Multiple Facets of Algebraic Computation

C Ramya
IMSc, Chennai.

September 2023

1/19

Algebraic Computation

@ Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

2/19

Algebraic Computation
@ Goal: Understand the amount of computational resource required to

solve a given computational problem on a computational model.

e Objects: Polynomials. E.g., f = x? + 3x;x2 — 2.

2/19

Algebraic Computation

@ Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

e Objects: Polynomials. E.g., f = x? + 3x;x2 — 2.
Resource: No. of arithmetic operations(+, x)

2/19

Algebraic Computation

@ Goal: Understand the amount of computational resource required to
solve a given computational problem on a computational model.

e Objects: Polynomials. E.g., f = x? + 3x;x2 — 2.
Resource: No. of arithmetic operations(+, x)

Font vommn o

V= %y x Xy
v, = A XX
Vi = 3x VU,
Vg = i+ V3
= 2 X %o

Vp = \fq_-\l‘s-

@ Model: Arithmetic circuits: DAGs with leaves labelled by variables or
constants(from F) and internal gates labelled by {+, x}.

2/19

Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations
to compute f.

3/19

Complexity of polynomials
e size(C) - number of gates in circuit C = no. of arithmetic operations

to compute f.

e depth(C) - length of longest path from input to output gate of C.

3/19

Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations
to compute f.

e depth(C) - length of longest path from input to output gate of C.
@ There can be several different circuits computing a given polynomial.

3/19

Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations
to compute f.

e depth(C) - length of longest path from input to output gate of C.
@ There can be several different circuits computing a given polynomial.

3/19

Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations
to compute f.

e depth(C) - length of longest path from input to output gate of C.
@ There can be several different circuits computing a given polynomial.
Let SUM, =x1+x0+ -+ + Xxp.

3/19

Complexity of polynomials

e size(C) - number of gates in circuit C = no. of arithmetic operations

to compute f.

e depth(C) - length of longest path from input to output gate of C.

@ There can be several different circuits computing a given polynomial.

Let SUM, =x1+x0+ -+ + Xxp.

Cy Co Cs
size(C) =1 size(Cy) =1 size(C3) =2

SUM = (SUMp)p>1 is a polynomial family.

SZJMn
.@\

In

w

T1 X9

Cn
size(Cy) =n—1

3/19

Valiant's Conjecture

@ Any n-variate degree-d polynomial can be computed by

4/19

Valiant's Conjecture

@ Any n-variate degree-d polynomial can be computed by a depth two
circuit of size O ((”Zd)>.

4/19

Valiant's Conjecture

@ Any n-variate degree-d polynomial can be computed by a depth two
circuit of size O ((”Zd)>.

@ There exists n-variate degree-d polynomials that require arithmetic
. . . nt-d
circuits of size Q < (")>

4/19

Valiant's Conjecture
@ Any n-variate degree-d polynomial can be computed by a depth two
. . . +d
circuit of size O ((”d))
@ There exists n-variate degree-d polynomials that require arithmetic
. . . +d
circuits of size Q < (")>
@ A polynomial family (f,)n>1 is efficiently computable if for every n,
deg(f,) = poly(n) and there is poly(n) size circuit for f,.

4/19

Valiant's Conjecture
@ Any n-variate degree-d polynomial can be computed by a depth two
circuit of size O ((”Zd)>.
@ There exists n-variate degree-d polynomials that require arithmetic
circuits of size Q < (”Jgd)>.
@ A polynomial family (f,)n>1 is efficiently computable if for every n,

deg(f,) = poly(n) and there is poly(n) size circuit for f,.
E.g.,: SUM, Symbolic Determinant det = (det,),>1.

4/19

Valiant's Conjecture
@ Any n-variate degree-d polynomial can be computed by a depth two
circuit of size O ((”Zd)>.
@ There exists n-variate degree-d polynomials that require arithmetic
circuits of size Q < (”Jgd)>.
@ A polynomial family (f,)n>1 is efficiently computable if for every n,

deg(f,) = poly(n) and there is poly(n) size circuit for f,.
E.g.,: SUM, Symbolic Determinant det = (det,),>1.

@ Class VP: class of efficiently computable polynomial families.

