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Agenda

= Wafer Inspection
= Al/ML applications
= Challenges in Adopting Al/ML

= Limitations from optical physics
= Data challenges

= Throughput challenges
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Wafer Inspection
Semiconductor Manufacturing Process

4. Exposure 5. Development

/ Etching

1. Cleaning 2. Film Deposition 3. Resist Coating

. Resist Stripping 7. Implantation of Impurities

9. Testing and Assembly 9. Dicing
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We Must Find and Classify Really Small Defects

=
ey

defects

Eye of Needle Flu Virus DNA Strand Semiconductor
2,000,000nm 100nm 2nm (width) <10nm
defect size
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Defect Types

L] ']

Bridge protrusion break

Shrink Missing Hole
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L
-
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Electron-beam Review System
Scanning Electron Microscope (SEM) Technology



Broadband Plasma Optical Patterned Wafer Inspectors

DUV Vis

392x 295x

Optical-Based Inspection (photons)

Wavelength : DUV - Visible
Optical Physics : Diffraction of light
Throughput : 1000x SEM Inspection

KL/\ES
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Broadband Plasma Optical Inspection

Electron Beam Photons

Ebeam Wavelength: 2.5 pm
Wavelength >> Defect size

Defect size < 20 nm

Is the cat blind?
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Image Grabbing Detection Feature Classification

Extraction

e Sensors grab ® Report events e Calculate e Suppress
the images e Events include statistical Nuisance
from wafer DOl and attributes e Classify to DOI
nuisance groups
) ) ) )
Sen5|t|v|ty Capture more Defects of Interest at lower nuisance rate
Th roughput Capture them all at the lower time rate

Its not only how good you classify, but how fast you can do that!
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Classification prior to ML

Defect

Attributes
(several hundreds)
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Classification with ML

Defect

Attributes
(several hundreds)

1 10

Defects
of Nuisance
Interests
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Limitations from Optical Physics

Layer differences Design differences Interferences from underneath layers
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Image source: https://en.wikipedia.org/wiki/Front_end_of line

Pitch
Decreased
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Data Challenges

N\

\

Obtaining Labelled Data Process Variation Model Maintenance

13 KLA Non-Confidential | Unrestricted |/< L/\



Obtaining Labelled Data

Obtaining 15t defects to train

Human Labour SEM Review
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Active Learning: Learning from Limited Labels

classify Learn New

Model
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Unlabeled data Machine Learning
Model Labelled data

Goal: Machine automatically

~

)

—

_— .

| and adaptively selects most

informative data for labeling

Data selection algorithm

Settles, Burr. "Active learning literature survey." (2009).
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Active Learning: Learning from Limited Labels

. Learn New
> Model

Labelled data

=
S

Query
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Active Learning: Learning from Limited Labels
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Human Annotator
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Active Learning: Learning from Limited Labels

| A
b o ClassA

. L!“'J )4 M e ® o
L ¢ e o @ A Class B
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. E | classify . . Learn New
- } > Model

Labelled data

Iteration 0

~_
—
—
$5/|mag
Query \_q
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Active Learning: Learning from Limited Labels

| A
b o ClassA
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- } > Model

Labelled data

Iteration 1
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$5/|mag
Query \_q
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Active Learning: Learning from Limited Labels

. Learn New
> Model

Labelled data

=
S

Iteration 2

Query
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Active Learning: Learning from Limited Labels

. Learn New
> Model

Labelled data

=
S

Iteration 3

Query
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Active Learning: Learning from limited labels

Iteration N

Query
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Active Learning: Learning from Limited Labels

Uncertainty Sampling
Least-Confident
Margin
Entropy
Query-By-Committee
Measure level of disagreement
E.g. vote entropy, KL divergence
Expected Model Change
Expected Error Change
Output Variance Reduction
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Model

> Model
Machine Learning

Labelled data

(L

Data selection algorithm

8

Query _l\__[@

Human Annotator
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Active Learning: Learning from Limited Labels

Y
» lass A
e @ ¢ L]
e 0 @ A Class B
. ° [ y | A
classify A Learn New
> Model

Unlabeled data Machine Learning
Model Labelled data

BBP Optical Inspection
System

High Resolution

Data selection algorithm

i) Tl

Human Annotator

High Productivity:
wafer-level data

—

e-beam Review
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Active Learning: Learning from limited labels

