Introduction

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
Jul 2018

Languages

Sl R T

"uIELd- L P L) H | ea |1_-. '_ 1 i |=11 2]
ey (dapma Fify SOY N = ':-I-.:I,;1::" IT1.. .q,c-.} n‘L.-e-: 1. M duriee
Exog g 1A FA AW e MLIEIGE AL e '

. ¥ o SRS VY |
s vl r”' Aok e tase o guan ‘i‘.lﬂ“ﬁh”ﬁa L7 '

; { 4 I rlalﬂ‘E"..'-L':
:l'.j-alu i .-.I ‘;

m gly SRR iy by

: el PP e - . Luﬁ"ﬁ-
mﬂl LT AT i | Frre ’ "3

. i o

- f dmd e o B | . T i _'
r.- rwr:.:. ML I.,:,'\. i ._."_l.‘_\:. [Il'.':.ll_.r' i B &?#_u— jﬁ -". % Ih
n ke fyo Caing e Al ok FE FErAEC su-nt:u é-;u- :-'- AML
Foas gf " lm LA i T Taman (e, [=R J L .ur =

o

o, cxthr € ¢ TIRITMN b sk pm pome ael’ &nle ¢

K

=
.l i 2 T s e ool & 'l..dl!nr'\lT- o Sowp g] | ﬂ-’_:,"‘--\.'ﬂ'-\-"-* g T
I T - TRLITIE I

r S r.1id Fui
B pads ol b sl [d EAL. A

- i3 RIMITITLAZ &TLA ﬂ}:
TS il FET T A S AT 1 :

Didagiedu | ATHLVELE g0 '-

g P ..r-!'q:
.r'.:-'-i..l..r-'.r_l.nr SO i
S R R s
4\._._. o e ﬁLCﬂ-’qq Taisdd BD -|F'l: fote k-

'lll il - ’.ml’-‘- ~ i
VK e _.- F, AL o Liva _p,-\.{ r‘l{ o -*IﬂnP
Ale G vo e A4S o0& YAp

i
ikl Sy
4 B o - W =
£p ppiee 2T ook Ao ronih o
J.. =] g3 e

-ﬁf‘“ilﬂ'l’uﬂ 'l} I TMadm miu

am bu K
VEE
L

Ap rl'j 1"1.:11-"' ." as ‘h-'

T A
e T = W

' |::;-._ E I,_-l: Wl W
b f ; .'-u. i‘rl’.‘ll‘l L iWT, i.'i J"m.- l!H.. hfdr {}E{E q } Ir
=, . | g "-_Iﬂ -|-'I|"-' 3 el --Ln_l-.l

_— - A
Ao/ e
Boaim Tr ']r-\..I o i, -\.,_._ o ol L

Fare - e Al L
-\..qu\.,r T""':,-'lj' B L-m..u.r - {':,'_-:' LirErd AL r_l‘i'.‘ M i B hlq_'i s 'Hw_l
i MR L LEW

3 b e gt -:Ht:r.fH_l = = --:I‘ m
o s | -'// If' ol L—LL“*-— wolian geens Aen 54

Ir amo

-
&1

_. %

™, :i'_r-;-.ir-‘-\.]

o 'q_'p_ ._l-..._,ulr q’_l.'lu_. II,l' [T

. { R, A
pletes Sy Calla Sl LM f':‘ffﬂ.r
i sacnmug S LT B RARM ke

2 _"::{I'ﬁ"’i-r'ill- A N GARN
- _'. f i...'lr- P
SfE 'i“:'“-"_'.“' T

-

-.-.--I,.._.Er-_-'-_
e~ N& P

Sy et BARS BF O Rt

W‘H_Hl':l.i-u

T a b kA
== +1:, j'dwﬂ ""'ﬁ'm i "II"‘"'?'? "r."u" /_,r PAL B fetz '-'?" IE L.uw-‘-'f'!f-* e
(X} (T Mrr -i |

(et W E AL
Lo Kz ao reka IE
I_,) I T
.--\;ll.li'-f""l'ﬂ:-__':? -""i'? i Lga

i EM Jeu iy ; :
L'.'--S.w-i.'.\.n..l'.- ke I"-'i“i'“""l L AR \I”:.'-' .|'_'|:-|.I'|.|,'

[_pl:_"p--—\.--i-'_ﬂ._;. ,.r{__r anxrwﬂh --I'II.--l J.-E"'-"ﬂ"l. -E'_-.f
I-L G gt WEPE 1 4 I-r"---"-"-'b"" 1

i : \r & /00t
:'l_'l-l" il ASEA far | PR Y L
6y by P -

J-F ﬁiellﬂrﬁ w3 i (e T SRS

¢

—

Wall of Love, Paris
Source: google images

Languages

 Why do we need languages?

