

Multiple Facets of Algebraic Computation

C Ramya IMSc, Chennai.

September 2023

イロト 不同 とうほう 不同 とう

э

1/19

• Goal: Understand the amount of *computational resource* required to solve a given *computational problem* on a *computational model*.

- Goal: Understand the amount of *computational resource* required to solve a given *computational problem* on a *computational model*.
- **Objects:** Polynomials. E.g., $f = x_1^2 + 3x_1x_2 2$.

- Goal: Understand the amount of *computational resource* required to solve a given *computational problem* on a *computational model*.
- Objects: Polynomials. E.g., f = x₁² + 3x₁x₂ 2.
 Resource: No. of arithmetic operations(+, ×)

- Goal: Understand the amount of *computational resource* required to solve a given *computational problem* on a *computational model*.
- Objects: Polynomials. E.g., f = x₁² + 3x₁x₂ 2.
 Resource: No. of arithmetic operations(+, ×)

 Model: Arithmetic circuits: DAGs with leaves labelled by variables or constants(from 𝔅) and internal gates labelled by {+, ×}.

 size(C) - number of gates in circuit C ≡ no. of arithmetic operations to compute f.

- size(C) number of gates in circuit C ≡ no. of arithmetic operations to compute f.
- $depth(\mathcal{C})$ length of longest path from input to output gate of \mathcal{C} .

- size(C) number of gates in circuit C ≡ no. of arithmetic operations to compute f.
- $depth(\mathcal{C})$ length of longest path from input to output gate of \mathcal{C} .
- There can be several different circuits computing a given polynomial.

- size(C) number of gates in circuit C ≡ no. of arithmetic operations to compute f.
- $depth(\mathcal{C})$ length of longest path from input to output gate of \mathcal{C} .
- There can be several different circuits computing a given polynomial.

- size(C) number of gates in circuit C ≡ no. of arithmetic operations to compute f.
- depth(C) length of longest path from input to output gate of C.
- There can be several different circuits computing a given polynomial.

Let $\mathcal{SUM}_n = x_1 + x_2 + \cdots + x_n$.

- size(C) number of gates in circuit C ≡ no. of arithmetic operations to compute f.
- depth(C) length of longest path from input to output gate of C.
- There can be several different circuits computing a given polynomial. Let $SUM_n = x_1 + x_2 + \cdots + x_n$.

 $SUM = (SUM_n)_{n \ge 1}$ is a polynomial family.

• Any *n*-variate degree-*d* polynomial can be computed by

• Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.
 E.g.,: SUM, Symbolic Determinant det = (det_n)_{n>1}.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.
 E.g.,: SUM, Symbolic Determinant det = (det_n)_{n≥1}.
- Class VP: class of efficiently computable polynomial families.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.
 E.g.,: SUM, Symbolic Determinant det = (det_n)_{n≥1}.
- Class VP: class of efficiently computable polynomial families.
- Are there polynomials that are *hard* to compute(outside VP)? YES.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.
 E.g.,: SUM, Symbolic Determinant det = (det_n)_{n≥1}.
- Class VP: class of efficiently computable polynomial families.
- Are there polynomials that are *hard* to compute(outside VP)? YES.
- **Goal**: Find an *explicit polynomial* outside VP. Explicit: coefficient of any monomial is *reasonably* easy to compute.

- Any *n*-variate degree-*d* polynomial can be computed by a depth two circuit of size $O\left(\binom{n+d}{d}\right)$.
- There exists *n*-variate degree-*d* polynomials that require arithmetic circuits of size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
- A polynomial family (f_n)_{n≥1} is efficiently computable if for every n, deg(f_n) = poly(n) and there is poly(n) size circuit for f_n.
 E.g.,: SUM, Symbolic Determinant det = (det_n)_{n≥1}.
- Class VP: class of efficiently computable polynomial families.
- Are there polynomials that are *hard* to compute(outside VP)? YES.
- **Goal**: Find an *explicit polynomial* outside VP. Explicit: coefficient of any monomial is *reasonably* easy to compute.

