
Multiple Facets of Algebraic Computation

C Ramya
IMSc, Chennai.

September 2023

1 / 19



Algebraic Computation

Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

Objects: Polynomials. E.g., f = x21 + 3x1x2 − 2.
Resource: No. of arithmetic operations(+, ×)

Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+,×}.

2 / 19



Algebraic Computation

Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

Objects: Polynomials. E.g., f = x21 + 3x1x2 − 2.

Resource: No. of arithmetic operations(+, ×)

Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+,×}.

2 / 19



Algebraic Computation

Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

Objects: Polynomials. E.g., f = x21 + 3x1x2 − 2.
Resource: No. of arithmetic operations(+, ×)

Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+,×}.

2 / 19



Algebraic Computation

Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

Objects: Polynomials. E.g., f = x21 + 3x1x2 − 2.
Resource: No. of arithmetic operations(+, ×)

Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+,×}.

2 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.
There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.

There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.
There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.
There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.
There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Complexity of polynomials

size(C) - number of gates in circuit C ≡ no. of arithmetic operations
to compute f .

depth(C) - length of longest path from input to output gate of C.
There can be several different circuits computing a given polynomial.

Let SUMn = x1 + x2 + · · ·+ xn.

x1 x1

x1 x1

0 x2

x2 x2

x3 x3

+ +

+

+
+

+

SUM1 SUM2 SUM3

SUMn

· · ·

size(C1) = 1 size(C2) = 1 size(C3) = 2 size(Cn) = n− 1

C1 C2 C3 Cn

· · ·
+

xn

SUM = (SUMn)n≥1 is a polynomial family.

3 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by

a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.

E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Valiant’s Conjecture

Any n-variate degree-d polynomial can be computed by a depth two

circuit of size O
((n+d

d

))
.

There exists n-variate degree-d polynomials that require arithmetic

circuits of size Ω

(√(n+d
d

))
.

A polynomial family (fn)n≥1 is efficiently computable if for every n,
deg(fn) = poly(n) and there is poly(n) size circuit for fn.
E.g.,: SUM, Symbolic Determinant det = (detn)n≥1.

Class VP: class of efficiently computable polynomial families.

Are there polynomials that are hard to compute(outside VP)? YES.

Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant’s Conjecture: Any circuit for permn requires size nω(1).

4 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).

5 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).
(Folklore) Any depth-2 circuit computing permn requires size n!.

5 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).
(Folklore) Any depth-2 circuit computing permn requires size n!.

Depth reduction nω(
√
d) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant’s
conjecture.

5 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).
(Folklore) Any depth-2 circuit computing permn requires size n!.

Depth reduction nω(
√
d) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant’s
conjecture.
(Limaye, Srinivasan, Tavenas ’21) There is an explicit n-variate polynomial

(in VP) of degree d such that any depth three circuit for it has size nΩ(
√
d).

5 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).
(Folklore) Any depth-2 circuit computing permn requires size n!.

Depth reduction nω(
√
d) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant’s
conjecture.
(Limaye, Srinivasan, Tavenas ’21) There is an explicit n-variate polynomial

(in VP) of degree d such that any depth three circuit for it has size nΩ(
√
d).

Perhaps the principal embarrassment of complexity theory at the present

time is its failure to provide techniques for proving non-trivial lower bounds

on the complexity of some of the commonest combinatorial and arithmetic

problems.

5 / 19



Towards Valiant’s Hypothesis

(Baur,Strassen‘83)Any circuit for xd1 + · · ·+ xdn requires size Ω(n log d).
(Folklore) Any depth-2 circuit computing permn requires size n!.

Depth reduction nω(
√
d) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant’s
conjecture.
(Limaye, Srinivasan, Tavenas ’21) There is an explicit n-variate polynomial

(in VP) of degree d such that any depth three circuit for it has size nΩ(
√
d).

Perhaps the principal embarrassment of complexity theory at the present

time is its failure to provide techniques for proving non-trivial lower bounds

on the complexity of some of the commonest combinatorial and arithmetic

problems.

-Valiant(1975)

5 / 19



Proving Lower Bounds: A Toy Example

Let C = {(αx − β)2 | α, β ∈ C}. Goal: Find an explicit h(x) ̸∈ C.

