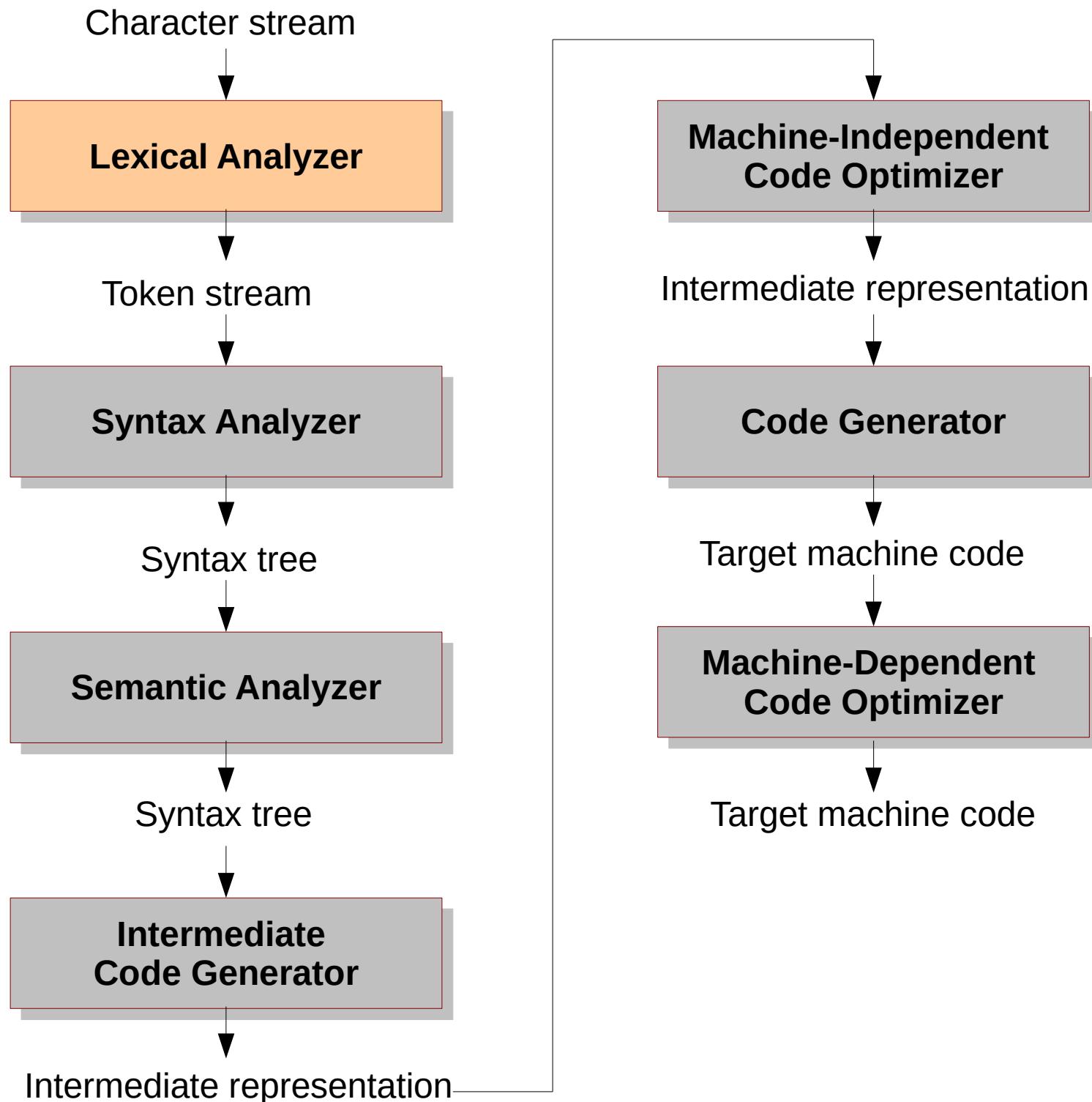


Lexing

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras
August 2020

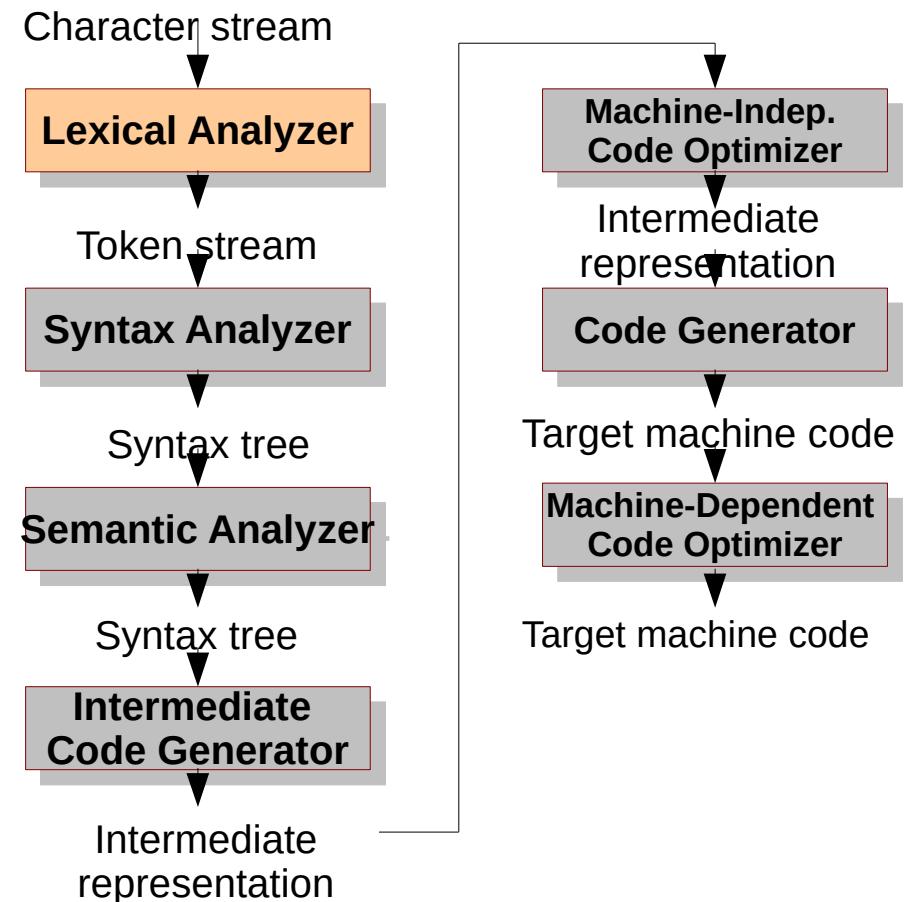
Frontend



Backend

Lexing Summary

- Basic *lex*
- Input Buffering
- KMP String Matching
- Regex → NFA → DFA
- Regex → DFA



Role

- Read input characters
- Group into words (lexemes)
- Return sequence of tokens
- Sometimes
 - Eat-up whitespace
 - Remove comments
 - Maintain line number information

Token, Pattern, Lexeme

Token	Pattern	Sample lexeme
if	Characters i, f	if
comparison	\leq or \geq or $<$ or $>$ or \equiv or \neq	\leq , \neq
identifier	letter (letter + digit)*	pi, score, D2
number	Any numeric constant	3.14159, 0, 6.02e23
literal	Anything but “ “, surrounded by “ “	“core dumped”

The following classes cover most or all of the tokens

- One token for each keyword
- Tokens for the operators, individually or in classes
- Token for identifiers
- One or more tokens for constants
- One token each for punctuation symbols

Representing Patterns

- Keywords can be directly represented (break, int).
- And so do punctuation symbols ({, +).
- Others are finite, but too many!
 - Numbers
 - Identifiers
 - They are better represented using a regular expression.
 - [a-zA-Z][a-zA-Z0-9]*, [0-9]+

Classwork: Regex Recap

- If L is a set of letters (A-Z, a-z) and D is a set of digits (0-9),
 - Find the size of the language LD .
 - Find the size of the language $L \cup D$.
 - Find the size of the language L^4 .
- Write regex for real numbers
 - Without eE , without $+-$ in mantissa (1.89)
 - Without eE , with $+-$ in mantissa (-1.89)
 - With eE , with $-+$ in exponent (-1.89E-4)

Classwork

- Write regex for strings over alphabet $\{a, b\}$ that start and end with a .
- Strings with third last letter as a .
- Strings with exactly three bs .
- Strings with even length.
- Homework
 - Exercises 3.3.6 from ALSU.

Example Lex

Patterns

```
/* variables */
[a-z]  {
    yylval = *yytext - 'a';
    return VARIABLE;
}

/* integers */
[0-9]+ {
    yylval = atoi(yytext);
    return INTEGER;
}

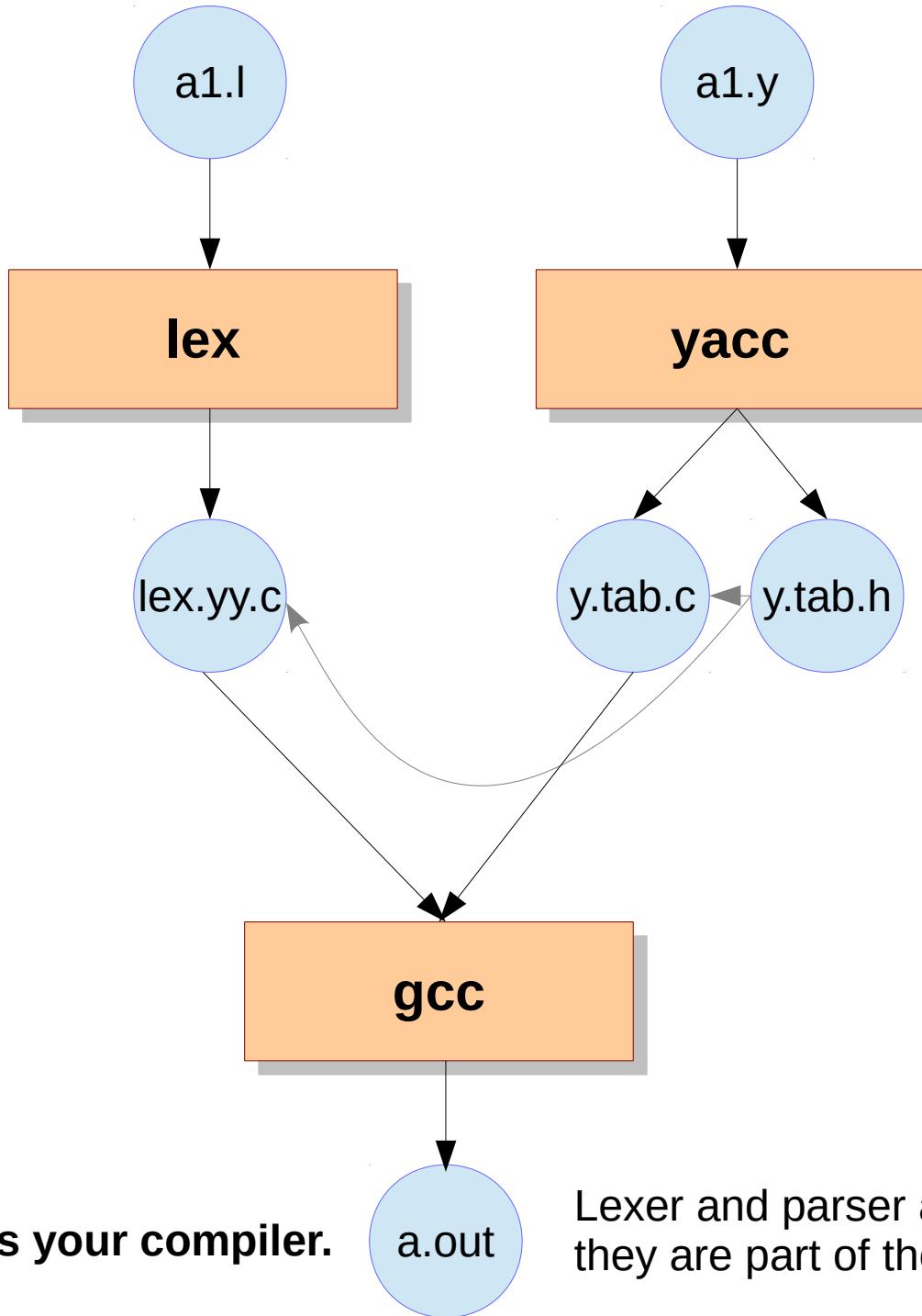
/* operators */
[-+()=/*\n] { return *yytext; }

/* skip whitespace */
[ \t]    ;

/* anything else is an error */
.        yyerror("invalid character");
```

Tokens

Lexemes



This is your compiler.