4/19

Valiant's Conjecture
@ Any n-variate degree-d polynomial can be computed by a depth two
circuit of size O ((”Zd)>.
@ There exists n-variate degree-d polynomials that require arithmetic
circuits of size Q < (”Jgd)>.
@ A polynomial family (f,)n>1 is efficiently computable if for every n,

deg(f,) = poly(n) and there is poly(n) size circuit for f,.
E.g.,: SUM, Symbolic Determinant det = (det,),>1.

@ Class VP: class of efficiently computable polynomial families.

@ Are there polynomials that are hard to compute(outside VP)? YES.

4/19

Valiant's Conjecture

@ Any n-variate degree-d polynomial can be computed by a depth two
. . . +d
circuit of size O ((”d))
@ There exists n-variate degree-d polynomials that require arithmetic
. . . +d
circuits of size Q < (")>
@ A polynomial family (f,)n>1 is efficiently computable if for every n,

deg(f,) = poly(n) and there is poly(n) size circuit for f,.
E.g.,: SUM, Symbolic Determinant det = (det,),>1.

@ Class VP: class of efficiently computable polynomial families.
@ Are there polynomials that are hard to compute(outside VP)? YES.

@ Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

4/19

Valiant's Conjecture

@ Any n-variate degree-d polynomial can be computed by a depth two
. . . +d
circuit of size O ((”d))
@ There exists n-variate degree-d polynomials that require arithmetic
. . . +d
circuits of size Q < (")>
@ A polynomial family (f,)n>1 is efficiently computable if for every n,

deg(f,) = poly(n) and there is poly(n) size circuit for f,.
E.g.,: SUM, Symbolic Determinant det = (det,),>1.

@ Class VP: class of efficiently computable polynomial families.
@ Are there polynomials that are hard to compute(outside VP)? YES.

@ Goal: Find an explicit polynomial outside VP.
Explicit: coefficient of any monomial is reasonably easy to compute.

Valiant's Conjecture: Any circuit for perm,, requires size nv(),

4/19

Towards Valiant’'s Hypothesis

(Baur,Strassen'83)Any circuit for x{ + - -+ + x4 requires size Q(nlog d).

5/19

Towards Valiant’'s Hypothesis

(Baur,Strassen'83)Any circuit for x{ + - -+ + x9 requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.

5/19

Towards Valiant’'s Hypothesis

(Baur,Strassen‘83)Any circuit for x{ + --- 4+ x¢ requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.

Depth reduction n“(Vd) Jower bound for depth-three circuits computing an
explicit n-variate, degree d polynomial is sufficient to resolve Valiant's
conjecture.

5/19

Towards Valiant’'s Hypothesis

(Baur,Strassen‘83)Any circuit for x{ + --- 4+ x¢ requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.
Depth reduction n“Vd) |ower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant's
conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit n-variate polynomial
(in VP) of degree d such that any depth three circuit for it has size n(Vd),

5/19

Towards Valiant’'s Hypothesis

(Baur,Strassen‘83)Any circuit for x{ + - -+ + x9 requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.

Depth reduction n“(Vd) lower bound for depth-three circuits computing an
explicit n-variate, degree d polynomial is sufficient to resolve Valiant's
conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit n-variate polynomial
(in VP) of degree d such that any depth three circuit for it has size n(Vd)

Perhaps the principal embarrassment of complexity theory at the present
time is its failure to provide techniques for proving non-trivial lower bounds
on the complexity of some of the commonest combinatorial and arithmetic
problems.

5/19

Towards Valiant’'s Hypothesis

(Baur,Strassen‘83)Any circuit for x{ + - -- 4+ x¢ requires size Q(nlog d).
(Folklore) Any depth-2 circuit computing perm,, requires size n!.
Depth reduction n“(Vd) lower bound for depth-three circuits computing an

explicit n-variate, degree d polynomial is sufficient to resolve Valiant's
conjecture.

(Limaye, Srinivasan, Tavenas '21) There is an explicit n-variate polynomial
(in VP) of degree d such that any depth three circuit for it has size p(Vd),

Perhaps the principal embarrassment of complexity theory at the present
time is its failure to provide techniques for proving non-trivial lower bounds
on the complexity of some of the commonest combinatorial and arithmetic
problems.