Valiant's Conjecture: Any circuit for perm_n requires size $n^{\omega(1)}$.

(Baur, Strassen'83) Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$.

(Baur, Strassen'83) Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$. (Folklore) Any depth-2 circuit computing perm_n requires size n!.

(Baur, Strassen'83) Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$. (Folklore) Any depth-2 circuit computing perm_n requires size n!. Depth reduction $n^{\omega(\sqrt{d})}$ lower bound for depth-three circuits computing an explicit *n*-variate, degree *d* polynomial is sufficient to resolve Valiant's conjecture.

(Baur,Strassen'83)Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$. (Folklore) Any depth-2 circuit computing perm_n requires size n!. Depth reduction $n^{\omega(\sqrt{d})}$ lower bound for depth-three circuits computing an explicit *n*-variate, degree *d* polynomial is sufficient to resolve Valiant's conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit *n*-variate polynomial (in VP) of degree *d* such that any depth three circuit for it has size $n^{\Omega(\sqrt{d})}$.

(Baur, Strassen'83) Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$. (Folklore) Any depth-2 circuit computing perm_n requires size n!. Depth reduction $n^{\omega(\sqrt{d})}$ lower bound for depth-three circuits computing an explicit *n*-variate, degree *d* polynomial is sufficient to resolve Valiant's conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit *n*-variate polynomial (in VP) of degree *d* such that any depth three circuit for it has size $n^{\Omega(\sqrt{d})}$.

Perhaps the principal embarrassment of complexity theory at the present time is its failure to provide techniques for proving non-trivial lower bounds on the complexity of some of the commonest combinatorial and arithmetic problems.

(Baur, Strassen'83) Any circuit for $x_1^d + \cdots + x_n^d$ requires size $\Omega(n \log d)$. (Folklore) Any depth-2 circuit computing perm_n requires size n!. Depth reduction $n^{\omega(\sqrt{d})}$ lower bound for depth-three circuits computing an explicit *n*-variate, degree *d* polynomial is sufficient to resolve Valiant's conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit *n*-variate polynomial (in VP) of degree *d* such that any depth three circuit for it has size $n^{\Omega(\sqrt{d})}$.

Perhaps the principal embarrassment of complexity theory at the present time is its failure to provide techniques for proving non-trivial lower bounds on the complexity of some of the commonest combinatorial and arithmetic problems.

-Valiant(1975)

Proving Lower Bounds: A Toy Example Let $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Goal: Find an explicit $h(x) \notin C$.

Let $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Goal: Find an explicit $h(x) \notin C$.

• Let $f(x) = ax^2 + bx + c$ be any quadratic polynomial. Then, f(x) has a repeated root if and only if $b^2 - 4ac = 0$. Note, $\overline{\operatorname{coeff}}(f) = (a, b, c)$.

Let $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Goal: Find an explicit $h(x) \notin C$.

- Let $f(x) = ax^2 + bx + c$ be any quadratic polynomial. Then, f(x) has a repeated root if and only if $b^2 4ac = 0$. Note, $\overline{\operatorname{coeff}}(f) = (a, b, c)$.
- Find a polynomial $h(x) = ax^2 + bx + c$ with non-zero discriminant.

Let $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Goal: Find an explicit $h(x) \notin C$.

- Let $f(x) = ax^2 + bx + c$ be any quadratic polynomial. Then, f(x) has a repeated root if and only if $b^2 4ac = 0$. Note, $\overline{\operatorname{coeff}}(f) = (a, b, c)$.
- Find a polynomial $h(x) = ax^2 + bx + c$ with non-zero discriminant.