Let f (x) = ax2 + bx + c be any quadratic polynomial. Then, f (x) has
a repeated root if and only if b2 − 4ac = 0. Note, coeff(f ) = (a, b, c).

Find a polynomial h(x) = ax2 + bx + c with non-zero discriminant.

Consider P(z1, z2, z3) = z22 − 4z1z3. Then,

f (x) ∈ C ⇒ P(coeff(f )) = 0.

P(z1, z2, z3) is efficiently computable.

There is polynomial h(x) ∈ F[x ]≤2 such that P(coeff(h)) ̸= 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

C
Goal: h(x̄) 6∈ VP

h(x̄)

h(x̄) explicit

6 / 19



Proving Lower Bounds: A Toy Example

Let C = {(αx − β)2 | α, β ∈ C}. Goal: Find an explicit h(x) ̸∈ C.
Let f (x) = ax2 + bx + c be any quadratic polynomial. Then, f (x) has
a repeated root if and only if b2 − 4ac = 0. Note, coeff(f ) = (a, b, c).

Find a polynomial h(x) = ax2 + bx + c with non-zero discriminant.

Consider P(z1, z2, z3) = z22 − 4z1z3. Then,

f (x) ∈ C ⇒ P(coeff(f )) = 0.

P(z1, z2, z3) is efficiently computable.

There is polynomial h(x) ∈ F[x ]≤2 such that P(coeff(h)) ̸= 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

C
Goal: h(x̄) 6∈ VP

h(x̄)

h(x̄) explicit

6 / 19



Proving Lower Bounds: A Toy Example

Let C = {(αx − β)2 | α, β ∈ C}. Goal: Find an explicit h(x) ̸∈ C.
Let f (x) = ax2 + bx + c be any quadratic polynomial. Then, f (x) has
a repeated root if and only if b2 − 4ac = 0. Note, coeff(f ) = (a, b, c).

Find a polynomial h(x) = ax2 + bx + c with non-zero discriminant.

Consider P(z1, z2, z3) = z22 − 4z1z3. Then,

f (x) ∈ C ⇒ P(coeff(f )) = 0.

P(z1, z2, z3) is efficiently computable.

There is polynomial h(x) ∈ F[x ]≤2 such that P(coeff(h)) ̸= 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

C
Goal: h(x̄) 6∈ VP

h(x̄)

h(x̄) explicit

6 / 19



Proving Lower Bounds: A Toy Example

Let C = {(αx − β)2 | α, β ∈ C}. Goal: Find an explicit h(x) ̸∈ C.
Let f (x) = ax2 + bx + c be any quadratic polynomial. Then, f (x) has
a repeated root if and only if b2 − 4ac = 0. Note, coeff(f ) = (a, b, c).

Find a polynomial h(x) = ax2 + bx + c with non-zero discriminant.

Consider P(z1, z2, z3) = z22 − 4z1z3. Then,

f (x) ∈ C ⇒ P(coeff(f )) = 0.

P(z1, z2, z3) is efficiently computable.

There is polynomial h(x) ∈ F[x ]≤2 such that P(coeff(h)) ̸= 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

C
Goal: h(x̄) 6∈ VP

h(x̄)

h(x̄) explicit

6 / 19



Proving Lower Bounds: A Toy Example

Let C = {(αx − β)2 | α, β ∈ C}. Goal: Find an explicit h(x) ̸∈ C.
Let f (x) = ax2 + bx + c be any quadratic polynomial. Then, f (x) has
a repeated root if and only if b2 − 4ac = 0. Note, coeff(f ) = (a, b, c).

Find a polynomial h(x) = ax2 + bx + c with non-zero discriminant.

Consider P(z1, z2, z3) = z22 − 4z1z3. Then,

f (x) ∈ C ⇒ P(coeff(f )) = 0.

P(z1, z2, z3) is efficiently computable.

There is polynomial h(x) ∈ F[x ]≤2 such that P(coeff(h)) ̸= 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

C
Goal: h(x̄) 6∈ VP

h(x̄)

h(x̄) explicit

6 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).

E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n!

Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Another Toy Example
Let C be the class of ΣΠ-circuits. Any ΣΠ circuit computing the
permanent requires size n!.

Let f be computable by a ΣΠ circuit of top fanin s.

Define µ : F[x1, . . . , xn] → R s.t. µ(f1+ · · ·+ fs) ≤ µ(f1)+ · · ·+µ(fs).
E.g., µ(f ) ≜ number of monomials of f .