-Valiant(1975)

5/19

Proving Lower Bounds: A Toy Example
Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.

6/19

Proving Lower Bounds: A Toy Example

Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.

@ Let f(x) = ax? + bx + ¢ be any quadratic polynomial. Then, f(x) has
a repeated root if and only if b> —4ac = 0. Note, coeff(f) = (a, b, c).

6/19

Proving Lower Bounds: A Toy Example

Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.

@ Let f(x) = ax? + bx + ¢ be any quadratic polynomial. Then, f(x) has
a repeated root if and only if b> —4ac = 0. Note, coeff(f) = (a, b, c).

e Find a polynomial h(x) = ax? + bx + ¢ with non-zero discriminant.

6/19

Proving Lower Bounds: A Toy Example

Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.

@ Let f(x) = ax? + bx + ¢ be any quadratic polynomial. Then, f(x) has
a repeated root if and only if b> —4ac = 0. Note, coeff(f) = (a, b, c).

e Find a polynomial h(x) = ax? + bx + ¢ with non-zero discriminant.

Consider P(z1, 22, 23) = z3 — 4z1z3. Then,
e f(x) € C = P(coeff(f)) = 0.
o P(z1, 2, z3) is efficiently computable.
@ There is polynomial h(x) € F[x]<2 such that P(coeff(h)) # 0.

6/19

Proving Lower Bounds: A Toy Example

Let C = {(ax — B)? | , B € C}. Goal: Find an explicit h(x) & C.
@ Let f(x) = ax? + bx + ¢ be any quadratic polynomial. Then, f(x) has
a repeated root if and only if b> —4ac = 0. Note, coeff(f) = (a, b, c).

e Find a polynomial h(x) = ax? + bx + ¢ with non-zero discriminant.

Consider P(z1, 22, 23) = z3 — 4z1z3. Then,
e f(x) € C = P(coeff(f)) = 0.
o P(z1, 2, z3) is efficiently computable.
@ There is polynomial h(x) € F[x]<2 such that P(coeff(h)) # 0.

Proving Lower Bounds against C: Find a
property P that every polynomial in C
satisfies and then find an explicit h that does
not satisfy P.

hZ:E)
Goal: h(Z) & VP
h(z) explicit

6/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.

@ Define pu: Flxq,...,xs] > Rst. p(hA+--+7) < u(f)+-- -+ u(f).

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
@ Define pu: Flxq,...,xs] > Rst. p(hA+--+7) < u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
o Define pu: Flx1,...,xs] > Rsit. p(h+---+7) <u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.
u(f) = p(my + -+ -+ ms)
<p(mi)+-- 4 p(ms) <s

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
o Define pu: Flx1,...,xs] > Rsit. p(h+---+7) <u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.
u(f) = p(my + -+ -+ ms)

<p(mi)+-- 4 p(ms) <s
@ Observe that u(perm,) = n!

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
@ Define pu: Flxq,...,xs] > Rst. p(hA+--+7) < u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.

()

my + -+ ms)

1(
<p(my) 4+ p(ms) <s
:nl

@ Observe that u(perm,) Therefore, s > nl.

7/19

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
@ Define pu: Flxq,...,xs] > Rst. p(hA+--+7) < u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.

u(f) = p(my + -+ -+ ms)

<p(mi)+-- 4 p(ms) <s
@ Observe that u(perm,) = n! Therefore, s > nl.

For more(infact most) sophisticated circuit classes C:

.

Construct a measure i : F[xy, ..., x,] = R:
o u(f) is small for f € C.
o u(h) is large for an explicit polynomial h.

Another Toy Example

Let C be the class of Xl-circuits. Any X1 circuit computing the
permanent requires size n!.

o Let f be computable by a XI1 circuit of top fanin s.
@ Define pu: Flxq,...,xs] > Rst. p(hA+--+7) < u(f)+-- -+ u(f).
E.g., u(f) = number of monomials of f.

u(f) = p(my + -+ -+ ms)

<p(mi)+-- 4 p(ms) <s
@ Observe that u(perm,) = n! Therefore, s > nl.