Consider
$$P(z_1, z_2, z_3) = z_2^2 - 4z_1z_3$$
. Then,

•
$$f(x) \in \mathcal{C} \Rightarrow P(\overline{\operatorname{coeff}}(f)) = 0.$$

- $P(z_1, z_2, z_3)$ is efficiently computable.
- There is polynomial $h(x) \in \mathbb{F}[x]^{\leq 2}$ such that $P(\overline{\operatorname{coeff}}(h)) \neq 0$.

Let $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Goal: Find an explicit $h(x) \notin C$.

- Let $f(x) = ax^2 + bx + c$ be any quadratic polynomial. Then, f(x) has a repeated root if and only if $b^2 4ac = 0$. Note, $\overline{\operatorname{coeff}}(f) = (a, b, c)$.
- Find a polynomial $h(x) = ax^2 + bx + c$ with non-zero discriminant.

Consider
$$P(z_1, z_2, z_3) = z_2^2 - 4z_1z_3$$
. Then,

•
$$f(x) \in \mathcal{C} \Rightarrow P(\overline{\operatorname{coeff}}(f)) = 0.$$

- $P(z_1, z_2, z_3)$ is efficiently computable.
- There is polynomial $h(x) \in \mathbb{F}[x]^{\leq 2}$ such that $P(\overline{\operatorname{coeff}}(h)) \neq 0$.

Proving Lower Bounds against C: Find a property P that every polynomial in C satisfies and then find an explicit h that does not satisfy P.

Let C be the class of $\Sigma\Pi$ -circuits. Any $\Sigma\Pi$ circuit computing the permanent requires size n!.

• Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

$$\mu(f) = \mu(m_1 + \cdots + m_s)$$

 $\leq \mu(m_1) + \cdots + \mu(m_s) \leq s$
Let C be the class of $\Sigma\Pi$ -circuits. Any $\Sigma\Pi$ circuit computing the permanent requires size n!.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

$$\mu(f) = \mu(m_1 + \cdots + m_s)$$

 $\leq \mu(m_1) + \cdots + \mu(m_s) \leq s$

Observe that µ(perm_n) = n!

Let C be the class of $\Sigma\Pi$ -circuits. Any $\Sigma\Pi$ circuit computing the permanent requires size n!.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

$$\mu(f) = \mu(m_1 + \dots + m_s)$$

$$\leq \mu(m_1) + \dots + \mu(m_s) \leq s$$

• Observe that $\mu(perm_n) = n!$ Therefore, $s \ge n!$.

Let C be the class of $\Sigma\Pi$ -circuits. Any $\Sigma\Pi$ circuit computing the permanent requires size n!.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

$$\mu(f) = \mu(m_1 + \cdots + m_s)$$

 $\leq \mu(m_1) + \cdots + \mu(m_s) \leq s$

• Observe that $\mu(perm_n) = n!$ Therefore, $s \ge n!$.

For more(infact most) sophisticated circuit classes C:

Construct a measure $\mu : \mathbb{F}[x_1, \ldots, x_n] \to \mathbb{R}$:

•
$$\mu(f)$$
 is *small* for $f \in C$.

• $\mu(h)$ is *large* for an explicit polynomial *h*.

Let C be the class of $\Sigma\Pi$ -circuits. Any $\Sigma\Pi$ circuit computing the permanent requires size n!.

- Let f be computable by a $\Sigma\Pi$ circuit of top fanin s.
- Define $\mu : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{R}$ s.t. $\mu(f_1 + \dots + f_s) \le \mu(f_1) + \dots + \mu(f_s)$. E.g., $\mu(f) \triangleq$ number of monomials of f.

$$\mu(f) = \mu(m_1 + \cdots + m_s)$$

 $\leq \mu(m_1) + \cdots + \mu(m_s) \leq s$

• Observe that $\mu(perm_n) = n!$ Therefore, $s \ge n!$.

