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Role

Read input characters
Group Iinto words (lexemes)
Return sequence of tokens

Sometimes

- Eat-up whitespace

- Remove comments

- Maintain line number information



Token, Pattern, Lexeme

Token Pattern Sample lexeme

If Characters i, f if

comparison <=or>=or<or>or==orl= <= I=

identifier letter (letter + digit)* pi, score, D2
number Any numeric constant 3.14159, 0, 6.02e23
literal Anything but “, surrounded by *”  “core dumped”

The following classes cover most or all of the tokens
* One token for each keyword

* Tokens for the operators, individually or in classes
* Token for identifiers

* One or more tokens for constants

* One token each for punctuation symbols



Representing Patterns

* Keywords can be directly represented (break, int).
* And so do punctuation symbols ({, +).
* Others are finite, but too many!

— Numbers

- ldentifiers

— They are better represented using a regular expression.
- [a-z][a-z0-9]*, [0-9]+



Classwork: Regex Recap

* |If L Is a set of letters (A-Z, a-z) and D Is a set
of digits (0-9),

- Find the size of the language LD.
- Find the size of the language L U D.

- Find the size of the language L*.
* Write regex for real numbers

- Without eE, without +- In mantissa
- Without eE, with +- In mantissa

- With eE, with -+ In exponent



Classwork

Write regex for strings over alphabet {a, b} that
start and end with a.

Strings with third last letter as a.
Strings with exactly three bs.

Strings with even length.

Homework
- Exercises 3.3.6 from ALSU.



Patterns

Example Lex

I* variables */

>fa-z] {
yylval = *yytext - 'a’;

return VARIABLE; <=

}
I* integers */
1095+ {

yylval = atoi(yytext); «

return INTEGER;
}

I* operators */
[-+()=/*\n] { return *yytext; }

I* skip whitespace */

[\t] ;

I* anything else is an error */
yyerror("invalid character");

Tokens

Lexemes



all |

lex

E

‘Iex.yy.c“

~aly
yacc
y.tab.c = y.tab.h

gcc

Lexer and parser are not separate binaries;

This is your compiler. . @.0ut  they are part of the same executable 1o



EXpression

C
\Cc
HSH

r{m, n}
rir2
rl]r2
()
rl/r2

Lex Regex

Matches
Character c
Character c literally
String s literally
Any character but newline
Beginning of a line
End of a line
Any of the characters in string s
Any one character not in string s
Zero or more strings matching r
One or more strings matching r
Zero oroner
Between m and n occurrences of r
An r1 followed by an r2
Anrloranr2
Same asr
rl when followed by r2

Example
a
\*
a.*b
Nabc
abc$
[abc]
[abc]
a*
at
a?
a{l1,5}
ab
alb
(a|b)
abc/123
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Homework

* Write a lexer to identify special words In a text.

- Words like stewardesses: only one hand

- Words like typewriter: only one keyboard row

— Words like skepticisms: alternate hands

* Implement grep using lex with search pattern
as alphabetical text (no operators *, ?, ., etc.).

12



Lexing and Context

* Language design should ensure that lexing
can be done without context.

* Your assignments and most languages need
context-insensitive lexing.

DOS5 1=1.25 DOS5 1=1,25

* “DO 5 I”Is an identifier in Fortran, as spaces are allowed in identifiers.
* Thus, first is an assignment, while second is a loop.
* Lexer doesn't know whether to consider the input “DO 5 1” as an identifier
or as a part of the loop, until parser informs it based on dot or comma.
* Alternatively, lexer may employ a lookahead.
13



| exical Errors

* |t Is often difficult to report errors for a lexer.

- fi (a == {(x)) ...

- A lexer doesn't know the context of fi. Hence it
cannot “see” the structure of the sentence —
structure is known only to the parser.

- fi=2; OR fi(a == {(x));
e But some errors a lexer can catch.
- 23 = @a;

- if $x friendof anil ...

What should a lexer do on catching an error?

14



Error Handling

* Multiple options

exit(1);

Panic mode recovery: delete enough input to recognize a
token

Delete one character from the input

Insert a missing character into the remaining input
Replace a character by another character

Transpose two adjacent characters

* |n practice, most lexical errors involve a single character.

* Theoretical problem: Find the smallest number of
transformations (add, replace, delete) needed to convert the source
program into one that consists only of valid lexemes.

— Too expensive in practice to be worth the effort.

