Introduction

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
August 2020

"I!Ld-l\.ﬂ'.l

[T L] Fils JET DR

“EE A p 1R MR

T I Eary. S

Languages

- '1:.‘ :
&]

IF pres
1 - L -u'l LN - - - FIHf P P '\—J
||1?“|' 1K r.lli -i‘-"r_ .} “. Mt U .ll-' :I S ..-" = .&?I‘.‘I.I'I CibTa - ‘.1'_. H'- T}'\-ﬁl‘.ﬁ ol

LE

L1RK: * et -
VIR, Ourlil an oty i e | |ELNeE = -\.—|r| '||-1|"-' [-_-—'-L.:_l-_l

P | waran iR P £l W f | X .-.l-\._ ed] A Mr faikie T :. ; i sl

. .'r B, WU AR e ghangy T "{.-' et = ¥. o Gy | Ade= ._,ulr.l.- CEAG oy

. jl-!-... ol 1—- i ﬁ']l...r} (7 i i L
e ph ook wk W F L ﬂ,l‘ﬁ“ﬁhﬂﬁn [3 e e gl da il 1=
|.': yrae r: > :"-:r-.-ll-J-‘;r Tk lir-‘ "\.'\- i Feta !1.:' ¥ ":" _L#ﬂ S:{-“"-. 62 % 1 = 1

Su wly mppus O w7 =

o = T LA PR = “‘%ﬂ \1 i 2 Ul Cpo e e LT B RALM Kl
e g 2 1 | Myiees -qai*# Bemn e A desd N ptieechnt A0 ETa0e J4A N GARN
Ly P *""-lrh A - o | Mo B .

W Four [aing va Al ak wd & “’-"""-"FIL- BL' 'r.||::'| ‘5-1,- cealo [prmes, ! . . ""é‘-‘ '-'3‘-"‘-‘-*"'u § |
TR E --.|_:, i Lk - L el P - a L o r'd.lj-;'l] ‘-.Ilr ---I.l."_III 5 = ol o --.u- rﬁ.—?g_:_ e
5 [i al - - - L -
P ot ear & PRIOM “'- fik mle . wpma TiHe 'H:h o More gt | Lad b L .‘.-I&:..-‘l-l-"ﬁu-l P T
- 'l 5 oy, N T Aa ..
::t:.- k1.l‘ i hakn r i ’_Fa::.::-\.! ﬂ‘;b:m ‘!':;3-‘ .m:? i q_':‘_-:' Lol o Ll‘i'.‘ acly f HI?_-\. £ .Hl.l"'lﬁ'."ll:,l & L]
kel = Ll LB LEW - :
i Ciahs o WINITETLAZ ATLA a[: 5 R o i ur Ll f.l--l-l-l“l*h e --J‘ i
AR o o b -1"'..1' WEKIT - l"—"'-;,/ If' okl “-41."«_ wiihn, Sived PP 1w b
- VR

i...'lp-- Fan

=

o B 3y

S Joldis s B
AR el .r':.:-w-'-.up': :-'t-l‘.' O

fi.El-“:- ﬁ::a;qp m O .y I.-"'L}.-""":r“- L’<M “-ém:l.ﬂ'lﬂq_ej Ke o reba I';:'_'. dm?-,a--lﬁ m_t_? WELA

r

[o suine | Tttt Mot sty] s

| L I
'I_Eﬂ-'m Jusd Bo ALY “_*"' 12 & Amg) ?r: | & 3H- x_,,__ Rax: g e

PR T | [T [Mahadbedk (7 IKua l’.u-. Ll
o ¥ --_.- = Aj M* "J+ L l-l".. g s & MNSPE - A et A pels L pbalie caneis

u] yeay | daboLg [-
1 Hopomy Al Las |

flegfipaa® | Ay gs F : i
AT P AT -, 08 YAp -W 7 am -r.--:'u-.: tﬁﬁau'rl'{ :.J- -:.lm.-h "’I'.:"'I ":""r""-
g R T e— - - i P F,]
o |" ?""r L] .::L-. m'-"""l-' ""!]r'n 3 D s

M in J_r' Lkar [_;:_",..__..-p_a._; _,_ru 'H,‘.".:pn-h.. I,}J,J,ENM .T'
l £ ki Gy Eorans la | LE -
._.:l:l?uim:.q- _]' il

o Lok Gl WO Mgl T il
TPadm miae ! b -] 1 -.h“-.- ~
i A A 'l'j ﬁ:af"' ." s *HL

e Ak ity Ly \s »gom.
= et T - --.:._ 3 o - T T, Bty

M Dl B b e by Pl T : .

" E i ! i |"¢-'-'-_1'-'-“'=H'J-

'i' 1_. e - Er.

