 self{learning
ontrol. IEEETrans. on Neural Networks, 2(5):530{533.[76℄ A. Linden, 1993, On dis
ontinuous Q{fun
tions in reinfor
ement learning. Availablevia anonymous ftp from ar
hive.
is.ohio{state.edu in dire
tory /pub/neuroprose.[77℄ P. Maes and R. Brooks, 1990, Learning to
oordinate behaviour. In Pro
eedings ofthe Eighth National Conferren
e on Arti�
ial Intelligen
e, pages 796{802, MorganKaufmann, San Mateo, CA, USA.

BIBLIOGRAPHY 68[78℄ P. Magriel, 1976, Ba
kgammon. Times Books, New York, USA.[79℄ S. Mahadevan and J. Connell, 1991, S
aling reinfor
ement learning to roboti
s byexploiting the subsumption ar
hite
ture. In Ma
hine Learning: Pro
eedings of theEighth International Workshop, L. A. Birnbaum and G. C. Collins, editors, pages328{332, Morgan Kaufmann, San Mateo, CA, USA.[80℄ P. Mazzoni, R. A. Andersen, and M. I. Jordan, 1990, AR�P learning applied to anetwork model of
orti
al area 7a. In Pro
eedings of the 1990 International JointConferen
e on Neural Networks, 2:373{379.[81℄ M. A. F. M
Donald and P. Hingston, 1994, Approximate dis
ounted dynami
 pro-gramming is unreliable. Te
hni
al Report 94/6, Department of Computer S
ien
e,The University of Western Australia, Crawley, WA, 6009.[82℄ D. Mi
hie and R. A. Chambers, 1968, BOXES: An experiment in adaptive
ontrol.Ma
hine Intelligen
e 2, E. Dale and D. Mi
hie, editors, pages 137{152, Oliver andBoyd.[83℄ J.D.R. Millan and C. Torras, 1992, A reinfor
ement
onne
tionist approa
h to robotpath �nding in non maze{like environments. Ma
hine Learning, 8:363{395.[84℄ M. L. Minsky, 1954, Theory of Neural{Analog Reinfor
ement Systems and Appli
ationto the Brain{Model Problem. Ph.D. Thesis, Prin
eton University, Prin
eton, NJ, USA.[85℄ M. L. Minsky, 1961, Steps towards arti�
ial intelligen
e. In Pro
eedings of the Insti-tute of Radio Engineers, 49:8{30,1961. (Reprinted in Computers and Thought, E. A.Feigenbaum and J. Feldman, editors, 406{450, M
Graw{Hill, New York, 1963.)[86℄ A. W. Moore, 1990, EÆ
ient Memory{based Learning for Robot Control. Ph.D. Thesis,University of Cambridge, Cambridge, U.K.[87℄ A. W. Moore, 1991, Variable resolution dynami
 progranmming: EÆ
iently learninga
tion maps in multivariate real{vlaued state{spa
es. In Ma
hine Learning: Pro
eed-ings of the Eighth International Workshop, L. A. Birnbaum and G. C. Collins, editors,pages 328{332, Morgan Kaufmann, San Mateo, CA, USA.