For more(infact most) sophisticated circuit classes C:

Construct a measure $\mu : \mathbb{F}[x_1, \ldots, x_n] \to \mathbb{R}$:

- $\mu(f)$ is *small* for $f \in C$.
- $\mu(h)$ is *large* for an explicit polynomial *h*.
- $\mu(f)$ is rank (M_f) for a matrix M_f associated with polynomial f.

Proving Lower Bounds against ${\mathcal C}$

Most lower bound proofs against C construct a measure $\mu : \mathbb{F}[\bar{x}] \to \mathbb{R}$:

- $\mu(f)$ is small for $f \in C$ (i.e., rank(M_f) is small)
- $\mu(h)$ is large for an explicit polynomial h. (i.e., rank(M_h) is large)

Proving Lower Bounds against \mathcal{C}

Most lower bound proofs against C construct a measure $\mu : \mathbb{F}[\bar{x}] \to \mathbb{R}$:

- $\mu(f)$ is small for $f \in C$ (i.e., rank (M_f) is small)
- $\mu(h)$ is large for an explicit polynomial h. (i.e., rank (M_h) is large)

Proving Lower Bounds against \mathcal{C}

Most lower bound proofs against C construct a measure $\mu : \mathbb{F}[\bar{x}] \to \mathbb{R}$:

- $\mu(f)$ is small for $f \in C$ (i.e., rank (M_f) is small)
- $\mu(h)$ is large for an explicit polynomial h. (i.e., rank(M_h) is large)

For $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d = poly(n): $M_f \in \mathbb{F}^{N \times N}, N = \binom{n+d}{n}$.

- $M_f[x^{\alpha}, x^{\beta}] = \text{coefficient of } x^{\alpha} \text{ in } \frac{\partial f}{\partial x^{\beta}}.$
- Entries of M_f are linear in the coefficients of f.

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d. Then, $f = \sum c_m \cdot m$. Coefficient-vector: $\overline{\operatorname{coeff}}(f) = (c_1, c_2, \ldots, c_N) \in \mathbb{F}^N$ where $N = \binom{n+d}{n}$. "Natural" lower bound proof for $\mathcal{C} \subseteq \mathbb{F}[x_1, \ldots, x_n]^{\leq d}$:

C has a *natural proof* if there is a non-zero polynomial $P(z_1, \ldots, z_N)$:

- **1** Usefulness: $\forall f \in C$, $P(\overline{\text{coeff}}(f)) = 0$.
- **2 Constructivity**: *P* has degree poly(N) and size poly(N).
- Solution 2 Constant Constant and Solution (and for many more polynomials).
 Solution 2 Constant A and Solution (and for many more polynomials).

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d. Then, $f = \sum c_m \cdot m$. Coefficient-vector: $\overline{\operatorname{coeff}}(f) = (c_1, c_2, \ldots, c_N) \in \mathbb{F}^N$ where $N = \binom{n+d}{n}$. "Natural" lower bound proof for $\mathcal{C} \subseteq \mathbb{F}[x_1, \ldots, x_n]^{\leq d}$:

C has a *natural proof* if there is a non-zero polynomial $P(z_1, \ldots, z_N)$:

- **1** Usefulness: $\forall f \in C$, $P(\overline{\operatorname{coeff}}(f)) = 0$.
- **2 Constructivity**: *P* has degree poly(N) and size poly(N).
- Largeness: P(coeff(h)) ≠ 0 for candidate hard polynomial h (and for many more polynomials).

Example 1: $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Then, $P(z_1, z_2, z_3) = z_2^2 - 4z_1z_3$ such that $P(\overline{\text{coeff}}(f)) = 0$ for all $f \in C$.

