Parsing

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
July 2018

Character stream

J v

Machine-Independent

Lexical Analyzer Code Optimizer

v v

Token stream Intermediate representation
Syntax Analyzer Code Generator
Syntax tree Target machine code

v v

Machine-Dependent

Semantic Analyzer Code Optimizer

v v

Syntax tree Target machine code

v

Intermediate

Code Generator Symbol

Table

v

Intermediate representation

Jobs of a Parser

Read specification given by the language
Implementor.

Get help from lexer to collect tokens.

Check if the sequence of tokens matches the
specification.

Declare successful program structure or report
errors in a useful manner.

Later: Also identify some semantic errors.

Parsing Specification

* |n general, one can write a string manipulation
program to recognize program structures.

- eg., lLab1l

 However, the string manipulation / recognition can
be generated from a higher level description.

* We use Context-Free Grammars to specify.

- Precise, easy to understand + modify, correct
translation + error detection, incremental language
development.

CFG

. list - list + digit
1. A set of terminals called tokens. et — |i5t_digit

list — digit
digit»>0[1]...|8]

A

« Terminals are elementary symbols
of the parsing language.

2. A set of non-terminals called variables.

« A non-terminal represents a set of strings of
terminals.

3. Aset of
- They define the syntactic rules.
4. A start symbol designated by a non-terminal.

Productions, Derivations and Languages

list = list + digit

list — list — digit

list — digit
digt—=0|1]...|18]|9

]

left or right or
head body

* WWe say a production is for a non-terminal if the non-terminal is the
head of the production (first production is for list).

o A grammar derives strings by beginning with the start symbol and
repeatedly replacing a non-terminal by the body of a production for
that non-terminal (the grammar derives 3+1-0+8-2+0+1+5).

* The terminal strings that can be derived from the start symbol form
the language defined by the grammar (O, 1, ..., 9, 0+0, 0-0, ... or infix
expressions on digits involving plus and minus).

Parse Tree |

VAN
. —) @
list — list + digit .
list — list — digit - ®
list — digit N
digit»>0|1]..|18]9 4 @

3+1-0+8-2+0+1+5
e A parse tree Is a pictorial representation of operator evaluation.

Precedence

What if both the operators are the same?

* # y @ Z Z#XL ’;@\
- How does a compiler know whether X }@)\ ﬁ @
to execute # first or @ first? Y N X

- Think about x+y*z VS. x/y-z

— A similar situation arises in if-if-else.
 Humans and compilers may “see” different parse trees.

#define MULT (x) x*x
int main() {
printf(“%d”, MULT(3 + 1));

3)#

<~
(v

Same Precedence

X+Y+2 Order of evaluation
doesn't matter.

X-y-2 Order of evaluation
matters.

ZN

®

N,
<
N

» @

Associativity

» Associativity decides the order In

which multiple instances of same- ~
priority operations are executed. X ;
- Binary minus Iis left associative, » @

hence Xx-y-z is equal to (x-y)-z.

Homework: Write a C program to find out that assignment
operator = is right-associative.

Grammar for Expressions

Why Is the grammar of expressions written this
way?

E-E+T|E-T|T
T-T*F|T/F|F
F — (E) | number | name

Ambiguous / Unambiguous Grammars

Grammar for simple arithmetic expressions

E->E+E|E*E|E-E|E/E|(E)|number|name

E-E+E|E-E]|T
T-T*T|TI/T|F
F — (E) | number | name

E-E+T|E-T|T
T-T*F|T/F|F
F — (E) | number | name

Precedence not encoded
at+tb*c

Associativity not encoded
a—b-c

Unambiguous grammar

Homework: Find out the issue with the final grammar.

Ambiguous / Unambiguous Grammars

Grammar for simple arithmetic expressions

E->E+E|E*E|E-E|E/E|(E)|number|name

E-E+E|E-E]|T
T->-T*T|TI/IT|F
F — (E) | number | name

E-E+T|E-T|T
T->-T*F|T/F|F
F — (E) | number | name

E-T+E|T-E|T
T—- F*T|F/T|F
F — (E) | number | name

Precedence not encoded
at+tb*c

Associativity not encoded
a—b-c

Unambiguous grammar
Left recursive, not suitable
for top-down parsing

Non-left-recursive grammar
But associativity is broken.
alb/c

Ambiguous / Unambiguous Grammars

Grammar for simple arithmetic expressions

E->E+E|E*E|E-E|E/E|(E)|number|name

E-E+E|E-E]|T
T->-T*T|TI/IT|F
F — (E) | number | name

E-E+T|E-T|T
T->-T*F|T/F|F
F — (E) | number | name

E - TE'
E'-+TE'|-TE'| €
FT
*FT'|/FT'| €

(E) | number | name

TI

Ll

Precedence not encoded
at+tb*c

Associativity not encoded
a—b-c

Unambiguous grammar
Left recursive, not suitable
for top-down parsing

Non-left-recursive grammar
Associativity is retained.
Can be used for top-down
parsing

We will see a generalized procedure to convert

|-recursive grammar to r-recursive after 10 slides.

