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Role

● Read input characters
● Group into words (lexemes)
● Return sequence of tokens
● Sometimes

– Eat-up whitespace

– Remove comments

– Maintain line number information



Token, Pattern, Lexeme

Token Pattern Sample lexeme

if Characters i, f if

comparison <= or >= or < or > or == or != <=, !=

identifier letter (letter + digit)* pi, score, D2

number Any numeric constant 3.14159, 0, 6.02e23

literal Anything but “, surrounded by “” “core dumped”

The following classes cover most or all of the tokens

● One token for each keyword

● Tokens for the operators, individually or in classes

● Token for identifiers

● One or more tokens for constants

● One token each for punctuation symbols



Representing Patterns

● Keywords can be directly represented (break, int).

● And so do punctuation symbols ({, +).

● Others are finite, but too many!

– Numbers

– Identifiers

– They are better represented using a regular expression. 

– [a-z][a-z0-9]*, [0-9]+



Classwork: Regex Recap

● If L is a set of letters (A-Z, a-z) and D is a set 
of digits (0-9),
– Find the size of the language LD.

– Find the size of the language L U D.

– Find the size of the language L4.

● Write regex for real numbers
– Without eE, without +- in exponent

– Without eE, with +- in exponent

– With eE, with -+ in exponent (1.89E-4)



Classwork

● Write regex for strings over alphabet {a, b} that 
start and end with a.

● Strings with third last letter as a.
● Strings with exactly three bs.
● Strings with even length.
● Homework

– Exercises 3.3.6 from ALSU.



Example Lex

    /* variables */
[a-z]       {
                 yylval = *yytext - 'a';
                 return VARIABLE;
            }

    /* integers */
[0-9]+    {
                yylval = atoi(yytext);
                return INTEGER;
            }

    /* operators */
[-+()=/*\n] { return *yytext; }

    /* skip whitespace */
[ \t]        ;

    /* anything else is an error */
.               yyerror("invalid character");

    /* variables */
[a-z]       {
                 yylval = *yytext - 'a';
                 return VARIABLE;
            }

    /* integers */
[0-9]+    {
                yylval = atoi(yytext);
                return INTEGER;
            }

    /* operators */
[-+()=/*\n] { return *yytext; }

    /* skip whitespace */
[ \t]        ;

    /* anything else is an error */
.               yyerror("invalid character");

Patterns

Tokens

Patterns

Lexemes



lexlex

a1.l

lex.yy.c

yaccyacc

a1.y

y.tab.c y.tab.h

a.out

gccgcc

Lexer and parser are not separate binaries; 
they are part of the same executable.This is your compiler.



Lex Regex
Expression Matches Example

c Character c a

\c Character c literally \*

“s” String s literally “**”

. Any character but newline a.*b

^ Beginning of a line ^abc

$ End of a line abc$

[s] Any of the characters in string s [abc]

[^s] Any one character not in string s [^abc]

r* Zero or more strings matching r a*

r+ One or more strings matching r a+

r? Zero or one r a?

r{m, n} Between m and n occurrences of r a{1,5}

r1r2 An r1 followed by an r2 ab

r1 | r2 An r1 or an r2 a | b

(r) Same as r (a | b)

r1/r2 r1 when followed by r2 abc/123



Homework

● Write a lexer to identify special words in a text.
– Words like stewardesses: only one hand

– Words like typewriter: only one keyboard row

– Words like skepticisms: alternate hands

● Implement grep using lex with search pattern 
as alphabetical text (no operators *, ?, ., etc.).



Lexing and Context

● Language design should ensure that lexing 
can be done without context.

● Your assignments and most languages need 
context-insensitive lexing.

DO 5  I = 1.25DO 5  I = 1.25 DO 5  I = 1,25DO 5  I = 1,25

● “DO 5 I” is an identifier in Fortran, as spaces are allowed in identifiers.
● Thus, first is an assignment, while second is a loop.
● Lexer doesn't know whether to consider the input “DO 5  I” as an identifier 

or as a part of the loop, until parser informs it based on dot or comma.
● Alternatively, lexer may employ a lookahead.



Lexical Errors

● It is often difficult to report errors for a lexer.

– fi (a == f(x)) ...
– A lexer doesn't know the context of fi. Hence it 

cannot “see” the structure of the sentence – 
structure is known only to the parser. 

– fi = 2; OR fi(a == f(x));
● But some errors a lexer can catch.

– 23 = @a;
– if $x friendof anil ...

What should a lexer do on catching an error?



Error Handling
● Multiple options

– exit(1);
– Panic mode recovery: delete enough input to recognize a 

token
– Delete one character from the input
– Insert a missing character into the remaining input
– Replace a character by another character
– Transpose two adjacent characters

● In practice, most lexical errors involve a single character.

