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solve a given computational problem on a computational model.

e Objects: Polynomials. E.g., f = x? + 3x;x2 — 2.
Resource: No. of arithmetic operations(+, x)

Font vommn o

V= %y x Xy
v, = A XX
Vi = 3x VU,
Vg = i+ V3
= 2 X %o

Vp = \fq_-\l‘s-

@ Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+, x}.
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Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations

to compute f.

e depth(C) - length of longest path from input to output gate of C.

@ There can be several different circuits computing a given polynomial.

Let SUM, =x1+x0+ -+ + Xxp.

Cy Co Cs
size(C) =1 size(Cy) =1 size(C3) =2

SUM = (SUMp)p>1 is a polynomial family.
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@ Class VP: class of efficiently computable polynomial families.
@ Are there polynomials that are hard to compute(outside VP)? YES.

@ Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant's Conjecture: Any circuit for perm,, requires size nv(),
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(Baur,Strassen‘83)Any circuit for x{ + - -- 4+ x¢ requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.
Depth reduction n“(Vd) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant's
conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit n-variate polynomial
(in VP) of degree d such that any depth three circuit for it has size p(Vd),

Perhaps the principal embarrassment of complexity theory at the present
time is its failure to provide techniques for proving non-trivial lower bounds
on the complexity of some of the commonest combinatorial and arithmetic
problems.

-Valiant(1975)
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Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.
@ Let f(x) = ax? + bx + ¢ be any quadratic polynomial. Then, f(x) has
a repeated root if and only if b> —4ac = 0. Note, coeff(f) = (a, b, c).

e Find a polynomial h(x) = ax? + bx + ¢ with non-zero discriminant.

Consider P(z1, 22, 23) = z3 — 4z1z3. Then,
e f(x) € C = P(coeff(f)) = 0.
o P(z1, 2, z3) is efficiently computable.
@ There is polynomial h(x) € F[x]<2 such that P(coeff(h)) # 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

hZ:E)
Goal: h(Z) & VP
h(z) explicit
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u(f) = p(my + -+ -+ ms)

<p(mi)+-- 4 p(ms) <s
@ Observe that u(perm,) = n! Therefore, s > nl.

For more(infact most) sophisticated circuit classes C:

.

Construct a measure i : F[xy, ..., x,] = R:
o u(f) is small for f € C.
o u(h) is large for an explicit polynomial h.
o u(f) is rank(My) for a matrix My associated with polynomial f.
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Proving Lower Bounds against C

Most lower bound proofs against C construct a measure p : F[X] — R:
o u(f) is small for f € C (i.e., rank( M) is small)
@ u(h) is large for an explicit polynomial h. (i.e., rank(M,,) is large)

Mf =
Wf 3 submatrix W
T s.t. det(Wy) =0

Mh =
Wy |

I det(Wh) # 0

For f € F[xy, ..., xs] of degree d = poly(n): My € FN*N N = (”+d).

o M¢[x®, xP] = coefficient of x* in

OxB -

@ Entries of M¢ are linear in the coefficients of f.

n
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Towards Algebraically Natural Proofs

Let f € F[x1, ..., xn] of degree d. Then, f =) ¢y - m.

Coefficient-vector: coeff(f) = (c1, c2,...,cn) € FN where N = ("9).
“Natural” lower bound proof for C C F[xq, ..., x,]=%
C has a natural proof if there is a non-zero polynomial P(z, ..., zy):

Q Usefulness: Vf € C, P(coeff(f)) = 0.
@ Constructivity: P has degree poly(N) and size poly(N).

© Largeness: P(coeff(h)) # 0 for candidate hard polynomial h
(and for many more polynomials).
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Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z,.
e Vf € VP(n), P(coeff(f)) =0;
@ P has degree poly(N) and size poly(N)?

CZN):

Theorem (Chatterjee, Kumar, R.,
Saptharishi, Tengse)

VP with
coefficients € {—1,0,+1}
Answer: Yes, for polynomials with small

integer coefficients.
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On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n,d and N = ("%), there exists a non-zero P(z1,...,zn) such that
© P(coeff(f)) = 0 for all f € VP(n, d) with small integer coefficients;
@ P(z1,...,2znN) has size and degree poly(N); and
© there exists h having small integer coefficients with P(coeff(h)) # 0.

v
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On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n,d and N = ("%), there exists a non-zero P(z1,...,zn) such that
Q P(coeff(f)) =0 for all f € VP(n, d) with small integer coefficients;
@ P(z1,...,2znN) has size and degree poly(N); and

© there exists h having small integer coefficients with P(coeff(h)) # 0.

@ What does this result suggest? An evidence for the power of natural
lower bound techniques for proving super-polynomial lower bounds.
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Strassen’s Vermeidung von Divisionen

i+ X} 2 one
Toot + gode

g NO)
® .
F= LI L "‘~Z("35\l
AJ S |—(_l-6) J:o
n-\Nomole
deg 4 Gn Buncale Power simee depending on
the deﬂYze og f
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Strassen’s Vermeidung von Divisionen

Size Poly(8)
® .
= b - h - h Z(I_S'yl
AJ S I—(_l-g) J:o
M-Nomate
deg 4 Gn Buncale Power simee depending on
e Aeﬁmz ogl f

Veed Oe ' &b g(A)FD.

@ Division gates can be eliminated with polynomial blow up in size.
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e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,xp| test if f = 0.

@ Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

@ Multivariate case: Can have infinitely many roots.
@ Randomized polynomial time algorithm for multivariate PIT is known.

o Open Question: Derandomizing PIT.
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Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.
@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a

combination of words.
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the ordering.

o (Amitsur-Levitski '50) Let f(x1,...,xn) € F(x1,...,x,) be non-zero
polynomial of degree < 2d — 1. Then, there exists (A1, ..., Ap)
€ Mat](F) such that f(Ay,...,Ap) # 0 as a matrix.

@ (Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

@ Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.
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Non-Commutative circuits with division

o Circuits with +, x (ordered multiplication gates) and INV gates. An
INV gate has one input and computes g~! on input g.

z 2 Ty
’L-'z_ H.Z—l
H—lz 27

e Hua's identity: (x +xy Ix) "t =x"1+ (x+y) L.
@ Nested inversions cannot always be eliminated. e.g., (u+ xy~1z)~1.

@ Inversion height: number if nested inversions.
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r(A ..., Ap) =0 as a matrix when defined.
e RIT: Given a non-commutative circuit(with inverses) computing r
decide if r = 0.
@ Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.
(Garg et al. '20, lvanyos et al. '18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula?.
(Derksen, Makam '17) Randomized polynomial time in black-box model
for non-commutative formula.
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Conjecture(Bogdanov, Wee '05): The minimum size of a branching
program of a polynomial identity for the d x d matrix algebra is 2(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables

. : : . logs
and inversion height ~ loglogs -

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).
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