Sentential Forms

Example grammar &~ E*EIETEI=EIE)[id
- (id + id)

Sentence / string

Derivation E=-E=-(E)=-(E+E)=-(d+E) = - (id + id)

Sentential forms & & B ..-(d+id
- At each derivation step we make two choices

- One, which non-terminal to replace

- Two, which production to pick with that non-
terminal as the head

E=-E=-(E)=-(E+E)=-(E+id) = - (id +id)

 Would it be nice If a parser doesn't have this confusion?

Leftmost, Rightmost

* Two special ways to choose the non-terminal

- Leftmost: the leftmost non-terminal is replaced.

Es-E=-(E)>-(E+E)= - (id+E) = - (id + id)

- Rightmost: ...

E=-E=-(E)=-(E+E)=-(E+id) = - (id +id)

 Thus, we can talk about left-sentential forms
and right-sentential forms.

» Rightmost derivations are sometimes called
canonical derivations.

Parse Trees

* Two special ways to choose the non-terminal

- Leftmost: the leftmost non-terminal is replaced.

E=-E=-(E)=-(E+E)=-(d+E)=-(d +id)

® — =) ® = — —
P o) @@@ @‘@*@ S

tby oby Ceh OBy

fhb o dbb

Parse Trees

* Glven a parse tree, It Is unclear which order
was used to derive lIt.

- Thus, a parse tree Is a pictorial representation of
future operator order.
- It is oblivious to a specific derivation order.

* Every parse tree has a unique leftmost ég
derivation and a unique rightmost derivation %E
|

+

>
g

- We will use them in uniquely identifying
a parse tree.

»

som
aeme

Context-Free vs Regular

* \We can write grammars for regular expressions.

— Consider our regular expression (a|b)*abb.
- We can write a grammar for It.

A - aA|bA|aB

B - bC
C - bD
D - €

- This grammar can be mechanically generated from
an NFA.

Classwork

« Write a CFG for postfix expressions {a,+,-,*/}.
- Give the leftmost derivation for aa-aa*/a-+.
- Is your grammar ambiguous or unambiguous?

* What is this language: S - aSbS |bSaS | € ?
- Draw a parse tree for aabbab.
- Give the rightmost derivation for aabbab.

e Palindromes, unequal number of as and bs, no
substring 011.

 Homework: Section 4.2.8.

Error Recovery, viable prefix

Panic-mode recovery

- Discard input symbols until synchronizing tokens e.g. } or ;.
- Does not result in infinite loop.

Phrase-level recovery

- Local correction on the remaining input

- e.g., replace comma by semicolon, delete a char

Error productions

- Augment grammar with error productions by anticipating
common errors [I differ in opinion]

Global correction

- Minimal changes for least-cost input correction

- Mainly of theoretical interest

- Useful to gauge efficacy of an error-recovery technigue

Parsing and Context

* Most languages have keywords reserved.
 PL/I doesn't have reserved keywords.

If iIf = else then
then = else
else
then = if + else

* Meaning is derived from the context in which a word is used.

* Needs support from lexer — it would return token IDENT for all words or
IDENTKEYWORD.

 Itis believed that PL/I syntax is notoriously difficult to parse.

If-else Ambiqguity

stmt — if expr then stmt
| if expr then stmt else stmt
| otherstmt

There are two parse trees for the following string
if E1 then if E2 then S1 else S2

stmt ~ stmt
if _ expr then stmt if expr_ then' Stmt = else ' sSimt -
EL ¢ expr then sStmt else ~stmt = EL if expr then stmt S2

| | | | |

E2
E2 Ss1 S2 S1

If-else Ambiqguity

1.0ne way to resolve the ambiguity is to make
yacc decide the precedence: shift over reduce.

- Recall lex prioritizing longer match over shorter.

2.Second way Is to change the grammatr itself to
not have any ambiguity.

stmt — matched_stmt | open_stmt
matched _stmt — if expr then matched_stmt else matched stmt
| otherstmt
open_stmt - if expr then stmt
| If expr then matched_stmt else open_stmt

If-else Ambiqguity

T

if © expr then' stmt

| N

=1 if expr then' Stmt else ¢ stmt
h | |

E2 S1 S2

If E1 then If E2 then S1 else S2

unambiguous

stmt -> matched_stmt | open_stmt
matched_stmt -> if expr then matched_stmt else matched stmt
| otherstmt
open_stmt -> if expr then stmt
| If expr then matched_stmt else open_stmt

Classwork: Write an unambiguous grammar for associating else with the first if,

Left Recursion

A grammar is left-recursive If it has a non-terminal
A such that there Is a derivation A =* Aa for some
string a.

