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Abstract

In robotics and other control applications it is commonplaxhave a pre-
existing set of controllers for solving subtasks, perhagsdacrafted or
previously learned or planned, and still face a difficultidern of how to
choose and switch among the controllers to solve an ovesklds well as
possible. In this paper we present a framework based on Mat&cision
processes and semi-Markov decision processes for phrémsgroblem,
a basic theorem regarding the improvement in performaratetn be ob-
tained by switching flexibly between given controllers, axdmple appli-
cations of the theorem. In particular, we show how an agamptan with
these high-level controllers and then use the results &f glamining to find
an even better plan, by modifying the existing controllerigh negligible
additional cost and no re-planning. In one of our examplescomplexity
of the problem is reduced from 24 billion state-action p#irtess than a
million state-controller pairs.

In many applications, solutions to parts of a task are kn@ither because they were hand-
crafted by people or because they were previously learngdammed. For example, in
robotics applications, there may exist controllers for mgyoints to positions, picking up
objects, controlling eye movements, or navigating alorigjMags. More generally, an intelli-
gent system may have available to it several temporallynebde courses of action to choose
from. In such cases, a key challenge is to take full advanégfee existing temporally ex-
tended actions, to choose or switch among them effectiaely,to plan at their level rather
than at the level of individual actions.

Recently, several researchers have begun to address Hatiemges within the framework of
reinforcement learning and Markov decision processes, @iggh, 1992; Kaelbling, 1993;
Dayan & Hinton, 1993; Thrun and Schwartz, 1995; Sutton, 1@86tterich, 1998; Parr &
Russell, 1998; McGovern, Sutton & Fagg, 1997). Common tohrafchis recent work is
the modeling of a temporally extended action as a policy tfodler) and a condition for
terminating, which we together refer to as aption (Sutton, Precup & Singh, 1998). In
this paper we consider the problem of effectively combirgigen options into one overall
policy, generalizing prior work by Kaelbling (1993). Sexts 1-3 introduce the framework;
our new results are in Sections 4 and 5.



1 Reinforcement Learning (MDP) Framework

In a Markov decision process (MDPan agent interacts with an environment at some dis-
crete, lowest-level time scate= 0,1, 2, ... On each time step, the agent perceives the state
of the environment;; € S, and on that basis choosepramitive action,a; € A. In response

to each actiong,, the environment produces one step later a numerical rewargd, and

a next states; ;. Theone-step modabf the environment consists of the one-step state-
transition probabilities and the one-step expected resyard

ply =Pr{sis1 =5 | s = s,a; = a} and  r? = E{ris1 | st = s,a¢ = a},

forall s,s' € S anda € A. The agent’s objective is to learn aptimal Markov policy a
mapping from states to probabilities of taking each avélgbimitive actionr : S x A —
[0, 1], that maximizes the expected discounted future reward &ach state:

VT(s) = E{rt_,_l +yripo + oo ‘ st = s,7r} = Z m(s,a)[ry + 'yZp‘s’s,V”(s')],
aEAs s!

wherer (s, a) is the probability with which the policy chooses actioa € A, in states, and

v € [0, 1] is adiscount-ratgparameterlV/ ™ (s) is called thesalueof states under policyr, and
V™ is called thestate-value functiofor 7. Theoptimalstate-value function gives the value of
a state under an optimal policy™* (s) = max, V7™ (s) = max,eca,[r+7> o s V*(s')].
Given V*, an optimal policy is easily formed by choosing in each stagmy action that
achieves the maximum in this equation. A parallel set of&&lunctions, denote@™ and@*,
and Bellman equations can be defined for state-action patisr than for states. Planning
in reinforcement learning refers to the use of models of thérenment to compute value
functions and thereby to optimize or improve policies.

2 Options

We use the ternoptionsfor our generalization of primitive actions to include teonglly
extended courses of action. Letr = s, a¢,"ey1, St41, 0441, -, 7T, ST bE the history
sequence from timeé < T to time T, and letQ denote the set of all possible histories in
the given MDP. Options consist of three components: anaiith setZ C S, a policy
m:Qx A — [0,1], and a termination conditiofi : & — [0,1]. An optiono = (Z,n,3)
can be taken in stateif and only if s € Z. If o is taken in states;, the next actioru;

is selected according ta(s;,-). The environment then makes a transitiorst@;, where

o terminates with probabilityp(h: :+1), Or else continues, determining,,; according to
7(htt41,-), and transitioning to stat&. ., whereo terminates with probability (hy ++2)
etc. We call the general options defined absemi-Markobecauser and depend on the
history sequence; iMarkovoptionsr andg depend only on the current state. Semi-Markov
options allow “timeouts”, i.e., termination after some ipdrof time has elapsed, and other
extensions which cannot be handled by Markov options.

