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Role

Read input characters
Group into words (lexemes)
Return sequence of tokens

Sometimes

- Eat-up whitespace

- Remove comments

- Maintain line number information



Token, Pattern, Lexeme

Token Pattern Sample lexeme

if Characters i, f if

comparison <= Qor>=or<or>or==orl= <= I=

identifier letter (letter + digit)* pi, score, D2
number Any numeric constant 3.14159, 0, 6.02e23
literal Anything but “, surrounded by *”  “core dumped”

The following classes cover most or all of the tokens
* One token for each keyword
* Tokens for the operators, individually or in classes
» Token for identifiers
* One or more tokens for constants

* One token each for punctuation symbols



Representing Patterns

« Keywords can be directly represented (break, int).
e And so do punctuation symbols ({, +).
* Others are finite, but too many!

- Numbers

- |ldentifiers

- They are better represented using a regular expression.
- [a-z][a-z0-9]*, [0-9]+



Classwork: Regex Recap

* |If L Is a set of letters (A-Z, a-z) and D Is a set
of digits (0-9),

— FInc
— FInC

- FIno

* Write regex for real numbers
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- Without eE, without +- In exponent

- Without eE, with +- in exponent
- With eE, with -+ in exponent (1.89E-4)




Classwork

* Write regex for strings over alphabet {a, b} that
start and end with a.

» Strings with third last letter as a.

» Strings with exactly three bs.

« Strings with even length.

« Homework
- Exercises 3.3.6 from ALSU.



Patterns

Example Lex

I* variables */

>fa-z] {
yylval = *yytext - 'a’;

return VARIABLE; <«

}
I* integers */
1095+ {

yylval = atoi(yytext); =

return INTEGER;
}

I* operators */
[-+()=/*\n] { return *yytext; }

I* skip whitespace */

[\t] ;

I* anything else is an error */
yyerror("invalid character");

Tokens

Lexemes
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lex
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y.tab.c = y.tab.h

gcc
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Lexer and parser are not separate binaries;

This is your compiler. . &.0Ut " they are part of the same executable.



Expression

C
\Cc
HSH

r{m, n}
rir2
r1|r2
()
rl/r2

Lex Regex

Matches
Character c
Character c literally
String s literally
Any character but newline
Beginning of a line
End of a line
Any of the characters in string s
Any one character not in string s
Zero or more strings matching r
One or more strings matching r
Zero oroner
Between m and n occurrences of r
An r1 followed by an r2
Anrloranr2
Same asr
rl when followed by r2

Example
a
\*
a.*b
Nabc
abc$
[abc]
[abc]
a*
at
a?
a{l1,5}
ab
alb
(a|b)
abc/123



Homework

* Write a lexer to identify special words in a text.
- Words

Ke Stewardesses: only one hand

- Words like typewriter. only one keyboard row

- Words

* Implement grep using lex with search pattern
as alphabetical text (no operators *, ?, ., etc.).

Ke skepticisms: alternate hands



Lexing and Context

« Language design should ensure that lexing
can be done without context.

* Your assignments and most languages need
context-insensitive lexing.

DOS5 1=1.25 DOS5 1=1,25

« “DO 5 I”Is an identifier in Fortran, as spaces are allowed in identifiers.

* Thus, first is an assignment, while second is a loop.

» Lexer doesn't know whether to consider the input “DO 5 1" as an identifier
or as a part of the loop, until parser informs it based on dot or comma.

« Alternatively, lexer may employ a lookahead.



| exical Errors

* |t Is often difficult to report errors for a lexer.
- fi (a == {(x)) ...

- Alexer doesn't know the context of fi. Hence it
cannot “see” the structure of the sentence —
structure is known only to the parser.

- 11 =2; OR fi(a == {(x));
e But some errors a lexer can catch.
- 23 = @a;

— if $x friendof anil ...

What should a lexer do on catching an error?




Error Handling

* Multiple options

- exit(1);

- Panic mode recovery: delete enough input to recognize a
token

— Delete one character from the input

- Insert a missing character into the remaining input

- Replace a character by another character

— Transpose two adjacent characters

 |n practice, most lexical errors involve a single character.