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d. Then, $f = \sum c_m \cdot m$. Coefficient-vector: $\overline{\operatorname{coeff}}(f) = (c_1, c_2, \ldots, c_N) \in \mathbb{F}^N$ where $N = \binom{n+d}{n}$. "Natural" lower bound proof for $\mathcal{C} \subseteq \mathbb{F}[x_1, \ldots, x_n]^{\leq d}$:

C has a *natural proof* if there is a non-zero polynomial $P(z_1, \ldots, z_N)$:

- **1** Usefulness: $\forall f \in C$, $P(\overline{\operatorname{coeff}}(f)) = 0$.
- **2 Constructivity**: *P* has degree poly(N) and size poly(N).
- Largeness: P(coeff(h)) ≠ 0 for candidate hard polynomial h (and for many more polynomials).

Example 1: $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Then, $P(z_1, z_2, z_3) = z_2^2 - 4z_1z_3$ such that $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in C$. Example 2: $C = \{\Sigma\Pi\Sigma, \Sigma\Pi\Sigma\Pi, \Sigma \wedge \Sigma\}$. Then, $P(z_1, \ldots, z_N) = \det(W)$ such that $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in C$.

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d. Then, $f = \sum c_m \cdot m$. Coefficient-vector: $\overline{\operatorname{coeff}}(f) = (c_1, c_2, \ldots, c_N) \in \mathbb{F}^N$ where $N = \binom{n+d}{n}$. "Natural" lower bound proof for $\mathcal{C} \subseteq \mathbb{F}[x_1, \ldots, x_n]^{\leq d}$:

C has a *natural proof* if there is a non-zero polynomial $P(z_1, \ldots, z_N)$:

- **1** Usefulness: $\forall f \in C$, $P(\overline{\operatorname{coeff}}(f)) = 0$.
- **2 Constructivity**: *P* has degree poly(N) and size poly(N).
- Largeness: P(coeff(h)) ≠ 0 for candidate hard polynomial h (and for many more polynomials).

Example 1: $C = \{(\alpha x - \beta)^2 \mid \alpha, \beta \in \mathbb{C}\}$. Then, $P(z_1, z_2, z_3) = z_2^2 - 4z_1z_3$ such that $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in C$. Example 2: $C = \{\Sigma\Pi\Sigma, \Sigma\Pi\Sigma\Pi, \Sigma \wedge \Sigma\}$. Then, $P(z_1, \ldots, z_N) = \det(W)$ such that $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in C$.

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of *n*-variate degree-poly(*n*) polynomials computable by size poly(*n*) circuits.

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of *n*-variate degree-poly(*n*) polynomials computable by size poly(*n*) circuits.

Question: Does there exist a non-zero polynomial $P(z_1, \ldots, z_N)$:

•
$$\forall f \in VP(n), P(\overline{\operatorname{coeff}}(f)) = 0;$$

• P has degree poly(N) and size poly(N)?

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of *n*-variate degree-poly(*n*) polynomials computable by size poly(*n*) circuits.

Question: Does there exist a non-zero polynomial $P(z_1, \ldots, z_N)$:

•
$$\forall f \in \mathsf{VP}(n), \ P(\mathsf{coeff}(f)) = 0;$$

• P has degree poly(N) and size poly(N)?

Theorem (Chatterjee, Kumar, **R.**, Saptharishi, Tengse)

Answer: Yes, for polynomials with small integer coefficients.

On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n, d and $N = \binom{n+d}{n}$, there exists a non-zero $P(z_1, \ldots, z_N)$ such that

- $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in VP(n, d)$ with small integer coefficients;
- 2 $P(z_1,...,z_N)$ has size and degree poly(N); and
- **③** there exists h having small integer coefficients with $P(\overline{\operatorname{coeff}}(h)) \neq 0$.

On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n, d and $N = \binom{n+d}{n}$, there exists a non-zero $P(z_1, \ldots, z_N)$ such that

- $P(\overline{\operatorname{coeff}}(f)) = 0$ for all $f \in VP(n, d)$ with small integer coefficients;
- **2** $P(z_1,...,z_N)$ has size and degree poly(N); and
- **3** there exists h having small integer coefficients with $P(\overline{\operatorname{coeff}}(h)) \neq 0$.
- What does this result suggest? An evidence for the power of *natural lower bound techniques* for proving super-polynomial lower bounds.