15



Homework

* Try exercise 3.1.2 from ALSU.

16



Input Buffering

* “We cannot know we were executing a finite
loop until we come out of the loop.”

* In C, without reading the next character we
cannot determine a binary minus symbol (a-b).
¢ > = - -g, ..

¢+ Sometimes we may have to look several
characters In future, called lookahead.

+ |n the fortran example (DO 5 1), the lookahead
could be upto dot or comma.

* Reading character-by-character from disk Is
Inefficient. Hence buffering Is required.

17



Input Buffering

A block of characters is read from disk into a buffer.
* Lexer maintains two pointers:

- lexemeBegin
- forward T T2l Tm+Tcl=T=T2l
I forward
lexemeBegin

What is the problem with such a scheme?

18



Input Buffering

* The issue arises when the lookahead is
beyond the buffer.

* When you load the buffer, the previous content

IS overwritten!

Input read

Input to be

read
-

E = M* C *

*2\f

|

T

forward

lexemeBegin

How do we solve this problem?




Double Buffering

* Uses two (half) buffers.

e Assumes that the lookahead would not be
more than one buffer size.

Bufl Buf2
- | >

E — M* C * * 2 \f

I forward

lexemeBegin




Transition Diagrams

* Step to be taken on each character can be
specified as a state transition diagram.

- Sometimes, action may be associated with a state.

return(comp, GE);

yyless(1); return(comp, GT);
21



Keywords vs. Identifiers

* Keywords may match identifier pattern
- Keywords: int, const, break, ...
- ldentifiers: (alpha | ) (alpha | num | )*
* |If unaddressed, may lead to strange errors.
- Install keywords a priori in the symbol table.
— Prioritize keywords

* |n lex, the rule for a keyword must precede
that of the identifier.

[a-z_A-Z][a-zA-Z_0-9]*  {return IDENT; } @ “break” { return BREAK; }

“break” { return BREAK; } [a-z_A-Z][a-zA-Z 0-9]*  {return IDENT; }

Incorrect (lex may give warning) Correct




Special vs. General

* In general, a specialized pattern must precede the
general pattern (associativity).

* Lex also follows maximum substring matching rule
(precedence).

- Reordering the rules for < and <= would not affect the
functionality.

 Compare with rule specialization in Prolog.
* Classwork: Count number of he and she In a text.

* Classwork: Write lex rules to recognize guoted
strings in C.

23

— Try to recognize \” inside It.



he and she

she ++s; she {++s; REJECT;}
he .|.+h; he {++hr}

Retries another rule

What if | want to count all possible substrings he?

In general, the action associated with a rule may
not be easy / modular to duplicate.

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5 he=10, she=5

24



By the way...

* Sometimes, you need not have a parser at all...
— You could define main in your lex file.
- Simply call yylex() from main.

- Compile using lex, then compile lex.yy.c using gcc
and execute a.out.

25



Lookahead

Mud Mud Ke Na Dekh... ‘

26

Duniya usi ki hail jo aage dekhe



Lookahead

e | exer needs to look into the future to know
where it Is presently.

DO5 I=1,25 DO /.* COMMA { return DO,}

* / signifies the lookahead symbol. The input is
read and matched, but is left unconsumed In
the current rule.

Corollary: DO loop index and increment must be on the same line
— no arbitrary whitespace allowed.

27



String Matching

* Lexical analyzer relies heavily on string
matching.

* Given a program text T (length n) and a
pattern string s (length m), we want to check If

s occursinT.

* A naive algorithm would try all positions of T to
check for s (complexity O(m*n)).

T

n

S

[ Can we do better? J

28



Where can we do better?

nababaababbbabbababb

ababaa

abababaababbbabbababb
ababaa

|

29



Where can we do better?

nababaababbbabbababb

ababaa

\j
abababaababbbabbababb
ababaa
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Where can we do better?

nababaababbbabbababb

ababaa

abababaababbbabbababb
ababaa

|
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Where can we do better?

T = abababaababbbabbababb
e S = ababaa

|

abababaababbbabbababb
ababaa <i@%*miij>

|

[ We need to handle the failure better. ]

32



Where can we do better?

T = abababaababbbabbababb
e S = ababaa

T's current suffix
- P>

\ J
abababaababbbabbababb
ababaa

<>
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.

33



Where can we do better?

T = abababaababbbabbababb
e S = ababaa

T's current suffix
- P>

\ J
abababaababbbabbababb
ababaa

<>
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.
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Knuth-Morris-Pratt Algorithm

In 1970, Morris conceived the idea.