Lexer and parser are not separate binaries;
they are part of the same executable.¹⁰

Lex Regex

Expression	Matches	Example
c	Character c	a
\c	Character c literally	*
“s”	String s literally	“**”
.	Any character but newline	a.*b
^	Beginning of a line	^abc
\$	End of a line	abc\$
[s]	Any of the characters in string s	[abc]
[^s]	Any one character not in string s	[^abc]
r*	Zero or more strings matching r	a*
r+	One or more strings matching r	a+
r?	Zero or one r	a?
r{m, n}	Between m and n occurrences of r	a{1,5}
r1r2	An r1 followed by an r2	ab
r1 r2	An r1 or an r2	a b
(r)	Same as r	(a b)
r1/r2	r1 when followed by r2	abc/123

Homework

- Write a lexer to identify special words in a text.
 - Words like *stewardesses*: only one hand
 - Words like *typewriter*: only one keyboard row
 - Words like *skepticisms*: alternate hands
- Implement **grep** using lex with search pattern as alphabetical text (no operators *, ?, ., etc.).

Lexing and Context

- Language design should ensure that lexing can be done without context.
- Your assignments and most languages need context-insensitive lexing.

DO 5 I = 1.25

DO 5 I = 1,25

- “DO 5 I” is an identifier in Fortran, as spaces are allowed in identifiers.
- Thus, first is an assignment, while second is a loop.
- Lexer doesn’t know whether to consider the input “DO 5 I” as an identifier or as a part of the loop, until parser informs it based on dot or comma.
- Alternatively, lexer may employ a lookahead.

Lexical Errors

- It is often difficult to report errors for a lexer.
 - `fi (a == f(x)) ...`
 - A lexer doesn't know the context of `fi`. Hence it cannot “see” the structure of the sentence – structure is known only to the parser.
 - `fi = 2`; OR `fi(a == f(x));`
- But some errors a lexer can catch.
 - `23 = @a;`
 - `if $x friendof anil ...`

What should a lexer do on catching an error?

Error Handling

- Multiple options
 - `exit(1);`
 - Panic mode recovery: delete enough input to recognize a token
 - Delete one character from the input
 - Insert a missing character into the remaining input
 - Replace a character by another character
 - Transpose two adjacent characters
- In practice, most lexical errors involve a single character.
- Theoretical problem: Find the smallest number of transformations (add, replace, delete) needed to convert the source program into one that consists only of valid lexemes.
 - Too expensive in practice to be worth the effort.

Homework

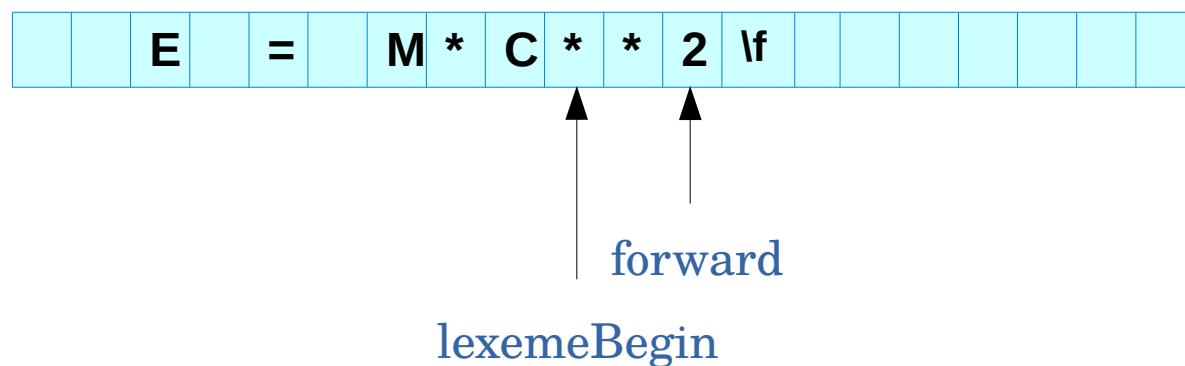
- Try exercise 3.1.2 from ALSU.

Input Buffering

- “*We cannot know we were executing a finite loop until we come out of the loop.*”
- In C, without reading the next character we cannot determine a binary minus symbol (a-b).
 - ◆ ->, -=, --, -e, ...
 - ◆ Sometimes we may have to look several characters in future, called *lookahead*.
 - ◆ In the fortran example (DO 5 I), the lookahead could be upto dot or comma.
- Reading character-by-character from disk is inefficient. Hence buffering is required.

Input Buffering

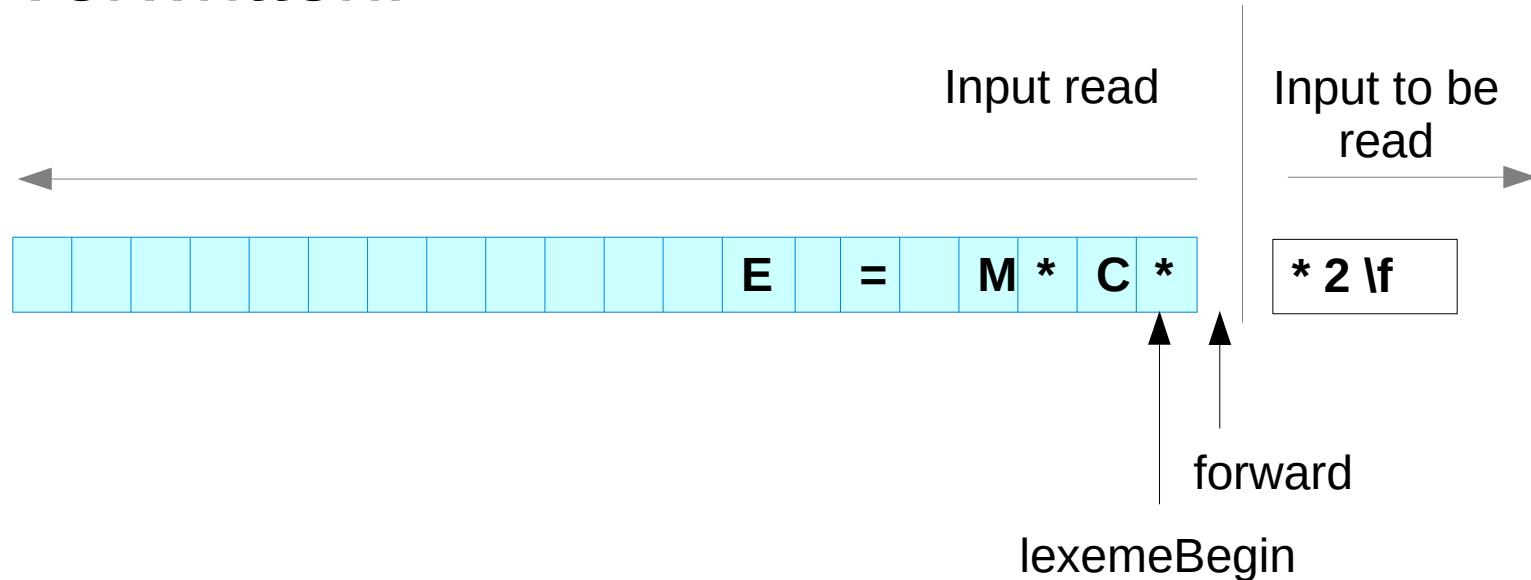
- A block of characters is read from disk into a buffer.
- Lexer maintains two pointers:
 - `lexemeBegin`
 - `forward`



What is the problem with such a scheme?

Input Buffering

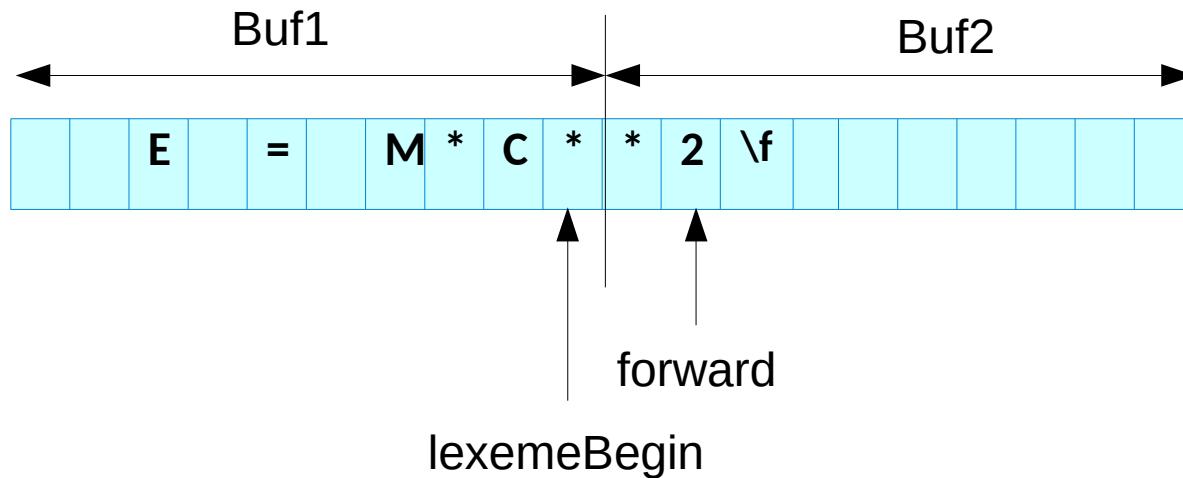
- The issue arises when the lookahead is beyond the buffer.
- When you load the buffer, the previous content is overwritten!



How do we solve this problem?

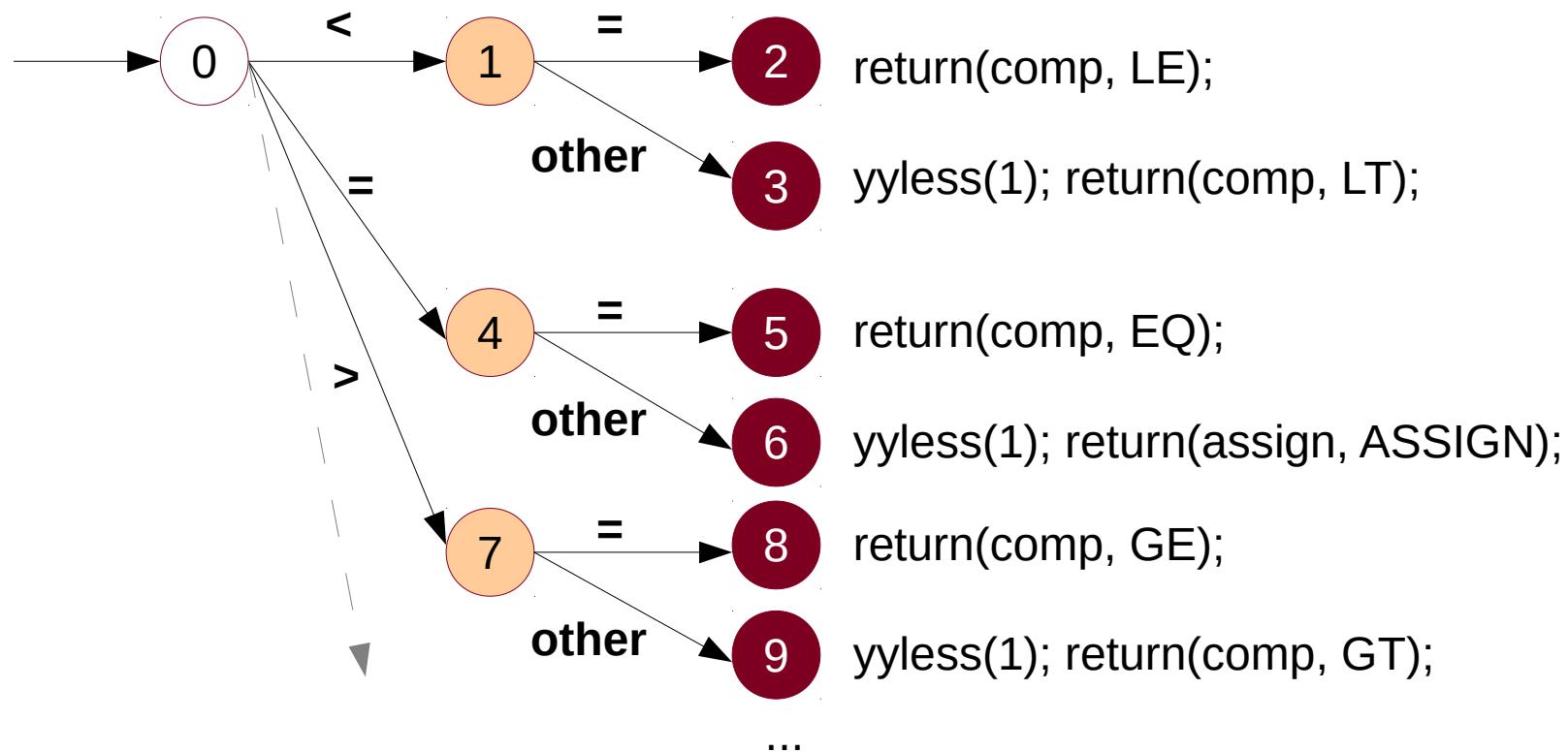
Double Buffering

- Uses two (half) buffers.
- Assumes that the lookahead would not be more than one buffer size.