● Theoretical problem: Find the smallest number of 
transformations (add, replace, delete) needed to convert the source 
program into one that consists only of valid lexemes. 

– Too expensive in practice to be worth the effort.



Homework

● Try exercise 3.1.2 from ALSU.



Input Buffering

● “We cannot know we were executing a finite 
loop until we come out of the loop.”

● In C, without reading the next character we 
cannot determine a binary minus symbol (a-b).
 ->, -=, --, -e, ...

 Sometimes we may have to look several 
characters in future, called lookahead.

 In the fortran example (DO 5 I), the lookahead 
could be upto dot or comma.

● Reading character-by-character from disk is 
inefficient. Hence buffering is required.



Input Buffering

● A block of characters is read from disk into a buffer.
● Lexer maintains two pointers: 

– lexemeBegin
– forward

E = M * C * * 2 \f

lexemeBegin

forward

What is the problem with such a scheme?What is the problem with such a scheme?



Input Buffering

● The issue arises when the lookahead is 
beyond the buffer.

● When you load the buffer, the previous content 
is overwritten!

E = M * C *

lexemeBegin

forward

How do we solve this problem?How do we solve this problem?

* 2 \f

Input read Input to be 
read



Double Buffering

● Uses two (half) buffers.
● Assumes that the lookahead would not be 

more than one buffer size.

E = M * C * * 2 \f

lexemeBegin

forward

Buf1 Buf2



Transition Diagrams

● Step to be taken on each character can be 
specified as a state transition diagram.
– Sometimes, action may be associated with a state.

0 1 2

3

8

9

7

4

< =

other

other

=

=

>
5=

6other

return(comp, LE);

yyless(1); return(comp, LT);

return(comp, EQ);

yyless(1); return(assign, ASSIGN);

return(comp, GE);

yyless(1); return(comp, GT);

...



Keywords vs. Identifiers

● Keywords may match identifier pattern
– Keywords: int, const, break, ...

– Identifiers: (alpha | _) (alpha | num | _)*

● If unaddressed, may lead to strange errors.
– Install keywords a priori in the symbol table.

– Prioritize keywords

● In lex, the rule for a keyword must precede 
that of the identifier.

Incorrect (lex may give warning) Correct



Special vs. General
● In general, a specialized pattern must precede the 

general pattern (associativity).
● Lex also follows maximum substring matching rule 

(precedence).
– Reordering the rules for < and <= would not affect the 

functionality.

● Compare with rule specialization in Prolog.
● Classwork: Count number of he and she in a text.
● Classwork: Write lex rules to recognize quoted 

strings in C. 
– Try to recognize \” inside it.



he and she

she ++s;

he ++h;

What if I want to count all possible substrings he?

In general, the action associated with a rule may 
not be easy / modular to duplicate.

Retries another rule

she { ++s; REJECT; }
he { ++h; }

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5 he=10, she=5



By the way...

● Sometimes, you need not have a parser at all...
– You could define main in your lex file.

– Simply call yylex() from main.

– Compile using lex, then compile lex.yy.c using  gcc 
and execute a.out.



Lookahead

Duniya usi ki hai jo aage dekhe



Lookahead

● Lexer needs to look into the future to know 
where it is presently.

● / signifies the lookahead symbol. The input is 
read and matched, but is left unconsumed in 
the current rule.

DO 5  I = 1,25DO 5  I = 1,25 DO / .* COMMA { return DO;}

Corollary: DO loop index and increment must be on the same line 
– no arbitrary whitespace allowed.



String Matching

● Lexical analyzer relies heavily on string 
matching.

● Given a program text T (length n) and a 
pattern string s (length m), we want to check if 
s occurs in T.

● A naive algorithm would try all positions of T to 
check for s (complexity m*n).

T

s

n

m



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 1



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 2

Match found



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0

Key observation: T's current suffix which is a proper prefix in s 
has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap, 
rather than restarting.

T's current suffix

s's proper prefix



Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0
T's current suffix

s's proper prefix

Key observation: T's current suffix which is a proper prefix in s 
has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap, 
rather than restarting.



KMP
● Knuth-Morris-Pratt algorithm for string matching.
● Whenver there is a mismatch, do not restart; 

rather fail intelligently.
● We define a failure function for each position, 

taking into account the suffix and the prefix.
● Note that the matched part of the large string T is 

essentially the pattern string s. Thus, failure 
function can be computed simply using pattern s.

abababaababbbabbababb
ababaa



Failure is not final.

seen a ab aba abab ababa ababaa

prefix ϵ ϵ a ab aba a

Failure function for ababaa

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1

Algorithm given as Figure 3.19 in ALSU.