<ロト < 団ト < 巨ト < 巨ト 三 のへで 12/19

Division gates can be eliminated with polynomial blow up in size.

• A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.

• E.g.:
$$(x+y)^2 - x^2 - y^2 - 2xy \equiv 0$$
 and $(x+y)^2 - x^2 - y^2 + 2xy \not\equiv 0$.

• A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.

• E.g.:
$$(x+y)^2 - x^2 - y^2 - 2xy \equiv 0$$
 and $(x+y)^2 - x^2 - y^2 + 2xy \not\equiv 0$.

Polynomial Identity Testing (PIT) Given $f \in \mathbb{F}[x_1, ..., x_n]$ test if $f \equiv 0$.

• A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.

• E.g.:
$$(x+y)^2 - x^2 - y^2 - 2xy \equiv 0$$
 and $(x+y)^2 - x^2 - y^2 + 2xy \not\equiv 0$.

Polynomial Identity Testing (PIT) Given $f \in \mathbb{F}[x_1, ..., x_n]$ test if $f \equiv 0$.

• Univariate case:

• A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.

• E.g.:
$$(x+y)^2 - x^2 - y^2 - 2xy \equiv 0$$
 and $(x+y)^2 - x^2 - y^2 + 2xy \not\equiv 0$.

Polynomial Identity Testing (PIT) Given $f \in \mathbb{F}[x_1, ..., x_n]$ test if $f \equiv 0$.

• Univariate case: Any non-zero univariate polynomial of degree *d* has at most *d* roots. Easy to get a polynomial time algorithm.

- A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.
- E.g.: $(x+y)^2 x^2 y^2 2xy \equiv 0$ and $(x+y)^2 x^2 y^2 + 2xy \not\equiv 0$.

Polynomial Identity Testing (PIT) Given $f \in \mathbb{F}[x_1, ..., x_n]$ test if $f \equiv 0$.

- Univariate case: Any non-zero univariate polynomial of degree *d* has at most *d* roots. Easy to get a polynomial time algorithm.
- Multivariate case: Can have infinitely many roots.

- A polynomial $(f \equiv 0)$ is *identically zero* if all its coefficients are zero.
- E.g.: $(x+y)^2 x^2 y^2 2xy \equiv 0$ and $(x+y)^2 x^2 y^2 + 2xy \not\equiv 0$.

Polynomial Identity Testing (PIT) Given $f \in \mathbb{F}[x_1, \dots, x_n]$ test if $f \equiv 0$.

- Univariate case: Any non-zero univariate polynomial of degree *d* has at most *d* roots. Easy to get a polynomial time algorithm.
- Multivariate case: Can have infinitely many roots.
- Randomized polynomial time algorithm for multivariate PIT is known.
- Open Question: Derandomizing PIT.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \quad \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.
- ncPIT: Given a non-commutative polynomial $f \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ test if $f \equiv 0$. E.g., $x_1x_2 x_2x_1 \neq 0$ in the non-commutative world.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.
- ncPIT: Given a non-commutative polynomial $f \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ test if $f \equiv 0$. E.g., $x_1x_2 x_2x_1 \neq 0$ in the non-commutative world.
- \bullet Non-commutative circuit: arithmetic circuit whose \times gate respects the ordering.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \quad \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.
- ncPIT: Given a non-commutative polynomial $f \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ test if $f \equiv 0$. E.g., $x_1x_2 x_2x_1 \neq 0$ in the non-commutative world.
- Non-commutative circuit: arithmetic circuit whose × gate respects the ordering.
- (Amitsur-Levitski '50) Let $f(x_1, ..., x_n) \in \mathbb{F}\langle x_1, ..., x_n \rangle$ be non-zero polynomial of degree $\leq 2d 1$. Then, there exists $(A_1, ..., A_n) \in Mat_d^n(\mathbb{F})$ such that $f(A_1, ..., A_n) \neq 0$ as a matrix.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.
- ncPIT: Given a non-commutative polynomial $f \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ test if $f \equiv 0$. E.g., $x_1x_2 x_2x_1 \neq 0$ in the non-commutative world.
- Non-commutative circuit: arithmetic circuit whose × gate respects the ordering.
- (Amitsur-Levitski '50) Let $f(x_1, ..., x_n) \in \mathbb{F}\langle x_1, ..., x_n \rangle$ be non-zero polynomial of degree $\leq 2d 1$. Then, there exists $(A_1, ..., A_n) \in Mat_d^n(\mathbb{F})$ such that $f(A_1, ..., A_n) \neq 0$ as a matrix.
- (Bogdanov, Wee 2005) Randomized polynomial time algorithm for ncPIT on circuits with polynomial degree.