The initiation set and termination condition of an optiogether limit the states over which
the option’s policy must be defined. For example, a handexlgfolicyr for a mobile robot
to dock with its battery charger might be defined only foresdtin which the battery charger
is within sight. The termination conditigh would be defined to bé outside ofZ and when
the robot is successfully docked.

We can now definpolicies over optionsLet the set of options available in statbe denoted
O;; the set of all options is denot&d = Uses O,. When initiated in a statg;, the Markov
policy over optiong: : S x O — [0, 1] selects an option € O, according to the probability
distributionu(s, -). The optiono is then taken irs;, determining actions until it terminates
in s+, at which point a new option is selected, according(e;. , -), and so on. In this
way a policy over optiongy, determines a (non-stationary) policy over actiondlaipolicy,

m = f(u). We define the value of a stai@inder a general flat policy as the expected return



if the policy is started irs:
T def
V7i(s) = E{Tt+1 + Y2+ ‘ g(ﬂvs,t)},

where&(w, s, t) denotes the event of being initiated ins at time¢. The value of a state
under a general policy (i.e., a policy over optiopstan then be defined as the value of

the state under the corresponding flat poli®¥:(s) Lyt (s). An analogous definition
can be used for theption-valuefunction, Q*(s, 0). For semi-Markov options it is useful
to define@*(h, o) as the expected discounted future reward after havingweltboptiono
through historyh.

3 SMDP Planning

Options are closely related to the actions in a special kindeoision problem known as a
semi-Markov decision processr SMDP(Puterman, 1994; see also Singh, 1992; Bradtke &
Duff, 1995; Mahadevan et. al., 1997; Parr & Russell, 1998)att, any MDP with a fixed
set of optiongs an SMDP. Accordingly, the theory of SMDPs provides an imaatrrbasis for

a theory of options. In this section, we review the stand&d8 framework for planning,
which will provide the basis for our extension.

Planning with options requires a model of their consequendéne form of this model is
given by prior work with SMDPs. The reward part of the modebdbr states € S is the
total reward received along the way:

rd = E{Tt+1 e + oY T ‘ E(o,s,t)},

where (o, s, t) denotes the event ofbeing initiated in state at timet. The state-prediction
part of the model is

pgs’ = Zp(s’, k)fyka E{’Ykas’st_pe | g(ov S, t)}a
k=1
forall s' € S, wherep(s', k) is the probability that the option terminatesshafter k steps.
We call this kind of model anulti-time modebecause it describes the outcome of an option
not at a single time but at potentially many different timegspropriately combined.

Using multi-time models we can write Bellman equations fengral policies and options.
For any general Markov policy, its value functions satisfy the equations:

Vi(s) = 3 uls,o)

0€0;,

Let us denote a restricted set of options®@yand the set of all policies selecting only from
options inO by I1(©). Then the optimal value function given that we can selegt moim O

is V5 (s) = maxoco, [r) + D, P2V (s')] . A correspondingptimal policy denoteduy,,

is any policy that achieves, i.e., for whichV#o (s) = V3 (s) in all statess € S. If V5 and
the models of the options are known, th&h can be formed by choosing in any proportion
among the maximizing options in the equation abovaAigr

re+ Y plaVE(s)
sl

and QH(s,0) =712+ Zp‘s’s,V“(s’).

Itis straightforward to extend MDP planning methods to SMDIPor examplesynchronous
value iterationwith options initializes an approximate value functitg(s) arbitrarily and
then updates it by:

Viti(s) & max(ry + ze; Pos Vi(s')], Vs€S.

Note that this algorithm reduces to conventional valuatten in the special case in which
O = A. Standard results from SMDP theory guarantee that suctepses converge for



general semi-Markov option$imy,_, Vi (s) = V5(s) forall s € S, 0 € O, and for allO.
The policies found using temporally abstract options afg@dmate in the sense that they
achieve only;;, which is typically less than the maximum possibfe,

4 Interrupting Options

We are now ready to present the main new insight and resutii®fpaper. SMDP meth-

ods apply to options, but only when they are treated as opmgiisible units. Once an

option has been selected, such methods require that itsydudi followed until the option

terminates. More interesting and potentially more powerfethods are possible by looking
inside options and by altering their internal structurg.(&utton, Precup & Singh, 1998).

