KL/\E=

Minimizing Copy Overhead
While Sharing GPUs in a Box

Mark Roulo
Sep 2021

IITM HPC workshop

Presentation Overview

What Problem Are We Trying To Solve?

Design Philosophy

Technologies Behind the Solution

Putting the Pieces Together

2 KLA Non-Confidential | Unrestricted |/<|_/\

The Problem

We have 32+ CPU processes that each want access to GPU/DL resources

DL "sessions" (e.g. TensorFlow) can be used by only one process

We don't get very many sessions per GPU
o DL sessions can require a lot of GPU memory (eg 8+ GB/session)

o So maybe 2-3 sessions per GPU

o This is a lot less than 32+

Standard "sharing" technologies use network copying + marshalling

We don't want to take the hit from copying+marshalling

Understand that all of our problems go away if we are willing to run slower!!!!

3 KLA Non-Confidential | Unrestricted |/<|_/\

Design Philosophy (1)

Q Solution To Exact Problem

e Solve only today's problem. Not good. You don't want to revisit this in a year.

4 KLA Non-Confidential | Unrestricted |/< |_/\

Design Philosophy (2)

Complex, Fully Generalized Solution

Solution To Exact Problem

e Solve only today's problem. Not good. You don't want to revisit this in a year.

e Design and build the fully generalized solution. Not good. Lots of wasted effort. You are not Facebook or Google.

5 KLA Non-Confidential | Unrestricted I/<L/\

Design Philosophy (3)

Complex, Fully Generalized Solution

Simple Generalization

Solution To Exact Problem

e Solve only today's problem. Not good. You don't want to revisit this in a year.
e Design and build the fully generalized solution. Not good. Lots of wasted effort. You are not Facebook or Google.

e Design up to the "natural", simple generalization to your problem.
Don't implement all of that generalization.

6 KLA Non-Confidential | Unrestricted I/< L/\

Design Philosophy (4)

Complex, Fully Generalized Solution

Simple Generalization

Partial Implementation of
Simple Generalization

Solution To Exact Problem

Solve only today's problem. Not good. You don't want to revisit this in a year.

Design and build the fully generalized solution. Not good. Lots of wasted effort. You are not Facebook or Google.

e Design up to the "natural", simple generalization to your problem.
Don't implement all of that generalization.

Implement your best guess of the most likely to be needed bits of the easy generalization.

7 KLA Non-Confidential | Unrestricted |/< L/\

8 KLA Non-Confidential | Unrestricted

PID: 100

Data

Constants

Code

A Linux Process

KL/\ER

Linux Processes After Forking

PID: 100 PID: 101
Data Data
Constants Constants
Code Code

Right after fork() the code, constant values and mutable data values are (almost) identical.
This commonality includes pointers to values in the process (so *p will have the same address in both processes).

But each process has a separate copy, so changes will be private to the process making the change.

9 KLA Non-Confidential | Unrestricted |/<|_/\

Linux Processes After Fork and Exec

PID: 100 PID: 101
Data
Data
Constants
Constants
Code Code

The code, constant values and mutable data are all different now!

10 KLA Non-Confidential | Unrestricted |/<|_/\

Private Shared Memory (1)

PID: 100 PID: 101
Data Data
) 5]
Constants Constants
Code Code

This is the same as forking (common values, but copies so changes are local)

Except that the private shared memory is SHARED. Changes made by one process are visible to the other process.

11 KLA Non-Confidential | Unrestricted |/<|_/\

Private Shared Memory (2)

PID: 100 PID: 101
Data Data
)
Constants Constants
Code Code

Private shared memory can be closed/freed. Then the process no longer has access to the shared memory.

12 KLA Non-Confidential | Unrestricted |/<|_/\

Private Shared Memory (3)

PID: 100
PID: 500 Data PID: 101 PID: 102
Bl
Constants
Data Code Data Data
HE] (]
Constants Constants Constants
Code Code Code

We can arrange for each forked (child) process to have access to only one shared memory block. The parent can acccess
all shared memory blocks.

13 KLA Non-Confidential | Unrestricted |/<|_/\

Private Shared Memory (4)

PID: 100
PID: 500 Data PID: 101 PID: 132
EROCONNE
Constants

Data Code Data Data
EENCOONDE]]
Constants Constants Constants

Code = Code Code

e Each child process has access to one (and only one) shared memory block to share data with helper processes.
e Each helper process has access to a DL/GPU session.

e Each helper process can access any of the child shared memory blocks.

14 KLA Non-Confidential | Unrestricted |/<|_/\

Transferring Control

e Child processes send a message to the parent, which dispatches to any available helper.

e Messages are queued up if no helper is available.

The messaging API looks like this:

o typedef struct shm_msg_t

{
shm_func_ptr_t func_ptr;
void kparams;
} shm_msg_t;

e void shm_send_msg(shm_msg_t msg);

e shm_msg_t shm_read_msg();

15 KLA Non-Confidential | Unrestricted |/<|_/\

Transferring Control (2)

An example function might look like this:

void helper_func_1(void *data)

{
printf(" Helper %2d [pid:%8d]: %s\n",
shm_get_helper_id(),
getpid(),
(charx)data));
}

16 KLA Non-Confidential | Unrestricted |/<|_/\

Transferring Control (3)

Messages are small (16 bytes; 64 bytes after adding some overhead)

Messages only sent within a single OS domain.

We use Posix pipes to send the messages.

A single thread in the parent process manages all the message dispatch.
o Single-threaded dispatch, so a simple loop with no locking.

o Use Linux po11() API to avoid busy waiting
o ~150,000 round-trip messages/sec on my MacBook Pro laptoo.

o QOur inference graphs take about 4 - 20 ms to run

(*) poll() is a poorly named API. It is an improved version of select() and does not busy wait!

17 KLA Non-Confidential | Unrestricted |/<|_/\

Managing the Shared Memory

e void *shm_malloc(size_t size);

e void shm_free(voidx);

This is only called from the child processes.
The helpers can access the shared memory, but do not allocate out of it.

18 KLA Non-Confidential | Unrestricted |/<|_/\

Putting It All Together

Someone launches the parent process.

The parent sets up the shared memory regions.
The parent sets up the process-to-process pipes.
int shm_launch(int child_cnt,
shm_main_bundle_t main_bundles|],
int shm_block_size,
int helper_cnt);

The parent forks the helpers.

The parent forks the children (and closes the correct shared memory regions).

Children manage the memory
void xshm_malloc(size_t size);
void shm_free(voidx);

Children and helpers run, sending messages back and forth.
void shm_send_msg(shm_msg_t msg);
shm_msg_t shm_read_msg();

19 KLA Non-Confidential | Unrestricted |/<|_/\

Overview of Some Design Decisions

Why Helper Processes?
Why Single Dispatch Thread in Parent?
Why Allocate Only in Child?

Why Homogeneous Helper Processes?

Constraint: Approach Doesn't Work on Windows

Constraint: One Message Outstanding At a Time Per Child

20 KLA Non-Confidential | Unrestricted |/<|_/\

KL/\ &

Thank you

