
Lexing

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras

Jul 2018

2

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate
Code Generator

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

Role

● Read input characters
● Group into words (lexemes)
● Return sequence of tokens
● Sometimes

– Eat-up whitespace

– Remove comments

– Maintain line number information

Token, Pattern, Lexeme

Token Pattern Sample lexeme

if Characters i, f if

comparison <= or >= or < or > or == or != <=, !=

identifier letter (letter + digit)* pi, score, D2

number Any numeric constant 3.14159, 0, 6.02e23

literal Anything but “, surrounded by “” “core dumped”

The following classes cover most or all of the tokens

● One token for each keyword

● Tokens for the operators, individually or in classes

● Token for identifiers

● One or more tokens for constants

● One token each for punctuation symbols

Representing Patterns

● Keywords can be directly represented (break, int).

● And so do punctuation symbols ({, +).

● Others are finite, but too many!

– Numbers

– Identifiers

– They are better represented using a regular expression.

– [a-z][a-z0-9]*, [0-9]+

Classwork: Regex Recap

● If L is a set of letters (A-Z, a-z) and D is a set
of digits (0-9),
– Find the size of the language LD.

– Find the size of the language L U D.

– Find the size of the language L4.

● Write regex for real numbers
– Without eE, without +- in exponent

– Without eE, with +- in exponent

– With eE, with -+ in exponent (1.89E-4)

Classwork

● Write regex for strings over alphabet {a, b} that
start and end with a.

● Strings with third last letter as a.
● Strings with exactly three bs.
● Strings with even length.
● Homework

– Exercises 3.3.6 from ALSU.

Example Lex

 /* variables */
[a-z] {
 yylval = *yytext - 'a';
 return VARIABLE;
 }

 /* integers */
[0-9]+ {
 yylval = atoi(yytext);
 return INTEGER;
 }

 /* operators */
[-+()=/*\n] { return *yytext; }

 /* skip whitespace */
[\t] ;

 /* anything else is an error */
. yyerror("invalid character");

 /* variables */
[a-z] {
 yylval = *yytext - 'a';
 return VARIABLE;
 }

 /* integers */
[0-9]+ {
 yylval = atoi(yytext);
 return INTEGER;
 }

 /* operators */
[-+()=/*\n] { return *yytext; }

 /* skip whitespace */
[\t] ;

 /* anything else is an error */
. yyerror("invalid character");

Patterns

Tokens

Patterns

Lexemes

lexlex

a1.l

lex.yy.c

yaccyacc

a1.y

y.tab.c y.tab.h

a.out

gccgcc

Lexer and parser are not separate binaries;
they are part of the same executable.This is your compiler.

Lex Regex
Expression Matches Example

c Character c a

\c Character c literally *

“s” String s literally “**”

. Any character but newline a.*b

^ Beginning of a line ^abc

$ End of a line abc$

[s] Any of the characters in string s [abc]

[^s] Any one character not in string s [^abc]

r* Zero or more strings matching r a*

r+ One or more strings matching r a+

r? Zero or one r a?

r{m, n} Between m and n occurrences of r a{1,5}

r1r2 An r1 followed by an r2 ab

r1 | r2 An r1 or an r2 a | b

(r) Same as r (a | b)

r1/r2 r1 when followed by r2 abc/123

Homework

● Write a lexer to identify special words in a text.
– Words like stewardesses: only one hand

– Words like typewriter: only one keyboard row

– Words like skepticisms: alternate hands

● Implement grep using lex with search pattern
as alphabetical text (no operators *, ?, ., etc.).

Lexing and Context

● Language design should ensure that lexing
can be done without context.

● Your assignments and most languages need
context-insensitive lexing.

DO 5 I = 1.25DO 5 I = 1.25 DO 5 I = 1,25DO 5 I = 1,25

● “DO 5 I” is an identifier in Fortran, as spaces are allowed in identifiers.
● Thus, first is an assignment, while second is a loop.
● Lexer doesn't know whether to consider the input “DO 5 I” as an identifier

or as a part of the loop, until parser informs it based on dot or comma.
● Alternatively, lexer may employ a lookahead.

Lexical Errors

● It is often difficult to report errors for a lexer.

– fi (a == f(x)) ...
– A lexer doesn't know the context of fi. Hence it

cannot “see” the structure of the sentence –
structure is known only to the parser.

– fi = 2; OR fi(a == f(x));
● But some errors a lexer can catch.

– 23 = @a;
– if $x friendof anil ...

What should a lexer do on catching an error?

Error Handling
● Multiple options

– exit(1);
– Panic mode recovery: delete enough input to recognize a

token
– Delete one character from the input
– Insert a missing character into the remaining input
– Replace a character by another character
– Transpose two adjacent characters

● In practice, most lexical errors involve a single character.