For more(infact most) sophisticated circuit classes C:

.

Construct a measure i : F[xy, ..., x,] = R:
o u(f) is small for f € C.
o u(h) is large for an explicit polynomial h.
o u(f) is rank(My) for a matrix My associated with polynomial f.

7/19

Proving Lower Bounds against C

Most lower bound proofs against C construct a measure p : F[X] — R:
o u(f) is small for f € C (i.e., rank(M) is small)
@ u(h) is large for an explicit polynomial h. (i.e., rank(M,,) is large)

8/19

Proving Lower Bounds against C

Most lower bound proofs against C construct a measure p : F[X] — R:
o u(f) is small for f € C (i.e., rank(M) is small)
@ u(h) is large for an explicit polynomial h. (i.e., rank(M,,) is large)

Mf B My, =
w 3 submatrix W Wi | det(Wi) + 0
= s.t. det(Wy) =0 h -y det(W)) #

8/19

Proving Lower Bounds against C

Most lower bound proofs against C construct a measure p : F[X] — R:
o u(f) is small for f € C (i.e., rank(M) is small)
@ u(h) is large for an explicit polynomial h. (i.e., rank(M,,) is large)

Mf =
Wf 3 submatrix W
T s.t. det(Wy) =0

Mh =
Wy |

I det(Wh) # 0

For f € F[xy, ..., xs] of degree d = poly(n): My € FN*N N = (”+d).

o M¢[x®, xP] = coefficient of x* in

OxB -

@ Entries of M¢ are linear in the coefficients of f.

n

8/19

Towards Algebraically Natural Proofs

Let f € F[x1, ..., xn] of degree d. Then, f =) ¢y - m.

Coefficient-vector: coeff(f) = (c1, c2,...,cn) € FN where N = ("9).
“Natural” lower bound proof for C C F[xq, ..., x,]=%
C has a natural proof if there is a non-zero polynomial P(z, ..., zy):

Q Usefulness: Vf € C, P(coeff(f)) = 0.
@ Constructivity: P has degree poly(N) and size poly(N).

© Largeness: P(coeff(h)) # 0 for candidate hard polynomial h
(and for many more polynomials).

9/19

Towards Algebraically Natural Proofs

Let f € F[x1, ..., xn] of degree d. Then, f =) ¢y - m.

Coefficient-vector: coeff(f) = (c1, c2,...,cn) € FN where N = ("9).
“Natural” lower bound proof for C C F[xq, ..., x,]=%
C has a natural proof if there is a non-zero polynomial P(z, ..., zy):

Q Usefulness: Vf € C, P(coeff(f)) = 0.
@ Constructivity: P has degree poly(N) and size poly(N).

© Largeness: P(coeff(h)) # 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(ax — B)? | a, B € C}. Then, P(z1,22,23) = z2 — 4213
such that P(coeff(f)) =0 for all f € C.

9/19

Towards Algebraically Natural Proofs

Let f € F[x1, ..., xn] of degree d. Then, f =) ¢y - m.

Coefficient-vector: coeff(f) = (c1, c2,...,cn) € FN where N = ("9).
“Natural” lower bound proof for C C F[xq, ..., x,]=%
C has a natural proof if there is a non-zero polynomial P(z, ..., zy):

Q Usefulness: Vf € C, P(coeff(f)) = 0.
@ Constructivity: P has degree poly(N) and size poly(N).

© Largeness: P(coeff(h)) # 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(ax — B8)? | o, B € C}. Then, P(z1,22,23) = z5 — 42123
such that P(coeff(f)) =0 for all f € C.

Example 2: ¢ = {XNX, XNXM, ¥ A X}

Then, P(z1,...,2zy) = det(W) such that P(coeff(f)) =0 for all f € C.

9/19

Towards Algebraically Natural Proofs

Let f € F[x1, ..., xn] of degree d. Then, f =) ¢y - m.

Coefficient-vector: coeff(f) = (c1, c2,...,cn) € FN where N = ("9).
“Natural” lower bound proof for C C F[xq, ..., x,]=%
C has a natural proof if there is a non-zero polynomial P(z, ..., zy):

Q Usefulness: Vf € C, P(coeff(f)) = 0.
@ Constructivity: P has degree poly(N) and size poly(N).