* Top-down parsing methods cannot handle left-
recursive grammars.

c A- A0 |P (e.g., stmtlist — stmtlist stmt | stmt)
A
A/ / Can we eliminate left recursion?
AT
/
A
|
B a 01 a
<

Left Recursion

A grammar is left-recursive If it has a non-terminal
A such that there Is a derivation A =* Aa for some
string a.

* Top-down parsing methods cannot handle left-
recursive grammars.

° A N A(x | B Right recursive.

A ® > \>
/

YV

Left Recursion

A — BB

B ™ aB|E€

Right recursive.

A

A 7 Aa |
A
A/"'
A/
/
A
|
B a 01 a
<

V o

Left Recursion

A — (BB
A = Aa|B

B ™ aB|E€

In general

A-BB|BB]|..|BB

Algorithm for
Eliminating Left Recursion

arrange non-terminals in some order Al, ..., An.

fori=1ton{
forj=1toi1-1{
replace A, = AabyA — Ba|..[Ba
where A, = a, | ... | o« are current A productions
}

eliminate immediate left recursion among Ai productions.

}

Classwork

 Remove left recursion from the following

grammalr.

E— E+T|T
T = T*F|F

F — (E) | name | number

E— TE
E'— +TE'|€
T FT
T = *FT'| €

F — (E) | name | number

Ambiguous / Unambiguous Grammars

Grammar for simple arithmetic expressions

E->E+E|E*E|E-E|E/E|(E)|number|name

E-E+E|E-E]|T
T->-T*T|TI/IT|F
F — (E) | number | name

E-E+T|E-T|T
T->-T*F|T/F|F
F — (E) | number | name

E - TE'
E'-+TE'|-TE'| €
FT
*FT'|/FT'| €

(E) | number | name

TI

Ll

Precedence not encoded
at+tb*c

Associativity not encoded
a—b-c

Unambiguous grammar
Left recursive, not suitable
for top-down parsing

Non-left-recursive grammar
Can be used for top-down
parsing

Classwork

 Remove left recursion from the following grammar.

l

S — Aalb Aalb

>
l

A — Ac|Sd|€E Ac|Aad|bd| €

|
S ™ Aalb

A — bdA|A
A" 7™ cA'|ladA'| €

Left Factoring

* When the choice between two alternative
productions iIs unclear, rewrite the grammar to
defer the decision until enough input is seen.

— Useful for predictive or top-down parsing.
c A a3, |af,
- Here, common prefix a can be left factored.
-A- oA
- A" = B[B,

« Left factoring doesn't change ambiguity. e.g. in
dangling if-else.

Non-Context-Free
Language Constructs

 WCWIs an example of a language that is not CF.

* In the context of C, what does this language
iIndicate?

* |t iIndicates that declarations of variables (w)
followed by arbitrary program text (¢), and then
use of the declared variable (w) cannot be
specified in general by a CFG.

« Additional rules or passes (semantic phase) are
required to identify declare-before-use cases.

What does the language a"b"c"d" indicate in C?

Top-Down Parsing

Constructs parse-tree for the input string,
starting from root and creating nodes.

~ollows preorder (depth-first).

~Inds leftmost derivation.

General method: recursive descent.

- Backtracks

Special case: Predictive (also called LL(k))

- Does not backtrack
- Fixed lookahead

Recursive Descent Parsing
void AQ { N

saved = current input m§ition;
for each A-production A - X X, X, ... X {

N

for (=110 k) .

Iif (X.I1s a nonterminal) call X();
else if (X == next symbol) advance-input();

else { yyless(); break; }

}

if (A matched) break;

else current input position = saved;
}

} “« Backtracking is rarely needed to parse PL constructs.
~» Sometimes necessary in NLP, but is very inefficient. Tabular methods are
~used to avoid repeated input processing.

Recursive Descent Parsing

void A() {
saved = current input position;

for each A-productionA - X X X,.. X { A — ab]ja

for(i=100{

Iif (X. Is a nonterminal) call X();
else if (X == next symbol) advance-input()'

else { yyless(); break; } cad Cad>
} oe o = 9

¥ A »
if (A matched) break:; ¢ @ d ch%d ¢ é\?
else current input position = saved; a b a

}
}

S — cAd

Classwork: Generate Parse Tree

FIRST and FOLLOW

* Top-down (as well as bottom-up) parsing Is
alded by FIRST and FOLLOW sets.

- Recall firstpos, followpos from lexing.

* First and Follow allow a parser to choose which
production to apply, based on lookahead.

* Follow can be used In error recovery.

- While matching a production for A - a, if the input
doesn't match FIRST(a), use FOLLOW(A) as the
synchronizing token.

