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Languages

* Why do we need languages?

- Humans communicate
* sign language, body language, braille
- Birds communicate
* mark territories, attract for mating, warn danger
— Animals communicate
* mark territories, convey need, preparation for attack
- Aliens?



Programming Languages

* Why do we need programming languages?
* And why so many? —

comeee B e
| W Oj | g a0
: : Markﬁpgz.éé’“ﬂ_"ﬁXMLli;;;go S 2 é g
- What is your first language? 5 ggf;gzggViWﬁaﬁlBiia%g;;ﬁt_U:;;E ER
: L SHi R 2 VISUe 2 OL; SOE. 8018
- Tamil. Yours? 25 puthon CobolPrototype basedkt 5
SBLYNON< A sseibly=-i- O &
SUDEE- SF iect Orented. I5imeg
= O 42 8 <O HEOHTAN 5D 16
omzy g §mU) 5 Lisp
=L 'F-¢ i< 8 _°
Visual Cshap . 0O O o
Smalitalk Q- E

The Evoledion OF _Camp&der Prc:ﬁrmmfnq “iw

e

-

Assendfer | ' 4

Source: google images




Programming Languages
* There are some special purpose languages
- HTML for webpages
- LaTeX for document formatting
- ps for postscript files; sqgl, VHDL

— Shell scripts, awk, grep, sed
- Makefile has a language; smtp

- How about google search?
* filetype:pdf, link:www.cse.litm.ac.in
- Gmail: in:unread, in:starred

- VI :se al, :wqg, :se ft=c
- What about Is -, Is -RI, Is --color, Is -1 dirl dir2 ?


http://www.cse.iitm.ac.in/

Language Is for Communication

Using mobile buttons
Using ipad touch
Jsing a calculator

Jsing a fan switch

Jsing a remote for projector / laser

... some of these are not programmable today.
They have a limited abstraction.

6

We will work with programming languages.



Compller

* When do we need a compiler?
~ et HLOlp Qasiluon
- T3 o<t 3T B

- Ich kenne Deutsch

- | know English

7
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Jobs of a Compiler

Translate: input language, output language
Maintain correctness

~ Uit 3R 7T

- Father died today.

Be efficient
- Why are you laughing?

- | understood yesterday's joke.

Generate a good language

— | got books but more than that | got your letter.

"\ \" \ O\ - \ N A\ 8
— ¥ fpdrd, <ifehT H 3199 o foe1T & T 318 & 31feiep o




Good Language (2015)

| got books but more than that | got your letter.

H fohetrel, cifehet H 3194 vt et & fob 31fdieh 9 sifeiep et 21

| have books, but | got your letter got more than that.

H forard &, oifchT H 310 U= 2 fob 31fdes 9 a1fees e

| have books, but that's more than | got your letter.

gﬁo_cn%r% e e & foh 5 o1 v et & Y ot | arfld
|

| have books, but | have received your letter is more than.

H foherrel &, SfhT H 3101 0 el JoeT 3119k & TTH B3l &




Good Language (2018)

| got books but more than that | got your letter.

ey fararTel foreff eifde SO SaTeT et 3mmuesT U et

| got the books but | received your letter more than that.
a3 fohetTsl fiet! etfdhet Jet SO 31feidh U e
| got books but | received more letters from him.

a2l fohars fired! etffdd g1 S SareT v el

| got the books but | received more letters from him.

g5t fbaTel Al otfchT g1 SE 31fereh U UTH gV

10



Good Language (2020)

| got books but more than that | got your letter.

ey fararTel foreff eifde SO SaTeT et 3mmuesT U et

| received books but more than that | received your letter.

a3l foars fietl, Sifch S8% SITaT J3l 31Ul UF el

| received books, but more than that | received your letter.

g2l fohare e, oifcrT 399 it SI1eT 5 3MYhT U HetT|

| received books, but more than that | received your letter.

gl fohare firefl, etfd Se9 Y SaTeT 92 3muehT uF fHeT|

11



Compilers work with Strings

* Characters, words / tokens, sentences, programs

* Fun with strings

— quick brown fox jJumps over the lazy dog
- stewardesses
- typewriter o

— —
~_
~

- skepticisms -~

Programs as Data

- quine

—

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

12



Why should we Design a language?