● Theoretical problem: Find the smallest number of
transformations (add, replace, delete) needed to convert the source
program into one that consists only of valid lexemes.

– Too expensive in practice to be worth the effort.

Homework

● Try exercise 3.1.2 from ALSU.

Input Buffering

● “We cannot know we were executing a finite
loop until we come out of the loop.”

● In C, without reading the next character we
cannot determine a binary minus symbol (a-b).
 ->, -=, --, -e, ...

 Sometimes we may have to look several
characters in future, called lookahead.

 In the fortran example (DO 5 I), the lookahead
could be upto dot or comma.

● Reading character-by-character from disk is
inefficient. Hence buffering is required.

Input Buffering

● A block of characters is read from disk into a buffer.
● Lexer maintains two pointers:

– lexemeBegin
– forward

E = M * C * * 2 \f

lexemeBegin

forward

What is the problem with such a scheme?What is the problem with such a scheme?

Input Buffering

● The issue arises when the lookahead is
beyond the buffer.

● When you load the buffer, the previous content
is overwritten!

E = M * C *

lexemeBegin

forward

How do we solve this problem?How do we solve this problem?

* 2 \f

Input read Input to be
read

Double Buffering

● Uses two (half) buffers.
● Assumes that the lookahead would not be

more than one buffer size.

E = M * C * * 2 \f

lexemeBegin

forward

Buf1 Buf2

Transition Diagrams

● Step to be taken on each character can be
specified as a state transition diagram.
– Sometimes, action may be associated with a state.

0 1 2

3

8

9

7

4

< =

other

other

=

=

>
5=

6other

return(comp, LE);

yyless(1); return(comp, LT);

return(comp, EQ);

yyless(1); return(assign, ASSIGN);

return(comp, GE);

yyless(1); return(comp, GT);

...

Keywords vs. Identifiers

● Keywords may match identifier pattern
– Keywords: int, const, break, ...

– Identifiers: (alpha | _) (alpha | num | _)*

● If unaddressed, may lead to strange errors.
– Install keywords a priori in the symbol table.

– Prioritize keywords

● In lex, the rule for a keyword must precede
that of the identifier.

Incorrect (lex may give warning) Correct

Special vs. General
● In general, a specialized pattern must precede the

general pattern (associativity).
● Lex also follows maximum substring matching rule

(precedence).
– Reordering the rules for < and <= would not affect the

functionality.

● Compare with rule specialization in Prolog.
● Classwork: Count number of he and she in a text.
● Classwork: Write lex rules to recognize quoted

strings in C.
– Try to recognize \” inside it.

he and she

she ++s;

he ++h;

What if I want to count all possible substrings he?

In general, the action associated with a rule may
not be easy / modular to duplicate.

Retries another rule

she { ++s; REJECT; }
he { ++h; }

Input: he ahe he she she fsfds fsf fs sfhe he she she she

he=5, she=5 he=10, she=5

By the way...

● Sometimes, you need not have a parser at all...
– You could define main in your lex file.

– Simply call yylex() from main.

– Compile using lex, then compile lex.yy.c using gcc
and execute a.out.

Lookahead

Duniya usi ki hai jo aage dekhe

Lookahead

● Lexer needs to look into the future to know
where it is presently.

● / signifies the lookahead symbol. The input is
read and matched, but is left unconsumed in
the current rule.

DO 5 I = 1,25DO 5 I = 1,25 DO / .* COMMA { return DO;}

Corollary: DO loop index and increment must be on the same line
– no arbitrary whitespace allowed.

String Matching

● Lexical analyzer relies heavily on string
matching.

● Given a program text T (length n) and a
pattern string s (length m), we want to check if
s occurs in T.

● A naive algorithm would try all positions of T to
check for s (complexity m*n).

T

s

n

m

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 1

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 2

Match found

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.

T's current suffix

s's proper prefix

Where can we do better?

● T = abababaababbbabbababb
● s = ababaa

abababaababbbabbababb
ababaa

i = 0
T's current suffix

s's proper prefix

Key observation: T's current suffix which is a proper prefix in s
has the treasure for us.
Whenever there is a mismatch, we should utilize this overlap,
rather than restarting.

KMP
● Knuth-Morris-Pratt algorithm for string matching.
● Whenver there is a mismatch, do not restart;

rather fail intelligently.
● We define a failure function for each position,

taking into account the suffix and the prefix.
● Note that the matched part of the large string T is

essentially the pattern string s. Thus, failure
function can be computed simply using pattern s.

abababaababbbabbababb
ababaa

Failure is not final.

seen a ab aba abab ababa ababaa

prefix ϵ ϵ a ab aba a

Failure function for ababaa

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1

Algorithm given as Figure 3.19 in ALSU.