µ(f ) = µ(m1 + · · ·+ms)

≤ µ(m1) + · · ·+ µ(ms) ≤ s

Observe that µ(permn) = n! Therefore, s ≥ n!.

For more(infact most) sophisticated circuit classes C:

Construct a measure µ : F[x1, . . . , xn] → R:
µ(f ) is small for f ∈ C.
µ(h) is large for an explicit polynomial h.

µ(f ) is rank(Mf ) for a matrix Mf associated with polynomial f .

7 / 19



Proving Lower Bounds against C

Most lower bound proofs against C construct a measure µ : F[x̄ ] → R:
µ(f ) is small for f ∈ C (i.e., rank(Mf ) is small)

µ(h) is large for an explicit polynomial h. (i.e., rank(Mh) is large)

Mf =

Wf
∃ submatrix W
s.t. det(Wf) = 0

Mh =

Wh det(Wh) 6= 0

For f ∈ F[x1, . . . , xn] of degree d = poly(n): Mf ∈ FN×N ,N =
(n+d

n

)
.

Mf [x
α, xβ] = coefficient of xα in ∂f

∂xβ
.

Entries of Mf are linear in the coefficients of f .

8 / 19



Proving Lower Bounds against C

Most lower bound proofs against C construct a measure µ : F[x̄ ] → R:
µ(f ) is small for f ∈ C (i.e., rank(Mf ) is small)

µ(h) is large for an explicit polynomial h. (i.e., rank(Mh) is large)

Mf =

Wf
∃ submatrix W
s.t. det(Wf) = 0

Mh =

Wh det(Wh) 6= 0

For f ∈ F[x1, . . . , xn] of degree d = poly(n): Mf ∈ FN×N ,N =
(n+d

n

)
.

Mf [x
α, xβ] = coefficient of xα in ∂f

∂xβ
.

Entries of Mf are linear in the coefficients of f .

8 / 19



Proving Lower Bounds against C

Most lower bound proofs against C construct a measure µ : F[x̄ ] → R:
µ(f ) is small for f ∈ C (i.e., rank(Mf ) is small)

µ(h) is large for an explicit polynomial h. (i.e., rank(Mh) is large)

Mf =

Wf
∃ submatrix W
s.t. det(Wf) = 0

Mh =

Wh det(Wh) 6= 0

For f ∈ F[x1, . . . , xn] of degree d = poly(n): Mf ∈ FN×N ,N =
(n+d

n

)
.

Mf [x
α, xβ] = coefficient of xα in ∂f

∂xβ
.

Entries of Mf are linear in the coefficients of f .

8 / 19



Towards Algebraically Natural Proofs

Let f ∈ F[x1, . . . , xn] of degree d . Then, f =
∑

cm ·m.

Coefficient-vector: coeff(f ) = (c1, c2, . . . , cN) ∈ FN where N =
(n+d

n

)
.

“Natural” lower bound proof for C ⊆ F[x1, . . . , xn]≤d :

C has a natural proof if there is a non-zero polynomial P(z1, . . . , zN):

1 Usefulness: ∀f ∈ C, P(coeff(f )) = 0.

2 Constructivity: P has degree poly(N) and size poly(N).

3 Largeness: P(coeff(h)) ̸= 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(αx − β)2 | α, β ∈ C}. Then, P(z1, z2, z3) = z22 − 4z1z3
such that P(coeff(f )) = 0 for all f ∈ C.
Example 2: C = {ΣΠΣ, ΣΠΣΠ, Σ ∧ Σ}.
Then, P(z1, . . . , zN) = det(W ) such that P(coeff(f )) = 0 for all f ∈ C.

9 / 19



Towards Algebraically Natural Proofs

Let f ∈ F[x1, . . . , xn] of degree d . Then, f =
∑

cm ·m.

Coefficient-vector: coeff(f ) = (c1, c2, . . . , cN) ∈ FN where N =
(n+d

n

)
.

“Natural” lower bound proof for C ⊆ F[x1, . . . , xn]≤d :

C has a natural proof if there is a non-zero polynomial P(z1, . . . , zN):

1 Usefulness: ∀f ∈ C, P(coeff(f )) = 0.

2 Constructivity: P has degree poly(N) and size poly(N).

3 Largeness: P(coeff(h)) ̸= 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(αx − β)2 | α, β ∈ C}. Then, P(z1, z2, z3) = z22 − 4z1z3
such that P(coeff(f )) = 0 for all f ∈ C.

