Lexing

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
August 2020

Character stream

v v

Machine-Independent

Lexical Analyzer Code Optimizer

v v

Token stream Intermediate representation
Syntax Analyzer Code Generator
Syntax tree Target machine code

v v

Machine-Dependent

Semantic Analyzer Code Optimizer

v v

Syntax tree Target machine code

v

Intermediate

Code Generator Symbol

Table

v

Intermediate representation

Lexing Summary

Charactegstream

\

Machine-Indep.
Code Optimizer

Basic lex

Lexical Analyzer

Input Buffering S . £

Semantic Analyzer

representation
,(M F) S'[I’I N g M atC h | N g Syntax Analyzer Code Generator
Sy”t?x tree Target ma%hine code
Machine-Dependent
\j \/
Qeg ex - D FA Synta% tree Target machine code
Intermediate

\/ \
Regex - NFA - DFA
Code Optimizer
Code Generator

Intermediate
representation

Role

Read input characters
Group Iinto words (lexemes)
Return sequence of tokens

Sometimes

- Eat-up whitespace

- Remove comments

- Maintain line number information

Token, Pattern, Lexeme

Token Pattern Sample lexeme

If Characters i, f if

comparison <=or>=or<or>or==orl= <= I=

identifier letter (letter + digit)* pi, score, D2
number Any numeric constant 3.14159, 0, 6.02e23
literal Anything but “, surrounded by *” “core dumped”

The following classes cover most or all of the tokens
* One token for each keyword

* Tokens for the operators, individually or in classes
* Token for identifiers

* One or more tokens for constants

* One token each for punctuation symbols

Representing Patterns

* Keywords can be directly represented (break, int).
* And so do punctuation symbols ({, +).
* Others are finite, but too many!

— Numbers

- ldentifiers

— They are better represented using a regular expression.
- [a-z][a-z0-9]*, [0-9]+

Classwork: Regex Recap

* |If L Is a set of letters (A-Z, a-z) and D Is a set
of digits (0-9),

- Find the size of the language LD.
- Find the size of the language L U D.

- Find the size of the language L*.
* Write regex for real numbers

- Without eE, without +- In mantissa
- Without eE, with +- In mantissa

- With eE, with -+ In exponent

Classwork

Write regex for strings over alphabet {a, b} that
start and end with a.

Strings with third last letter as a.
Strings with exactly three bs.

Strings with even length.

Homework
- Exercises 3.3.6 from ALSU.

Patterns

Example Lex

I* variables */

>fa-z] {
yylval = *yytext - 'a’;

return VARIABLE; <=

}
I* integers */
1095+ {

yylval = atoi(yytext); «

return INTEGER;
}

I* operators */
[-+()=/*\n] { return *yytext; }

I* skip whitespace */

[\t] ;

I* anything else is an error */
yyerror("invalid character");

Tokens

Lexemes

all |

lex

E

‘Iex.yy.c“

~aly
yacc
y.tab.c = y.tab.h

gcc

Lexer and parser are not separate binaries;

This is your compiler. . @.0ut they are part of the same executable 1o

EXpression

C
\Cc
HSH

r{m, n}
rir2
rl]r2
()
rl/r2

Lex Regex

Matches
Character c
Character c literally
String s literally
Any character but newline
Beginning of a line
End of a line
Any of the characters in string s
Any one character not in string s
Zero or more strings matching r
One or more strings matching r
Zero oroner
Between m and n occurrences of r
An r1 followed by an r2
Anrloranr2
Same asr
rl when followed by r2

Example
a
*
a.*b
Nabc
abc$
[abc]
[abc]
a*
at
a?
a{l1,5}
ab
alb
(a|b)
abc/123

11

Homework

* Write a lexer to identify special words In a text.

- Words like stewardesses: only one hand

- Words like typewriter: only one keyboard row

— Words like skepticisms: alternate hands

* Implement grep using lex with search pattern
as alphabetical text (no operators *, ?, ., etc.).

12

Lexing and Context

* Language design should ensure that lexing
can be done without context.

* Your assignments and most languages need
context-insensitive lexing.

DOS5 1=1.25 DOS5 1=1,25

* “DO 5 I”Is an identifier in Fortran, as spaces are allowed in identifiers.
* Thus, first is an assignment, while second is a loop.
* Lexer doesn't know whether to consider the input “DO 5 1” as an identifier
or as a part of the loop, until parser informs it based on dot or comma.
* Alternatively, lexer may employ a lookahead.
13

| exical Errors

* |t Is often difficult to report errors for a lexer.

- fi (a == {(x)) ...

- A lexer doesn't know the context of fi. Hence it
cannot “see” the structure of the sentence —
structure is known only to the parser.

- fi=2; OR fi(a == {(x));
e But some errors a lexer can catch.
- 23 = @a;

- if $x friendof anil ...