String matching with failure function

Text = a
1
a

2
...a

m
; pattern = b

1
b

2
...b

n
 (both indexed from 1)

s = 0
for (i = 1; i <= m; ++i) {

if (s > 0 && a
i
 != b

s+1
) s = f(s)

if (a
i
 == b

s+1
) ++s

if (s == n) return “yes”
}
return “no”

Go over Text
Handle failure

Character match

Full match

seen a ab aba abab ababa ababaa

prefix ϵ ϵ a ab aba a

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1



String matching with failure function

Text = a
1
a

2
...a

m
; pattern = b

1
b

2
...b

n
 (both indexed from 1)

s = 0
for (i = 1; i <= m; ++i) {

while (s > 0 && a
i
 != b

s+1
) s = f(s)

if (a
i
 == b

s+1
) ++s

if (s == n) return “yes”
}
return “no”

Go over Text
Handle failure

Character match

Full match

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1

abababaababbbabbababb
ababaa



Classwork

● Find failure function for pattern ababaa.
● Test it on string abababbaa.

● Fibonacci strings are defined as

– s
1
 =  b, s

2
 = a, s

k
 = s

k-1
s

k-2
 for k > 2

– e.g., s
3
 = ab, s

4
 = aba, s

5
 = abaab

● Find the failure function for s
6
.



Fibonacci Strings

– s
1
 =  b, s

2
 = a, s

k
 = s

k-1
s

k-2
 for k > 2

– e.g., s
3
 = ab, s

4
 = aba, s

5
 = abaab

● Do not contain bb or aaa.
● The words end in ba and ab alternatively.
● Suppressing last two letters creates a palindrome.
● ...

Source: Wikipedia



KMP Generalization
● KMP can be used for keyword matching.
● Aho and Corasick generalized KMP to 

recognize any of a set of keywords in a text.

10 2 8

6

43

7

5

9h e r s

s

i

s

h e

Transition diagram for keywords he, she, his and hers.

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3



KMP Generalization
● When in state i, the failure function f(i) notes 

the state corresponding to the longest proper 
suffix that is also a prefix of some keyword.

10 2 8

6

43

7

5

9h e r s

s

i

s

h e

Transition diagram for keywords he, she, his and hers.

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3

In state 7, character
s matches prefix of
the keyword she to

reach state 3.

In state 7, character
s matches prefix of
the keyword she to

reach state 3.



Regex to DFA

● Approach 1: Regex       NFA        DFA
● Approach 2: Regex       DFA

– The ideas would be helpful in parsing too.



Regex     NFA     DFA

Draw an NFA for *cpp

0 1 2 3c p p

Ʃ

How does a machine draw an NFA for an arbitrary 
regular expression such as ((aa)*b(bb)*(aa)*)* ?

0 1 2 3c p p

p
c

p

cc



Regex     NFA     DFA

● For the sake of convenience, let's convert 
*cpp into *abb and restrict to alphabet {a, b}.

● Thus, the regex is (a|b)*abb.
● How do we create an NFA for (a|b)*abb?

a

b

ϵϵ ba b
ϵ

ϵ ϵ

ϵ

ϵ

ϵ



Regex     NFA     DFA

● For the sake of convenience, let's convert 
*cpp into *abb and restrict to alphabet {a, b}.

● Thus, the regex is (a|b)*abb.
● How do we create an NFA for (a|b)*abb?

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ



Regex     NFA     DFA

NFA state DFA state a b

{0, 1, 2, 4, 7} A B C

{1, 2, 3, 4, 6, 7, 8} B B D

{1, 2, 4, 5, 6, 7} C B C

{1, 2, 4, 5, 6, 7, 9} D B E

{1, 2, 4, 5, 6, 7, 10} E B C

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ

State 
Transition 
Table



Regex     NFA     DFA

NFA state DFA state a b

{0, 1, 2, 4, 7} A B C

{1, 2, 3, 4, 6, 7, 8} B B D

{1, 2, 4, 5, 6, 7} C B C

{1, 2, 4, 5, 6, 7, 9} D B E

{1, 2, 4, 5, 6, 7, 10} E B C

EB Dba b

C

A

b

b

a

a a

a

b

State 
Transition 
Table

DFA



Regex     NFA     DFA

EB Dba b

C

A

b

b

a

a a

a

b

DFA

0 1 2 3a b b

Ʃ

0 1 2 3a b b

b
a

b

aa

DFA

NFA

non-minimal



Regex     NFA     DFA

EB Dba b

C

A

b

b

a

a a

a

b

DFA

non-minimal

(a|b)*abb

NFA

Regex

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ



1. Construct a syntax tree for regex#.

2. Compute nullable, firstpos, lastpos, followpos.

3. Construct DFA using transition function.

4. Mark firstpos(root) as start state.

5. Mark states that contain position of # as  
accepting states.

Regex   DFA



a b

Regex   DFA

● Regex is (a|b)*abb#.
● Construct a syntax tree for the regex.