Wall of Love, Paris
Source: google images

Languages

* Why do we need languages?

- Humans communicate
* sign language, body language, braille
- Birds communicate
* mark territories, attract for mating, warn danger
— Animals communicate
* mark territories, convey need, preparation for attack
- Aliens?

Programming Languages

* Why do we need programming languages?
* And why so many? —

comeee B e
| W Oj | g a0
: : Markﬁpgz.éé’“ﬂ_"ﬁXMLli;;;go S 2 é g
- What is your first language? 5 ggf;gzggViWﬁaﬁlBiia%g;;ﬁt_U:;;E ER
: L SHi R 2 VISUe 2 OL; SOE. 8018
- Tamil. Yours? 25 puthon CobolPrototype basedkt 5
SBLYNON< A sseibly=-i- O &
SUDEE- SF iect Orented. I5imeg
= O 42 8 <O HEOHTAN 5D 16
omzy g §mU) 5 Lisp
=L 'F-¢ i< 8 _°
Visual Cshap . 0O O o
Smalitalk Q- E

The Evoledion OF _Camp&der Prc:ﬁrmmfnq “iw

e

-

Assendfer | ' 4

Source: google images

Programming Languages
* There are some special purpose languages
- HTML for webpages
- LaTeX for document formatting
- ps for postscript files; sqgl, VHDL

— Shell scripts, awk, grep, sed
- Makefile has a language; smtp

- How about google search?
* filetype:pdf, link:www.cse.litm.ac.in
- Gmail: in:unread, in:starred

- VI :se al, :wqg, :se ft=c
- What about Is -, Is -RI, Is --color, Is -1 dirl dir2 ?

http://www.cse.iitm.ac.in/

Language Is for Communication

Using mobile buttons
Using ipad touch
Jsing a calculator

Jsing a fan switch

Jsing a remote for projector / laser

... some of these are not programmable today.
They have a limited abstraction.

6

We will work with programming languages.

Compller

* When do we need a compiler?
~ et HLOlp Qasiluon
- T3 o<t 3T B

- Ich kenne Deutsch

- | know English

7

Source: google images

Jobs of a Compiler

Translate: input language, output language
Maintain correctness

~ Uit 3R 7T

- Father died today.

Be efficient
- Why are you laughing?

- | understood yesterday's joke.

Generate a good language

— | got books but more than that | got your letter.

"\ \" \ O\ - \ N A\ 8
— ¥ fpdrd, <ifehT H 3199 o foe1T & T 318 & 31feiep o

Good Language (2015)

| got books but more than that | got your letter.

H fohetrel, cifehet H 3194 vt et & fob 31fdieh 9 sifeiep et 21

| have books, but | got your letter got more than that.

H forard &, oifchT H 310 U= 2 fob 31fdes 9 a1fees e

| have books, but that's more than | got your letter.

gﬁo_cn%r% e e & foh 5 o1 v et & Y ot | arfld
|

| have books, but | have received your letter is more than.

H foherrel &, SfhT H 3101 0 el JoeT 3119k & TTH B3l &

Good Language (2018)

| got books but more than that | got your letter.

ey fararTel foreff eifde SO SaTeT et 3mmuesT U et

| got the books but | received your letter more than that.
a3 fohetTsl fiet! etfdhet Jet SO 31feidh U e
| got books but | received more letters from him.

a2l fohars fired! etffdd g1 S SareT v el

| got the books but | received more letters from him.

g5t fbaTel Al otfchT g1 SE 31fereh U UTH gV

10

Good Language (2020)

| got books but more than that | got your letter.

ey fararTel foreff eifde SO SaTeT et 3mmuesT U et

| received books but more than that | received your letter.

a3l foars fietl, Sifch S8% SITaT J3l 31Ul UF el

| received books, but more than that | received your letter.

g2l fohare e, oifcrT 399 it SI1eT 5 3MYhT U HetT|

| received books, but more than that | received your letter.

gl fohare firefl, etfd Se9 Y SaTeT 92 3muehT uF fHeT|

11

Compilers work with Strings

* Characters, words / tokens, sentences, programs

* Fun with strings

— quick brown fox jJumps over the lazy dog
- stewardesses
- typewriter o

— —
~_
~

- skepticisms -~

Programs as Data

- quine

—

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

12

Why should we Design a language?

 Language matters!

- A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $57?

- B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

* Outcomes of a treatment for lung cancer. Two
descriptions were:

- C: The one-month survival rate is 90%.
- D: There are 10% deaths in the first month.

* B fetched many more positives. 84% physicians chose
option C. N

Source: Thinking Fast and Slow, Daniel Kahneman

Classwork

* Write a program that takes a function name as
iInput and calls that function.