What should a lexer do on catching an error?

14

Error Handling

* Multiple options

exit(1);

Panic mode recovery: delete enough input to recognize a
token

Delete one character from the input

Insert a missing character into the remaining input
Replace a character by another character

Transpose two adjacent characters

* |n practice, most lexical errors involve a single character.

* Theoretical problem: Find the smallest number of
transformations (add, replace, delete) needed to convert the source
program into one that consists only of valid lexemes.

— Too expensive in practice to be worth the effort.

15

Homework

* Try exercise 3.1.2 from ALSU.

16

Input Buffering

* “We cannot know we were executing a finite
loop until we come out of the loop.”

* In C, without reading the next character we
cannot determine a binary minus symbol (a-b).
¢ > = - -g, ..

¢+ Sometimes we may have to look several
characters In future, called lookahead.

+ |n the fortran example (DO 5 1), the lookahead
could be upto dot or comma.

* Reading character-by-character from disk Is
Inefficient. Hence buffering Is required.

17

Input Buffering

A block of characters is read from disk into a buffer.
* Lexer maintains two pointers:

- lexemeBegin
- forward T T2l Tm+Tcl=T=T2l
I forward
lexemeBegin

What is the problem with such a scheme?

18

Input Buffering

* The issue arises when the lookahead is
beyond the buffer.

* When you load the buffer, the previous content

IS overwritten!

Input read

Input to be

read
-

E = M* C *

*2\f

|

T

forward

lexemeBegin

How do we solve this problem?

Double Buffering

* Uses two (half) buffers.

e Assumes that the lookahead would not be
more than one buffer size.

Bufl Buf2
- | >

E — M* C * * 2 \f

I forward

lexemeBegin

Transition Diagrams

* Step to be taken on each character can be
specified as a state transition diagram.

- Sometimes, action may be associated with a state.

return(comp, GE);

yyless(1); return(comp, GT);
21

Keywords vs. Identifiers

* Keywords may match identifier pattern
- Keywords: int, const, break, ...
- ldentifiers: (alpha |) (alpha | num |)*
* |If unaddressed, may lead to strange errors.
- Install keywords a priori in the symbol table.
— Prioritize keywords

* |n lex, the rule for a keyword must precede
that of the identifier.

[a-z_A-Z][a-zA-Z_0-9]* {return IDENT; } @ “break” { return BREAK; }

“break” { return BREAK; } [a-z_A-Z][a-zA-Z 0-9]* {return IDENT; }

Incorrect (lex may give warning) Correct

Special vs. General

* In general, a specialized pattern must precede the
general pattern (associativity).

* Lex also follows maximum substring matching rule
(precedence).

- Reordering the rules for < and <= would not affect the
functionality.

 Compare with rule specialization in Prolog.
* Classwork: Count number of he and she In a text.

* Classwork: Write lex rules to recognize guoted
strings in C.

23

— Try to recognize \” inside It.

he and she

she ++s; she {++s; REJECT;}
he .|.+h; he {++hr}

Retries another rule

What if | want to count all possible substrings he?

In general, the action associated with a rule may
not be easy / modular to duplicate.

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5 he=10, she=5

24

By the way...

* Sometimes, you need not have a parser at all...
— You could define main in your lex file.
- Simply call yylex() from main.

- Compile using lex, then compile lex.yy.c using gcc
and execute a.out.

25

Lookahead

Mud Mud Ke Na Dekh... ‘

26

Duniya usi ki hail jo aage dekhe

Lookahead

e | exer needs to look into the future to know
where it Is presently.

DO5 I=1,25 DO /.* COMMA { return DO,}

* / signifies the lookahead symbol. The input is
read and matched, but is left unconsumed In
the current rule.

Corollary: DO loop index and increment must be on the same line
— no arbitrary whitespace allowed.

27

String Matching

* Lexical analyzer relies heavily on string
matching.

* Given a program text T (length n) and a
pattern string s (length m), we want to check If

s occursinT.

* A naive algorithm would try all positions of T to
check for s (complexity O(m*n)).

T

n

S

[Can we do better? J

28

Where can we do better?

nababaababbbabbababb

ababaa

abababaababbbabbababb
ababaa

|

29

Where can we do better?

nababaababbbabbababb

ababaa

\j
abababaababbbabbababb
ababaa

30

Where can we do better?

nababaababbbabbababb

ababaa

abababaababbbabbababb
ababaa

|

31

Where can we do better?

T = abababaababbbabbababb
e S = ababaa

|

abababaababbbabbababb
ababaa <i@%*miij>

|

[We need to handle the failure better.]

32

Where can we do better?

T = abababaababbbabbababb
e S = ababaa

T's current suffix
- P>

\ J
abababaababbbabbababb
ababaa

<>
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.