- Humans communicate
 sign language, body language, braille
- Birds communicate
* mark territories, attract for mating, warn danger
- Animals communicate
e mark territories, convey need, preparation for attack
- Aliens?

Programming Languages

 Why do we need programming languages?

 And why so many?

- What is your first language?
- Tamil. Yours?

The &olution OF _C_,.Gﬂf/ﬂé(fer Zr

ogransring iﬂ'{ﬂﬂjﬂ'

£

B

Assemdiar

i

JavaScript Pe_ﬂ!'l 5?; FT g
- Simda m:"m \ = ol
ek 55 105XML S0 8 > Ee
52 on ol fPascalbgra s, o8
AR SVIS galgagltllé _?;'i:‘tﬁ.l':“}:,f 5%%8% i
SSD. ia rototype-basedz::
.éﬁ%gy‘_tuhogsiﬁ’ong A()§§Eh]l)y|py mwi g % §§
E‘hgﬁé}% SE bject Oriented=: = & s 24
=042 5 18 SO S EOrtran S ™ 16
'0‘5%‘5 EEEW o 5 ' Lisp
L A E i<:8 ‘_3
Visual Cshap . 0O O (@]
Smalltak Q. i
4

Source: google images

Programming Languages
* There are some special purpose languages
- HTML for webpages
- LaTeX for document formatting
- ps for postscript files; sqgl, VHDL
- Shell scripts, awk, grep, sed

- Makefile has a language; smtp

- How about google search?
e filetype:pdf, link:www.cse.iitm.ac.in
- Gmail: in:unread, in:starred

- Vi: :se al, :wq, :se ft=c
- What about Is -I, Is -RI, Is --color, |s -1 dirl dir2 ? s

http://www.cse.iitm.ac.in/

Language Is for Communication

Using mobile buttons
Using ipad touch
Jsing a calculator

Jsing a fan switch

Jsing a remote for projector / laser

... some of these are not programmable today.
They have a limited abstraction.
We will work with programming languages. °

Compller

 When do we need a compiler?
~ [BIeot SO Gl Lo
- g iEdt e
- Ich kenne Deutsch
- | know English

7

Source: google images

Jobs of a Compiler

Translate: input language, output language
Maintain correctness

— fodarelt 3 omR U

— Father died today.

Be efficient

- Why are you laughing?

- | understood yesterday's joke.
Generate a good language

— | got books but more than that | got your letter.

— ¥ fopamel, Afep & oo TeR fArer 8 b a1fdres 3 a1fdres e 2

Good Language (2015)

| got books but more than that | got your letter.

H fopcrd, Sfdh=t H 310 UcR AT 2 fob 3tfeien 3 iferes fAer 2 |

| have books, but | got your letter got more than that.

H fopcrd 8, ifch=1 # 3109 U 8 foh 3iferes | s1feren e |

| have books, but that's more than | got your letter.

A fopard &, A Tl & b & a1 geR et 8 @t ot A 21feres 8 |
| have books, but | have received your letter is more than.

H ol €, <ifcheT H 370 IeR 3T JorTT H 319k & TRT<T g & |

Good Language (2018)

| got books but more than that | got your letter.

72 forard et ifch= S SATaT {2 *MUahT UeR fAet |
| got the books but | received your letter more than that.

731 R i QI A8) SR o1feep TR v |

| got books but | received more letters from him.

7=l Tt et oifdee Tt S9Nt <9l oeR e |

| got the books but | received more letters from him.

q foharrd el oifchT 9= S99 3ifeien oy IR ¢ |

10

Compilers work with Strings

» Characters, words / tokens, sentences, programs

* Fun with strings
— quick brown fox jumps over the lazy dog

- stewardesses
- typewriter —
- skepticisms -~ .

rograms as Data
- quine N -

—~—

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

11

Why should we Design a language?

 Language matters!

- A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $57?

- B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

e Outcomes of a treatment for lung cancer. Two
descriptions were:

— C: The one-month survival rate i1s 90%.
— D: There are 10% deaths in the first month.

« B fetched many more positives. 84% physicians chose
option C. N

Source: Thinking Fast and Slow, Daniel Kahneman

Classwork

* Write a program that takes a function name as
iInput and calls that function.

13

source program

A

Compiler
outpu

\4

Interpreter

 What does this mean?
- You may be able to do the following with interpreters.