* Theoretical problem: Find the smallest number of
transformations (add, replace, delete) needed to convert the source
program into one that consists only of valid lexemes.

- Too expensive In practice to be worth the effort.



Homework

* Try exercise 3.1.2 from ALSU.



Input Buffering

* “We cannot know we were executing a finite
loop until we come out of the loop.”

* |n C, without reading the next character we
cannot determine a binary minus symbol (a-b).
¢ > = - -8, ...

¢ Sometimes we may have to look several
characters In future, called lookahead.

+ In the fortran example (DO 5 1), the lookahead
could be upto dot or comma.

 Reading character-by-character from disk Is
iInefficient. Hence buffering Is required.



Input Buffering

A block of characters is read from disk into a buffer.
e Lexer maintains two pointers:

- lexemeBegin
- forward
E = M* C* * 2 \f
I forward
lexemeBegin

What is the problem with such a scheme?




Input Buffering

e The issue arises when the lookahead Is
beyond the buffer.

 When you load the buffer, the previous content

IS overwritten!

Input read

Input to be

read
-

E = M* C*

*2\f

|

T

forward

lexemeBegin

How do we solve this problem?




Double Buffering

« Uses two (half) buffers.

« Assumes that the lookahead would not be
more than one buffer size.

Bufl Buf2

E = Nﬁ*c**Z\f

I forward

lexemeBegin




Transition Diagrams

e Step to be taken on each character can be
specified as a state transition diagram.

- Sometimes, action may be associated with a state.

return(comp, LE);

e return(comp, EQ):;

other e yyless(1); return(assign, ASSIGN);

v other :

return(comp, GE);

yyless(1); return(comp, GT);



Keywords vs. Identifiers

« Keywords may match identifier pattern
- Keywords: int, const, break, ...
- ldentifiers: (alpha| ) (alpha | num | )*
 |f unaddressed, may lead to strange errors.
- Install keywords a priori in the symbol table.
- Prioritize keywords

* |In lex, the rule for a keyword must precede
that of the identifier.

[a-z_A-Z][a-zA-Z_0-9]*  {return IDENT;} @ “break” { return BREAK; }

“break” { return BREAK; } [a-z_A-Z][a-zA-Z_0-9]* {return IDENT, }

Incorrect (lex may give warning) Correct




Special vs. General

* In general, a specialized pattern must precede the
general pattern (associativity).

» Lex also follows maximum substring matching rule
(precedence).

- Reordering the rules for < and <= would not affect the
functionality.

 Compare with rule specialization in Prolog.
» Classwork: Count number of he and she In a text.

» Classwork: Write lex rules to recognize quoted
strings in C.

- Try to recognize \” inside It.



he and she

she  ++s; she { ++s: REJECT;
he ++h: he { ++h;

Retries another rule

What if | want to count all possible substrings he?

In general, the action associated with a rule may
not be easy / modular to duplicate.

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5 he=10, she=5

:
J



By the way...

e Sometimes, you need not have a parser at all...

- You could define main in your lex file.
- Simply call yylex() from main.

- Compile using lex, then compile lex.yy.c using gcc
and execute a.out.



Lookahead

Mud Mud Ke Na Dekh... ‘

Duniya usi ki hal jo aage dekhe




Lookahead

* Lexer needs to look into the future to know
where it Is presently.

DO5 I1=1,25 DO /.* COMMA { return DO,}

 / signifies the lookahead symbol. The input is
read and matched, but is left unconsumed In
the current rule.

Corollary: DO loop index and increment must be on the same line
— no arbitrary whitespace allowed.



String Matching

» Lexical analyzer relies heavily on string
matching.

* Given a program text T (length n) and a
pattern string s (length m), we want to check if

s occursin T.

* A naive algorithm would try all positions of T to
check for s (complexity m*n).

T

n

S

[ Can we do better? ]




Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

abababaababbbabbababb
ababaa

|



Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

|

abababaababbbabbababb
ababaa

|



Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

abababaababbbabbababb
ababaa

|



Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

|

abababaababbbabbababb

TR

[ We need to handle the failure better. ]




Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

] T's current suffix
1=0

abababaababbbabbababb
ababaa

< >
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.