After a few weeks, Knuth independently discovered
the idea.

In 1970, Morris and Pratt published a techreport.
KMP published the algorithm jointly in 1977.
In 1969, Matiyasevic discovered a similar algorithm.

3 3 7
G [ NN g L
. T o) 'y, A v 7 W

35
Source: wikipedia
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KMP String Matching

* First linear time algorithm for string matching.

 WWhenver there Is a mismatch, do not restart;
rather fail intelligently.

* We define a failure function for each position,
taking into account the suffix and the prefix.

* Note that the matched part of the large string T Is
essentially the pattern string s. Thus, failure
function can be computed simply using pattern s.

>babk
abababaababbbabbababb

abappa .



Failure 1s not final.

Failure function for ababaa

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1
seen a ab aba abab ababa @ ababaa

prefix € € a ab aba a

Algorithm given as Figure 3.19 in ALSU.




String matching with failure function

Text=a,a,...a_; pattern = b.b,...0 (ot indexed from 1)

s=0
for(I=1;1<=m; ++i) { = Go over Text
f(s>0&&a!l=Db_. )s=1(s) = Handle failure
| . h t tch
i —— Character matc
if (a ==b_,,) ++s <
if (s ==n) return “yes” < Full match
return “no”
| 1 2 3 4 5 6
(i) 0 0 1 2 3 1
seen a ab aba abab ababa ababaa
prefix € € a ab aba a

[ Find the flaw in the algorithm. J 38




String matching with failure function

Text=a,a,...a_; pattern = b.b,...0 (ot indexed from 1)

s=0

for(I=1;1<=m; ++i) { =
while (s>0&&a !=b_, )s=1(s) =
if (a ==b_,,) ++s <
If (s ==n) return “yes” <

}

return “no”

Go over Text
Handle failure

Character match

Full match

\
abababaababbbabbababb
ababa?

£(i)

39



Classwork

Find failure function for pattern ababba.

Test it on string abababbaa.

Fibonacci strings are defined as
-s,=b,s,=a,s,=s_s,_ fork>2
- e.g., s, =ab, s, = aba, s, = abaab

Find the failure function for s_.

40



Fibonacci Strings

-s,=b,s,=a,s,=s_s_ fork>2

- e.g., s, =ab, s, = aba, s, = abaab

Do not contain bb or aaa.
The words end in ba and ab alternatively.

Suppressing last two letters creates a palindrome.

Source: Wikipedia

41



KMP Generalization

« KMP can be used for keyword matching.
 Aho and Corasick generalized KMP to

recognize any of a set of keywords in a text.

I

i 1 2 3 4 5 6 7 8 9
fi) o o O 1 2 0 3 0 3

42



KMP Generalization

 When In state /, the failure function f(i) notes
the state corresponding to the longest proper
suffix that Is also a prefix of some keyword.

In state 7, character
s matches prefix of
the keyword she to
reach state 3.

i 1 2 3 4 5 6 7 8 9
fi)) 0 o 0 1 2 0O

W




oroach 1:
nroach 2:

Regex to DFA

Regex = N

Regex =D

The ideas would be helpfu

-A = DFA
A

In parsing too.

44



Regex - NFA - DFA

Draw an NFA for *cpp

How does a machine draw an NFA for an arbitrary
regular expression such as ((aa)*ob(bb)*(aa)*)* ?

45



Regex - NFA - DFA

* For the sake of convenience, let's convert *cpp
Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?

46



Regex - NFA - DFA

* For the sake of convenience, let's convert *cpp
Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?

47



Regex - NFA - DFA

NFA state
[0,1,2,4,7)
{1,2,3,4,6, 7,8}
{1,2,4,5,6, 7}
{1,2,4,5,6,7, 9}
{1,2, 4,5, 6,7, 10}

DFA state
A

m O O @

0O W W W W 2

OmO O O ©

State
Transition
Table

48



Regex - NFA - DFA

NFA state DFA state a b
{0,1, 2,4, 7} A B C State
{1,2, 3, 4,6, 7,8} B B D %%Tg'“on
{1,2,4,5,6, 7} C B C
{1,2,4,5,6,7, 9} D B E
{1,2,4,5,6,7, 10} E B C

DFA

49



Regex - NFA - DFA

NFA

DFA

DFA
non-minimal

50



Regex - NFA - DFA

(alb)*abb

Regex

non-minimal

51



Regex - DFA

1. Construct a syntax tree for regex#.

2. Compute nullable, firstpos, lastpos, followpos.
3. Construct DFA using transition function.

4. Mark firstpos(root) as start state.

5. Mark states that contain position of # as
accepting states.




Regex = DFA

* Regex Is (a|b)*abb#.
* Construct a syntax tree for the regex.