In particular, suppose we have determined the option-faheionQ* (s, o) for some policy

u and for all state—options paits o that could be encountered while following This
function tells us how well we do while following committing irrevocably to each option,
but it can also be used to re-evaluate our commitment on deph Suppose at timewe
are in the midst of executing optian If o is Markov in s, then we can compare the value
of continuing witho, which is@*(s;, 0), to the value of interrupting and selecting a new
option according tq:, which isV#(s) = 3" _, u(s, 0')Q*(s, o). If the latter is more highly
valued, then why not interruptand allow the switch? This new way of behaving is indeed
better, as shown below.

We can characterize the new way of behaving as following &gl that is the same as the
original one, but over new options, i.g!(s,0') = u(s,0), forall s € S. Each new option
o' is the same as the corresponding old opti@xcept that it terminates whenever switching
seems better than continuing accordingt6. We call such a:" aninterrupted policyof p.
We will now state a general theorem, which extends the casgrided above, in that options
may be semi-Markov (instead of Markov) and interruptionpsi@nal at each state where it
could be done. The latter extension lifts the requiremeatt@ be completely known, since
the interruption can be restricted to states for which thiisrimation is available.

Theorem 1 (Interruption) For any MDP, any set of option®, and any Markov policy
w8 x O — [0,1], define a new set of option®/, with a one-to-one mapping between
the two option sets as follows: for evesy= (Z,m,3) € O we define a corresponding
o' =(Z,n,[") € O, where’ = 3 exceptthatfor any historlyin which@* (h, 0) < V#(s),
wheres is the final state ok, we may choose to sgt(h) = 1. Any histories whose termina-
tion conditions are changed in this way are callederrupted historiesLet ' be the policy
overo' corresponding tqu: ' (s,0’) = u(s, o), whereo is the option inO corresponding to
o', forall s € S. Then

1. VH (s) > VH(s) forall s € S.

2. If from states € S there is a non-zero probability of encountering an intertegh
history upon initiatingu’ in s, thenV#' (s) > V#(s).

Proof: The idea is to show that, for an arbitrary start statexecuting the option given by
the termination improved policy’ and then following policy. thereafter is no worse than
always following policyu. In other words, we show that the following inequality holds

S W (s,0)rg + Y pL VSN 2 VE(s) =D uls,0)lrs + > plaVE(s)] (@)

If this is true, then we can use it to expand the left-hand,sidpeatedly replacing every
occurrence o¥ #(z) on the left by the correspondinyg, 1’ (z, o[re' + > ur po VH(z')].

In the limit, the left-hand side becom&g*', proving thatV* > V#. Sincey/(s,0') =
u(s,0) Vs € 8, we need to show that

rd ) Pl VE(S) 20+ Y p VE(S). @)



LetT" denote the set of all interrupted histori€s= {h € Q : 5(h) # £'(h)}. Then, the left
hand side of (2) can be re-written as

E{r + YRV H(s") ‘ E(0,8),hss & F} —+-E{r +*VE(s") ‘ E(0,8), hsst € I‘},
wheres’, r, andk are the next state, cumulative reward, and number of elagtepd fol-
lowing optiono from s (hss is the history froms to s’). Trajectories that end because of

encountering a historjisss ¢ I' never encounter a history i, and therefore also occur
with the same probability and expected reward upon exegwjtiono in states. There-

fore, we can re-write the right hand side of (Z)B{r + V(s ‘ E(0,s), hss & F} +
B{B(s)[r +7*VA(s)] + (1 = B +74 Q4 (kw1 0)] | £(0',5), haw €T

This proves (1) because for @k, € T', Qi (hss,0) < V#(s'). Note that strict inequality
holds in (2) ifQ%, (hss,0) < V#(s') for at least one histor,y € T that ends a trajectory
generated by’ with non-zero probability. o

As one application of this result, consider the case in whichan optimal policy for a given
set of Markov optiong). The interruption theorem gives us a way of improving ovgr
with just the cost of checking (on each time step) if a betpdiom exists, which is negligible
compared to the combinatorial process of compu@jgor V5. Kaelbling (1993) and Di-
etterich (1998) demonstrated a similar performance imgmmeant by interrupting temporally
extended actions in a different setting.

5 1llustration

Figure 1 shows a simple example of the gain that can be olstd&ipénterrupting options.
The task is to navigate from a start location to a goal locatidgthin a continuous two-
dimensional state space. The actions are movements ohl@r@t in any direction from the
current state. Rather than work with these low-level actianfinite in number, we introduce
seven landmark locations in the space. For each landmarlefireech controller that takes us
to the landmark in a direct path. Each controller is only agtlle within a limited range of
states, in this case within a certain distance of the coomdipg landmark. Each controller
then defines an option: the circular region around the cteti®landmark is the option’s
initiation set, the controller itself is the policy, and theival at the target landmark is the
termination condition. We denote the set of seven landmpatikies byO. Any action within
0.01 of the goal location transitions to the terminal state; 1, and the reward is-1 on all
transitions, which makes this a minimum-time task.