Example 2: C = {ΣΠΣ, ΣΠΣΠ, Σ ∧ Σ}.
Then, P(z1, . . . , zN) = det(W ) such that P(coeff(f )) = 0 for all f ∈ C.

9 / 19



Towards Algebraically Natural Proofs

Let f ∈ F[x1, . . . , xn] of degree d . Then, f =
∑

cm ·m.

Coefficient-vector: coeff(f ) = (c1, c2, . . . , cN) ∈ FN where N =
(n+d

n

)
.

“Natural” lower bound proof for C ⊆ F[x1, . . . , xn]≤d :

C has a natural proof if there is a non-zero polynomial P(z1, . . . , zN):

1 Usefulness: ∀f ∈ C, P(coeff(f )) = 0.

2 Constructivity: P has degree poly(N) and size poly(N).

3 Largeness: P(coeff(h)) ̸= 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(αx − β)2 | α, β ∈ C}. Then, P(z1, z2, z3) = z22 − 4z1z3
such that P(coeff(f )) = 0 for all f ∈ C.
Example 2: C = {ΣΠΣ, ΣΠΣΠ, Σ ∧ Σ}.
Then, P(z1, . . . , zN) = det(W ) such that P(coeff(f )) = 0 for all f ∈ C.

9 / 19



Towards Algebraically Natural Proofs

Let f ∈ F[x1, . . . , xn] of degree d . Then, f =
∑

cm ·m.

Coefficient-vector: coeff(f ) = (c1, c2, . . . , cN) ∈ FN where N =
(n+d

n

)
.

“Natural” lower bound proof for C ⊆ F[x1, . . . , xn]≤d :

C has a natural proof if there is a non-zero polynomial P(z1, . . . , zN):

1 Usefulness: ∀f ∈ C, P(coeff(f )) = 0.

2 Constructivity: P has degree poly(N) and size poly(N).

3 Largeness: P(coeff(h)) ̸= 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(αx − β)2 | α, β ∈ C}. Then, P(z1, z2, z3) = z22 − 4z1z3
such that P(coeff(f )) = 0 for all f ∈ C.
Example 2: C = {ΣΠΣ, ΣΠΣΠ, Σ ∧ Σ}.
Then, P(z1, . . . , zN) = det(W ) such that P(coeff(f )) = 0 for all f ∈ C.

9 / 19



How far can natural proofs succeed?

Can we prove Valiant’s Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z1, . . . , zN):

∀f ∈ VP(n), P(coeff(f )) = 0;

P has degree poly(N) and size poly(N)?

Theorem (Chatterjee, Kumar, R.,
Saptharishi, Tengse)

Answer: Yes, for polynomials with small
integer coefficients.

VP with
coefficients ∈ {−1, 0,+1}

VP

10 / 19



How far can natural proofs succeed?

Can we prove Valiant’s Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z1, . . . , zN):

∀f ∈ VP(n), P(coeff(f )) = 0;

P has degree poly(N) and size poly(N)?

Theorem (Chatterjee, Kumar, R.,
Saptharishi, Tengse)

Answer: Yes, for polynomials with small
integer coefficients.

VP with
coefficients ∈ {−1, 0,+1}

VP

10 / 19



How far can natural proofs succeed?

Can we prove Valiant’s Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z1, . . . , zN):

∀f ∈ VP(n), P(coeff(f )) = 0;

P has degree poly(N) and size poly(N)?

Theorem (Chatterjee, Kumar, R.,
Saptharishi, Tengse)

Answer: Yes, for polynomials with small
integer coefficients.

VP with
coefficients ∈ {−1, 0,+1}

VP

10 / 19



On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n, d and N =
(n+d

n

)
, there exists a non-zero P(z1, . . . , zN) such that

1 P(coeff(f )) = 0 for all f ∈ VP(n, d) with small integer coefficients;

2 P(z1, . . . , zN) has size and degree poly(N); and

3 there exists h having small integer coefficients with P(coeff(h)) ̸= 0.

What does this result suggest? An evidence for the power of natural
lower bound techniques for proving super-polynomial lower bounds.