© Largeness: P(coeff(h)) # 0 for candidate hard polynomial h
(and for many more polynomials).

Example 1: C = {(ax — B8)? | o, B € C}. Then, P(z1,22,23) = z5 — 42123
such that P(coeff(f)) =0 for all f € C.

Example 2: ¢ = {XNX, XNXM, ¥ A X}

Then, P(z1,...,2zy) = det(W) such that P(coeff(f)) =0 for all f € C.

9/19

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

10/19

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z,.
e Vf € VP(n), P(coeff(f)) =0;
@ P has degree poly(N) and size poly(N)?

CZN):

10/19

How far can natural proofs succeed?

Can we prove Valiant's Conjecture via natural proofs? VP(n) is class of
n-variate degree-poly(n) polynomials computable by size poly(n) circuits.

Question: Does there exist a non-zero polynomial P(z,.
e Vf € VP(n), P(coeff(f)) =0;
@ P has degree poly(N) and size poly(N)?

CZN):

Theorem (Chatterjee, Kumar, R.,
Saptharishi, Tengse)

VP with
coefficients € {—1,0,+1}
Answer: Yes, for polynomials with small

integer coefficients.

10/19

On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n,d and N = ("%), there exists a non-zero P(z1,...,zn) such that
© P(coeff(f)) = 0 for all f € VP(n, d) with small integer coefficients;
@ P(z1,...,2znN) has size and degree poly(N); and
© there exists h having small integer coefficients with P(coeff(h)) # 0.

v

11/19

On the Existence of Natural Proofs

Theorem (Chatterjee, Kumar, R., Saptharishi, Tengse)

For n,d and N = ("%), there exists a non-zero P(z1,...,zn) such that
Q P(coeff(f)) =0 for all f € VP(n, d) with small integer coefficients;
@ P(z1,...,2znN) has size and degree poly(N); and

© there exists h having small integer coefficients with P(coeff(h)) # 0.

@ What does this result suggest? An evidence for the power of natural
lower bound techniques for proving super-polynomial lower bounds.

11/19

Strassen’s Vermeidung von Divisionen

12/19

Strassen’s Vermeidung von Divisionen

12/19

Strassen’s Vermeidung von Divisionen

12/19

Strassen’s Vermeidung von Divisionen

i+, 2} 2 ong
703:% L+ gode
Size oly(s)

12/19

Strassen’s Vermeidung von Divisionen

i+ X} 2 one
Toot + gode

g NO)
® .
F= LI L "‘~Z("35\l
AJ S |—(_l-6) J:o
n-\Nomole
deg 4 Gn Buncale Power simee depending on
the deﬂYze og f

Veed Oe ' &b g(A)FD.

12/19

Strassen’s Vermeidung von Divisionen

Size Poly(8)
® .
= b - h - h Z(I_S'yl
AJ S I—(_l-g) J:o
M-Nomate
deg 4 Gn Buncale Power simee depending on
e Aeﬁmz ogl f

Veed Oe ' &b g(A)FD.

@ Division gates can be eliminated with polynomial blow up in size.

12/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

13/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,x,] test if f = 0. J

13/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,x,] test if f = 0. J

@ Univariate case:

13/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,x,] test if f = 0.

@ Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

13/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,xp| test if f = 0.

@ Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

@ Multivariate case: Can have infinitely many roots.

13/19

Polynomial Identity Testing

e A polynomial(f = 0) is identically zero if all its coefficients are zero.
e Eg: (x+y)?—x2—y?>—2xy=0and (x+y)?> —x*>—y?+2xy Z0.

Polynomial Identity Testing (PIT)
Given f € F[xq,...,xp| test if f = 0.

@ Univariate case: Any non-zero univariate polynomial of degree d has
at most d roots. Easy to get a polynomial time algorithm.

@ Multivariate case: Can have infinitely many roots.
@ Randomized polynomial time algorithm for multivariate PIT is known.

o Open Question: Derandomizing PIT.

13/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.
@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a

combination of words.

14/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.
@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a

combination of words.

