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Languages
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Languages

 Why do we need languages?

- Humans communicate
 sign language, body language, braille
- Birds communicate
* mark territories, attract for mating, warn danger
- Animals communicate
e mark territories, convey need, preparation for attack
- Aliens?



Programming Languages

 Why do we need programming languages?

 And why so many?

- What is your first language?
- Tamil. Yours?
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Programming Languages
* There are some special purpose languages
- HTML for webpages
- LaTeX for document formatting
- ps for postscript files; sqgl, VHDL
- Shell scripts, awk, grep, sed

- Makefile has a language; smtp

- How about google search?
e filetype:pdf, link:www.cse.iitm.ac.in
- Gmail: in:unread, in:starred

- Vi: :se al, :wq, :se ft=c
- What about Is -I, Is -RI, Is --color, |s -1 dirl dir2 ? s


http://www.cse.iitm.ac.in/

Language Is for Communication

Using mobile buttons
Using ipad touch
Jsing a calculator

Jsing a fan switch

Jsing a remote for projector / laser

... some of these are not programmable today.
They have a limited abstraction.
We will work with programming languages. °



Compller

 When do we need a compiler?
~ [BIeot SO Gl Lo
- g iEdt e
- Ich kenne Deutsch
- | know English

7
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Jobs of a Compiler

Translate: input language, output language
Maintain correctness

— fodarelt 3 omR U

— Father died today.

Be efficient

- Why are you laughing?

- | understood yesterday's joke.
Generate a good language

— | got books but more than that | got your letter.

— ¥ fopamel, Afep & oo TeR fArer 8 b a1fdres 3 a1fdres e 2




Good Language (2015)

| got books but more than that | got your letter.

H fopcrd, Sfdh=t H 310 UcR AT 2 fob 3tfeien 3 iferes fAer 2 |

| have books, but | got your letter got more than that.

H fopcrd 8, ifch=1 # 3109 U 8 foh 3iferes | s1feren e |

| have books, but that's more than | got your letter.

A fopard &, A Tl & b & a1 geR et 8 @t ot A 21feres 8 |
| have books, but | have received your letter is more than.

H ol €, <ifcheT H 370 IeR 3T JorTT H 319k & TRT<T g & |




Good Language (2018)

| got books but more than that | got your letter.

72 forard et ifch= S SATaT {2 *MUahT UeR fAet |
| got the books but | received your letter more than that.

731 R i QI A8) SR o1feep TR v |

| got books but | received more letters from him.

7=l Tt et oifdee Tt S9Nt <9l oeR e |

| got the books but | received more letters from him.

q foharrd el oifchT 9= S99 3ifeien oy IR ¢ |

10



Compilers work with Strings

» Characters, words / tokens, sentences, programs

* Fun with strings
— quick brown fox jumps over the lazy dog

- stewardesses
- typewriter —
- skepticisms -~ .

rograms as Data
- quine N -

—~—

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

11



Why should we Design a language?

 Language matters!

- A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $57?

- B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

e Outcomes of a treatment for lung cancer. Two
descriptions were:

— C: The one-month survival rate i1s 90%.
— D: There are 10% deaths in the first month.

« B fetched many more positives. 84% physicians chose
option C. N

Source: Thinking Fast and Slow, Daniel Kahneman



Classwork

* Write a program that takes a function name as
iInput and calls that function.

13



source program

A

Compiler
outpu

\4

Interpreter

 What does this mean?
- You may be able to do the following with interpreters.

$x=0; $y = 0;

$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;

echo "x=%x, y=$y\n";

echo "Enter a variable name: ":

How about C?

A4

void main() {
intx=0,y=0;
#include "/dev/stdin"
= 10;
printf("x = %d, y = %d\n", X, y);

}
S 14
Everything is fair in love, war and C.



source program

Y

Compiler
input
< input
N
\ A
-
(outpa;

 What does this mean?
- You may be able to do the following with compilers.

\
NGl @
|

\4

Interpreter

X +=2;
X +=2;
__X;

X +=5;
++X;
X+=9

IS equivalent to . Xx+=18;

2
g
c

e
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source program (file.c)

Preprocessor (cpp)

v

Modified source program (file.i)

Compiler (gcc)

v

target assembly program (file.s)

Assembler (as)

Y

relocatable machine code (file.o)

v

Linker /| Loader (Id) =

v

target machine code (a.out)

e cpp file.c >file.i
e gcc -S file.i
 as file.s -o file.o

e |d -0 a.out file.o ...libraries...

Try the following:
 gcc -V file.c
e gcc -save-temps file.c

library files,
relocatable object files

17



Language Translators

Preprocessor: collects source programs,
expands macros.

Compiler: Translates source program into a low-
level assembly.

Assembler: Produces (relocatable) machine

code.

Linker: Reso
combines mu

ves external references statically,
tiple machine codes.

Loader: Loads executable codes into memory,

resolves external references dynamically.

18



Homework

e Exercises 1.1.1-5 from ALSU.