String matching with failure function

Text = a
1
a

2
...a

m
; pattern = b

1
b

2
...b

n
 (both indexed from 1)

s = 0
for (i = 1; i <= m; ++i) {

if (s > 0 && a
i
 != b

s+1
) s = f(s)

if (a
i
 == b

s+1
) ++s

if (s == n) return “yes”
}
return “no”

Go over Text
Handle failure

Character match

Full match

seen a ab aba abab ababa ababaa

prefix ϵ ϵ a ab aba a

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1

String matching with failure function

Text = a
1
a

2
...a

m
; pattern = b

1
b

2
...b

n
 (both indexed from 1)

s = 0
for (i = 1; i <= m; ++i) {

while (s > 0 && a
i
 != b

s+1
) s = f(s)

if (a
i
 == b

s+1
) ++s

if (s == n) return “yes”
}
return “no”

Go over Text
Handle failure

Character match

Full match

i 1 2 3 4 5 6

f(i) 0 0 1 2 3 1

abababaababbbabbababb
ababaa

Classwork

● Find failure function for pattern ababaa.
● Test it on string abababbaa.

● Fibonacci strings are defined as

– s
1
 = b, s

2
 = a, s

k
 = s

k-1
s

k-2
 for k > 2

– e.g., s
3
 = ab, s

4
 = aba, s

5
 = abaab

● Find the failure function for s
6
.

Fibonacci Strings

– s
1
 = b, s

2
 = a, s

k
 = s

k-1
s

k-2
 for k > 2

– e.g., s
3
 = ab, s

4
 = aba, s

5
 = abaab

● Do not contain bb or aaa.
● The words end in ba and ab alternatively.
● Suppressing last two letters creates a palindrome.
● ...

Source: Wikipedia

KMP Generalization
● KMP can be used for keyword matching.
● Aho and Corasick generalized KMP to

recognize any of a set of keywords in a text.

10 2 8

6

43

7

5

9h e r s

s

i

s

h e

Transition diagram for keywords he, she, his and hers.

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3

KMP Generalization
● When in state i, the failure function f(i) notes

the state corresponding to the longest proper
suffix that is also a prefix of some keyword.

10 2 8

6

43

7

5

9h e r s

s

i

s

h e

Transition diagram for keywords he, she, his and hers.

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3

In state 7, character
s matches prefix of
the keyword she to

reach state 3.

In state 7, character
s matches prefix of
the keyword she to

reach state 3.

Regex to DFA

● Approach 1: Regex NFA DFA
● Approach 2: Regex DFA

– The ideas would be helpful in parsing too.

Regex NFA DFA

Draw an NFA for *cpp

0 1 2 3c p p

Ʃ

How does a machine draw an NFA for an arbitrary
regular expression such as ((aa)*b(bb)*(aa)*)* ?

0 1 2 3c p p

p
c

p

cc

Regex NFA DFA

● For the sake of convenience, let's convert
*cpp into *abb and restrict to alphabet {a, b}.

● Thus, the regex is (a|b)*abb.
● How do we create an NFA for (a|b)*abb?

a

b

ϵϵ ba b
ϵ

ϵ ϵ

ϵ

ϵ

ϵ

Regex NFA DFA

● For the sake of convenience, let's convert
*cpp into *abb and restrict to alphabet {a, b}.

● Thus, the regex is (a|b)*abb.
● How do we create an NFA for (a|b)*abb?

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ

Regex NFA DFA

NFA state DFA state a b

{0, 1, 2, 4, 7} A B C

{1, 2, 3, 4, 6, 7, 8} B B D

{1, 2, 4, 5, 6, 7} C B C

{1, 2, 4, 5, 6, 7, 9} D B E

{1, 2, 4, 5, 6, 7, 10} E B C

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ

State
Transition
Table

Regex NFA DFA

NFA state DFA state a b

{0, 1, 2, 4, 7} A B C

{1, 2, 3, 4, 6, 7, 8} B B D

{1, 2, 4, 5, 6, 7} C B C

{1, 2, 4, 5, 6, 7, 9} D B E

{1, 2, 4, 5, 6, 7, 10} E B C

EB Dba b

C

A

b

b

a

a a

a

b

State
Transition
Table

DFA

Regex NFA DFA

EB Dba b

C

A

b

b

a

a a

a

b

DFA

0 1 2 3a b b

Ʃ

0 1 2 3a b b

b
a

b

aa

DFA

NFA

non-minimal

Regex NFA DFA

EB Dba b

C

A

b

b

a

a a

a

b

DFA

non-minimal

(a|b)*abb

NFA

Regex

2 3

10

a

4 5b
6 7ϵ0 1ϵ 8 9ba b

ϵ

ϵ ϵ

ϵ

ϵ

ϵ

1. Construct a syntax tree for regex#.

2. Compute nullable, firstpos, lastpos, followpos.

3. Construct DFA using transition function.

4. Mark firstpos(root) as start state.

5. Mark states that contain position of # as
accepting states.

Regex DFA

a b

Regex DFA

● Regex is (a|b)*abb#.
● Construct a syntax tree for the regex.