33

Where can we do better?

T = abababaababbbabbababb
e S = ababaa

T's current suffix
- P>

\ J
abababaababbbabbababb
ababaa

<>
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.

34

Knuth-Morris-Pratt Algorithm

In 1970, Morris conceived the idea.

After a few weeks, Knuth independently discovered
the idea.

In 1970, Morris and Pratt published a techreport.
KMP published the algorithm jointly in 1977.
In 1969, Matiyasevic discovered a similar algorithm.

3 3 7
G [NN g L
. T o) 'y, A v 7 W

35
Source: wikipedia

.....
......
PR

KMP String Matching

* First linear time algorithm for string matching.

 WWhenver there Is a mismatch, do not restart;
rather fail intelligently.

* We define a failure function for each position,
taking into account the suffix and the prefix.

* Note that the matched part of the large string T Is
essentially the pattern string s. Thus, failure
function can be computed simply using pattern s.

>babk
abababaababbbabbababb

abappa .

Failure 1s not final.

Failure function for ababaa

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1
seen a ab aba abab ababa @ ababaa

prefix € € a ab aba a

Algorithm given as Figure 3.19 in ALSU.

String matching with failure function

Text=a,a,...a_; pattern = b.b,...0 (ot indexed from 1)

s=0
for(I=1;1<=m; ++i) { = Go over Text
f(s>0&&a!l=Db_.)s=1(s) = Handle failure
| . h t tch
i —— Character matc
if (a ==b_,,) ++s <
if (s ==n) return “yes” < Full match
return “no”
| 1 2 3 4 5 6
(i) 0 0 1 2 3 1
seen a ab aba abab ababa ababaa
prefix € € a ab aba a

[Find the flaw in the algorithm. J 38

String matching with failure function

Text=a,a,...a_; pattern = b.b,...0 (ot indexed from 1)

s=0

for(I=1;1<=m; ++i) { =
while (s>0&&a !=b_,)s=1(s) =
if (a ==b_,,) ++s <
If (s ==n) return “yes” <

}

return “no”

Go over Text
Handle failure

Character match

Full match

\
abababaababbbabbababb
ababa?

£(i)

39

Classwork

Find failure function for pattern ababba.

Test it on string abababbaa.

Fibonacci strings are defined as
-s,=b,s,=a,s,=s_s,_ fork>2
- e.g., s, =ab, s, = aba, s, = abaab

Find the failure function for s_.

40

Fibonacci Strings

-s,=b,s,=a,s,=s_s_ fork>2

- e.g., s, =ab, s, = aba, s, = abaab

Do not contain bb or aaa.
The words end in ba and ab alternatively.

Suppressing last two letters creates a palindrome.

Source: Wikipedia

41

KMP Generalization

« KMP can be used for keyword matching.
 Aho and Corasick generalized KMP to

recognize any of a set of keywords in a text.

I

i 1 2 3 4 5 6 7 8 9
fi) o o O 1 2 0 3 0 3

42

KMP Generalization

 When In state /, the failure function f(i) notes
the state corresponding to the longest proper
suffix that Is also a prefix of some keyword.

In state 7, character
s matches prefix of
the keyword she to
reach state 3.

i 1 2 3 4 5 6 7 8 9
fi)) 0 o 0 1 2 0O

W

oroach 1:
nroach 2:

Regex to DFA

Regex = N

Regex =D

The ideas would be helpfu

-A = DFA
A

In parsing too.

44

Regex - NFA - DFA

Draw an NFA for *cpp

How does a machine draw an NFA for an arbitrary
regular expression such as ((aa)*ob(bb)*(aa)*)* ?

45

Regex - NFA - DFA

* For the sake of convenience, let's convert *cpp
Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?

46

Regex - NFA - DFA

* For the sake of convenience, let's convert *cpp
Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?

47

Regex - NFA - DFA

NFA state
[0,1,2,4,7)
{1,2,3,4,6, 7,8}
{1,2,4,5,6, 7}
{1,2,4,5,6,7, 9}
{1,2, 4,5, 6,7, 10}

DFA state
A

m O O @

0O W W W W 2

OmO O O ©

State
Transition
Table

48

Regex - NFA - DFA

NFA state DFA state a b
{0,1, 2,4, 7} A B C State
{1,2, 3, 4,6, 7,8} B B D %%Tg'“on
{1,2,4,5,6, 7} C B C
{1,2,4,5,6,7, 9} D B E
{1,2,4,5,6,7, 10} E B C

DFA

49

Regex - NFA - DFA

NFA

DFA

DFA
non-minimal

50

Regex - NFA - DFA

(alb)*abb

Regex

non-minimal

51

Regex - DFA

1. Construct a syntax tree for regex#.

2. Compute nullable, firstpos, lastpos, followpos.
3. Construct DFA using transition function.

4. Mark firstpos(root) as start state.

5. Mark states that contain position of # as
accepting states.

Regex = DFA

* Regex Is (a|b)*abb#.
* Construct a syntax tree for the regex.