Transition Diagrams

- Step to be taken on each character can be specified as a state transition diagram.
 - Sometimes, action may be associated with a state.



Keywords vs. Identifiers

- Keywords may match identifier pattern
 - Keywords: int, const, break, ...
 - Identifiers: (alpha | _) (alpha | num | _)*
- If unaddressed, may lead to strange errors.
 - Install keywords a priori in the symbol table.
 - Prioritize keywords
- In lex, the rule for a keyword must precede that of the identifier.

```
[a-zA-Z][a-zA-Z_0-9]* { return IDENT; }
```

```
"break" { return BREAK; }
```

Incorrect (lex may give warning)

```
"break" { return BREAK; }
```

```
[a-zA-Z][a-zA-Z_0-9]* { return IDENT; }
```

Correct

Special vs. General

- In general, a specialized pattern must precede the general pattern (*associativity*).
- Lex also follows maximum substring matching rule (*precedence*).
 - Reordering the rules for < and <= would not affect the functionality.
- Compare with rule specialization in Prolog.
- **Classwork:** Count number of *he* and *she* in a text.
- **Classwork:** Write lex rules to recognize quoted strings in C.
 - Try to recognize \" inside it.

he and she

she ++s;
he ++h;

she {++s; REJECT; }
he {++h; }

Retries another rule

What if I want to count all possible substrings *he*?

In general, the action associated with a rule may not be easy / modular to duplicate.

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5

he=10, she=5

By the way...

- Sometimes, you need not have a parser at all...
 - You could define *main* in your *lex* file.
 - Simply call *yylex()* from *main*.
 - Compile using *lex*, then compile *lex.yy.c* using *gcc* and execute *a.out*.

Lookahead

Mud Mud Ke Na Dekh...

Duniya usi ki hai jo aage dekhe

Lookahead

- Lexer needs to look into the future to know where it is presently.

DO 5 I = 1,25

DO / .* COMMA { return DO;}

- / signifies the lookahead symbol. The input is read and matched, but is left unconsumed in the current rule.

Corollary: DO loop index and increment must be on the same line – no arbitrary whitespace allowed.

String Matching

- Lexical analyzer relies heavily on string matching.
- Given a program text T (length n) and a pattern string s (length m), we want to check if s occurs in T .
- A naive algorithm would try all positions of T to check for s (complexity $O(m*n)$).



Can we do better?

Where can we do better?

- $T = abababaa$ babbabbabbabbabb
- $S = ababaa$

$i = 0$

abababaa**a**babbabbabbabb
ababaa

Where can we do better?

- $T = abababaababbabbabbabb$
- $s = ababaa$

$i = 0$

abababaababbabbabbabb
ababaa

Where can we do better?

- $T = abababaababbabbabbabb$
- $s = ababaa$

$i = 1$

↓

abababaababbabbabbabb
ababaa

↑

Where can we do better?

- $T = abababaababbabbabbabb$
- $S = ababaa$

i = 2

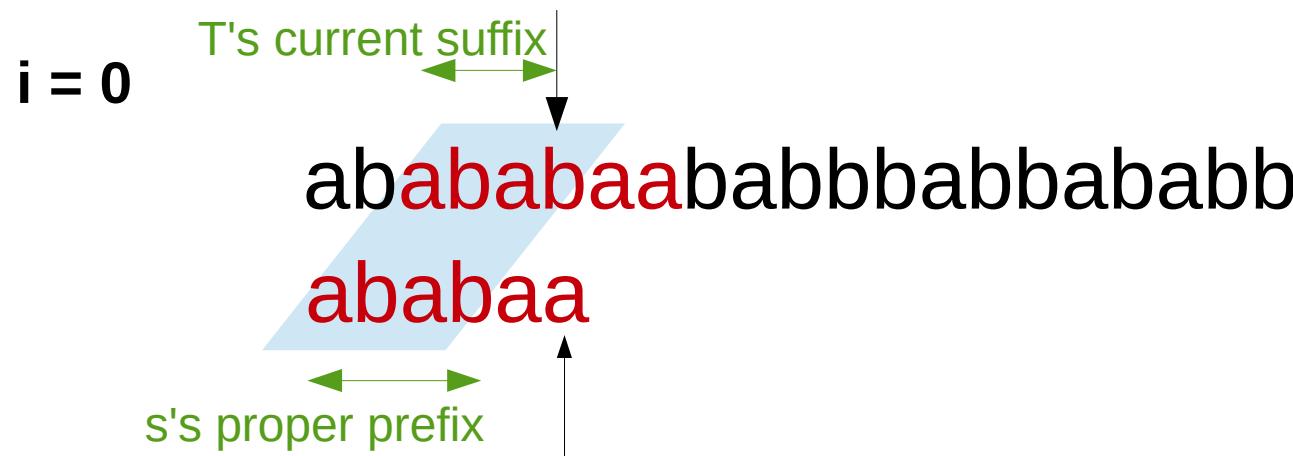
abababaa**babbbabbabbabb**
ababaa

Match found

We need to handle the failure better.

Where can we do better?

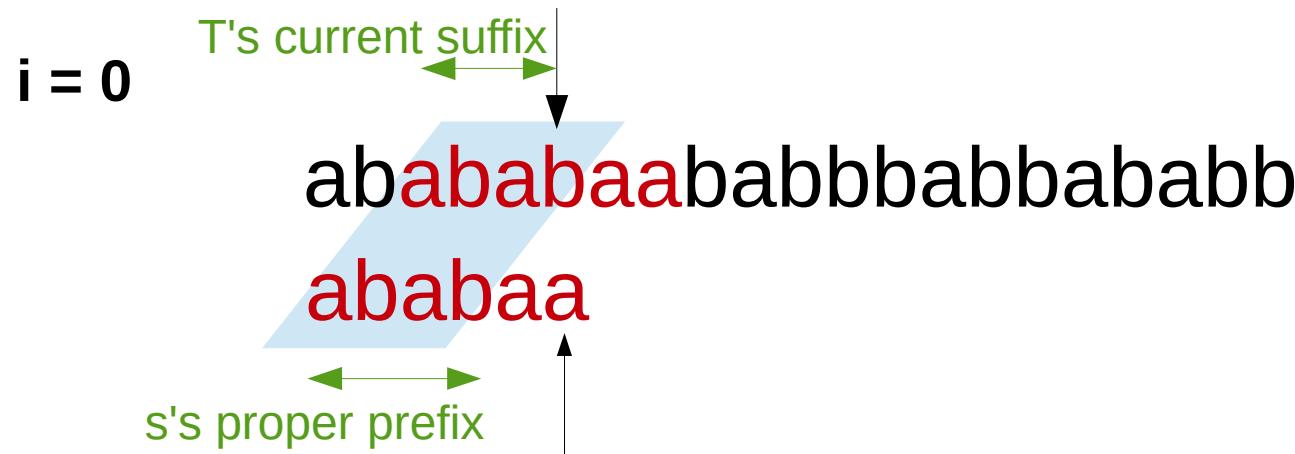
- $T = abababaababbabbabbabb$
- $s = ababaa$



Key observation: T's current suffix which is a proper prefix in s has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap, rather than restarting.

Where can we do better?

- $T = abababaababbabbabbabb$
- $s = ababaa$



Key observation: T's current suffix which is a proper prefix in s has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap, rather than restarting.

Knuth-Morris-Pratt Algorithm

- In 1970, Morris conceived the idea.
- After a few weeks, Knuth independently discovered the idea.
- In 1970, Morris and Pratt published a techreport.
- KMP published the algorithm jointly in 1977.
- In 1969, Matiyasevic discovered a similar algorithm.

KMP String Matching

- First linear time algorithm for string matching.
- Whenever there is a mismatch, do not restart; rather *fail intelligently*.
- We define a failure function for each position, taking into account the suffix and the prefix.
- Note that the matched part of the large string T is essentially the pattern string s. Thus, failure function can be computed simply using pattern s.

Failure is not final.

Failure function for *ababaa*

i	1	2	3	4	5	6
f(i)	0	0	1	2	3	1
seen	a	ab	aba	abab	ababa	ababaa
prefix	ϵ	ϵ	a	ab	aba	a

Algorithm given as Figure 3.19 in ALSU.

String matching with failure function

Text = $a_1 a_2 \dots a_m$; pattern = $b_1 b_2 \dots b_n$ (both indexed from 1)

```
s = 0
for (i = 1; i <= m; ++i) { ← Go over Text
    if (s > 0 && ai != bs+1) s = f(s) ← Handle failure
    if (ai == bs+1) ++s ← Character match
    if (s == n) return "yes" ← Full match
}
return "no"
```

i	1	2	3	4	5	6
f(i)	0	0	1	2	3	1
seen	a	ab	aba	abab	ababa	ababaa
prefix	ε	ε	a	ab	aba	a

Find the flaw in the algorithm.

String matching with failure function

Text = $a_1 a_2 \dots a_m$; pattern = $b_1 b_2 \dots b_n$ (both indexed from 1)

```
s = 0
for (i = 1; i <= m; ++i) { ← Go over Text
    while (s > 0 && ai != bs+1) s = f(s) ← Handle failure
    if (ai == bs+1) ++s ← Character match
    if (s == n) return "yes" ← Full match
}
return "no"
```



abababaababbbabbababb
babaa

i	1	2	3	4	5	6
f(i)	0	0	1	2	3	1

Classwork

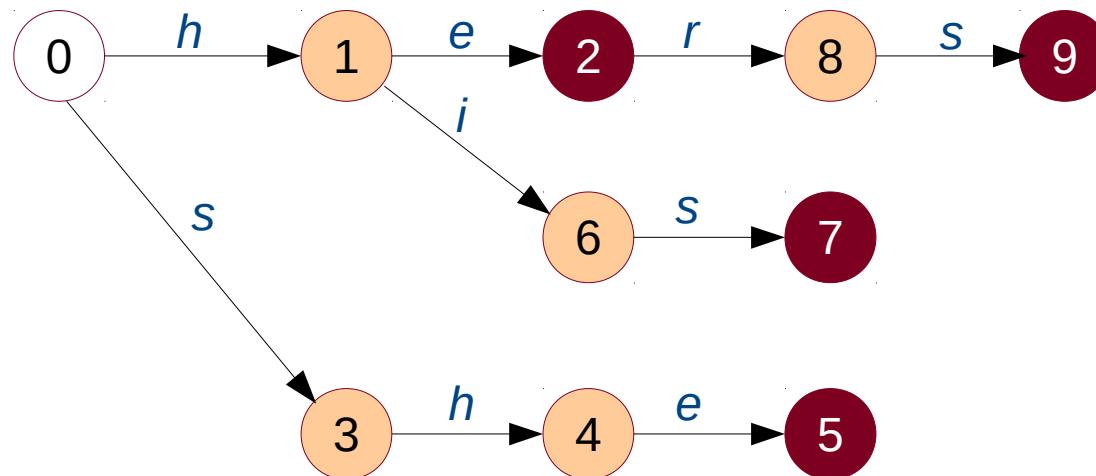
- Find failure function for pattern *ababba*.
- Test it on string *abababbaa*.
- Fibonacci strings are defined as
 - $s_1 = b$, $s_2 = a$, $s_k = s_{k-1}s_{k-2}$ for $k > 2$
 - e.g., $s_3 = ab$, $s_4 = aba$, $s_5 = abaab$
- Find the failure function for s_6 .