19



Character stream

v

Lexical Analyzer

v

Token stream

v

Syntax Analyzer

v

Syntax tree

v

Semantic Analyzer

\

Syntax tree

v

Intermediate
Code Generator

v

Intermediate representation

v

Machine-Independent
Code Optimizer

v

Intermediate representation

v

Code Generator

v

Target machine code

v

Machine-Dependent
Code Optimizer

v

Target machine code

Backend

Symbol
Table




Z=X+y*32
v

Lexical Analyzer

v

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Syntax Analyzer
A///:\\'\"\'L +
<id,1> P
<id,2> A =
<id,3> 32

v

Semantic Analyzer

_— - T ‘

A )
<id.2> mtti)float
*
A e
<id,3> 32

v

Intermediate
Code Generator

v

t1 =id3 * 32

t2 = inttofloat(tl)
t3=1d2 + t2

idl = t:i

Machine-Independent
Code Optimizer

v

t1 =id3 * 32
t2 = inttofloat(tl)
d1l =id2 + t2

v

Code Generator

LD RS, id3

Symbol Table

LD R3, id3

SHL R3, #5

ITOF R2, R3

LDF R1, id2
ADDF R1, R1, R2
STFidl, R1

}

MUL R3, R3, #32
ITOFR2,R3

LDF R1, id2

Machine-Dependent
Code Optimizer

ADDF R1, R1, R2
STFidl, R1

—




Symbol Table

e Records variable names

» Collects their attributes 1l z
- Type (int, char) . §
- Storage requirement ([30], 1)
- Type modifiers (const, static) Symbol Table

- Scope (global, static)

- Information about arguments (for functions)
 Efficient insertion, search (sometimes deletion)

- C.intx,y, z;

- Pascal: var x, vy, z: integer;

22



ldeal World

Fortran v ARM
C - X86
One Compiler
Java > pPowerPC
> N
Future Language Future Target

Reality

ARM
Fortran > f90
C > gcce X86
Java » javac PowerPC
Future Language » futurec e ? A Future Target



Reality getting worse

| don't have a compiler for this platform.
* My program compiles with an older version of gcc.

* My program compiles with the new version, but
does not run on this new platform.

* My program compiles with an older gcc if you
disable optimizations.

My program compiles if you have llvm 5.4, clang
5.5, gcc 5.0.1 on x86_64 with lonestar 1.2 or
above on Ubuntu 16 or below.

24



Evolution of Programming Languages

» First electronic computers in 1940s.

 Programmed in machine language (0 and 1).

- Move data from one location to another.
- Add the content of two reqgisters.
— Compare two values

e S | o W, e[)i“s, and ErorrP run.

25



Maggie and Buildings
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Image source: wikipedia



Punched Tape
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27
Courtesy: Deepak Khemani
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Evolution of Programming Languages

 Assembly languages in early 1950s.
- Initially, only mnemonics for machine instructions
- Later, support for macros
* High-level languages in late 1950s.
— Fortran for scientific computing
- Cobol for data processing

- Lisp for symbolic computation
- These were so successful that they are still in use.

28



PL Classification

Thousands of languages

- Need to be categorized

Based on paradigm

- Imperative (c, c++, java), declarative (lisp, prolog)
Based on generation (inink of generation gap)

- First (machine), second (assembly), third (fortran,
cobol, lisp, c¢), fourth (sal, ps), fifth (prolog)

Others

- OO (c++, c#, Ruby), scripting (awk, |s, php,
python, ruby)

29



Compiler Writing

* Is challenging.
 Acomplileris a large program.

* A compliler must translate correctly potentially
Infinite set of programs that could be written In
the source language.

 The problem of generating the optimal target
code from a source program is undecidable.

— Heuristics and Trade-offs.

« Compilers is an area where
Theory meets Practice.

30



Static versus Dynamic

 Time
 Compilation
* Optimization
* Analysis

e Type
 Linking

e Scoping

31



Static versus Dynamic

* Time: compilation versus execution,
preprocessor versus compilation

« Compilation: gcc versus jit
* Optimization: without and with input
* Analysis: without and with environment
e Type:
- strongly typed versus scripting languages
— Inheritance and virtual functions

* Linking: .a versus .so
e Scoping

32



Static versus Dynamic

e Time
» Compilation inti=1;
e Optimization VOi?aIi(%tE‘(“%d", );
* Analysis z/oid main() {
+ Type 0
+ Linking }
e Scoping
Static Dynamic
1 2

Where do we use dynamic scoping?



Classwork

* Find the output of the
program under static
and dynamic scoping.

inta=1,b=2,y=3;
void gun(int x, int b) {

printf("%d %d\n", X, b);
}

void fun(int x, int y) {
printf("%d %d\n", X, y);
} gun(a, y);

void main() {
Inta = 3;
{
Int b = 4;
fun(a, b);
}
gun(a, b);
fun(a, b);
}




Parameter Passing

Call by value

— This happens in C
Call by reference
- Supported in C++, aliasing

Call by name
- Macros

Call by value-result
- Supported in ADA

Inti1=1;
Int *Ip = &i;
void f(int x) {
Inty;
X = 3;
p = &y;
X = [+X+2;
}

void main() {
f(*p);

printf(“%d”, 1);

}

Call by value: 1

Call by reference: 8
Call by name: 3

Call by value-result: 6

35



Classwork

» Create an example that does not use pointers
which produces different output under the four
parameter passing schemes.

36
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