5

* Leaves correspond to operands.

0 * Interior nodes correspond to operators.
\ * Operands constitute strings.
1

@ 2 [ What does syntax tree for regex indicate? ]




Functions from Syntax Tree

* For a syntax tree node n

— nullable(n): true if n represents e.

— firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

- lastpos(n): set of positions that correspond to the
last symbol of strings in n's subtree.

— followpos(n): set of next possible positions from n
for valid strings.

54



nullable

* nullable(n): true If n represents e.
* Regex Is (a|b)*abb#.

55



nullable

* nullable(n): true If n represents e.

Node n nullable(n)

leaf labeled € true

leaf with position 1 false

or-node n=cl|c2 nullable(cl) or nullable(c2)
cat-node n =clc2 nullable(cl) and nullable(c2)
star-node n = c* true

Classwork: Write down the rules for firstpos(n).
* firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

56



firstpos

* firstpos(n). set of positions that correspond
to the first symbol of strings in n's subtree.

Node n firstpos(n)
leaf labeled € {1}

leaf with positioni  {i}

or-node n=cl|c2 firstpos(cl) U firstpos(c2)
cat-node n = clc2

star-node n = c* firstpos(c)

57



firstpos

* firstpos(n). set of positions that correspond
to the first symbol of strings in n's subtree.

Node n firstpos(n)

leaf labeled € {}

leaf with position i {i}

or-noden=cl|c2 firstpos(cl) U firstpos(c2)

cat-node n = clc2 if (nullable(cl)) firstpos(cl1) U firstpos(c2)

else firstpos(cl)

star-node n = c* firstpos(c)

Classwork: Write down the rules for lastpos(n).

58



lastpos

* l[astpos(n). set of positions that correspond
to the last symbol of strings in n's subtree.

Node n lastpos(n)

leaf labeled € {}

leaf with position i {i}

or-noden=cl|c2 lastpos(cl) U lastpos(c2)

cat-node n = clc2 if (nullable(c2)) lastpos(cl) U lastpos(c2)

else lastpos(c2)

star-node n = c* lastpos(c)

59



{1} {1}

firstpos

{2} {2}

lastpos

6
{6} {6}

60



followpos

* followpos(n): set of next possible positions
from n for valid strings.

- If nis a cat-node with child nodes c1 and c2, then
for each position in lastpos(cl), all positions Iin
firstpos(c2) follow.

- If n Is a star-node, then for each position in
lastpos(n), all positions in firstpos(n) follow.

61



followpos

If n Is a cat-node with child nodes cl1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

{1,2,3} {6}

followpos(n)
{3}
{3}

{1} {14 {2} {2}



followpos

If n Is a cat-node with child nodes cl1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

{1,2,3} {6}

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {14 {2} {2}

o o A W N PP S



followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.
{1.2.3} {8} . |

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {14 {2} {2}

o o A W N PP S



firstpos(n) follow.

{1} {1}

followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in

{2} {2}

{1,2,3} {6}

o o A W N PP S

followpos(n)
{3, 1, 2}
{3, 1, 2}
{4}
{5}
{6}
{}



Regex - DFA

1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function (next slide).
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

66



DFA Transitions

Cre.ate unmark.ed state firstpos(root). {1’2’@&
while there exists unmarked state s {
mark s @ @@
for each input symbol x {
uf = U followpos(p) where p is in s labeled x
transition[s, x] = uf

followpos(n)

{6}
{}

n
if uf is newly created : &2
2 (3,1, 2}
unmark uf b 3 4)
} 123 %e 1234 4 {5}
)
6



Final DFA

AV

a

— 123 I 1234 % 1235 DFA

NFA

DFA

68



Regex - DFA

1.Construct a syntax tree for regex#.
2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function.
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

Do this for (bjab)*(aa|b)*.

69



In case you are wondering...

 \What to do with this DFA?

— Recognize strings during lexical analysis.
— Could be used in utilities such as grep.

— Could be used in regex libraries as supported in
php, python, perl, ....

70
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