Fibonacci Strings

- $s_1 = b$, $s_2 = a$, $s_k = s_{k-1}s_{k-2}$ for $k > 2$
- e.g., $s_3 = ab$, $s_4 = aba$, $s_5 = abaab$
- Do not contain bb or aaa .
- The words end in ba and ab alternatively.
- Suppressing last two letters creates a palindrome.
- ...

KMP Generalization

- KMP can be used for keyword matching.
- Aho and Corasick generalized KMP to recognize any of a set of keywords in a text.

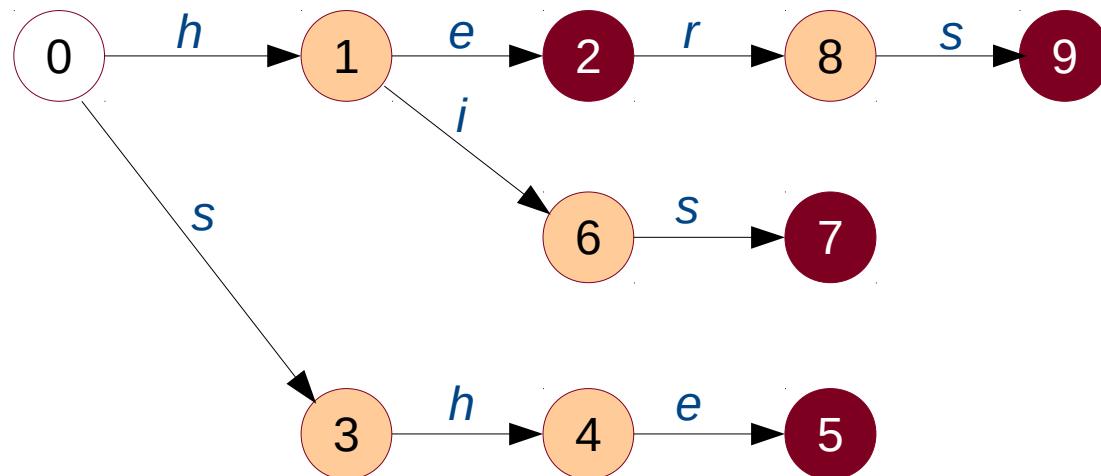


Transition diagram for keywords *he*, *she*, *his* and *hers*.

i	1	2	3	4	5	6	7	8	9
f(i)	0	0	0	1	2	0	3	0	3

KMP Generalization

- When in state i , the failure function $f(i)$ notes the state corresponding to the longest proper suffix that is also a prefix of **some** keyword.



Transition diagram for keywords *he*, *she*, *his* and *hers*.

i	1	2	3	4	5	6	7	8	9
f(i)	0	0	0	1	2	0	3	0	3

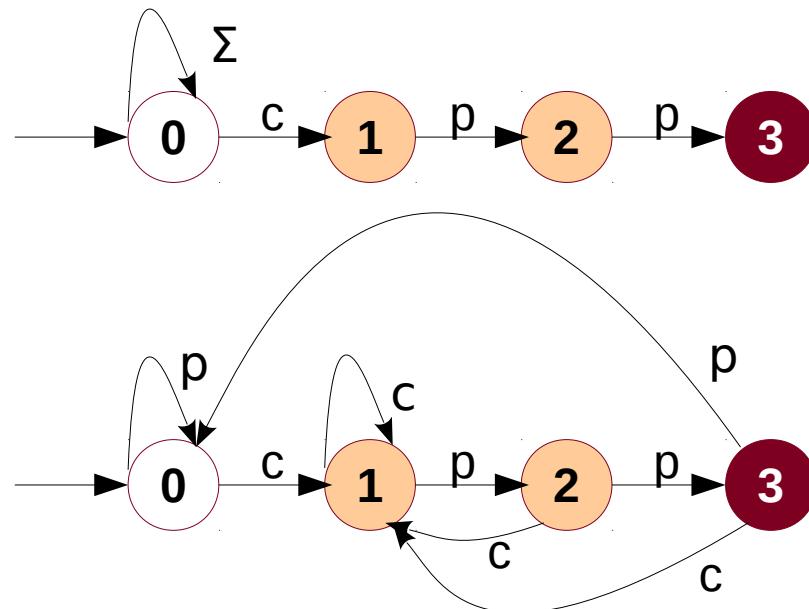
In state 7, character **s** matches prefix of the keyword **she** to reach state 3.

Regex to DFA

- Approach 1: Regex → NFA → DFA
- Approach 2: Regex → DFA
 - The ideas would be helpful in parsing too.

Regex \rightarrow NFA \rightarrow DFA

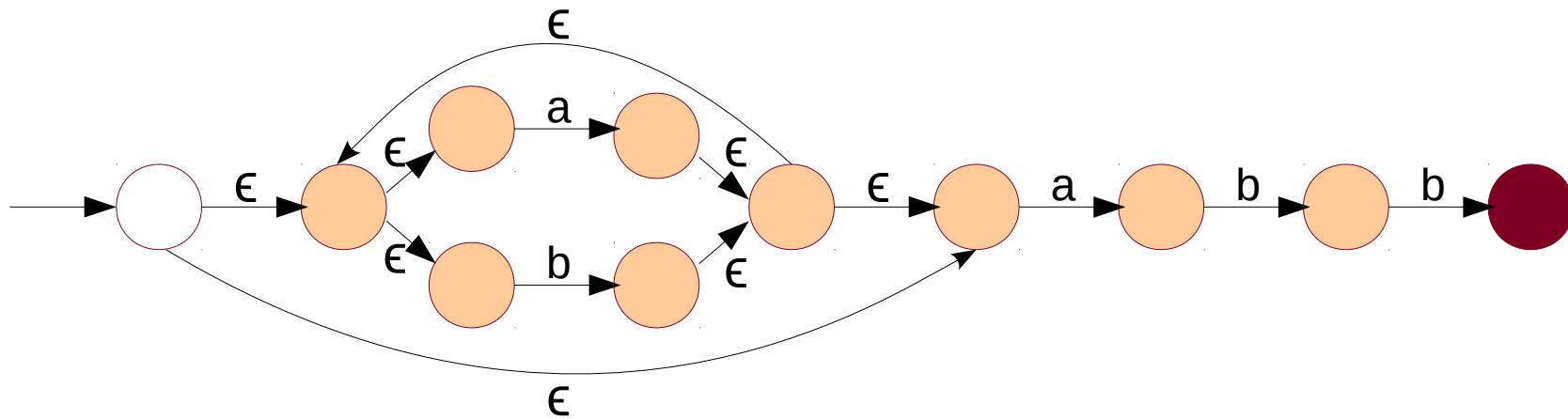
Draw an NFA for *cpp



How does a machine draw an NFA for an arbitrary regular expression such as $((aa)^*b(bb)^*(aa)^*)^*$?

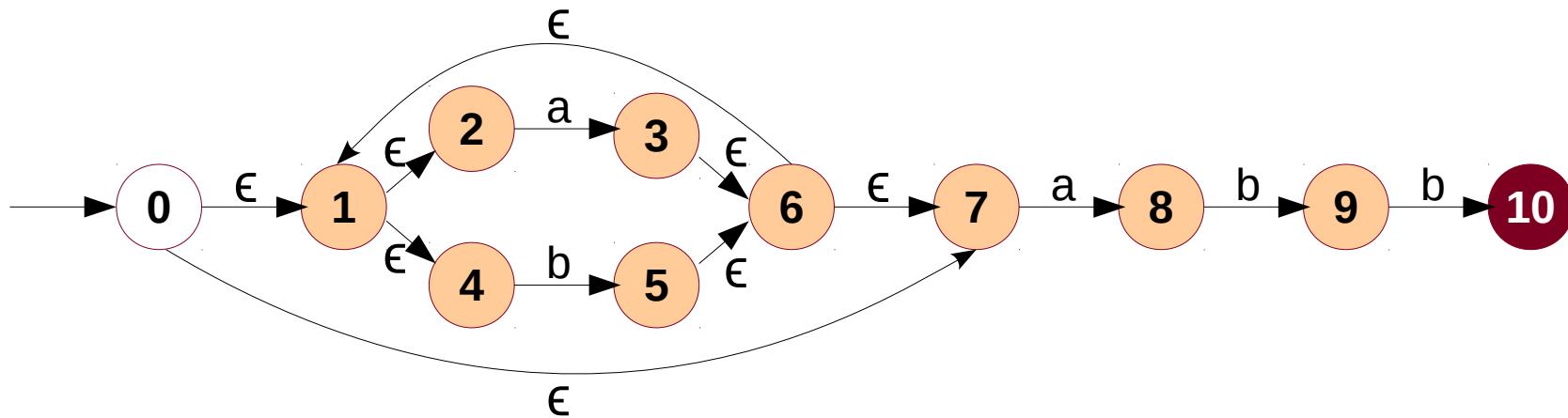
Regex \rightarrow NFA \rightarrow DFA

- For the sake of convenience, let's convert `*cpp` into `*abb` and restrict to alphabet $\{a, b\}$.
- Thus, the regex is $(a|b)^*abb$.
- How do we create an NFA for $(a|b)^*abb$?



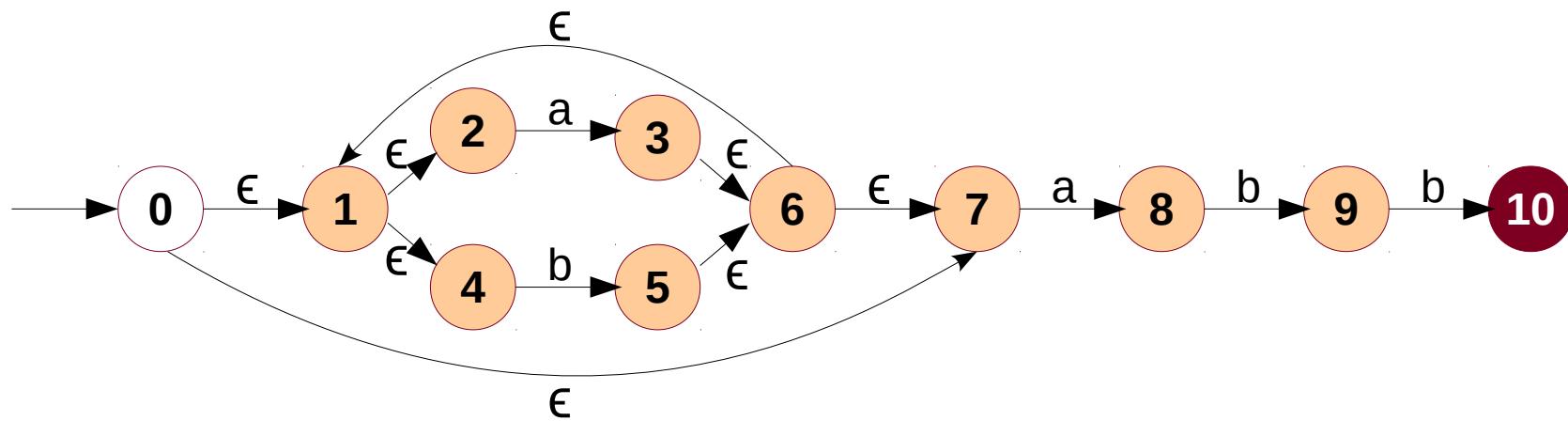
Regex → NFA → DFA

- For the sake of convenience, let's convert `*cpp` into `*abb` and restrict to alphabet $\{a, b\}$.
- Thus, the regex is $(a|b)^*abb$.
- How do we create an NFA for $(a|b)^*abb$?