 Language matters!

- A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $57?

- B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

* Outcomes of a treatment for lung cancer. Two
descriptions were:

- C: The one-month survival rate is 90%.
- D: There are 10% deaths in the first month.

* B fetched many more positives. 84% physicians chose
option C. N

Source: Thinking Fast and Slow, Daniel Kahneman



Classwork

* Write a program that takes a function name as
iInput and calls that function.

14



source program

\

Compiler
outpu

\4

Interpreter

 What does this mean?
— You may be able to do the following with interpreters.

$x=0; $y = 0;

$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;

echo "x=%x, y=$y\n";

echo "Enter a variable name: ":

How about C?

A4

void main() {
intx=0,y=0;
#include "/dev/stdin"
= 10;
printf("x = %d, y = %d\n", X, y);

}
S 15
Everything is fair in love, war and C.



source program

\4

Compiler

o
<~ input
N

Y

butpud
N

* What does this mean?
- You may be able to do the following with compilers.

X +=2;
X +=2;
__X;

X +=b5;
++X;
X+=9

IS equivalent to . x+=18;

\
\
| ,
Interpreter
v
N
output
N

16



source program

Y

Compiler

) J

source program

Y

Translator

intermediate program

Y

———

s

A

\

Interpreter

~

o
c
~—
o
c
—t

/~
N

Virtual
Machine

uton)
ey
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source program (file.c)

v

Preprocessor (cpp)

v

Modified source program (file.i)

Compiler (gcc)

v

target assembly program (file.s)

Assembler (as)

v

relocatable machine code (file.o)

v

Linker /| Loader (Id) =

v

target machine code (a.out)

e cpp file.c >file.i
* gcc -S file.i
e as file.s -o file.o

e |d -0 a.out file.o ...libraries...

Try the following:
* gcc -V file.c
* gcc -save-temps file.c

library files,
relocatable object files

18



Language Translators

Preprocessor: collects source programs,
expands macros.

Compiler: Translates source program into a low-
level assembly.

Assembler: Produces (relocatable) machine

code.

Linker: Reso
combines mu

Loader: Loac

resolves external references dynamically.

ves external references statically,
tiple machine codes.

S executable codes into memory,

19



Homework

e Exercises 1.1.1-5 from ALSU.

20



Character stream

v

Lexical Analyzer

v

Token stream

v

Syntax Analyzer

v

Syntax tree

v

Semantic Analyzer

v

Syntax tree

v

Intermediate
Code Generator

v

Intermediate representation

v

Machine-Independent
Code Optimizer

v

Intermediate representation

v

Code Generator

v

Target machine code

v

Machine-Dependent
Code Optimizer

v

Target machine code

Backend

Symbol
Table




Z=X+y*32
v

Lexical Analyzer

v

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Syntax Analyzer
A///:\\ Iy N +
<id,1> P
<id,2> P
<id,3> 32

v

Semantic Analyzer

<id,1> A
. inttofloat
<id,2> #
*
A >
<id,3> 32

v

Intermediate
Code Generator

v

t1 =id3 * 32

t2 = inttofloat(tl)
t3 =1d2 + t2

idl = tii

Machine-Independent
Code Optimizer

v

t1 =1id3 * 32
t2 = inttofloat(tl)
id1l =id2 + t2

v

Code Generator

LD R3, id3

Symbol Table

LD R3, id3

SHL R3, #5

ITOF R2, R3

LDF R1, id2
ADDF R1, R1, R2
STFidl, R1

}

MUL R3, R3, #32
ITOFR2,R3

LDF R1, id2

Machine-Dependent
Code Optimizer

ADDF R1, R1, R2
STFidl, R1

=




Symbol Table

e Records variable names

* Collects thelir attributes z
- Type (int, char) . ;
- Storage requirement ([30], 1)
- Type modifiers (const, static) Symbol Table