Where can we do better?

« T = abababaababbbabbababb
e S = ababaa

] T's current suffix
1=0

abababaababbbabbababb
ababaa

< >
S's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.

Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.



KMP

» Knuth-Morris-Pratt algorithm for string matching.

« Whenver there Is a mismatch, do not restart;
rather fail intelligently.

* We define a failure function for each position,
taking into account the suffix and the prefix.

* Note that the matched part of the large string T Is
essentially the pattern string s. Thus, failure
function can be computed simply using pattern s.

St
abababaababbbabbababb

ababpa



Failure i1s not final.

Failure function for ababaa

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1
seen a ab aba abab ababa @ ababaa

prefix € € a ab aba a

Algorithm given as Figure 3.19 in ALSU.




String matching with failure function

Text = alaz...am; pattern = b1b2"'bn (both indexed from 1)

s=0
for(i=1;1<=m; ++i) { = Go over Text
f(s>0&&a'!=Db_.)s=1(s) = Handle failure
I s+1 h t t h
i —— Character matc
if (a==b_,) ++s <
if (s ==n) return “yes” < Full match
return “no”
i 1 2 3 4 5 6
f(i) 0 0 1 2 3 1
seen a ab aba abab ababa ababaa
prefix € € a ab aba a

[ Find the flaw in the algorithm. ]




String matching with failure function

Text = alaz...am; pattern = b1b2"'bn (both indexed from 1)

s=0
for(i=1;1<=m; ++i) { = Go over Text
while (s>0&&a !=b_,)s=1(s) = Handle failure
if (a==Db +1) ++5 - Character match
if (s == n) return “yes” < Full match
}
return “no” I
abababaababbbabbababb
ababa?
I 1 2 3 4 5 6

£(i) 0 0 1 2 3 1




Classwork

Find failure function for pattern ababaa.
Test it on string abababbaa.

Fibonacci strings are defined as
-s,=Db,s,=a,s, =55, fork>2
- e.g., s, =ab, s, = aba, s, = abaab

Find the failure function for S,



Fibonacci Strings

-s,=b,s,=a,s,=s_s_ fork>2

- e.g., s, =ab, s, = aba, s, = abaab

Do not contain bb or aaa.
The words end Iin ba and ab alternatively.
Suppressing last two letters creates a palindrome.

Source: Wikipedia



KMP Generalization

« KMP can be used for keyworc

» Aho and Corasick generalized

matching.
KMP to

recognize any of a set of keywords in a text.

B . SRR -

e

i 1 2 3 4 5 6 7

fi) o 0o o 1 2 0 3




KMP Generalization

 When In state /, the failure function f(i) notes
the state corresponding to the longest proper
suffix that Is also a prefix of some keyword.

In state 7, character

s matches prefix of

the keyword she to
reach state 3.

i 1 2 3 4 5 6 7 8 9
fi) o 0 0 1 2 O

W

AN




Regex to DFA

oroach 1: Regex = NFA = DFA
oroach 2: Regex = DFA

The ideas would be helpful in parsing too.



Regex - NFA - DFA

Draw an NFA for *cpp

How does a machine draw an NFA for an arbitrary
regular expression such as ((aa)*ob(bb)*(aa)*)* ?



Regex - NFA - DFA

* For the sake of convenience, let's convert
*cpp Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?




Regex - NFA - DFA

* For the sake of convenience, let's convert
*cpp Into *abb and restrict to alphabet {a, b}.

* Thus, the regex is (a|b)*abb.
 How do we create an NFA for (a|b)*abb?




Regex - NFA - DFA

NFA state DFA state a b
{0,1, 2,4, 7} A B C State
{1,2,3,4,6,7,8) B B D %";‘)rl‘j'“on
{1,2,4,5,6, 7} C B C
{1,2,4,5,6,7, 9} D B E
{1,2,4,5,6,7, 10} E B C




Regex - NFA - DFA

NFA state DFA state a b
{0,1,2,4,7} A B C State
Transition
{1,2,3,4,6,7, 8} B B D Table
{1,2,4,5,6, 7} C B C
{1,2,4,5,6, 7, 9} D B E
{1,2,4,5,6, 7, 10} E B C
b
c.
fﬁ\
e p 2 DFA