FIRST and FOLLOW

 FIRST(a) Is the set of terminals that begin strings
derived from a, where o is any string of symbols

- Ifa=*€, € is also in FIRST(a)

- IfA - a | B and FIRST(a) and FIRST(B) are disjoint,
then the lookahead decides the production to be applied.

« FOLLOW(A) is the set of terminals that can appear
Immediately to the right of A in some sentential
form, where A Is a nonterminal.

- If S =* aAa3, then FOLLOW(A) contains a.

- If S =* aABaP and B =* € then FOLLOW(A) contains a.

- If S =* aA, then FOLLOW(A) contains FOLLOW(S).
FOLLOW(S) always contains $.

FIRST and FOLLOW

E ~-TFE

. First(E) ={(, id} * Follow(E)={),$} E-+Tele

T >FT

« First(T) = {(, id} + Follow(T)={+,),$} T ‘FTle

» First(F) = {(, id} - Follow(F) = {+, *,),$}F o
» First(E') = {+, €} « Follow(E') ={), $}
e First(T") = {*, e} « Follow(T) ={+,), $}

First and Follow

Non-terminal
E

E
T
T

F

FIRST
(, id
+, €
(, id
*, €
(, id

FOLLOW
), $
), $

+,), %
+,), $

+ %), $

E - TFE
E'—> +TE'| €
T-FT

T ->*FT|€
F - (BE)]|id

Non-
terminal

E

E
T
T
F

Predictive Parsing Table

id

Non-terminal
E

E
T
T

F

FIRST
(, id
+, €
(, id
* €
(, id

FOLLOW

), $
), $

+,),$
+,),$

+ %), $

E'> +TE'|€

T - *FT|€
F - (E)]id

Predictive Parsing Table

Non- id + L () $
terminal
E E~TE E—~TE
E' E'— +TE' E' — E EI — E
! T—FT T—FT
b T > € T-*FT T>€ T — ¢
i F— id F — (E)
Non-terminal FIRST FOLLOW
E (,id), $ E - TFE Let's run it on
E'->+TE'|€e - id+id
= + € b3 T >FT * +id
T (,ld +’)’$ T'_,*FTule e d+
T e +), 8 F - (B)|id

F (, id +, %), 9

Predictive Parsing Table

for each production A - «
for each terminal a in FIRST()
Table[A][a].add(A-)
If € I1sIn FIRST(a) then
for each terminal b in FOLLOW(A)
Table[A][b]l.add(A—-)
If $isin FOLLOW(A) then
Table[A][$].add(A-)

- Process terminals

using FIRST

- Process terminals

on nullable using
FOLLOW

Process $ on

- nullable using

FOLLOW

LL(1) Grammars

Predictive parsers needing no backtracking
can be constructed for LL(1) grammars.

- First L Is left-to-right input scanning.

- Second L is leftmost derivation.

- 1 is the maximum lookahead.

- In general, LL(k) grammars.

- LL(1) covers most programming constructs.
- No left-recursive grammar can be LL(1).

- No ambiguous grammar can be LL(1).

Where would you use RR grammar?

LL(1) Grammars

 Agrammar is LL(1) iff whenever A — a | B are
two distinct productions, the following hold:

- FIRST(a) and FIRST(B) are disjoint sets.

- If € is in FIRST(B) then FIRST(a) and
~OLLOW(A) are disjoint sets, and likewise If € Is
in FIRST(a) then FIRST(B) and FOLLOW(A) are
disjoint sets.

Predictive Parsing Table

Non- id + * (

terminal

Each entry contains a single production.

Empty entries correspond to error states.

For LL(1) grammar, each entry uniquely identifies an entry or signals an error.

If there are multiple productions in an entry, then that grammar is not LL(1).
However, it does not guarantee that the language produced is not LL(1). We may
be able to transform the grammar into an LL(1) grammar (by eliminating left-
recursion and by left-factoring).

There exist languages for which no LL(1) grammar exists.

Classwork: Parsing Table

Non- | t a e b $
terminal
S S > iEtSS S - a
S S'—-eS
S' — €
E E—b

Non-terminal FIRST FOLLOW

S : $ S - IEtSS'|a
hd & S - eS|e

S' e’e e,$ E —>b

E b t

What is this grammar?

Need for Beautification

 Due to a human programmer, sometimes
beautification Is essential in the language
(well, the language Itself Is due to a human).

- e.g., It suffices for correct parsing not to provide an
opening parenthesis, but it doesn't “look” good.

No opening parenthesis

fori=0: i< 10;: ++i) forexpr: FOIIB:\;oeC)I((pr; expr; expr’)

ali+1] = ali];

Example YACC grammar

Homework

* Consider a finite domain (one..twenty), and
four operators plus, minus, mult, div. Write a
parser to parse the following.

for numl in {one..twenty} {
for num2 in {one..twenty} {
for num3 in {one..twenty} {
for num4 in {one..twenty} {
for opl in {plus, minus, mult, div}{
for op2 in {plus, minus, mult, div} {
If num1 opl num2 == num3 op2 num4 {
print num1 opl num2 “==" num3 op2 num4,

}

}
I A

 Change the meaning of == from numeric equality
to anagram / shuffle, and see the output.