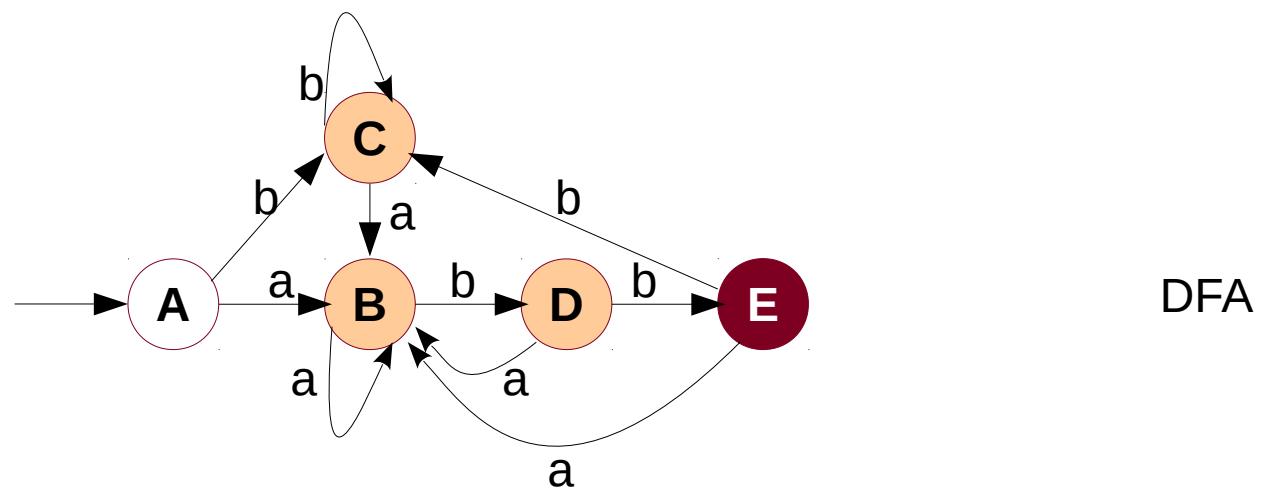
Regex \rightarrow NFA \rightarrow DFA

NFA state	DFA state	a	b	State Transition Table
$\{0, 1, 2, 4, 7\}$	A	B	C	
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D	
$\{1, 2, 4, 5, 6, 7\}$	C	B	C	
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E	
$\{1, 2, 4, 5, 6, 7, 10\}$	E	B	C	



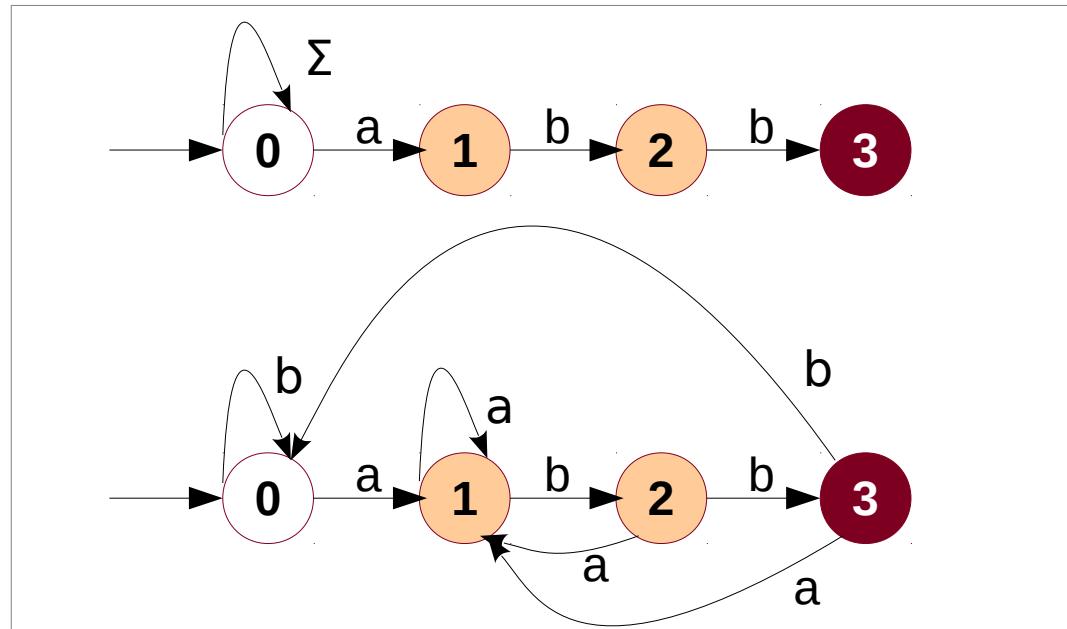
Regex → NFA → DFA

NFA state	DFA state	a	b	State Transition Table
{0, 1, 2, 4, 7}	A	B	C	
{1, 2, 3, 4, 6, 7, 8}	B	B	D	
{1, 2, 4, 5, 6, 7}	C	B	C	
{1, 2, 4, 5, 6, 7, 9}	D	B	E	
{1, 2, 4, 5, 6, 7, 10}	E	B	C	