14

source program

\

Compiler
outpu

\4

Interpreter

 What does this mean?
— You may be able to do the following with interpreters.

$x=0; $y = 0;

$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;

echo "x=%x, y=$y\n";

echo "Enter a variable name: ":

How about C?

A4

void main() {
intx=0,y=0;
#include "/dev/stdin"
= 10;
printf("x = %d, y = %d\n", X, y);

}
S 15
Everything is fair in love, war and C.

source program

\4

Compiler

o
<~ input
N

Y

butpud
N

* What does this mean?
- You may be able to do the following with compilers.

X +=2;
X +=2;
__X;

X +=b5;
++X;
X+=9

IS equivalent to . x+=18;

\
\
| ,
Interpreter
v
N
output
N

16

source program

Y

Compiler

) J

source program

Y

Translator

intermediate program

Y

———

s

A

\

Interpreter

~

o
c
~—
o
c
—t

/~
N

Virtual
Machine

uton)
ey

17

source program (file.c)

v

Preprocessor (cpp)

v

Modified source program (file.i)

Compiler (gcc)

v

target assembly program (file.s)

Assembler (as)

v

relocatable machine code (file.o)

v

Linker /| Loader (Id) =

v

target machine code (a.out)

e cpp file.c >file.i
* gcc -S file.i
e as file.s -o file.o

e |d -0 a.out file.o ...libraries...

Try the following:
* gcc -V file.c
* gcc -save-temps file.c

library files,
relocatable object files

18

Language Translators

Preprocessor: collects source programs,
expands macros.

Compiler: Translates source program into a low-
level assembly.

Assembler: Produces (relocatable) machine

code.

Linker: Reso
combines mu

Loader: Loac

resolves external references dynamically.

ves external references statically,
tiple machine codes.

S executable codes into memory,

19

Homework

e Exercises 1.1.1-5 from ALSU.

20

Character stream

v

Lexical Analyzer

v

Token stream

v

Syntax Analyzer

v

Syntax tree

v

Semantic Analyzer

v

Syntax tree

v

Intermediate
Code Generator

v

Intermediate representation

v

Machine-Independent
Code Optimizer

v

Intermediate representation

v

Code Generator

v

Target machine code

v

Machine-Dependent
Code Optimizer

v

Target machine code

Backend

Symbol
Table

Z=X+y*32
v

Lexical Analyzer

v

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Syntax Analyzer
A///:\\ Iy N +
<id,1> P
<id,2> P
<id,3> 32

v

Semantic Analyzer

<id,1> A
. inttofloat
<id,2> #
*
A >
<id,3> 32

v

Intermediate
Code Generator

v

t1 =id3 * 32

t2 = inttofloat(tl)
t3 =1d2 + t2

idl = tii

Machine-Independent
Code Optimizer

v

t1 =1id3 * 32
t2 = inttofloat(tl)
id1l =id2 + t2

v

Code Generator

LD R3, id3

Symbol Table

LD R3, id3

SHL R3, #5

ITOF R2, R3

LDF R1, id2
ADDF R1, R1, R2
STFidl, R1

}

MUL R3, R3, #32
ITOFR2,R3

LDF R1, id2

Machine-Dependent
Code Optimizer

ADDF R1, R1, R2
STFidl, R1

=

Symbol Table

e Records variable names

* Collects thelir attributes z
- Type (int, char) . ;
- Storage requirement ([30], 1)
- Type modifiers (const, static) Symbol Table

- Scope (global, static)
- Information about arguments (for functions)
* Efficient insertion, search (sometimes deletion)
- C.intx,y, z;
- Pascal: var x, y, z: integer;

23

ldeal World

Fortran v ARM
C y X86
One Compiler
Java > powerPC
Future Language Future Target

Reality

ARM
Fortran » f90
C > gcc x86
Java » javac PowerPC
Future Language > futurec e ? A Euture Target ,,

Reality getting worse

* | don't have a compiler for this platform.
* My program compiles with an older version of gcc.

* My program compiles with the new version, but
does not run on this new platform.

* My program compiles with an older gcc if you
disable optimizations.

* My program compiles if you have llvm 5.4, clang
5.5, gcc 5.0.1 on x86_64 with lonestar 1.2 or above
on Ubuntu 16 or below.

25

Evolution of Programming Languages

* First electronic computers in 1940s.
* Programmed in machine language (0 and 1).

- Move data from one location to another.
— Add the content of two registers.
- Compare two values

e S | o W, eDi“s, and ErorrP run.