1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

● Leaves correspond to operands.
● Interior nodes correspond to operators.
● Operands constitute strings.



Functions from Syntax Tree

● For a syntax tree node n
– nullable(n): true if n represents ϵ. 

– firstpos(n): set of positions that correspond to the 
first symbol of strings in n's subtree.

– lastpos(n): set of positions that correspond to the 
last symbol of strings in n's subtree.

– followpos(n): set of next possible positions from n 
for valid strings.

2 3
10

a

4 5b
6 7ϵ0 1ϵ 8 9ba bϵ

ϵ ϵ

ϵ

ϵ

ϵ



a b

nullable

● Regex is (a|b)*abb#.

F F

F

F

F

a

b

#

*

|

.

.

.

b
F

.

F

T

F

F

F

F



nullable

Node n nullable(n)

leaf labeled ϵ true

leaf with position i false

or-node n = c1 | c2 nullable(c1) or nullable(c2)

cat-node n = c1c2 nullable(c1) and nullable(c2)

star-node n = c* true

Classwork: Write down the rules for firstpos(n).
● firstpos(n): set of positions that correspond to the 

first symbol of strings in n's subtree.



firstpos

Node n firstpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 firstpos(c1) U firstpos(c2)

cat-node n = c1c2

star-node n = c* firstpos(c)



firstpos

Node n firstpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 firstpos(c1) U firstpos(c2)

cat-node n = c1c2 if (nullable(c1)) firstpos(c1) U firstpos(c2) 
else firstpos(c1)

star-node n = c* firstpos(c)

Classwork: Write down the rules for lastpos(n).



lastpos

Node n lastpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 lastpos(c1) U lastpos(c2)

cat-node n = c1c2 if (nullable(c2)) lastpos(c1) U lastpos(c2) 
else lastpos(c2)

star-node n = c* lastpos(c)



firstpos   lastpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}



followpos

● followpos(n): set of next possible positions 
from n for valid strings.
– If n is a cat-node with child nodes c1 and c2, then 

for each position in lastpos(c1), all positions in 
firstpos(c2) follow.

– If n is a star-node, then for each position in 
lastpos(n), all positions in firstpos(n) follow.



followpos
If n is a cat-node with child nodes c1 and c2, then for each position in 
lastpos(c1), all positions in firstpos(c2) follow.

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}



followpos
If n is a cat-node with child nodes c1 and c2, then for each position in 
lastpos(c1), all positions in firstpos(c2) follow.

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}

3 {4}

4 {5}

5 {6}

6 { }



followpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}

3 {4}

4 {5}

5 {6}

6 { }

If n is a star-node, then for each position in lastpos(n), all positions in 
firstpos(n) follow.



followpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3, 1, 2}

2 {3, 1, 2}

3 {4}

4 {5}

5 {6}

6 { }

If n is a star-node, then for each position in lastpos(n), all positions in 
firstpos(n) follow.



1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.

3.Construct DFA using transition function (next slide).

4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as 
accepting states.

Regex   DFA



DFA Transitions

create unmarked state firstpos(root).
while there exists unmarked state s {
    mark s
    for each input symbol a {
        uf = U followpos(p) where p is in s labeled a
        transition[s, a] = uf
        if uf does not exist
            unmark uf
    }
}

.{6}{1,2,3}

123

a b
1 2

a
3

1234

b
a



Final DFA

123 1234

b

a
1235 1236

b

a

a

a

b b

0 1 2 3a b b

Ʃ

0 1 2 3a b b

b
a

b

aa

DFA

NFA

DFA



1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.

3.Construct DFA using transition function.

4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as 
accepting states.

Regex   DFA

Do this for (b|ab)*(aa|b)*.



In case you are wondering...

● What to do with this DFA?
– Recognize strings during lexical analysis.

– Could be used in utilities such as grep.

– Could be used in regex libraries as supported in 
php, python, perl, ....



Lexing Summary

● Basic lex
● Input Buffering
● KMP String Matching
● Regex → NFA → DFA
● Regex → DFA 

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate 
Code Generator

Intermediate 
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate 
representation

Machine-Indep. 
Code Optimizer

Machine-Indep. 
Code Optimizer

Code GeneratorCode Generator

Target machine code
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