- Set of non-commuting variables $\{x_1, \ldots, x_n\}$ i.e., $x_i x_j \neq x_j x_i \forall i \neq j$. E.g., $(x_1 + x_2)(x_1 - x_2) \neq x_1^2 - x_2^2$.
- A non-commutative polynomial f(x₁,...,x_n) ∈ 𝔽⟨x₁,...,x_n⟩ is a combination of words.
- ncPIT: Given a non-commutative polynomial $f \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ test if $f \equiv 0$. E.g., $x_1x_2 x_2x_1 \neq 0$ in the non-commutative world.
- Non-commutative circuit: arithmetic circuit whose × gate respects the ordering.
- (Amitsur-Levitski '50) Let $f(x_1, \ldots, x_n) \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$ be non-zero polynomial of degree $\leq 2d 1$. Then, there exists $(A_1, \ldots, A_n) \in Mat_d^n(\mathbb{F})$ such that $f(A_1, \ldots, A_n) \neq 0$ as a matrix.
- (Bogdanov, Wee 2005) Randomized polynomial time algorithm for ncPIT on circuits with polynomial degree.
- **Open:** Randomized polynomial time algorithm for ncPIT on circuits of polynomial size.

Non-Commutative circuits with division

• Circuits with $+, \times$ (ordered multiplication gates) and INV gates. An INV gate has one input and computes g^{-1} on input g.

Non-Commutative circuits with division

• Circuits with $+, \times$ (ordered multiplication gates) and INV gates. An INV gate has one input and computes g^{-1} on input g.

Non-Commutative circuits with division

 Circuits with +, ×(ordered multiplication gates) and INV gates. An INV gate has one input and computes g⁻¹ on input g.

• Hua's identity: $(x + xy^{-1}x)^{-1} \equiv x^{-1} + (x + y)^{-1}$.

Non-Commutative circuits with division

 Circuits with +, ×(ordered multiplication gates) and INV gates. An INV gate has one input and computes g⁻¹ on input g.

- Hua's identity: $(x + xy^{-1}x)^{-1} \equiv x^{-1} + (x + y)^{-1}$.
- Nested inversions cannot always be eliminated. e.g., $(u + xy^{-1}z)^{-1}$.
- Inversion height: number if nested inversions.

- A rational expression $r(x_1, \ldots, x_n)$ computes the zero function¹ if
 - r has a nonempty domain of definition
 - ▶ for each $d \in \mathbb{N}$ and substitution $(A, ..., A_n) \in (Mat_d(\mathbb{F}))^n$, $r(A, ..., A_n) = 0$ as a matrix when defined.

¹(zero function in the free skew-field)

- A rational expression $r(x_1, \ldots, x_n)$ computes the zero function¹ if
 - r has a nonempty domain of definition
 - ▶ for each $d \in \mathbb{N}$ and substitution $(A, ..., A_n) \in (Mat_d(\mathbb{F}))^n$, $r(A, ..., A_n) = 0$ as a matrix when defined.
- RIT: Given a non-commutative circuit(with inverses) computing r decide if r ≡ 0.