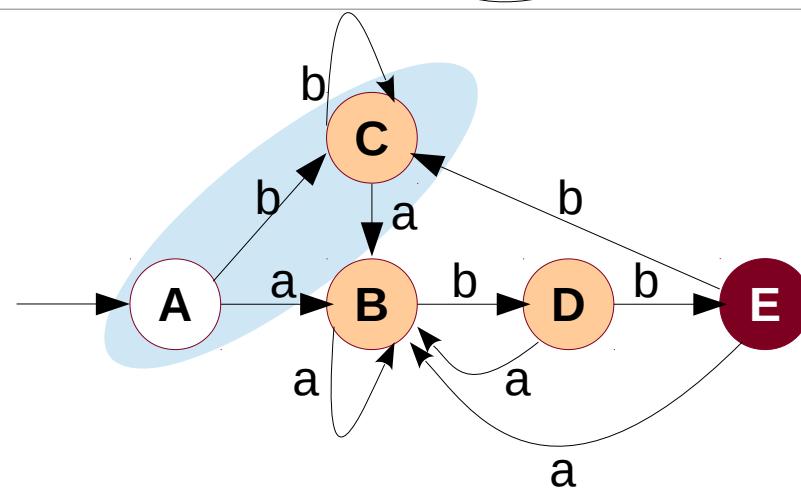
DFA

Regex \rightarrow NFA \rightarrow DFA



NFA

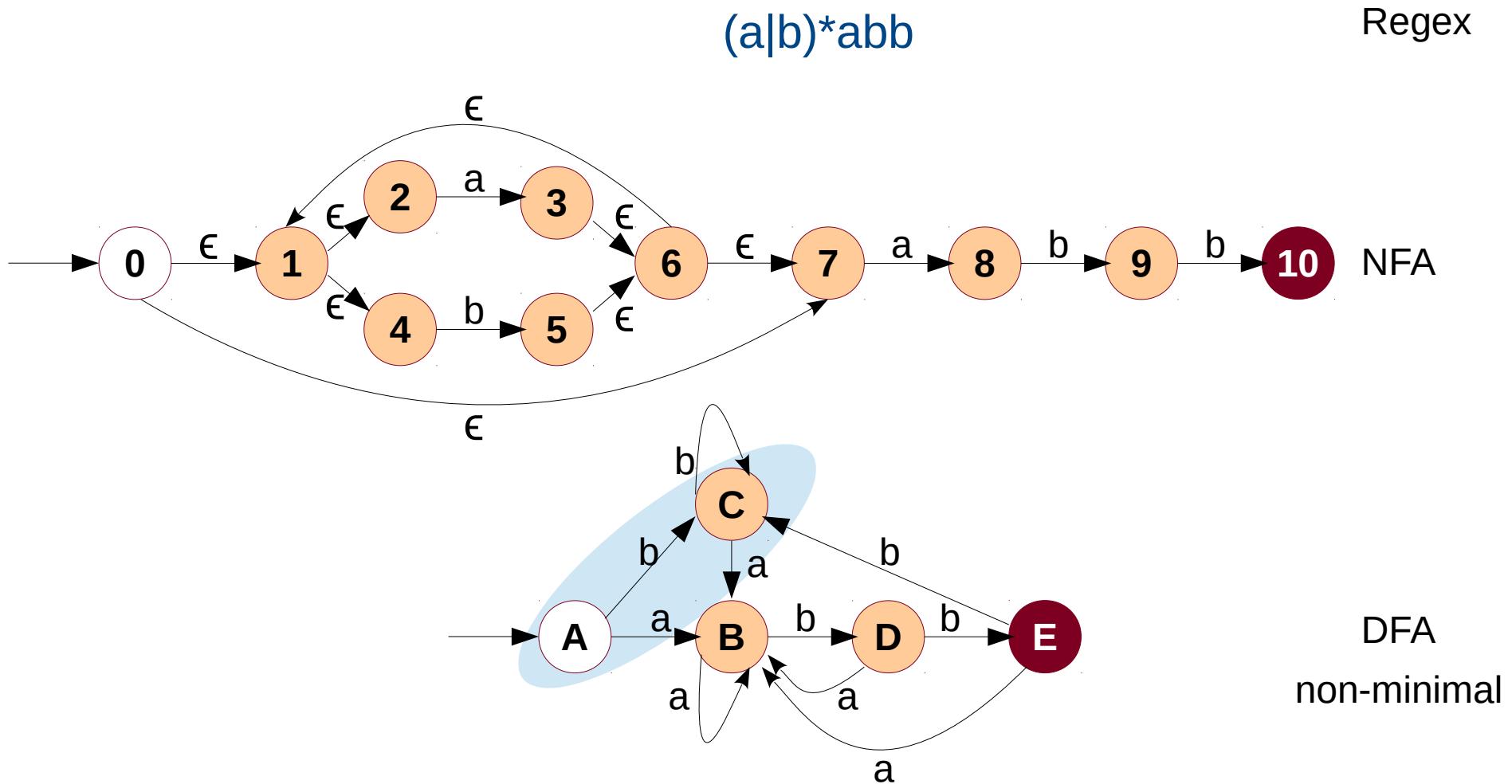
DFA



DFA

non-minimal

Regex → NFA → DFA

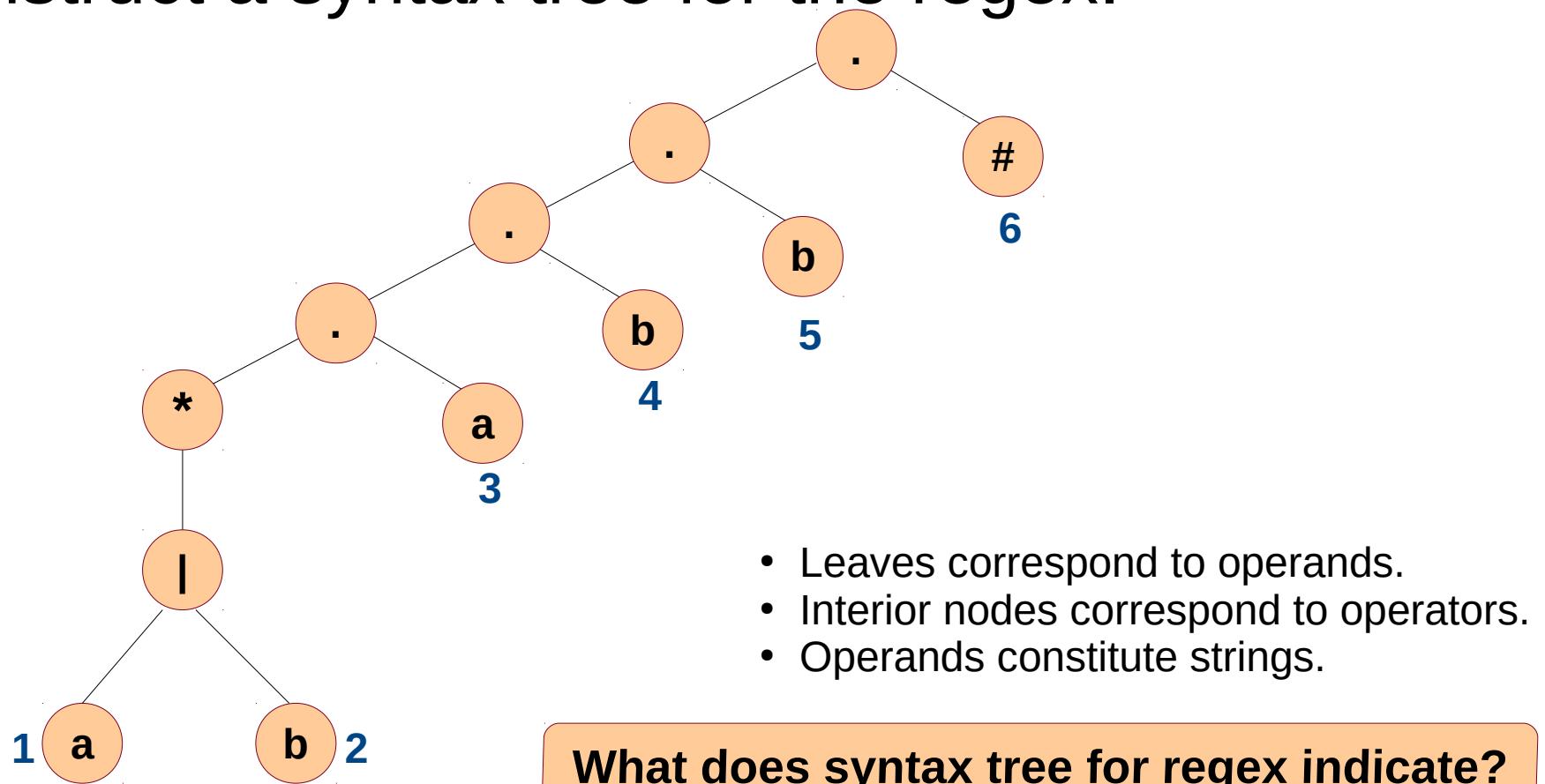


Regex → DFA

1. Construct a syntax tree for regex#.
2. Compute *nullable*, *firstpos*, *lastpos*, *followpos*.
3. Construct DFA using transition function.
4. Mark *firstpos(root)* as start state.
5. Mark states that contain position of # as accepting states.

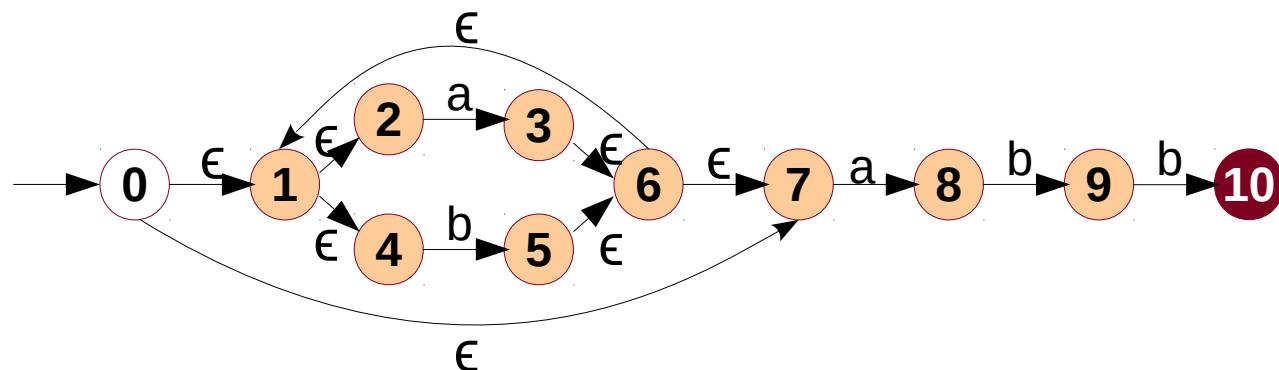
Regex → DFA

- Regex is $(a|b)^*abb\#$.
- Construct a syntax tree for the regex.



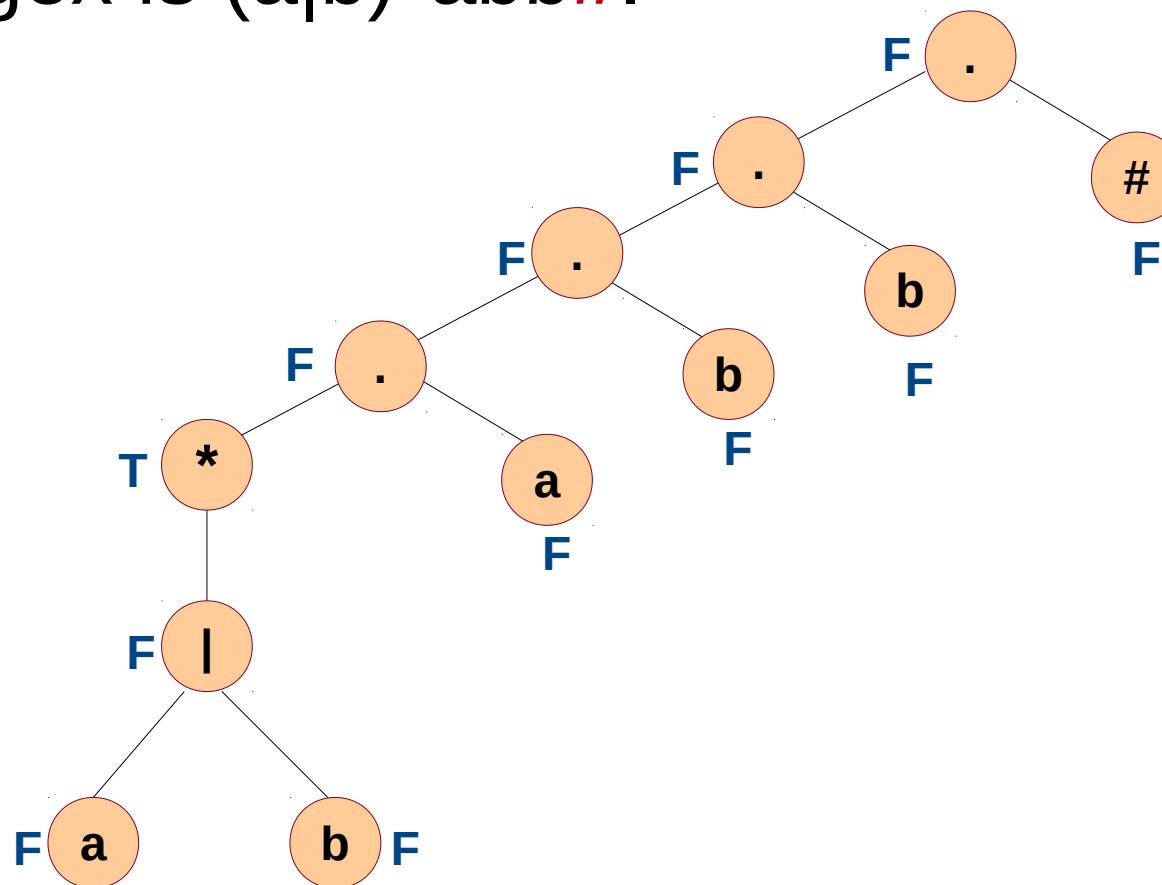
Functions from Syntax Tree

- For a syntax tree node n
 - $\text{nullable}(n)$: true if n represents ϵ .
 - $\text{firstpos}(n)$: set of positions that correspond to the first symbol of strings in n 's subtree.
 - $\text{lastpos}(n)$: set of positions that correspond to the last symbol of strings in n 's subtree.
 - $\text{followpos}(n)$: set of next possible positions from n for valid strings.



nullable

- *nullable*(n): true if n represents ϵ .
- Regex is $(a|b)^*abb\#$.



nullable

- $\text{nullable}(n)$: true if n represents ϵ .

Node n	$\text{nullable}(n)$
leaf labeled ϵ	true
leaf with position i	false
or-node $n = c_1 \mid c_2$	$\text{nullable}(c_1)$ or $\text{nullable}(c_2)$
cat-node $n = c_1 c_2$	$\text{nullable}(c_1)$ and $\text{nullable}(c_2)$
star-node $n = c^*$	true

Classwork: Write down the rules for $\text{firstpos}(n)$.

- $\text{firstpos}(n)$: set of positions that correspond to the first symbol of strings in n 's subtree.

firstpos

- $\text{firstpos}(n)$: set of positions that correspond to the first symbol of strings in n 's subtree.

Node n	$\text{firstpos}(n)$
leaf labeled ϵ	$\{ \}$
leaf with position i	$\{i\}$
or-node $n = c_1 \mid c_2$	$\text{firstpos}(c_1) \cup \text{firstpos}(c_2)$
cat-node $n = c_1 c_2$	
star-node $n = c^*$	$\text{firstpos}(c)$

firstpos

- $\text{firstpos}(n)$: set of positions that correspond to the first symbol of strings in n 's subtree.

Node n	$\text{firstpos}(n)$
leaf labeled ϵ	{ }
leaf with position i	{ i }
or-node $n = c_1 \mid c_2$	$\text{firstpos}(c_1) \cup \text{firstpos}(c_2)$
cat-node $n = c_1 c_2$	if (nullable(c_1)) $\text{firstpos}(c_1) \cup \text{firstpos}(c_2)$ else $\text{firstpos}(c_1)$
star-node $n = c^*$	$\text{firstpos}(c)$

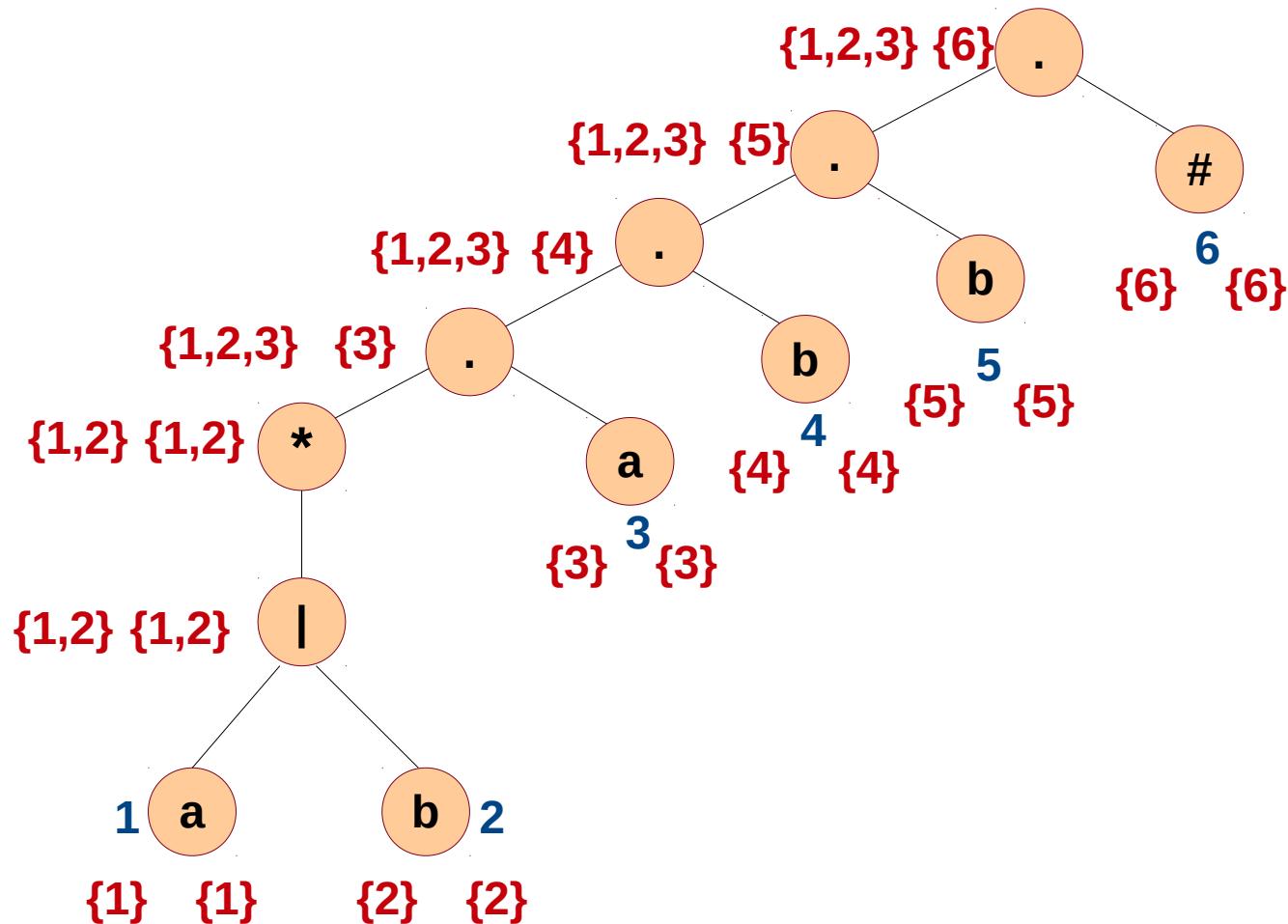
Classwork: Write down the rules for $\text{lastpos}(n)$.

lastpos

- $\text{lastpos}(n)$: set of positions that correspond to the last symbol of strings in n 's subtree.