11 / 19



On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n, d and N =
(n+d

n

)
, there exists a non-zero P(z1, . . . , zN) such that

1 P(coeff(f )) = 0 for all f ∈ VP(n, d) with small integer coefficients;

2 P(z1, . . . , zN) has size and degree poly(N); and

3 there exists h having small integer coefficients with P(coeff(h)) ̸= 0.

What does this result suggest? An evidence for the power of natural
lower bound techniques for proving super-polynomial lower bounds.

11 / 19



Strassen’s Vermeidung von Divisionen

12 / 19



Strassen’s Vermeidung von Divisionen

12 / 19



Strassen’s Vermeidung von Divisionen

12 / 19



Strassen’s Vermeidung von Divisionen

12 / 19



Strassen’s Vermeidung von Divisionen

12 / 19



Strassen’s Vermeidung von Divisionen

Division gates can be eliminated with polynomial blow up in size.

12 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case:

Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Polynomial Identity Testing

A polynomial(f ≡ 0) is identically zero if all its coefficients are zero.

E.g.: (x + y)2 − x2 − y2 − 2xy ≡ 0 and (x + y)2 − x2 − y2 +2xy ̸≡ 0.

Polynomial Identity Testing (PIT)

Given f ∈ F[x1, . . . , xn] test if f ≡ 0.

Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

Multivariate case: Can have infinitely many roots.

Randomized polynomial time algorithm for multivariate PIT is known.

Open Question: Derandomizing PIT.

13 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-commutative PIT

Set of non-commuting variables {x1, . . . , xn} i.e., xixj ̸= xjxi ∀i ̸= j .
E.g., (x1 + x2)(x1 − x2) ̸= x21 − x22 .

A non-commutative polynomial f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ is a
combination of words.

ncPIT: Given a non-commutative polynomial f ∈ F⟨x1, . . . , xn⟩ test if
f ≡ 0. E.g., x1x2 − x2x1 ̸≡ 0 in the non-commutative world.

Non-commutative circuit: arithmetic circuit whose × gate respects
the ordering.

(Amitsur-Levitski ‘50) Let f (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩ be non-zero
polynomial of degree ≤ 2d − 1. Then, there exists (A1, . . . ,An)
∈ Matnd (F) such that f (A1, . . . ,An) ̸= 0 as a matrix.

(Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14 / 19



Non-Commutative circuits with division

Circuits with +,×(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g−1 on input g .

15 / 19



Non-Commutative circuits with division

Circuits with +,×(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g−1 on input g .

15 / 19



Non-Commutative circuits with division

Circuits with +,×(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g−1 on input g .

Hua’s identity: (x + xy−1x)−1 ≡ x−1 + (x + y)−1.

15 / 19



Non-Commutative circuits with division

Circuits with +,×(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g−1 on input g .

Hua’s identity: (x + xy−1x)−1 ≡ x−1 + (x + y)−1.

Nested inversions cannot always be eliminated. e.g., (u + xy−1z)−1.

Inversion height: number if nested inversions.

15 / 19



Rational Identity Testing

A rational expression r(x1, . . . , xn) computes the zero function1 if
▶ r has a nonempty domain of definition
▶ for each d ∈ N and substitution (A, . . . ,An) ∈ (Matd(F))n,

r(A, . . . ,An) = 0 as a matrix when defined.

RIT: Given a non-commutative circuit(with inverses) computing r
decide if r ≡ 0.

Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.

(Garg et al. ‘20, Ivanyos et al. ‘18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula2.

(Derksen, Makam ‘17) Randomized polynomial time in black-box model
for non-commutative formula.

1(zero function in the free skew-field)
2formula is a circuit whose underlying graph is a tree.

16 / 19



Rational Identity Testing

A rational expression r(x1, . . . , xn) computes the zero function1 if
▶ r has a nonempty domain of definition
▶ for each d ∈ N and substitution (A, . . . ,An) ∈ (Matd(F))n,

r(A, . . . ,An) = 0 as a matrix when defined.

RIT: Given a non-commutative circuit(with inverses) computing r
decide if r ≡ 0.

Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.

(Garg et al. ‘20, Ivanyos et al. ‘18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula2.

(Derksen, Makam ‘17) Randomized polynomial time in black-box model
for non-commutative formula.