Bottom-Up Parsing

* Parse tree constructed bottom-up

- In reality, an explicit tree may not be constructed.
- It is also called a reduction.

— At each reduction step, a specific substring
matching the body of a production is replaced by
the nonterminal at the head of the production.

- id*id i@ id @ 'd:® @ = @ = @ | sReeéjuueCrgi((:)Q

|d @ @v) |::I @@ @

ivd ivd @;) I:ZI @ @

v

id @ d

|
\J

id

Bottom-Up Parsing

e A reduction Is the reverse of a derivation.

* Therefore, the goal of bottom-up parsing is to
construct a derivation in reverse.

Cid*id o (F)*id M*id (TM«F) 0 T 0 E)

Bottom-Up Parsing

e A reduction Is the reverse of a derivation.

* Therefore, the goal of bottom-up parsing is to
construct a derivation in reverse.

Cid*id 0 F)rid o Mrid TF) T 0 B

* This, In fact, Is a rightmost derivation.

* Thus, scan the input from Left, and construct a
Rightmost derivation in reverse.

Handle Pruning

* A handle is a substring that matches the body of a production.
* Reduction of a handle represents one step in the reverse of a

rightmost derivation.

id * id F)*id © (T)*id

Right Sentential Form
id, *id,
F*id,
T*id,
T*F
T

We say a handle rather than the handle because ...

©-®

Handle

@ €

Reducing Production
F->id
T->F
F->id
T>T*F
E->T

... the grammar could be ambiguous.

Shift-Reduce Parsing

* Type of bottom-up parsing
* Uses a stack (to hold grammar symbols)
 Handle appears at the stack top prior to pruning.

Stack
$

$id,
$F
$T
$T*
$T*id,
$T+F
$T

$E

Input

*id,
*id,
*id,

id,

id, *id, $

$
$
$
$
$

$
$
$

Action
shift

reduce by F -> id
reduce by T -> F
shift
shift
reduce by F -> id

reduce by T->T*F
reduce by E->T
accept

Shift-Reduce Parsing

* Type of bottom-up parsing
* Uses a stack (to hold grammar symbols)
 Handle appears at the stack top prior to pruning.

1.Initially, stack is empty ($...) and string w is on
the input (w $).

2.During left-to-right input scan, the parser shifts
zero or more input symbols on the stack.

3.The parser reduces a string to the head of a
production (handle pruning)

4.This cycle Is repeated until error or accept (stack
contains start symbol and input is empty).

Conflicts

* There exist CFGs for which shift-reduce
parsing cannot be used.

 Even with the knowledge of the whole stack
(not only the stack top) and Kk lookahead

- The parser doesn't know whether to shift (be lazy)
or reduce (be eager) (shift-reduce conflict).

- The parser doesn't know which of the several
reductions to make (reduce-reduce conflict).

Shift-Reduce Conflict

e Stack: $... if expr then stmt

* Input: else ... $

- Depending upon what the programmer intended, it
may be correct to reduce if expr then stmt to stmt,
or it may be correct to shift else.

- One may direct the parser to prioritize shift over
reduce (recall longest match rule of lex).

- Shift-Reduce conflict is often not a show-stopper.

Reduce-Reduce Conflict

e Stack: $...1d (id
e Input: ,id) .. $
- Consider a language where arrays are accessed as
arr(i, j) and functions are invoked as fun(a, b).

- Lexer may return id for both the array and the function.

- Thus, by looking at the stack top and the input, a
parser cannot deduce whether to reduce the handle as
an array expression or a function call.

- Parser needs to consult the symbol table to deduce the
type of id (semantic analysis).

- Alternatively, lexer may consult the symbol table and
may return different tokens (array and function).

Ambiguity

The one
above

~_ Apnito har aah ek tufaan hai
“Uparwala jaan kar anjaan hai...

LR Parsing

Left-to-right scanning, Rightmost derivation in
reverse.

Type of bottom-up parsers.
- SLR (Simple LR)

- CLR (Canonical LR)

- LALR (LookAhead LR)

LR(K) for k symbol lookahead.

- k=0 and k =1 are of practical interest.
Most prevalent in use today.

Why LR?

e |[R>LL

 Recognizes almost all programming language
constructs (structure, not semantics).

* Most general non-backtracking shift-reduce
parsing method known.

Simple LR (SLR)

We saw that a shift-reduce parser looks at the stack and
the next input symbol to decide the action.

But how does it know whether to shift or reduce?

- In LL, we had a nice parsing table; and we knew what
action to take based on it.