BIBLIOGRAPHY 69[88℄ A. W. Moore, 1994, The parti-game algorithm for variable resolution reinfor
ementlearning in multi-dimensional spa
es. In Advan
es in Neural Information Pro
essingSystems 6, J. D. Cowan, G. Tesauro, and J. Alspe
tor, editors, pages Morgan Kauf-mann, San Fransis
o, CA, USA.[89℄ A. W. Moore and C. G. Atkeson, 1993, Memory{based reinfor
ement learning: Ef-�
ient
omputation with prioritized sweeping. In Advan
es in Neural InformationPro
essing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, pages263{270, Morgan Kaufmann, San Mateo, CA, USA.[90℄ M. C. Mozer and J. Ba
hara
h, 1990a, Dis
overing the stru
ture of rea
tive environ-ment by exploration. InAdvan
es in Neural Information Pro
essing 2, D. S. Touretzky,editor, pages 439{446, Morgan Kaufmann, San Mateo, CA, USA.[91℄ M. C. Mozer and J. Ba
hara
h, 1990b, Dis
overing the stru
ture of rea
tive environ-ment by exploration. Neural Computation, 2:447{457.[92℄ K. Narendra and M. A. L. Thatha
har, 1989, Learning Automata: An Introdu
tion.Prenti
e Hall, Englewood Cli�s, NJ, USA.[93℄ J. Peng and R. J. Williams, 1993, EÆ
ient learning and planning within the Dynaframework. In Pro
eedings of the 1993 International Joint Conferen
e on Neural Net-works, pages 168{174.[94℄ V. V. Phansalkar and M. A. L. Thatha
har, 1995, Lo
al and global optimizationalgorithms for generalized learning automata. Neural Computation, 7:950{973.[95℄ J. C. Platt, 1991, Learning by
ombining memorization and gradient des
ent. Ad-van
es in Neural Information Pro
essing Systems 3, R. P. Lippmann, J. E. Moody,and D. S. Touretzky, editors, pages 714{720, Morgan Kaufmann, San Mateo, CA,USA.[96℄ B. E. Rosen, J. M. Goodwin, and J. J. Vidal, 1991, Adaptive Range Coding. Advan
esin Neural Information Pro
essing Systems 3, R. P. Lippmann, J. E. Moody, and D.S. Touretzky, editors, pages 486{494, Morgan Kaufmann, San Mateo, CA, USA.

BIBLIOGRAPHY 70[97℄ S. Ross, 1983, Introdu
tion to Sto
hasti
 Dynami
 Programming. A
ademi
 Press,New York, USA.[98℄ G. A. Rummery and M. Niranjan, 1994, On{line Q{learning using
onne
tionist sys-tems. Te
hni
al Report CUED/F{INFENG/TR 166, University of Cambridge, Cam-bridge, England.[99℄ A. L. Samuel, 1959, Some studies in ma
hine learning using the game of
he
kers.IBM Journal on Resear
h and development, pages 210{229. (Reprinted in Computersand Thought, E. A. Feigenbaum and J. Feldman, editors, M
Graw{Hill, New York,1963.)[100℄ A. L. Samuel, 1967, Some studies in ma
hine learning using the game of
he
kers, II{ Re
ent progress. IBM Journal on Resear
h and Development, pages 601{617.[101℄ N. N. S
hraudolph, P. Dayan, and T. J. Sejnowski, 1994, Temporal di�eren
e learningof position evaluation in the game of Go. In Advan
es in Neural Information Pro
ess-ing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspe
tor, editors, pages MorganKaufmann, San Fransis
o, CA, USA.[102℄ O. Selfridge, R. S. Sutton, and A. G. Barto, 1985, Training and tra
king in roboti
s.In Pro
eedings of the Ninth International Joint Conferen
e of Arti�
ial Intelligen
e,A. Joshi, editor, pages 670{672, Morgan Kaufmann, San Mateo, CA, USA.[103℄ G. Shantaram, P. S. Shastry and M. A. L. Thatha
har, 1994, Continuous a
tion setlearning automata for sto
hasti
 optimization. Journal of the Franklin Institute, Vol.331B, No. 5, pages 607{628.[104℄ J. F. Shepansky and S. A. Ma
y, 1987, Tea
hing arti�
ial neural systems to drive:Manual training te
hniques for autonomous systems. In Pro
eedings of the First An-nual International Conferen
e on Neural Networks, San Diego, CA, USA.[105℄ S. P. Singh, 1991, Transfer of learning a
ross
omposition of sequential tasks. InMa
hine Learning: Pro
eedings of the Eighth Inernational Workshop, L. A. Birnbaumand G. C. Collins, editors, pages 348{352, Morgan Kaufmann, San Mateo, CA, USA.