One of the landmarks coincides with the goal, so it is possibleach the goal while picking
only from O. The optimal policy withinlI(O) runs from landmark to landmark, as shown
by the thin line in Figure 1. This is the optimal solution t@t8MDP defined by and is
indeed the best that one can do while picking only from thgd®ns. But of course one can
do better if the options are not followed all the way to eactdlaark. The trajectory shown
by the thick line in Figure 1 cuts the corners and is shortdis s the interrupted policy
with respect to the SMDP-optimal policy. The interruptedigyotakes 474 steps from start
to goal which, while not as good as the optimal policy (42%s}eis much better than the
SMDP-optimal policy, which takes 600 steps. The statee/éilinctions,V#o andV* for
the two policies are also shown in Figure 1.

Figure 2 presents a more complex, mission planning task. ssion is a flight from base to
observe as many of a given set of sites as possible and to tetbase without running out
of fuel. The local weather at each site flips from cloudy taaclaccording to independent

We note that the same proof would also apply for switchingtheooptions (not selected hy) if
they improved over continuing with. That result would be more general and closer to convertiona
policy improvement. We prefer the result given here bec#ismphasizes its primary application.
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Figure 1:Using interruption to improve navigation with landmarkedited controllers. The task (left)
is to navigate from S to G in minimum time using options basedaantrollers that run each to one
of seven landmarks (the black dots). The circles show themeground each landmark within which
the controllers operate. The thin line shows the optimablsih that uses only these controllers run to
termination, and the thick line shows the correspondingriopted behavior, which cuts the corners.
The right panels show the state-value functions for the ShMptimal and interrupted policies.

Poisson processes. If the sky at a given site is cloudy wreepltne gets there, no observa-
tion is made and the reward(s If the sky is clear, the plane gets a reward, according to the
importance of the site. The positions, rewards, and meaa liietween two weather changes
for each site are given in Figure 2. The plane has a limiteduarnof fuel, and it consumes
one unit of fuel during each time tick. If the fuel runs out twef reaching the base, the plane
crashes and receives a reward-df00.

The primitive actions are tiny movements in any directidre(e is no inertia). The state of
the system is described by several variables: the curresitigqo of the plane, the fuel level,
the sites that have been observed so far, and the currerteveatach of the remaining sites.
The state-action space has approxima2dly billion elements (assuming 100 discretization
levels of the continuous variables) and is intractable bymad dynamic programming meth-
ods. We introduced options that can take the plane to eadtedites (including the base),
from any position in the state space. The resulting SMDP h§s874,800 elements and it
is feasible to exactly determirié;(s’) for all sitess’. From this solution and the model of
the options, we can determing, (s,0) = rg + > ., p%, V5 (s') for any optiono and any
states in the whole space.

We performed asynchronous value iteration using the opfioarder to compute the optimal
option-value function, and then used the interruption epph based on the values computed.
The policies obtained by both approaches were comparecteeults of a static planner,
which exhaustively searches for the best tour assuming teth&r does not change, and
then re-plans whenever the weather does change. The gré&pgure 2 shows the reward
obtained by each of these methods, averaged over 100 indepiesimulated missions. The
policy obtained by interruption performs significantly teethan the SMDP policy, which in
turn is significantly better than the static planfer.

6 Closing

This paper has developed a natural, even obvious, obsamvathat one can do better by
continually re-evaluating one’s commitment to coursesatioa than one can by commit-
ting irrevocably to them. Our contribution has been to folairithis observation precisely
enough to prove it and to demonstrate it empirically. Ourlfeaxa@ample suggests that this
technique can be used in applications far too large to beedadt the level of primitive ac-

tions. Note that this was achieved using exact methodspwitfunction approximators to

represent the value function. With function approximatonrd other reinforcement learning
techniques, it should be possible to address problemsithatastantially larger still.

2In preliminary experiments, we also used interruption omulely learned estimate @}},. The
performance of the interrupted solution was very close éa#éisult reported here.
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Figure 2: The mission planning task and the performance of policiestrocted by SMDP meth-
ods, interruption of the SMDP policy, and an optimal stagigplanner that does not take into account
possible changes in weather conditions.
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