For instance, if stack contains $ T and the next input

symbol is *, should it shift (anticipating T * F) or reduce
(E - T)?

The goal, thus, Is to build a parsing table similar to LL.

ltems and ltemsets

* An LR parser makes shift-reduce decisions by
maintaining states to keep track of where we
are in a parse.

* For instance, A - XYZ may represent a state:
1. A - - XYZ
2. A - X -YZ
3.A- XY Z
4. A - XYZ-
» A - € generates a single itemA - -

LR(0) Item - Itemset == state

* An item indicates how much of a production
the parser has seen so far.

LR(0) Automaton

1. Find sets of LR(0) items.
2. Build canonical LR(0) collection.

- Grammar augmentation (start symbol)
- CLOSURE (similar in concept to e-closure in FA)
- GOTO (similar to state transitions in FA)

3. Construct the FA

E-E+T|T
T-T*F|F
F - (E)|id

I, < Initial state
E' - .E<— Kernel item
E-.E+T
E- . T Item closure
T-.T*F .
T- F Non-kernel items -
F - .(E)
F-.id
Classwork:

Find closure setforT - T*. F

Find closure setforF - (E).

E - E
E-E+T|T
T-T*F|F
F - (E)|id

LR(0) Automaton

1. Find sets of LR(0) items.
2. Build canonical LR(0) collection.

v Grammar augmentation (start symbol)
v CLOSURE (similar in concept to e-closure in FA)
- GOTO (similar to state transitions in FA)

3. Construct the FA

E - E
E-E+T|T
T-T*F|F
F - (E)|id

l, ,
E' - .E = >p_E.
E-.E+T E-E.+T
E-.T
T-.T*F
T-.F
F - . (E)
F-.id

If [A - o . X B]isinitemset I, then GOTO(I, X) is
the closure of the itemset [A - o X . B].

 Forinstance, GOTO(l,,E)iIs{E'-E.,E-E.+ T}

Classwork:
» Find GOTO(l,, +).

E - E
E-E+T|T
T-T*F|F
F - (E)|id

IO E Il + IG T I9
E'-.E > E' - E. »E-SE+.T »E-E+T.
E-.E+T E-E.+T T- . T*F T-T.*F
E-.T 3 T-.F F
T-.T*F \7 F - . (E) (*
T-.F accept —> F-.id -
F - .(E) T : id
F - .id)E _|2_
T TToToF >k =
T-T*F F |
.d SR SRS
| , = .
> 5 id
F-id. » T
A
id id .\
| |
g E sE-EsT) LR(0) Automat
: 5 utomaton
(_F~(.E) F - (E.) F - (E).
E-.E+T
L E-.T
(T-.T*F
-II:-_).(FE) <
—). ‘
Trolid T
F E'- E
- I' F E-E+T|T
)’T ; » T-T*F|F
: F-(E)]|id

I, E I, " I l,
E'-.E > E' - E » ELSE+.T E-E+T
E-.E+T E-E.+T T-.T*F T-T.*F
E-.T T-.F
T - .T*F % E - .(E) *
T-.F accept —> F-.id —

F - .(E) : id
F-.id)E _|2_
R I I T
T-T*.F F 1,
q Ilzﬁ-_(dE) T-T*F.
| : - .1
> 5 id
F-id. T
A .
id id .\
| |
(F-(E) F-(E.) :
E-.E+T
L E-.T
(T-.T*F
T-.F (
F - .(E)
F - .id (
:
\ 4
' F
F o I,
T-F

Initially, the state
Is O (for 1).

On seeing input
symbol id, the
state changes to 5
(for I).

On seeing input *,
there is no action
out of state 5.

E - E
E-E+T|T
T-T*F|F
F - (E)|id

SLR Parsmg usmg Automaton

- Contalns states like |,

mmm“

1 *id $ Shift to 5

2 05 $|d *id$ Reduce by F - id

3 03 $F *id$ Reduceby T - F

4 02 $T *id$ Shift to 7

5 027 $T* id $ Shift to 5

6 0275 $T*id $ Reduce by F - id

7 02710 $ST*F $ Reduce by T - T*F
8 02 $T $ Reduce by E - T

9 01 $E $ Accept

Homework: Construct such a table for parsing id * id + id. o E

E-E+T|T
T-T*F|F
F - (E)|id

I, E I, + I, T I,
E'-.E > E' - E. »E-SE+.T »E-E+T.
E-.E+T E-E.+T T .T*F T-T.*F
E-.T T—.F F
T-.T*F $y F - .(E) (*
T-.F accept —> F-.id —
F-.(B) T | id
F - .id)E _|2_
T TToToF >k =
T-T*F F | 1,
.d SR SIS
| : - .1
» 5 id
F-id. < T
A
id id .\ |
| . I
L E >E—>E.+T) ’F—»(llli)
(F-(E) F-(E.) :
E-.E+T
L E-.T
(T-.T*F
-II:-_)-(FE) <
—). ‘
Trolid T
: E - E
- I' F E-E+T|T
>>_|_ ; N T-T*F|F
' F-(E)]|id