BIBLIOGRAPHY 71[106℄ S. P. Singh, 1992a, Reinfor
ement learning with a hierar
hy of abstra
t models. InPro
eedings of the Tenth National Conferen
e on Arti�
ial Intelligen
e, San Jose, CA,USA.[107℄ S. P. Singh, 1992b, On the eÆ
ient learning of multiple sequential tasks. In Advan
esin Neural Information Pro
essing Systems 4, J. E. Moody, S. J. Hanson, and R. P.Lippmann, editors, pages 251{258, Morgan Kaufmann, San Mateo, CA, USA.[108℄ S. P. Singh, 1992
, S
aling Reinfor
ement learning algorithms by learning variabletemporal resolution models. In Pro
eedings of the Ninth International Ma
hine Learn-ing Conferen
e.[109℄ S. P. Singh, 1992d, Transfer of learning by
omposing solutions of elemental sequentialtasks. Ma
hine Learning, 8(3/4):323{339.[110℄ S. P. Singh, 1994, Learning to solve Markovian de
ision pro
esses, Ph.D Thesis, De-partment of Computer S
ien
e, University of Massa
hussetts, Amherst, MA, USA.[111℄ S. P. Singh, A. G. Barto, R. Grupen, and C. Connelly, 1994, Robust reinfor
ementlearning in motion planning. In Advan
es in Neural Information Pro
essing Systems6, J. D. Cowan, G. Tesauro, and J. Alspe
tor, editors, pages 655{662, Morgan Kauf-mann, San Fransis
o, CA, USA.[112℄ S. P. Singh, T. Jaakkola, and M. I. Jordan, 1994, Learning without state{estimationin partially observable Markov de
ision pro
esses. Submitted to Ma
hine Learning.[113℄ S. P. Singh and R. C. Yee, 1993, An upper bound on the loss from approximateoptimal{value fun
tions. Te
hni
al Report, University of Massa
husetts, Amherst,MA, USA.[114℄ D. A. Sofge and D. A. White, 1990, Neural network based pro
ess optimization and
ontrol. In Pro
eedings of the 29th IEEE Conferen
e on De
ision and Control, Hon-olulu, Hawaii, USA.[115℄ R. S. Sutton, 1984, Temporal Credit Assignment in Reinfor
ement Learning. Ph.D.Thesis, Univerity of Massa
husetts, Amherst, MA, USA.

BIBLIOGRAPHY 72[116℄ R. S. Sutton, 1988, Learning to predi
t by the method of temporal di�eren
es. Ma-
hine Learning. 3:9{44.[117℄ R. S. Sutton, 1990, Integrated ar
hite
ture for learning, planning, and rea
ting basedon approximating dyanmi
 programming. In Pro
eedings of the Seventh InternationalConferen
e on Ma
hine Learning, pages 216{224, Morgan Kaufmann, San Mateo,CA, USA.[118℄ R. S. Sutton, 1991a, Planning by in
remental dynami
 programming. In Ma
hineLearning: Pro
eedings of the Eighth International Workshop, L. A. Birnbaum and G.C. Collins, editors, pages 353{357, Morgan Kaufmann, San Mateo, CA, USA.[119℄ R. S. Sutton, 1991b, Integrated modeling and
ontrol based on reinfor
ement learningand dynami
 programming. In Advan
es in Neural Information Pro
essing Systems 3,R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, pages 471{478, MorganKaufmann, San Mateo, CA, USA.[120℄ R. S. Sutton, 1996, Genreralization in reinfor
ement learning: su

essful examplesusing sparse
oarse en
oding. To appear in Advan
es in Neural Information Pro
essingSystems 8, MIT press, 1996.[121℄ R. S. Sutton and A. G. Barto, 1981, Toward a modern theory of adaptive networks:Expe
tation and predi
tion. Psy
hologi
al Review, 88:135{170.[122℄ R. S. Sutton and A. G. Barto, 1987, A temporal{di�eren
e model of
lassi
al
on-ditioning. In Pro
eedings of the Ninth Annual Conferen
e of the Cognitive S
ien
eSo
iety, Erlbaum, Hillsdale, NJ, USA.[123℄ R. S. Sutton and A. G. Barto, 1990, Time{derivative models of Pavlovian reinfor
e-ment. Learning and Computational Neuros
ien
e: Foundations of Adaptive Networks,M. Gabriel and J. Moore, editors, pages 497{537, MIT Press, Cambridge, MA, USA.[124℄ R. S. Sutton, A. G. Barto, and R. J. Williams, 1991, Reinfor
ement learning is dire
tadaptive optimal
ontrol. In Pro
eedings of th Ameri
an Control Conferen
e, pages2143{2146, Boston, MA, USA.