- Scope (global, static)
- Information about arguments (for functions)
* Efficient insertion, search (sometimes deletion)
- C.intx,y, z;
- Pascal: var x, y, z: integer;

23



ldeal World

Fortran v ARM
C y X86
One Compiler
Java > powerPC
Future Language Future Target

Reality

ARM
Fortran » f90
C > gcc x86
Java » javac PowerPC
Future Language > futurec e ? A Euture Target ,,



Reality getting worse

* | don't have a compiler for this platform.
* My program compiles with an older version of gcc.

* My program compiles with the new version, but
does not run on this new platform.

* My program compiles with an older gcc if you
disable optimizations.

* My program compiles if you have llvm 5.4, clang
5.5, gcc 5.0.1 on x86_64 with lonestar 1.2 or above
on Ubuntu 16 or below.

25



Evolution of Programming Languages

* First electronic computers in 1940s.
* Programmed in machine language (0 and 1).

- Move data from one location to another.
— Add the content of two registers.
- Compare two values

e S | o W, eDi“s, and ErorrP run.

26



Maggie and Buildings

= e

Punched Tape Punched Card

27
Image source: wikipedia
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Evolution of Programming Languages

* Assembly languages in early 1950s.

- Initially, only mnemonics for machine instructions
- Later, support for macros

* High-level languages in late 1950s.

- Fortran for scientific computing

— Cobol for data processing

— Lisp for symbolic computation

- These were so successful that they are still in use.

29



PL Classification

Thousands of languages

- Need to be categorized

Based on paradigm

- Imperative (c, c++, java), declarative (lisp, prolog)
Based on generation (mnink of generation gap)

- First (machine), second (assembly), third (fortran,
cobol, lisp, c), fourth (sql, ps), fifth (prolog)

Others

- OO (c++, c#, Ruby), scripting (awk, |s, php,
python, ruby)

30



Compiler Writing

* Is challenging.
 Acomplileris a large program.

* A compiler must translate correctly potentially
Infinite set of programs that could be written in
the source language.

* The problem of generating the optimal target
code from a source program Is undecidable.

- Heuristics and Trade-offs.

« Compilers is an area where
Theory meets Practice.

31



Static versus Dynamic

* Time
 Compilation
e Optimization
* Analysis

* Type

* Linking

e Scoping

32



Static versus Dynamic

* Time: compilation versus execution,
preprocessor versus compilation

 Compilation: gcc versus |jit
* Optimization: without and with input
* Analysis: without and with environment
* Type:
— strongly typed versus scripting languages
— Inheritance and virtual functions

* Linking: .a versus .so
e Scoping

33



Static versus Dynamic

* Time
 Compilation inti=1;

L void f() {
* Optimization orintf(“%d”, i):
: - }

Analy5|5 voiql m_ain() {
. Type ::r(l)t;l—Z,
e Linking ;
e Scoping
Static Dynamic
1 2

Where do we use dynamic scoping?



Classwork

* Find the output of the
program under static
and dynamic scoping.

inta=1,b=2,y=3;
void gun(int x, int b) {

printf("%d %d\n", X, b);
}

void fun(int x, int y) {
printf("%d %d\n", X, y);
: gun(a, y);

void main() {
Inta =3;
{
Intb =4
fun(a, b);
}
gun(a, b);
fun(a, b);
}




Parameter Passing

Call by value

— This happens in C

Call by reference

— Supported in C++, aliasing
Call by name

- Macros
Call by value-result
— Supported in ADA

Inti=1;
Int *Ip = &I;
void f(int x) {
Inty;
X = 3;
Ip = &y;
X = [+X+2;
}

void main() {
f(*Ip);

printf(“%d”, 1);

}

Call by value: 1

Call by reference: 8
Call by name: 3

Call by value-result: 6

36



Classwork

* Create an example that does not use pointers
which produces different output under the four
parameter passing schemes.

37
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