Better Sensitivity

Production worthy ML model

‘ classify

Learn New
Model

Machine Learning | £
Model Labelled data Deep Learning Based

defect classification

BBP Optical Inspection
System

High Resolution

High Productivity:

wafer-level data Query

e-beam Review
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Process Variation

1. Cleaning 2. Film Deposition 3. Resist Coating 4. Exposure 5. Development

/Etching
= Material Changes

= Design variations
» Focus/ Exposure changes in Photolithography

9. Testing and Assembly 9. Dicing . Resist Stripping 7. Implantation of Impurities
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Adaptive Models
N\

Models that periodically updates itself.

Tracking Model Performance

Deriving statistics to alert process drift

/
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S SN Model Maintenance

Defect
Attributes P

(several hundreds)

1 0

Defects
of Nuisance
Interests
= |nterpretable = Reproducible: Need to store Training Set
= Reproducible = Bookkeeping required
= Easy to Maintain = Need explainable ML
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X Model Maintenance

Training

Models Parameters Training Set

L

Model Data
Management Management
system System

Need to have an ecosystem that would keep track of models
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Throughput Challenges



Achieving Throughput Expectation

Need to have cheaper compute

Optimize best on the hardware
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DL Inference

Overheads
00 —

Custom Implementations

TENSOR CORES

@ Oﬂ?@ ®
ofisee
o
z

Z

Programmable Inference Accelerator

Simple convolution (15x15)

Number of Tensorflow TensorRT ( FP32) CuDNN
Images Inference (seconds) | Inference(seconds) (Seconds)
1M 12.6 10.9

17.74

These frameworks are made to optimize large DL networks.
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DL Inference

Can we create an optimized framework that could hyper boost DL inference tailored for
inspection use case?

o | e | sie | e | o axTensorflow, 2 CuDNN
’

Convolution 2D 32x5x5x3 4.6KB Constant Cache 8 KB per SM 16 —*— TensorFlow GPU
=e— custom cuDNN (TensorCores)
14 e
SN[ 32 x 64 4 KB Shared Memory 64 KB per Block custom CUDA (TensorCores)

12
Fully Connected R SW¥i 0.2 KB Shared Memory 64 KB per Block 10

All Parameters are stored as float16 (2 Bytes)

Time (in seconds)

Custom CUDA using
Tensor core 4
(in seconds)

TensorFlow Custom cuDNN
No of Images

(in seconds) (in seconds)

1.02 0.45 0.20
0
100k 1.81 0.76 0.33 0 0.2M 0.4M 0.6M 0.8M IM
7.91 4.19 2.08 Number of Images(32 x 32 x 3)
1 16.15 8.92 4.54
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DL Inference
How can we train models that improves the inference speed?

Quantization: less bits per weight

Pruning: less number of weights Pig ~ Huffman Encoding . . e
______________ “( YN . Basell Pruning Post Training
’ s Cluster the Weights I . RN aseline
! \ . .
l ! 'L - N : : (80%) Quantization
I' | Train Connectivity 1 1 1 , !
original : y | same : ) I same : : same
network 1 <z . ! accuracy Generate Code Book laccuracy | jaccuracy -
! . J 1 =i
—~ I | Prune Connections | 9:13> i ) 1T g i d > i ! | o 39kb ﬂ
original | \ v, 1 9%-13x : : 27x-31x | | Encode Index 1 35x-49x
size : p <z . :reduction: ﬁili?,nctlggﬂaeo?flghti Ereduction: :reduction (t Ite)
: Train Weights : : i : e ! |
1L _/ 1 1 , TTTEEmmmsT
A / Retrain Code Book
. ’ 1 1 . . .
————————————— g ) No Accuracy degradation after quantization

Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding
Song Han, Huizi Mao, William J. Dally 2016

A model that fits into cache can be ninja optimized for inference
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https://arxiv.org/search/cs?searchtype=author&query=Han%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Mao%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Dally%2C+W+J

Need of the Hour...

= Expert in Al/ML
= Explainable models
= Few shot learning
= Statistical ML

= Model optimization for compute
" Embrace Modern C++

= Heterogenous Compute
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