1(zero function in the free skew-field)
2formula is a circuit whose underlying graph is a tree.

16 / 19



Rational Identity Testing

A rational expression r(x1, . . . , xn) computes the zero function1 if
▶ r has a nonempty domain of definition
▶ for each d ∈ N and substitution (A, . . . ,An) ∈ (Matd(F))n,

r(A, . . . ,An) = 0 as a matrix when defined.

RIT: Given a non-commutative circuit(with inverses) computing r
decide if r ≡ 0.

Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.

(Garg et al. ‘20, Ivanyos et al. ‘18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula2.

(Derksen, Makam ‘17) Randomized polynomial time in black-box model
for non-commutative formula.

1(zero function in the free skew-field)
2formula is a circuit whose underlying graph is a tree.

16 / 19



Rational Identity Testing

A rational expression r(x1, . . . , xn) computes the zero function1 if
▶ r has a nonempty domain of definition
▶ for each d ∈ N and substitution (A, . . . ,An) ∈ (Matd(F))n,

r(A, . . . ,An) = 0 as a matrix when defined.

RIT: Given a non-commutative circuit(with inverses) computing r
decide if r ≡ 0.

Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.

(Garg et al. ‘20, Ivanyos et al. ‘18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula2.

(Derksen, Makam ‘17) Randomized polynomial time in black-box model
for non-commutative formula.

1(zero function in the free skew-field)
2formula is a circuit whose underlying graph is a tree.

16 / 19



Lower Bounds =⇒ RIT algorithm

A polynomial identity for d × d matrix algebra is a noncommutative
polynomial p(x1, . . . , xn) that vanishes on d × d matrix substitutions.

s(x1, . . . , x2d) =
∑
σ
sgn(σ)xσ(1) · · · xσ(2d) is a polynomial identity for

Fd×d .
Conjecture(Bogdanov, Wee ‘05): The minimum size of a branching
program of a polynomial identity for the d × d matrix algebra is 2Ω(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables
and inversion height ≈ log s

log log s .

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17 / 19



Lower Bounds =⇒ RIT algorithm

A polynomial identity for d × d matrix algebra is a noncommutative
polynomial p(x1, . . . , xn) that vanishes on d × d matrix substitutions.

s(x1, . . . , x2d) =
∑
σ
sgn(σ)xσ(1) · · · xσ(2d) is a polynomial identity for

Fd×d .

Conjecture(Bogdanov, Wee ‘05): The minimum size of a branching
program of a polynomial identity for the d × d matrix algebra is 2Ω(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables
and inversion height ≈ log s

log log s .

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17 / 19



Lower Bounds =⇒ RIT algorithm

A polynomial identity for d × d matrix algebra is a noncommutative
polynomial p(x1, . . . , xn) that vanishes on d × d matrix substitutions.

s(x1, . . . , x2d) =
∑
σ
sgn(σ)xσ(1) · · · xσ(2d) is a polynomial identity for

Fd×d .
Conjecture(Bogdanov, Wee ‘05): The minimum size of a branching
program of a polynomial identity for the d × d matrix algebra is 2Ω(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables
and inversion height ≈ log s

log log s .

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17 / 19



Lower Bounds =⇒ RIT algorithm

A polynomial identity for d × d matrix algebra is a noncommutative
polynomial p(x1, . . . , xn) that vanishes on d × d matrix substitutions.

s(x1, . . . , x2d) =
∑
σ
sgn(σ)xσ(1) · · · xσ(2d) is a polynomial identity for

Fd×d .
Conjecture(Bogdanov, Wee ‘05): The minimum size of a branching
program of a polynomial identity for the d × d matrix algebra is 2Ω(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables
and inversion height ≈ log s

log log s .

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17 / 19



Lower Bounds =⇒ RIT algorithm

A polynomial identity for d × d matrix algebra is a noncommutative
polynomial p(x1, . . . , xn) that vanishes on d × d matrix substitutions.

s(x1, . . . , x2d) =
∑
σ
sgn(σ)xσ(1) · · · xσ(2d) is a polynomial identity for

Fd×d .
Conjecture(Bogdanov, Wee ‘05): The minimum size of a branching
program of a polynomial identity for the d × d matrix algebra is 2Ω(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables
and inversion height ≈ log s

log log s .

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17 / 19



Thank you

18 / 19