Regex - NFA - DFA

NFA

DFA

DFA
non-minimal




Regex - NFA - DFA

(a|b)*abb Regex

non-minimal



Regex ~DFA

1. Construct a syntax tree for regex#.

2. Compute nullable, firstpos, lastpos, followpos.
3. Construct DFA using transition function.

4. Mark firstpos(root) as start state.

5. Mark states that contain position of # as
accepting states.




Regex ~DFA

 Regex Is (alb)*abb#.
» Construct a syntax tree for the regex.

o ¥y

b s

“ « Leaves correspond to operands.
* Interior nodes correspond to operators.
\ « Operands constitute strings.
1

@ 2 [ What does syntax tree for regex indicate? ]




Functions from Syntax Tree

* For a syntax tree node n

- nullable(n): true if n represents e.

- firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

- lastpos(n): set of positions that correspond to the
last symbol of strings Iin n's subtree.

- followpos(n): set of next possible positions from n
for valid strings.




nullable

 Regex Is (a|b)*abb#.




nullable

Node n nullable(n)

leaf labeled € true

leaf with position 1 false

or-node n=cl|c2 nullable(cl) or nullable(c2)
cat-node n =clc2 nullable(cl) and nullable(c2)
star-node n = c* true

Classwork: Write down the rules for firstpos(n).
* firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.



firstpos

Node n firstpos(n)

leaf labeled € {}

leaf with positioni  {i}

or-node n=cl|c2 firstpos(cl) U firstpos(c2)
cat-node n = clc2

star-node n = c* firstpos(c)



firstpos

Node n firstpos(n)

leaf labeled € {}

leaf with position | {i}

or-node n=cl | c2 firstpos(cl) U firstpos(c2)

cat-node n = clc2 If (nullable(cl)) firstpos(cl) U firstpos(c2)
else firstpos(cl)

star-node n = c* firstpos(c)

Classwork: Write down the rules for lastpos(n).



Node n

leaf labeled €

leaf with position |

or-node n =cl | c2
cat-node n = clc2

star-node n = c*

lastpos

lastpos(n)

{}

{i}

lastpos(cl) U lastpos(c2)

If (nullable(c?2)) lastpos(cl) U lastpos(c2)
else lastpos(c2)

lastpos(c)



firstpos lastpos

{1} {1} {2} {2}



followpos

 followpos(n): set of next possible positions
from n for valid strings.

- |If nI1s a cat-node with child nodes cl1 and c2, then
for each position in lastpos(c1), all positions In
firstpos(c2) follow.

- If n Is a star-node, then for each position Iin
lastpos(n), all positions in firstpos(n) follow.



followpos

If n is a cat-node with child nodes c1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

followpos(n)
{3}
{3}

{1} {1} {2} {2}



followpos

If n is a cat-node with child nodes c1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {1} {2} {2}

o o~ W N PP S



followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.

followpos(n)
{3}
{3}
{4}
{5}
{6}
{}

{1} {1} {2} {2}

o o~ W N PP S



followpos

If n Iis a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.

followpos(n)
{3, 1, 2}
{3, 1, 2}
{4}
{5}
{6}
{}

{1} {1} {2} {2}

o o~ W N PP S



Regex ~DFA

1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function (nex: slide).
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.




DFA Transitions

cre_ate unmark_ed state firstpos(root). ﬂﬁ,ﬁ&
while there exists unmarked state s {
mark s @ @@
for each input symbol a {
uf = U followpos(p) where pis in s labeled a
transition[s, a] = uf
If uf does not exist

unmark uf
} 123 > 1234



Final DFA

DFA

NFA

DFA




Regex ~DFA

1.Construct a syntax tree for regex#.
2.Compute nullable, firstpos, lastpos, followpos.
3.Construct DFA using transition function.
4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

Do this for (b|ab)*(aa|b)*.




In case you are wondering...

 \What to do with this DFA?

- Recognize strings during lexical analysis.
— Could be used in utilities such as grep.

— Could be used in regex libraries as supported In
php, python, perl, ....



Basic flex

Lexing Summary
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KMP String Matching
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