1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

● Leaves correspond to operands.
● Interior nodes correspond to operators.
● Operands constitute strings.

Functions from Syntax Tree

● For a syntax tree node n
– nullable(n): true if n represents ϵ.

– firstpos(n): set of positions that correspond to the
first symbol of strings in n's subtree.

– lastpos(n): set of positions that correspond to the
last symbol of strings in n's subtree.

– followpos(n): set of next possible positions from n
for valid strings.

2 3
10

a

4 5b
6 7ϵ0 1ϵ 8 9ba bϵ

ϵ ϵ

ϵ

ϵ

ϵ

a b

nullable

● Regex is (a|b)*abb#.

F F

F

F

F

a

b

#

*

|

.

.

.

b
F

.

F

T

F

F

F

F

nullable

Node n nullable(n)

leaf labeled ϵ true

leaf with position i false

or-node n = c1 | c2 nullable(c1) or nullable(c2)

cat-node n = c1c2 nullable(c1) and nullable(c2)

star-node n = c* true

Classwork: Write down the rules for firstpos(n).
● firstpos(n): set of positions that correspond to the

first symbol of strings in n's subtree.

firstpos

Node n firstpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 firstpos(c1) U firstpos(c2)

cat-node n = c1c2

star-node n = c* firstpos(c)

firstpos

Node n firstpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 firstpos(c1) U firstpos(c2)

cat-node n = c1c2 if (nullable(c1)) firstpos(c1) U firstpos(c2)
else firstpos(c1)

star-node n = c* firstpos(c)

Classwork: Write down the rules for lastpos(n).

lastpos

Node n lastpos(n)

leaf labeled ϵ { }

leaf with position i {i}

or-node n = c1 | c2 lastpos(c1) U lastpos(c2)

cat-node n = c1c2 if (nullable(c2)) lastpos(c1) U lastpos(c2)
else lastpos(c2)

star-node n = c* lastpos(c)

firstpos lastpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

followpos

● followpos(n): set of next possible positions
from n for valid strings.
– If n is a cat-node with child nodes c1 and c2, then

for each position in lastpos(c1), all positions in
firstpos(c2) follow.

– If n is a star-node, then for each position in
lastpos(n), all positions in firstpos(n) follow.

followpos
If n is a cat-node with child nodes c1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}

followpos
If n is a cat-node with child nodes c1 and c2, then for each position in
lastpos(c1), all positions in firstpos(c2) follow.

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}

3 {4}

4 {5}

5 {6}

6 { }

followpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3}

2 {3}

3 {4}

4 {5}

5 {6}

6 { }

If n is a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.

followpos

a b1 2

3

4

5

a

b

#

*

|

.

.

.

b
6

.

{1} {1} {2} {2}

{3} {3}

{4} {4}

{5} {5}

{6} {6}

{1,2} {1,2}

{1,2} {1,2}

{1,2,3} {3}

{1,2,3} {4}

{1,2,3} {5}

{6}{1,2,3}

n followpos(n)

1 {3, 1, 2}

2 {3, 1, 2}

3 {4}

4 {5}

5 {6}

6 { }

If n is a star-node, then for each position in lastpos(n), all positions in
firstpos(n) follow.

1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.

3.Construct DFA using transition function (next slide).

4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

Regex DFA

DFA Transitions

create unmarked state firstpos(root).
while there exists unmarked state s {
 mark s
 for each input symbol a {
 uf = U followpos(p) where p is in s labeled a
 transition[s, a] = uf
 if uf does not exist
 unmark uf
 }
}

.{6}{1,2,3}

123

a b
1 2

a
3

1234

b
a

Final DFA

123 1234

b

a
1235 1236

b

a

a

a

b b

0 1 2 3a b b

Ʃ

0 1 2 3a b b

b
a

b

aa

DFA

NFA

DFA

1.Construct a syntax tree for regex#.

2.Compute nullable, firstpos, lastpos, followpos.

3.Construct DFA using transition function.

4.Mark firstpos(root) as start state.

5.Mark states that contain position of # as
accepting states.

Regex DFA

Do this for (b|ab)*(aa|b)*.

In case you are wondering...

● What to do with this DFA?
– Recognize strings during lexical analysis.

– Could be used in utilities such as grep.

– Could be used in regex libraries as supported in
php, python, perl,

Lexing Summary

● Basic lex
● Input Buffering
● KMP String Matching
● Regex → NFA → DFA
● Regex → DFA

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate
Code Generator

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate
representation

Machine-Indep.
Code Optimizer

Machine-Indep.
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate
representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