26

Maggie and Buildings

= e

Punched Tape Punched Card

27
Image source: wikipedia

Punched Tape

IIPMENT CORP

2006 6ottt ore

MDAT‘A PROCESSOR

) DaE e e LG
fecldy— o
ws7d EFORTRAN STATEMENT |™™

% A o % e
0000BﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂﬁBﬂBﬂﬁﬂﬂﬂﬂﬁﬂﬁﬁﬁﬂﬂwﬂﬂﬂﬂﬁﬂﬂUﬂ890809000088000900000000000

ke © ®
12345/6(78810NN2KBKBKIE ﬂ!B19202122232425252?2323303132333415353?3035400424314545474649505!52535455555?5359585182535155555?5054?0“17?3?41‘57677737959

“
lllllllllllIIIIIIIIIIIIIIIllﬂﬁlllilllllllll!111111111]111!Illl111llllillllllllll

ORATION +« PROSRAM ME_é"

L *E FES

L=
et C

222220122222222222222222222222222222 (GES I, 2222222222222222222222222210222222%

P

2] a70| 155

Py

3333331333333333 3333333|33333333

44844/4/44480842828

&".\
Cn
£y
SYSTENM |
') 4444444/40444444
ol

P

55555/555555555555555555555555355339 & ;?7&@‘ 555555555555555555555555555#5555555
55665556BEBGE555688BEEBGBGSGBBBESEBEBEEGEBE65585EBBSSBGBBBGGGGEBBGEG56BBFBBGSBBB
177117777771777717177771777177777717777777771]177?777177771171771717717?77?77771
8&8888888888888888388888883888883888888888388B088888888888838835888388888888388B

JSSSSSBBSSSBSSBQSBBS55359999989999993999999999999999999!9!999999999 5599999
7 ® 19

§3WNRBKISBE 202!2223242526211’32‘9333]32333435353';'3839‘0!!424344&5‘5414849505{525354555575‘5’““nﬂﬁﬁﬂ“ﬂmnn MT3T6 11 181380

IDM 1435 PRINTED IN INDIA

99999
135938

L =]

Punched Card 28
Courtesy: Deepak Khemani

Evolution of Programming Languages

* Assembly languages in early 1950s.

- Initially, only mnemonics for machine instructions
- Later, support for macros

* High-level languages in late 1950s.

- Fortran for scientific computing

— Cobol for data processing

— Lisp for symbolic computation

- These were so successful that they are still in use.

29

PL Classification

Thousands of languages

- Need to be categorized

Based on paradigm

- Imperative (c, c++, java), declarative (lisp, prolog)
Based on generation (mnink of generation gap)

- First (machine), second (assembly), third (fortran,
cobol, lisp, c), fourth (sql, ps), fifth (prolog)

Others

- OO (c++, c#, Ruby), scripting (awk, |s, php,
python, ruby)

30

Compiler Writing

* Is challenging.
 Acomplileris a large program.

* A compiler must translate correctly potentially
Infinite set of programs that could be written in
the source language.

* The problem of generating the optimal target
code from a source program Is undecidable.

- Heuristics and Trade-offs.

« Compilers is an area where
Theory meets Practice.

31

Static versus Dynamic

* Time
 Compilation
e Optimization
* Analysis

* Type

* Linking

e Scoping

32

Static versus Dynamic

* Time: compilation versus execution,
preprocessor versus compilation

 Compilation: gcc versus |jit
* Optimization: without and with input
* Analysis: without and with environment
* Type:
— strongly typed versus scripting languages
— Inheritance and virtual functions

* Linking: .a versus .so
e Scoping

33

Static versus Dynamic

* Time
 Compilation inti=1;

L void f() {
* Optimization orintf(“%d”, i):
: - }

Analy5|5 voiql m_ain() {
. Type ::r(l)t;l—Z,
e Linking ;
e Scoping
Static Dynamic
1 2

Where do we use dynamic scoping?

Classwork

* Find the output of the
program under static
and dynamic scoping.

inta=1,b=2,y=3;
void gun(int x, int b) {

printf("%d %d\n", X, b);
}

void fun(int x, int y) {
printf("%d %d\n", X, y);
: gun(a, y);

void main() {
Inta =3;
{
Intb =4
fun(a, b);
}
gun(a, b);
fun(a, b);
}

Parameter Passing

Call by value

— This happens in C

Call by reference

— Supported in C++, aliasing
Call by name

- Macros
Call by value-result
— Supported in ADA

Inti=1;
Int *Ip = &I;
void f(int x) {
Inty;
X = 3;
Ip = &y;
X = [+X+2;
}

void main() {
f(*Ip);

printf(“%d”, 1);

}

Call by value: 1

Call by reference: 8
Call by name: 3

Call by value-result: 6

36

Classwork

* Create an example that does not use pointers
which produces different output under the four
parameter passing schemes.

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