Node n	$\text{lastpos}(n)$
leaf labeled ϵ	$\{ \}$
leaf with position i	$\{i\}$
or-node $n = c_1 \mid c_2$	$\text{lastpos}(c_1) \cup \text{lastpos}(c_2)$
cat-node $n = c_1 c_2$	if (nullable(c_2)) $\text{lastpos}(c_1) \cup \text{lastpos}(c_2)$ else $\text{lastpos}(c_2)$
star-node $n = c^*$	$\text{lastpos}(c)$

firstpos lastpos

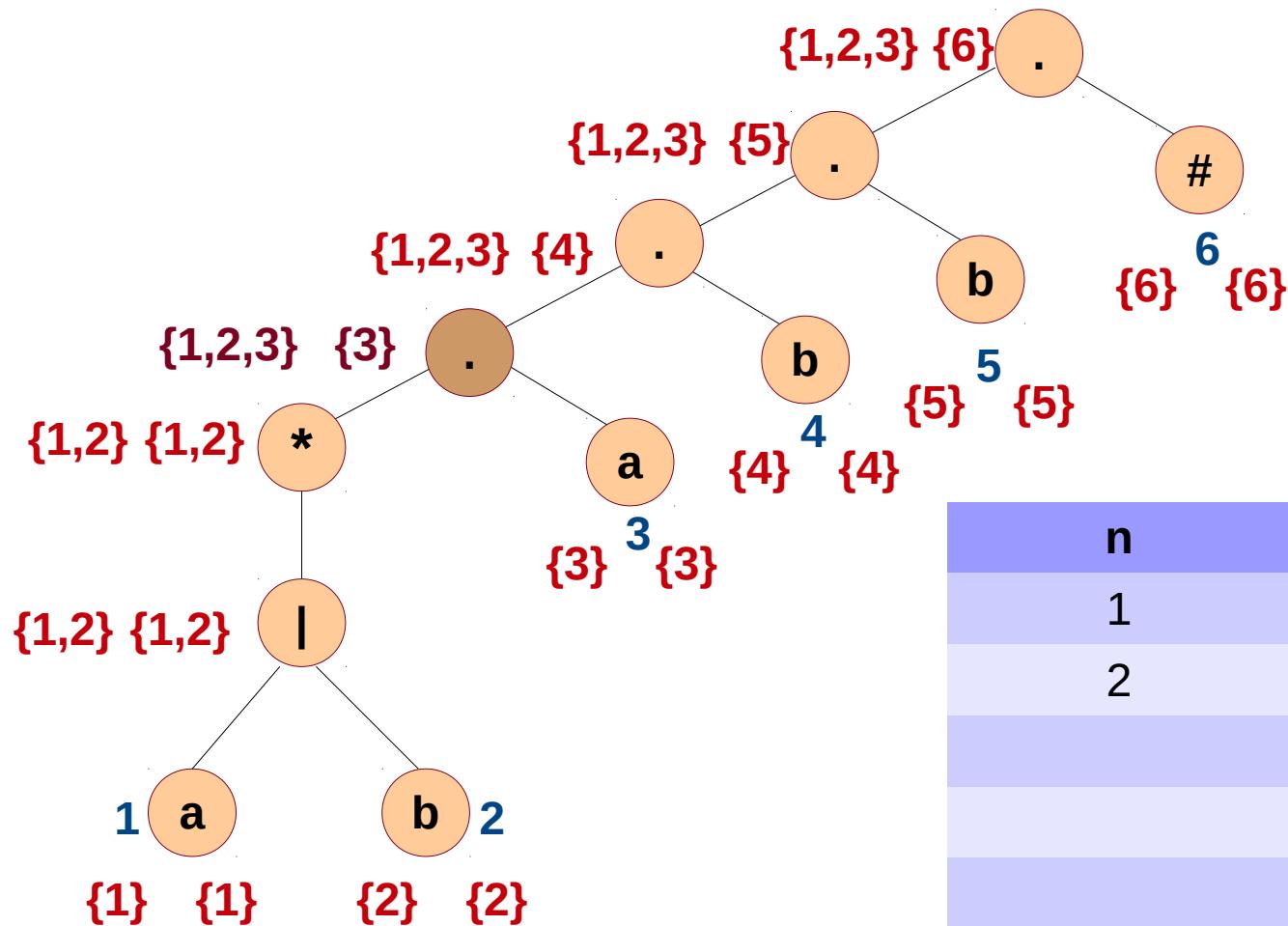


followpos

- *followpos(n)*: set of next possible positions from n for valid strings.
 - If n is a **cat-node** with child nodes c_1 and c_2 , then for each position in $\text{lastpos}(c_1)$, all positions in $\text{firstpos}(c_2)$ *follow*.
 - If n is a **star-node**, then for each position in $\text{lastpos}(n)$, all positions in $\text{firstpos}(n)$ *follow*.

followpos

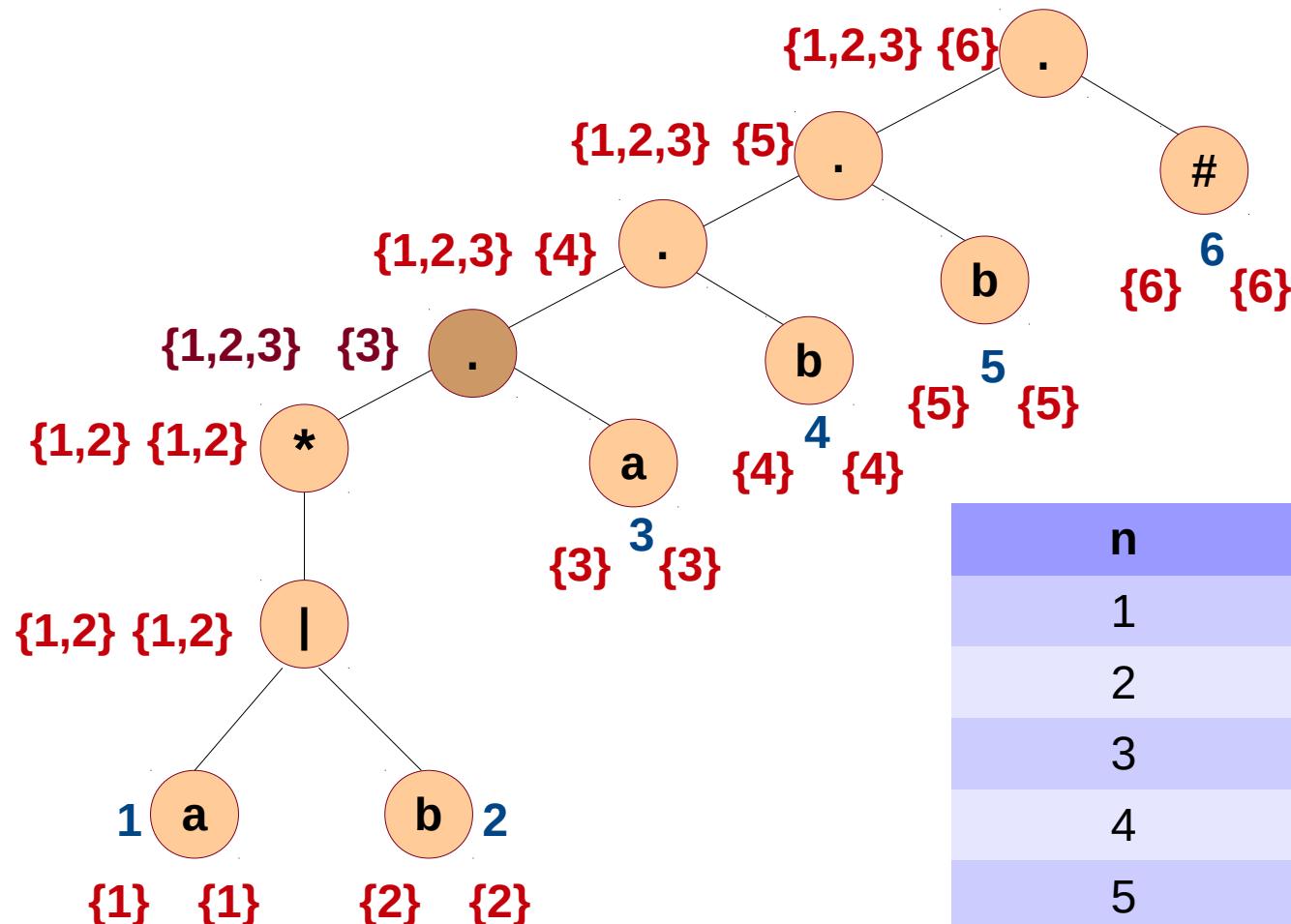
If n is a **cat-node** with child nodes c_1 and c_2 , then for each position in $\text{lastpos}(c_1)$, all positions in $\text{firstpos}(c_2)$ *follow*.



n	followpos(n)
1	{3}
2	{3}

followpos

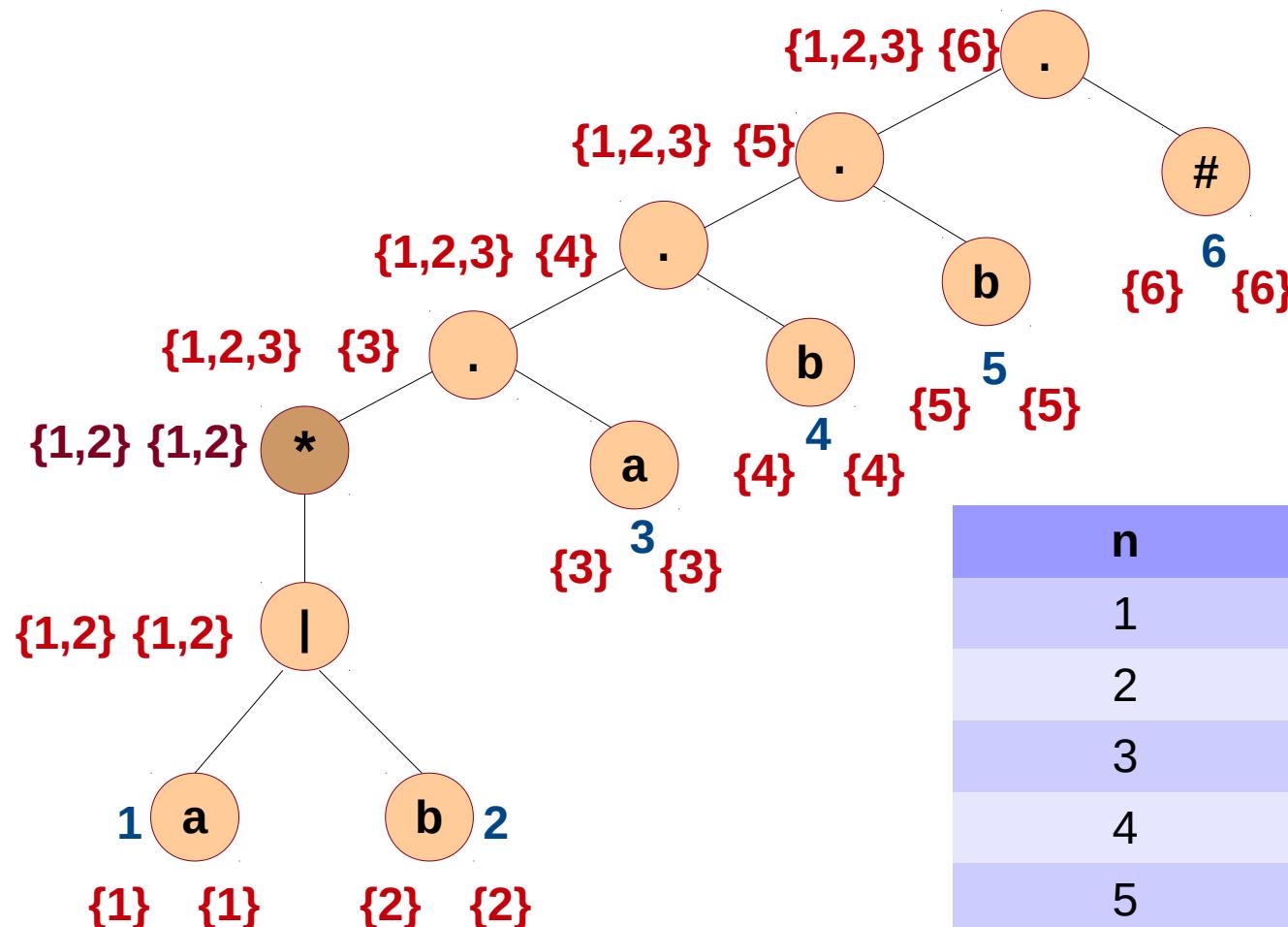
If n is a **cat-node** with child nodes c_1 and c_2 , then for each position in $\text{lastpos}(c_1)$, all positions in $\text{firstpos}(c_2)$ *follow*.