5

* Leaves correspond to operands.

0 * Interior nodes correspond to operators.
\ * Operands constitute strings.
1

@ 2 [What does syntax tree for regex indicate?]

Functions from Syntax Tree

* For a syntax tree node n

— nullable(n): true if n represents e.

— firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

- lastpos(n): set of positions that correspond to the
last symbol of strings in n's subtree.

— followpos(n): set of next possible positions from n
for valid strings.

54

nullable

* nullable(n): true If n represents e.
* Regex Is (a|b)*abb#.

55

nullable

* nullable(n): true If n represents e.

Node n nullable(n)

leaf labeled € true

leaf with position 1 false

or-node n=cl|c2 nullable(cl) or nullable(c2)
cat-node n =clc2 nullable(cl) and nullable(c2)
star-node n = c* true

Classwork: Write down the rules for firstpos(n).
* firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

56

firstpos

* firstpos(n). set of positions that correspond
to the first symbol of strings in n's subtree.

Node n firstpos(n)
leaf labeled € {1}

leaf with positioni {i}

or-node n=cl|c2 firstpos(cl) U firstpos(c2)
cat-node n = clc2

star-node n = c* firstpos(c)

57

firstpos

* firstpos(n). set of positions that correspond
to the first symbol of strings in n's subtree.

Node n firstpos(n)

leaf labeled € {}

leaf with position i {i}

or-noden=cl|c2 firstpos(cl) U firstpos(c2)

cat-node n = clc2 if (nullable(cl)) firstpos(cl1) U firstpos(c2)

else firstpos(cl)

star-node n = c* firstpos(c)

Classwork: Write down the rules for lastpos(n).

58

lastpos

* l[astpos(n). set of positions that correspond
to the last symbol of strings in n's subtree.

Node n lastpos(n)

leaf labeled € {}

leaf with position i {i}

or-noden=cl|c2 lastpos(cl) U lastpos(c2)

cat-node n = clc2 if (nullable(c2)) lastpos(cl) U lastpos(c2)

else lastpos(c2)

star-node n = c* lastpos(c)

59

{1} {1}

firstpos

{2} {2}

lastpos

6
{6} {6}

60

followpos

* followpos(n): set of next possible positions
from n for valid strings.

- If nis a cat-node with child nodes c1 and c2, then
for each position in lastpos(cl), all positions Iin
firstpos(c2) follow.

- If n Is a star-node, then for each position in
lastpos(n), all positions in firstpos(n) follow.

61

followpos

If n Is a cat-node with child nodes cl1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

{1,2,3} {6}

followpos(n)
{3}
{3}

{1} {14 {2} {2}

followpos

If n Is a cat-node with child nodes cl1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

{1,2,3} {6}

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {14 {2} {2}

o o A W N PP S

followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.
{1.2.3} {8} . |

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {14 {2} {2}

o o A W N PP S

firstpos(n) follow.

{1} {1}

followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in

{2} {2}

{1,2,3} {6}

o o A W N PP S

followpos(n)
{3, 1, 2}
{3, 1, 2}
{4}
{5}
{6}
{}

Regex - DFA

1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function (next slide).
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

66

DFA Transitions

Cre.ate unmark.ed state firstpos(root). {1’2’@&
while there exists unmarked state s {
mark s @ @@
for each input symbol x {
uf = U followpos(p) where p is in s labeled x
transition[s, x] = uf

followpos(n)

{6}
{}

n
if uf is newly created : &2
2 (3,1, 2}
unmark uf b 3 4)
} 123 %e 1234 4 {5}
)
6

Final DFA

AV

a

— 123 I 1234 % 1235 DFA

NFA

DFA

68

Regex - DFA

1.Construct a syntax tree for regex#.
2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function.
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

Do this for (bjab)*(aa|b)*.

69

In case you are wondering...

 \What to do with this DFA?

— Recognize strings during lexical analysis.
— Could be used in utilities such as grep.

— Could be used in regex libraries as supported in
php, python, perl,

70

Lexing Summary

Character stream

Basic flex ' v

. Machine-Indep.
Lexical Analyzer Code Optimizer

IﬂpUt BUﬁerl ng Token Istream Intermbdiate

represeptation

Machine-Dependent

(M P S'[I’I n g M atCh | n g Syntax ?nalyzer Code Generator
Syntax tree Target machine code
Regex - NFA - DFA
Code Optimizer
v v
Qeg ex - D FA Synta;x tree Target machine code
Int diat
C:dgrg:ntlaar\a(:or

Semantic Analyzer

Intermediate
representation

71

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