@ ncPIT: Given a non-commutative polynomial f € F(xy, ..., x,) test if
f=0. Eg., x1x20 — xox3 Z 0 in the non-commutative world.

14/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
E.g., (x1 +x)(x1 — x2) # xl2 — X2

@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a
combination of words.

@ ncPIT: Given a non-commutative polynomial f € F(xy, ..., x,) test if

f=0. Eg., x1x20 — xox3 Z 0 in the non-commutative world.

@ Non-commutative circuit: arithmetic circuit whose x gate respects
the ordering.

14/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.

@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a
combination of words.

@ ncPIT: Given a non-commutative polynomial f € F(xy, ..., x,) test if
f=0. Eg., x1x20 — xox3 Z 0 in the non-commutative world.

@ Non-commutative circuit: arithmetic circuit whose x gate respects
the ordering.

o (Amitsur-Levitski '50) Let f(x1,...,xn) € F(x1,...,x,) be non-zero
polynomial of degree < 2d — 1. Then, there exists (A1, ..., Ap)
€ Mat](F) such that f(Ay,...,Ap) # 0 as a matrix.

14/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.
@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a

combination of words.

@ ncPIT: Given a non-commutative polynomial f € F(xy, ..., x,) test if
f=0. Eg., x1x20 — xox3 Z 0 in the non-commutative world.

@ Non-commutative circuit: arithmetic circuit whose x gate respects
the ordering.

o (Amitsur-Levitski '50) Let f(x1,...,xn) € F(x1,...,x,) be non-zero
polynomial of degree < 2d — 1. Then, there exists (A1, ..., Ap)
€ Mat](F) such that f(Ay,...,Ap) # 0 as a matrix.

@ (Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

14/19

Non-commutative PIT

@ Set of non-commuting variables {x1,...,x,} i.e., xix; # x;x; Vi # j.
Eg., (xa+x)(x —x) # x2 — x3.
@ A non-commutative polynomial f(x1,...,xn) € F(x1,...,xpn) is a

combination of words.

@ ncPIT: Given a non-commutative polynomial f € F(xy, ..., x,) test if
f=0. Eg., x1x20 — xox3 Z 0 in the non-commutative world.

@ Non-commutative circuit: arithmetic circuit whose x gate respects
the ordering.

o (Amitsur-Levitski '50) Let f(x1,...,xn) € F(x1,...,x,) be non-zero
polynomial of degree < 2d — 1. Then, there exists (A1, ..., Ap)
€ Mat](F) such that f(Ay,...,Ap) # 0 as a matrix.

@ (Bogdanov, Wee 2005) Randomized polynomial time algorithm for
ncPIT on circuits with polynomial degree.

@ Open: Randomized polynomial time algorithm for ncPIT on circuits
of polynomial size.

14/19

Non-Commutative circuits with division

o Circuits with +, x(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g~! on input g.

o H"

B
COEENCD

15/19

Non-Commutative circuits with division

e Circuits with +, x(ordered multiplication gates) and INV gates. An
INV gate has one input and computes g~! on input g.

oy y z2 xy
a <2 Hz-—l
W G|y
T J

15/19

Non-Commutative circuits with division

o Circuits with +, x(ordered multiplication gates) and INV gates. An

INV gate has one input and computes g~! on input g.
')(."+H‘| z 2 Ty
a <2 H.Z-l
m m H—| ——
* J

o Hua's identity: (x +xy Ix)" P =x"1+ (x+y) L.

15/19

Non-Commutative circuits with division

o Circuits with +, x (ordered multiplication gates) and INV gates. An
INV gate has one input and computes g~! on input g.

z 2 Ty
’L-'z_ H.Z—l
H—lz 27

e Hua's identity: (x +xy Ix) "t =x"1+ (x+y) L.
@ Nested inversions cannot always be eliminated. e.g., (u+ xy~1z)~1.

@ Inversion height: number if nested inversions.

15/19

Rational ldentity Testing

@ A rational expression r(x, ..., x,) computes the zero function® if

> r has a nonempty domain of definition
» for each d € N and substitution (A ..., A,) € (Matyq(F))",
r(A ..., Ap) =0 as a matrix when defined.