State

© 00 N O 01 &b W DN P+ O

P
— O

sb

sb

s
sbH

SLR(1) Parsing Table

s6
rE—T)
rm—F)

r(F — id)

s6
r[(E - E+T)
(T - T*F)
r(F - (E))

* (
s4
s/
rm—F)
s4
r(F — id)
s4
s4
s/
(T - T*F)

r(F - (E))

Non-terminal
E
T
F

)

r(E—T)
[(T—F)

r(F — id)

s11

rNE—-E+T) r(E—-E+T)
(T — T*F)
r(F—(E))

(T - T*F)
r(F - (E))

FOLLOW
+),$
+,%),$
+ %), 9%

$

accept
NE—T)
rT—F)

r(F — id)

T F
2 3
2 3
9 3
10
E' - E
E-E+T|T
T-T*F|F
F - (E)]|id

LR Parsing

let a be the first symbol of w$
push O state on stack
while (true) {
let s be the state on top of the stack
If ACTION(s, a] == shift t {
push t onto the stack
let a be the next input symbol
} else if ACTION[s, a] == reduce A - B {
pop |B| symbols off the stack
let state t now be on top of the stack
push GOTO[t, A] onto the stack
output the production A - 3
} else iIf ACTION([s, a] == accept { break }
else yyerror()

}

Classwork

e Construct LR(0) automaton and SLR(1)
parsing table for the following grammarr.

S - AS|b
A- SA|a

* Run It on string abab.

State id
o) S5
1
2
3
4 S5
5
6 S5
7 S5
8
9
10
11

SLR(1)

sS6
r2
r4

re

s6
rl
r3
s

s/
r4

re

s’/
r3
r5

()
s4
r2
r4
s4
ré
s4
s4
sll
rl
r3
S

Parsing Table

1
accept
r2
r4

re

rl
r3
r5

Why do we not have a transition out of state 5 on (?

10

F-(E)|Id

Reduce Entries in the Parsing Table

e Columns for reduce entries are lookaheads.

* Therefore, they need to be in the FOLLOW of
the head of the production.

 Thus, A -> a. Is the production to be applied

(that Is, a Is being reduced to A), then the
ookahead (next input symbol) should be in
~OLLOW(A).

Reduction F -> id should be applied only if the next input
symbol is FOLLOW(F) which is {+, *,), $}.

State id + * () $ E T F
5 re re re re

l-values and r-values

S-L=R|R
L - *R|id
R - L

T
>(-.|—'
;U;U”U)o
A

p Rl el OO ROy

— o

l-values and r-values

L - id.

Consider state L,.

e Due to the firstitem (S - L.=R),
ACTION[2, =] is shift 6.

* Due to the second item (R - L.), and
because FOLLOW(R) contains =,
ACTIONI[2, =] iIsreduce R — L..

Thus, there is a shift-reduce conflict.
Does that mean the grammar is
ambiguous?

Not necessatrily; in this case no.
However, our SLR parser is not able to
handle it.

S-S
S-L=R|R
L - *R|id

R-L

LR(0) Automaton and
Shift-Reduce Parsing

« Why can LR(0) automaton be used to make
shift-reduce decisions?

* LR(0) automaton characterizes the strings of
grammar symbols that can appear on the
stack of a shift-reduce parser.

* The stack contents must be a prefix of a right-
sentential form [but not all prefixes are valid].

o |f stack holds g and the rest of the input is X,
then a sequence of reductions will take px to
S. Thus, S =* gx.

Viable Prefixes

* Example
- E=*F*id= (E) *id

— At various times during the parse, the stack holds
(, (E and (E).

- However, it must not hold (E)*. Why?
- Because (E) Is a handle, which must be reduced.
- Thus, (E) Is reduced to F before shifting *.

* Thus, not all prefixes of right-sentential forms
can appear on the stack.

* Only those that can appear are viable.

Viable Prefixes

 SLR parsing is based on the fact that LR(0)
automata recognize viable prefixes.

e [tem A - pB1.p2 Is valid for a viable prefix api if
there is a derivation S =* 0tAw = QB1R2W.

 Thus, when a1 is on the parsing stack, It
suggests we have not yet shifted the handle —
so shift (not reduce).

- Assuming B2 - €.

Homework

e Exercises In Section 4.6.6.

LR(1) Parsing

* Lookahead of 1 symbol.

* We will use similar construction (automaton),
but with lookahead.

* This should increase the power of the parser.

S-S
S-L=R|R
L - *R|id
R - L

LR(1) Parsing

* Lookahead of 1 symbol.

* We will use similar construction (automaton),
but with lookahead.