$x=0; $y = 0;

$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;

echo "x=%x, y=$y\n";

echo "Enter a variable name: ":

How about C?

A4

void main() {
intx=0,y=0;
#include "/dev/stdin"
= 10;
printf("x = %d, y = %d\n", X, y);

}
S 14
Everything is fair in love, war and C.

source program

Y

Compiler
input
< input
N
\ A
-
(outpa;

 What does this mean?
- You may be able to do the following with compilers.

\
NGl @
|

\4

Interpreter

X +=2;
X +=2;
__X;

X +=5;
++X;
X+=9

IS equivalent to . Xx+=18;

2
g
c

e

15

v N
N
Compiler }
\ 4

\4

Y

source program

\4

<\\\

input

Translator ﬁ
Y

Interpreter

~

o
c
—+
o
c
—t

/~
N

A

imemediate program tachir oupu
Intermediate program>~ > Machine = =
\\j 16

source program (file.c)

Preprocessor (cpp)

v

Modified source program (file.i)

Compiler (gcc)

v

target assembly program (file.s)

Assembler (as)

Y

relocatable machine code (file.o)

v

Linker /| Loader (Id) =

v

target machine code (a.out)

e cpp file.c >file.i
e gcc -S file.i
 as file.s -o file.o

e |d -0 a.out file.o ...libraries...

Try the following:
 gcc -V file.c
e gcc -save-temps file.c

library files,
relocatable object files

17

Language Translators

Preprocessor: collects source programs,
expands macros.

Compiler: Translates source program into a low-
level assembly.

Assembler: Produces (relocatable) machine

code.

Linker: Reso
combines mu

ves external references statically,
tiple machine codes.

Loader: Loads executable codes into memory,

resolves external references dynamically.

18

Homework

e Exercises 1.1.1-5 from ALSU.

19

Character stream

v

Lexical Analyzer

v

Token stream

v

Syntax Analyzer

v

Syntax tree

v

Semantic Analyzer

\

Syntax tree

v

Intermediate
Code Generator

v

Intermediate representation

v

Machine-Independent
Code Optimizer

v

Intermediate representation

v

Code Generator

v

Target machine code

v

Machine-Dependent
Code Optimizer

v

Target machine code

Backend

Symbol
Table

Z=X+y*32
v

Lexical Analyzer

v

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Syntax Analyzer
A///:\\'\"\'L +
<id,1> P
<id,2> A =
<id,3> 32

v

Semantic Analyzer

_— - T ‘

A)
<id.2> mtti)float
*
A e
<id,3> 32

v

Intermediate
Code Generator

v

t1 =id3 * 32

t2 = inttofloat(tl)
t3=1d2 + t2

idl = t:i

Machine-Independent
Code Optimizer

v

t1 =id3 * 32
t2 = inttofloat(tl)
d1l =id2 + t2

v

Code Generator

LD RS, id3

Symbol Table

LD R3, id3

SHL R3, #5

ITOF R2, R3

LDF R1, id2
ADDF R1, R1, R2
STFidl, R1

}

MUL R3, R3, #32
ITOFR2,R3

LDF R1, id2

Machine-Dependent
Code Optimizer

ADDF R1, R1, R2
STFidl, R1

—

Symbol Table

e Records variable names

» Collects their attributes 1l z
- Type (int, char) . §
- Storage requirement ([30], 1)
- Type modifiers (const, static) Symbol Table

- Scope (global, static)

- Information about arguments (for functions)
 Efficient insertion, search (sometimes deletion)

- C.intx,y, z;

- Pascal: var x, vy, z: integer;

22

ldeal World

Fortran v ARM
C - X86
One Compiler
Java > pPowerPC
> N
Future Language Future Target

Reality

ARM
Fortran > f90
C > gcce X86
Java » javac PowerPC
Future Language » futurec e ? A Future Target

Reality getting worse

| don't have a compiler for this platform.
* My program compiles with an older version of gcc.

* My program compiles with the new version, but
does not run on this new platform.

* My program compiles with an older gcc if you
disable optimizations.

My program compiles if you have llvm 5.4, clang
5.5, gcc 5.0.1 on x86_64 with lonestar 1.2 or
above on Ubuntu 16 or below.

24

Evolution of Programming Languages

» First electronic computers in 1940s.

 Programmed in machine language (0 and 1).

- Move data from one location to another.
- Add the content of two reqgisters.
— Compare two values

e S | o W, e[)i“s, and ErorrP run.