BIBLIOGRAPHY 73[125℄ R. S. Sutton and S. P. Singh, 1994, On step{size and bias in TD{learning. In Pro
eed-ings of the Eighth Yale Workshop on Adaptive and Learning Systems, pages 91{96,Yale University, USA.[126℄ M. Tan, 1991, Larning a
ost{sensitive internal representation for reinfor
ement learn-ing. In Ma
hine Learning: Pro
eedings of the Eighth International Workshop, L. A.Birnbaum and G. C. Collins, editors, pages 358{362, Morgan Kaufmann, San Mateo,CA, USA.[127℄ G. J. Tesauro, 1992, Pra
ti
al issues in temporal di�eren
e learning. Ma
hine Learn-ing, 8(3/4):257{278.[128℄ G. J. Tesauro, 1995, Temporal Di�eren
e Learning and TD-Gammon. Communi
a-tions of the ACM, vol. 38, no. 3, pages 58{68.[129℄ C. K. Tham and R. W. Prager, 1992, Reinfor
ement learning for multi-linked manip-ulator
ontrol, Te
hni
al Report CUED/F-INFENG/TR 104, Cambridge UniversityEngineering Department, Cambridge CB2 1PZ, UK.[130℄ C. K. Tham and R. W. Prager, 1994, A modular Q{learning ar
hite
ture for ma-nipulator task de
omposition. In Ma
hine Learning: Pro
eedings of the Eleventh In-tenational Conferen
e, W. W. Cohen and H. Hirsh, editors, NJ, Morgan Kaufmann,USA. (Available via gopher from Dept. of Engg., University of Cambridge, Cambridge,England.)[131℄ M. A. L. Thatha
har and V. V. Phansalkar, 1995, Convergen
e of teams and hierar-
hies of learning automata in
onne
tionist systems. IEEE Transa
tions on Systems,Man and Cyberneti
s, vol. 25, no. 11, pages 1459{1469.[132℄ S. B. Thrun, 1986, EÆ
ient exploration in reinfor
ement learning. Te
hni
al reportCMU{CS{92{102, S
hool of Computer S
ien
e, Carnegie Mellon University, Pitts-burgh, PA, USA.[133℄ S. B. Thrun, 1993, Exploration and model building in mobile robot domains. InPro
eedings of the 1993 International Conferen
e on Neural Networks.