n	followpos(n)
1	{3}
2	{3}
3	{4}
4	{5}
5	{6}
6	{ }

followpos

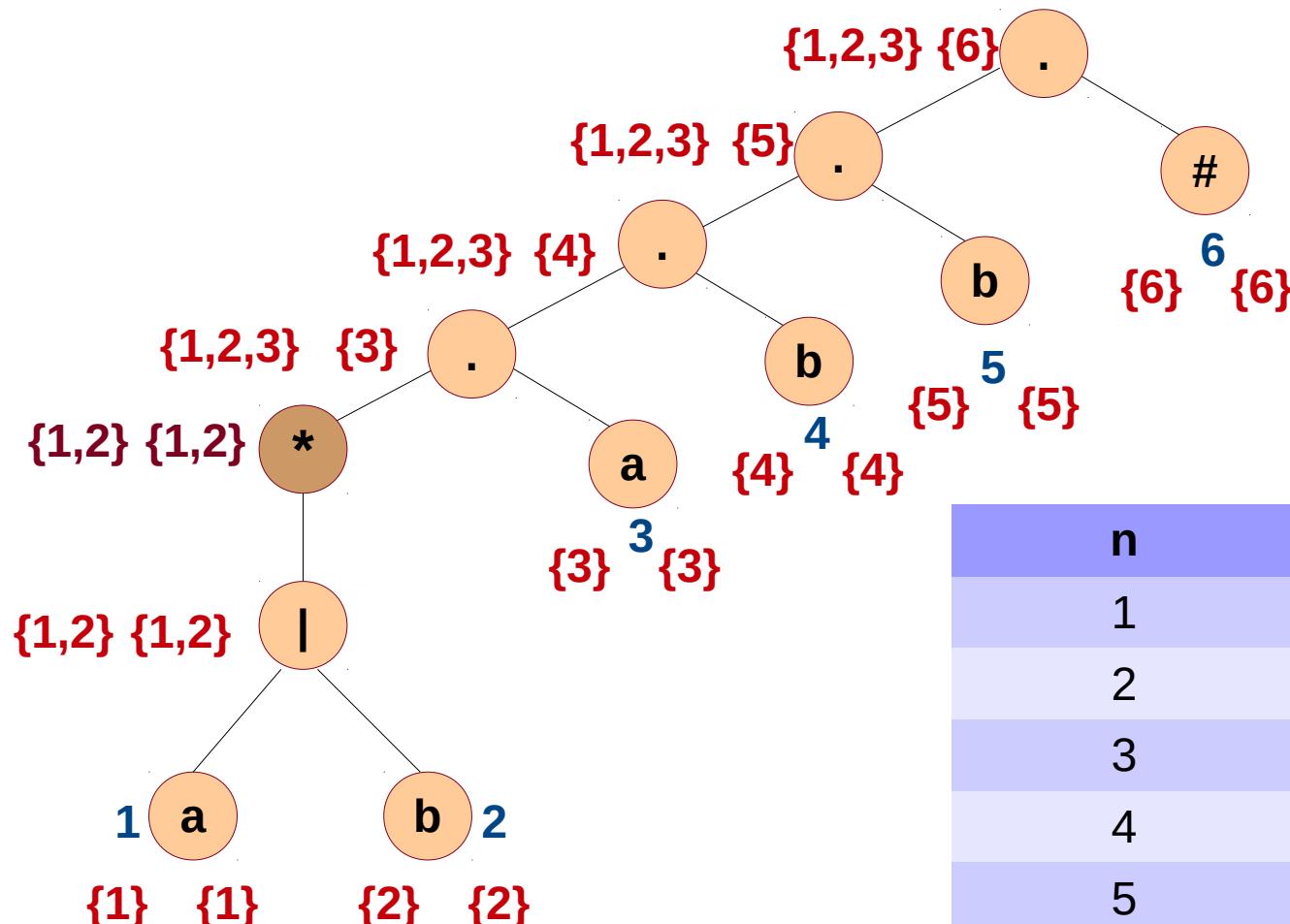
If n is a **star-node**, then for each position in $\text{lastpos}(n)$, all positions in $\text{firstpos}(n)$ **follow**.



n	followpos(n)
1	{3}
2	{3}
3	{4}
4	{5}
5	{6}
6	{ }

followpos

If n is a **star-node**, then for each position in $lastpos(n)$, all positions in $firstpos(n)$ *follow*.



Regex → DFA

1. Construct a syntax tree for regex#.
2. Compute *nullable*, *firstpos*, *lastpos*, *followpos*.
3. Construct DFA using transition function (*next slide*).
4. Mark *firstpos(root)* as start state.
5. Mark states that contain position of # as accepting states.

DFA Transitions

create unmarked state $firstpos(root)$.

while there exists unmarked state s {

mark s

for each input symbol x {

$uf = \bigcup followpos(p)$ where p is in s labeled x

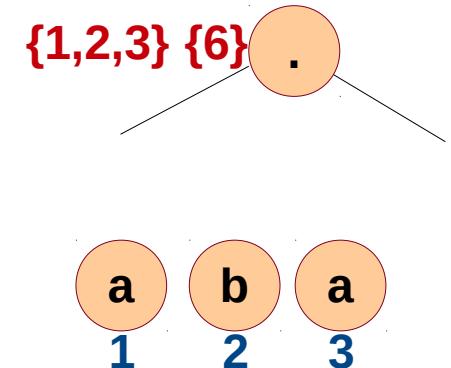
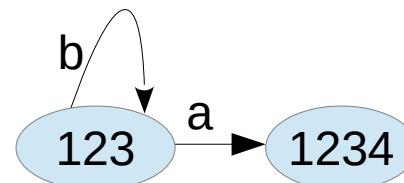
transition[s, x] = uf

if uf is newly created

unmark uf

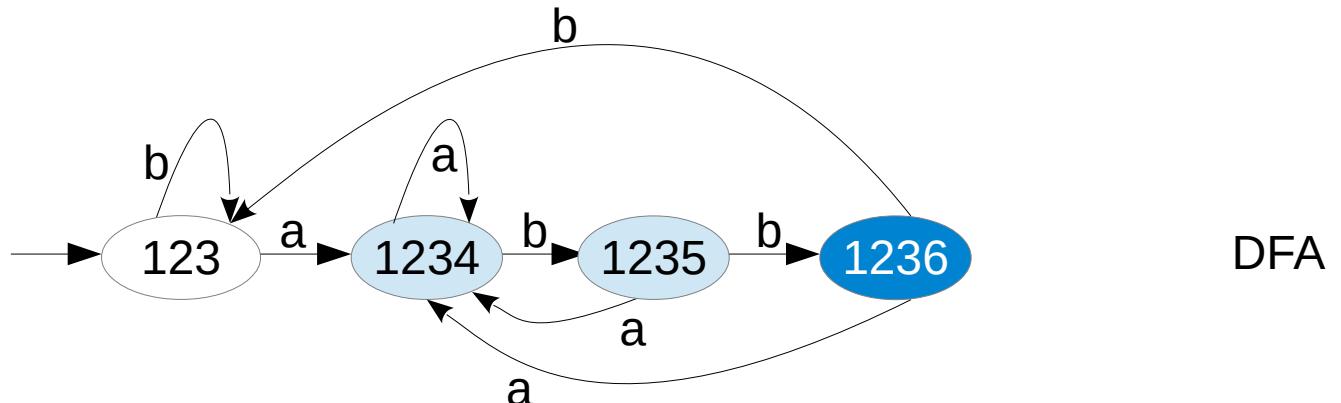
}

}

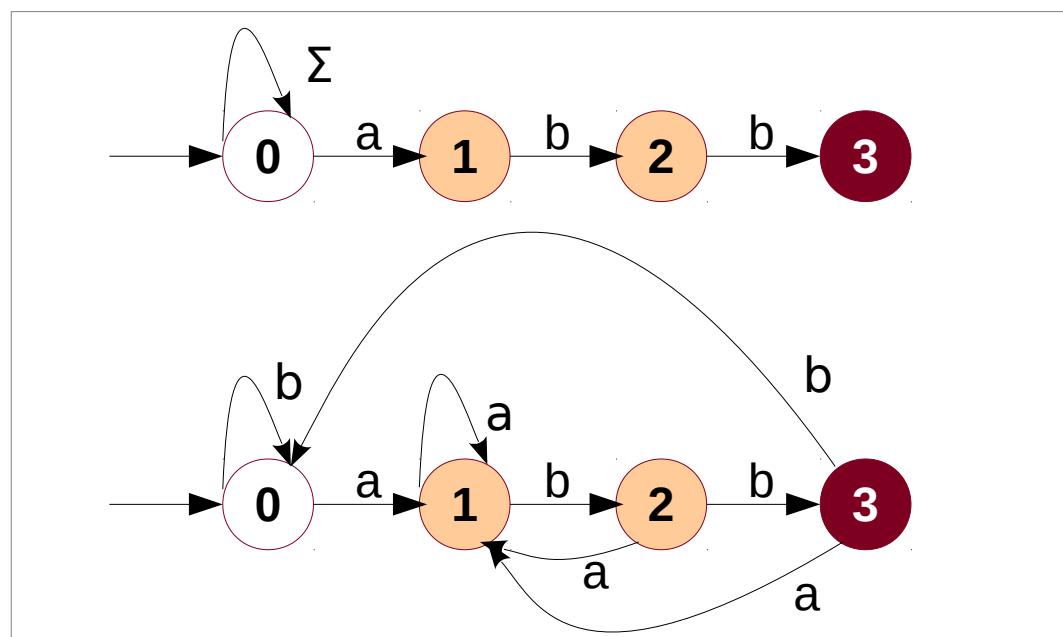


n	$followpos(n)$
1	{3, 1, 2}
2	{3, 1, 2}
3	{4}
4	{5}
5	{6}
6	{}

Final DFA



DFA



NFA

DFA

Regex → DFA

1. Construct a syntax tree for regex#.
2. Compute *nullable*, *firstpos*, *lastpos*, *followpos*.
3. Construct DFA using transition function.
4. Mark *firstpos(root)* as start state.
5. Mark states that contain position of # as accepting states.

Do this for $(b|ab)^*(aa|b)^*$.

In case you are wondering...

- What to do with this DFA?
 - Recognize strings during lexical analysis.
 - Could be used in utilities such as *grep*.
 - Could be used in regex libraries as supported in php, python, perl,

Lexing Summary

- Basic *lex*
- Input Buffering
- KMP String Matching
- Regex → NFA → DFA
- Regex → DFA