25

Maggie and Buildings

;.ﬂ'-_

Punched Tape Punched Card

26
Image source: wikipedia

Punched Tape

IHPMENT CORP

bbbbbbb

ORATION + PROSRAM MEE

DATA PROCESSOR

MMMMMMMM

=

uuuuu

FORTRAN STRATEMENT I ¢

6660666
1111141
888828

999999
12345ls

STATEMENTS

-

nnannnnmunuunnnuonnsuoaausosaaacuaeumnﬁaennuuuuuauannannnoaunusuuooneuuﬂunanuanu

12345|6j7881001 lznulsmnmszozazznzqmazrzaznnm323334153537303540nazuunﬂsnuwwm52535455555:5!59506152uslssssannsqmnnlauﬁrsnnnm

HIIHIHHIIHIIIIHIIHIII‘HIIHHIHIIIIIIIHIHHIIIHIIIIHHHHIHHIHII

2222202(22222222222222222222222222222 /5 922222222222222222222222222)22222222
N _

33333(3(333333333 & A 3333333[33333333

SYSTEM | | m7o|15S

444844/4/4444084428 4444444[80844444
£ = ;

e 55 55lsl55555555555555555555555555555 “ayam o 555555555555555555555555555{5555555%

68BBBGEBBBBBEBEEEGBGGESBBE5658555565565555EEBEGEBEEEGGGEEEBGEEEBESSGBBSGBB
7777777777171711771777771777177717171117117?17??7777777777177771?177771777
88888888888833888888388888888888888838888!888888858888888888888888888838BB
993999939933999599599599999399999939999999!9599339959359999§9999999999999

b

§ IURBKIBBE

Punched Card

WNRBHABBONBTBINN 32333435353?3839‘0!!4243“456841&84!505{52535455&575‘59“8‘!51Bﬂﬁﬁﬂ“ﬂm?I RNIPBATRITIKBIIEG

27
Courtesy: Deepak Khemani

1DM 1435 PRINTED IN INDIA

Evolution of Programming Languages

 Assembly languages in early 1950s.
- Initially, only mnemonics for machine instructions
- Later, support for macros
* High-level languages in late 1950s.
— Fortran for scientific computing
- Cobol for data processing

- Lisp for symbolic computation
- These were so successful that they are still in use.

28

PL Classification

Thousands of languages

- Need to be categorized

Based on paradigm

- Imperative (c, c++, java), declarative (lisp, prolog)
Based on generation (inink of generation gap)

- First (machine), second (assembly), third (fortran,
cobol, lisp, c¢), fourth (sal, ps), fifth (prolog)

Others

- OO (c++, c#, Ruby), scripting (awk, |s, php,
python, ruby)

29

Compiler Writing

* Is challenging.
 Acomplileris a large program.

* A compliler must translate correctly potentially
Infinite set of programs that could be written In
the source language.

 The problem of generating the optimal target
code from a source program is undecidable.

— Heuristics and Trade-offs.

« Compilers is an area where
Theory meets Practice.

30

Static versus Dynamic

 Time
 Compilation
* Optimization
* Analysis

e Type
 Linking

e Scoping

31

Static versus Dynamic

* Time: compilation versus execution,
preprocessor versus compilation

« Compilation: gcc versus jit
* Optimization: without and with input
* Analysis: without and with environment
e Type:
- strongly typed versus scripting languages
— Inheritance and virtual functions

* Linking: .a versus .so
e Scoping

32

Static versus Dynamic

e Time
» Compilation inti=1;
e Optimization VOi?aIi(%tE‘(“%d",);
* Analysis z/oid main() {
+ Type 0
+ Linking }
e Scoping
Static Dynamic
1 2

Where do we use dynamic scoping?

Classwork

* Find the output of the
program under static
and dynamic scoping.

inta=1,b=2,y=3;
void gun(int x, int b) {

printf("%d %d\n", X, b);
}

void fun(int x, int y) {
printf("%d %d\n", X, y);
} gun(a, y);

void main() {
Inta = 3;
{
Int b = 4;
fun(a, b);
}
gun(a, b);
fun(a, b);
}

Parameter Passing

Call by value

— This happens in C
Call by reference
- Supported in C++, aliasing

Call by name
- Macros

Call by value-result
- Supported in ADA

Inti1=1;
Int *Ip = &i;
void f(int x) {
Inty;
X = 3;
p = &y;
X = [+X+2;
}

void main() {
f(*p);

printf(“%d”, 1);

}

Call by value: 1

Call by reference: 8
Call by name: 3

Call by value-result: 6

35

Classwork

» Create an example that does not use pointers
which produces different output under the four
parameter passing schemes.

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