!(zero function in the free skew-field)

2formula is a circuit whose underlying graph is a tree.
16/19

Rational ldentity Testing

@ A rational expression r(x, ..., x,) computes the zero function® if
> r has a nonempty domain of definition
» for each d € N and substitution (A ..., A,) € (Matyq(F))",
r(A ..., Ap) =0 as a matrix when defined.
e RIT: Given a non-commutative circuit(with inverses) computing r
decide if r = 0.

!(zero function in the free skew-field)

2formula is a circuit whose underlying graph is a tree.
16/19

Rational ldentity Testing

@ A rational expression r(x, ..., x,) computes the zero function® if
> r has a nonempty domain of definition
» for each d € N and substitution (A ..., A,) € (Matyq(F))",
r(A ..., Ap) =0 as a matrix when defined.
e RIT: Given a non-commutative circuit(with inverses) computing r
decide if r = 0.
@ Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.

!(zero function in the free skew-field)

2formula is a circuit whose underlying graph is a tree.
16/19

Rational ldentity Testing

@ A rational expression r(x, ..., x,) computes the zero function® if
> r has a nonempty domain of definition
» for each d € N and substitution (A ..., A,) € (Matyq(F))",
r(A ..., Ap) =0 as a matrix when defined.
e RIT: Given a non-commutative circuit(with inverses) computing r
decide if r = 0.
@ Open: Subexponential-time randomized white-box algorithm for
noncommutative circuits.
(Garg et al. '20, lvanyos et al. '18) Deterministic polynomial time
algorithm in the white-box model for non-commutative formula?.
(Derksen, Makam '17) Randomized polynomial time in black-box model
for non-commutative formula.

!(zero function in the free skew-field)

2formula is a circuit whose underlying graph is a tree.
16/19

Lower Bounds = RIT algorithm

@ A polynomial identity for d x d matrix algebra is a noncommutative
polynomial p(xi, ..., xn) that vanishes on d x d matrix substitutions.

17/19

Lower Bounds = RIT algorithm

@ A polynomial identity for d x d matrix algebra is a noncommutative

polynomial p(xi, ..., xn) that vanishes on d x d matrix substitutions.
® s(x1,...,%2d) = >_5gN(0)Xs(1) " * Xs(2d) 1S @ polynomial identity for
Fdxd- 7

17/19

Lower Bounds = RIT algorithm

@ A polynomial identity for d x d matrix algebra is a noncommutative

polynomial p(xi, ..., xn) that vanishes on d x d matrix substitutions.
® s(x1,...,%2d) = >_5gN(0)Xs(1) " * Xs(2d) 1S @ polynomial identity for
Fdxd- 7

Conjecture(Bogdanov, Wee '05): The minimum size of a branching
program of a polynomial identity for the d x d matrix algebra is 2(d).

17/19

Lower Bounds = RIT algorithm

@ A polynomial identity for d x d matrix algebra is a noncommutative

polynomial p(xi, ..., xn) that vanishes on d x d matrix substitutions.
® s(x1,...,%2d) = >_5gN(0)Xs(1) " * Xs(2d) 1S @ polynomial identity for
Fdxd- 7

Conjecture(Bogdanov, Wee '05): The minimum size of a branching
program of a polynomial identity for the d x d matrix algebra is 2(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables

. : : . logs
and inversion height ~ loglogs -

17/19

Lower Bounds = RIT algorithm

@ A polynomial identity for d x d matrix algebra is a noncommutative

polynomial p(xi, ..., xn) that vanishes on d x d matrix substitutions.
® s(x1,...,%2d) = >_5gN(0)Xs(1) " * Xs(2d) 1S @ polynomial identity for
Fdxd- 7

Conjecture(Bogdanov, Wee '05): The minimum size of a branching
program of a polynomial identity for the d x d matrix algebra is 2(d).

Theorem (Arvind, Chatterjee, Ghosal, Mukhopadhyay, R.,)

If BW conjecture is true then there is a deterministic subexponential time
blackbox RIT algorithm for rational formulas of of size s over n variables

. : : . logs
and inversion height ~ loglogs -

(Hrubes, Wigderson) A rational formula of size s has inversion height
O(log s).

17/19

Thank you

18/19