BIBLIOGRAPHY 74[134℄ S. B. Thrun and K. Muller, 1992, A
tive exploration in dynami
 environments. InAdvan
es in Neural Information Pro
essing Systems 4, J. E. Moody, S. J. Hanson,and R. P. Lippmann, editors, Morgan Kaufmann, San Mateo, CA, USA.[135℄ S. B. Thrun and A. S
hwartz, 1993, Issues in using fun
tion approximation for re-infor
ement learning. In Pro
eedings of the Fourth Conne
tionist Models SummerS
hool, Lawren
e Erlbaum, Hillsdale, NJ, USA.[136℄ J. N. Tsitsiklis, 1993, Asyn
hronous sto
hasti
 approximation and Q{learning. Te
h-ni
al Report, LIDS{P{2172, Laboratory for Information and De
ision Systems, MIT,Cambridge, MA, USA.[137℄ J. N. Tsitsiklis and B. Van Roy, 1994, Feature-based methods for large s
ale dynami
programming. Te
hni
al Report, LIDS-P-2277, Laboratory for Information and De
i-sion Systems, Massa
hussetts Institute of Te
hnology, Cambridge, MA 02139, USA.[138℄ P. E. Utgo� and J. A. Clouse, 1991, Two kinds of training information for evalua-tion fun
tion learning. In Pro
eedings of the Ninth Annual Conferen
e on Arti�
ialIntelligen
e, pages 596{600, Morgan Kaufmann, San Mateo, CA, USA.[139℄ C. J. C. H. Watkins, 1989, Learning from Dealyed Rewards. Ph.D. Thesis, CambridgeUniversity, Cambridge, England.[140℄ C. J. C. H. Watkins and P. Dayan, 1992, Te
hni
al note: Q{learning. Ma
hine Learn-ing, 8(3/4):279{292.[141℄ P. J. Werbos, 1987, Building and understanding adaptive systems: a statisti-
al/numeri
al approa
h to fa
tory automation and brain resear
h. IEEE Transa
tionson Systems, Man, and Cybernati
s.[142℄ P. J. Werbos, 1988, Generalization of ba
k propagation with appli
ation to re
urrentgas market model. Neural Networks 1:339{356.[143℄ P. J. Werbos, 1989, Neural networks for
ontrol and system identi�
ation. In Pro-
eedings of the 28th Conferen
e on De
ision and Control, pages 260{265, Tampa, FL,USA.

BIBLIOGRAPHY 75[144℄ P. J. Werbos, 1990a, Consisten
y of HDP applied to simple reinfor
ement learningproblems. Neural Networks, 3:179{189.[145℄ P. J. Werbos, 1990b, A menu of designs for reinfor
ement learning over time, In NeuralNetworks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, editors, pages67{95, MIT Press, MA, USA.[146℄ P. J. Werbos, 1992, Approximate dynami
 programming for real{time
ontrol andneural modeling. In Handbook of Intelligent Control: Neural, Fuzzy, and AdaptiveApproa
hes, D. A. White and D. A. Sofge, editors, pages 493{525, Van NostrandReinhold, NY, USA.[147℄ S. D. Whitehead, 1991a, A
omplexity analysis of
ooperative me
hanisims in rein-for
ement learning. In Pro
eedings of the Ninth Conferen
e on Arti�
ial Intelligen
e,pages 607{613, MIT Press, Cambridge, MA, USA.[148℄ S. D. Whitehead, 1991b, Complexity and
ooperation in Q{learning. In Ma
hineLearning: Pro
eedings of the Eighth International Workshop, L. A. Birnbaum and G.C. Collins, editors, pages 363{367, Morgan Kaufmann, San Mateo, CA, USA.[149℄ S. D. Whitehead and D. H. Ballard, 1990, A
tive per
eption and reinfor
ement learn-ing. Neural Computation, 2:409{419.[150℄ R. J. Williams, 1986, Reinfor
ement learning in
onne
tionist networks: a mathemat-i
al analysis. Te
hni
al report ICS 8605, Institute for Cognitive S
ien
e, University ofCalifornia at San Diego, La Jolla, CA, USA.[151℄ R. J. Williams, 1987, Reinfor
ement{learning
onne
tionist systems. Te
hni
al reportNU{CCS{87{3, College of Computer S
ien
e, Northeastern University, Boston, MA,USA.[152℄ R. J. Williams and L. C. Baird III, 1993a, Analysis of some in
remental variants ofpoli
y iteration: First steps toward understanding a
tor{
riti
 learning systems. Te
h-ni
al Report NU-CCS-93-11, College of Computer S
ien
e, Northeastern University,Boston, MA, USA.

BIBLIOGRAPHY 76[153℄ R. J. Williams and L. C. Baird III, 1993b, Tight performan
e bounds on greedypoli
ies based on imperfe
t value fun
tions. Te
hni
al Report NU-CCS-93-14, Collegeof Computer S
ien
e, Northeastern University, Boston, MA, USA.[154℄ W. Zhang and T. G. Dietteri
h, 1994, A reinfor
ement learning approa
h to job{shops
heduling. Te
hni
al Report, Computer S
ien
e Department, Oregon State Univer-sity, Corvallis, Oregon, USA.