¹(zero function in the free skew-field)

- A rational expression $r(x_1, \ldots, x_n)$ computes the zero function¹ if
 - r has a nonempty domain of definition
 - ▶ for each $d \in \mathbb{N}$ and substitution $(A, ..., A_n) \in (Mat_d(\mathbb{F}))^n$, $r(A, ..., A_n) = 0$ as a matrix when defined.
- RIT: Given a non-commutative circuit(with inverses) computing r decide if r ≡ 0.
- **Open:** Subexponential-time randomized white-box algorithm for noncommutative circuits.

¹(zero function in the free skew-field)

- A rational expression $r(x_1, \ldots, x_n)$ computes the zero function¹ if
 - r has a nonempty domain of definition
 - ▶ for each $d \in \mathbb{N}$ and substitution $(A, ..., A_n) \in (Mat_d(\mathbb{F}))^n$, $r(A, ..., A_n) = 0$ as a matrix when defined.
- RIT: Given a non-commutative circuit(with inverses) computing r decide if r ≡ 0.
- **Open:** Subexponential-time randomized white-box algorithm for noncommutative circuits.

(Garg et al. '20, Ivanyos et al. '18) Deterministic polynomial time algorithm in the white-box model for non-commutative formula².

(Derksen, Makam '17) Randomized polynomial time in black-box model for non-commutative formula.

¹(zero function in the free skew-field)

 A polynomial identity for d × d matrix algebra is a noncommutative polynomial p(x1,...,xn) that vanishes on d × d matrix substitutions.

- A polynomial identity for $d \times d$ matrix algebra is a noncommutative polynomial $p(x_1, \ldots, x_n)$ that vanishes on $d \times d$ matrix substitutions.
- $s(x_1, \ldots, x_{2d}) = \sum_{\sigma} \operatorname{sgn}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(2d)}$ is a polynomial identity for $\mathbb{F}^{d \times d}$.

- A polynomial identity for d × d matrix algebra is a noncommutative polynomial p(x1,...,xn) that vanishes on d × d matrix substitutions.
- $s(x_1, \ldots, x_{2d}) = \sum_{\sigma} \operatorname{sgn}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(2d)}$ is a polynomial identity for $\mathbb{F}^{d \times d}$.

Conjecture(Bogdanov, Wee '05): The minimum size of a branching program of a *polynomial identity* for the $d \times d$ matrix algebra is $2^{\Omega(d)}$.

- A polynomial identity for d × d matrix algebra is a noncommutative polynomial p(x1,...,xn) that vanishes on d × d matrix substitutions.
- $s(x_1, \ldots, x_{2d}) = \sum_{\sigma} \operatorname{sgn}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(2d)}$ is a polynomial identity for $\mathbb{F}^{d \times d}$.

Conjecture(Bogdanov, Wee '05): The minimum size of a branching program of a *polynomial identity* for the $d \times d$ matrix algebra is $2^{\Omega(d)}$.

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time blackbox RIT algorithm for rational formulas of of size *s* over *n* variables and inversion height $\approx \frac{\log s}{\log \log s}$.

- A polynomial identity for d × d matrix algebra is a noncommutative polynomial p(x1,...,xn) that vanishes on d × d matrix substitutions.
- $s(x_1, \ldots, x_{2d}) = \sum_{\sigma} \operatorname{sgn}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(2d)}$ is a polynomial identity for $\mathbb{F}^{d \times d}$.

Conjecture(Bogdanov, Wee '05): The minimum size of a branching program of a *polynomial identity* for the $d \times d$ matrix algebra is $2^{\Omega(d)}$.

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time blackbox RIT algorithm for rational formulas of of size *s* over *n* variables and inversion height $\approx \frac{\log s}{\log \log s}$.

(Hrubes, Wigderson) A rational formula of size s has inversion height $O(\log s)$.

Thank you