* This should increase the power of the parser.

S-CC
C-cC]|d

LR(1) Automaton

S'->.S59%
S-.CC,$
C-.cC,c/d
C-.d c/d

LS e
S -S.% accep
C I
, " s-.cc.s
S-C.C,$%
C-.cC#$ c | C. g
C-.d%$ 6 -
HC—»C.C,$ C-cC
C-.cC %
L-.d $ <C7 L
o
d> l
C-d.$
|3 C |8
C—>C.C,C/d4>C—>CC.,C/d
C-.cC,cd
C - .d, c/d <L

cy
I4

C~-d.c/d

: Same LR(0) item, but
| different LR(1) items.

S'- S
S-CC
C-cC]|d

LR(1) Grammars

Using LR(1) items and GOTO functions, we
can build canonical LR(1) parsing table.

An LR parser using this parsing table Is
canonical-LR(1) parser.

If the parsing table does not have multiple
actions in any entry, then the given grammar is
LR(1) grammar.

Every SLR(1) grammar is also LR(1).
- SLR(1) < LR(1)
- Corresponding CLR parser may have more states.

CLR(1) Parsing Table

State
0

© 00 N O 01 A WO DN PP

c
s3

S6
S3
r(C-d)

S6

r(C-cC)

d
s4

s/
s4
r(C-d)

s/

r(C-cC)

$

accept

r(S— CC)

r(C-d)

r(C-cC)

N

S-CC
C-cC]|d

LR(1) Automaton

u S acept
S .S.% accep
c_k
, - " s-cc.s
S-C.C, %
C-.cC$ c I C>I9
C-.d¥% 2 -
- " c-c.c% C-cC.s
C-.cC,$ |
C-.d9% <C— / 0\
o
d>l7
C-d.,$
l, c I
Cﬁc.C,C/dHéﬁcC.,c/d :
C-.cC,cd
C-.dcd C

cy

I4

C~-d.c/d

l,and I, 1, and L, I, and I,

Lookahead makes parsing precise.

Same LR(0) item, but
different LR(1) items.

\
'S'- S

 Corresponding SLR parser has 7 states. | S = CC

C-cC]|d

LALR Parsing

Can we have memory efficiency of SLR and
precision of LR(1)?

For C, SLR would
For C, LR(1) wou

nave a few hundred states.

C

have a few thousand states.

How about merging states with same LR(0)

items?

Knuth invented LR In 1965, but it was considered
impractical due to memory requirements.

Frank DeRemer invented SLR and LALR in 1969 (LALR
as part of his PhD thesis).

YACC generates LALR parser.

--—--- Landl Landl Landl
9’ 4

0
1 accept
2 s6 s/
3 s3 s4
4 r(C-d) r(C-d)
5 r(S - CC)
6 S6 s7
7 r(C - d)
8 r(C-cC) r(C-cC)
9 r(C-cC)
CLR(1) Parsing Table
'—- S
S-CC
C—-cC]|d

7' '3
Corresponding SLR parser has 7 states.
Lookahead makes parsing precise.

* LALR parser mimics LR parser on
correct inputs.
* On erroneous inputs, LALR may
9 proceed with reductions while LR
has declared an error.
 However, eventually, LALR is
guaranteed to give the error.

LALR(1) Parsing Table

accept

r(S - CC)

State Merging In LALR

« State merging with common kernel items does
not produce shift-reduce conflicts.

A merge may produce a reduce-reduce conflict.

S-S

S-aAd|bBd|aBe|bAe A — c.. dle
A—-cC B — c., dle
B —-cC

e This grammar is LR(1).

* ltemset {[A — c.,d], [B — c., e]} is valid for viable prefix ac (due to acd and ace).
* Itemset {[A — c., e], [B — c., d]} is valid for viable prefix bc (due to bcd and bce).
* Neither of these states has a conflict. Their kernel items are the same.

« Their union / merge generates reduce-reduce conflict.

Using Ambiguous Grammars

 Ambiguous grammars should be sparingly used.

 They can sometimes be more natural to specify
(e.g., expressions).

» Additional rules may be specified to resolve ambiguity.

S-S
S-iSeS|iS|a

Using Ambiguous Grammars

, S .k S
o o s —» accept
S - .iSeS
S - .iS _ :
S-.a I , S L e S-ise.S s s
~ »S-j.SeS —— ®»S-iS.eS — » S - .iSeS " s .ises
S-i.S S - iS. S ~.iS |
S - .iSeS S -
S - .iS i
S—).a -« I
<«
ya
a I
a
“s-a I
3 (S - a) n(S-a
_ S5/ r(S~iS) _

S-iSeS|iS|a

Summary

Precedence / Associativity O D@

Parse Trees OO D
Left Recursion T

Left factoring Blala ___‘a Blalal.la e

Top-Down Parsing
LL(1) Grammars
Bottom-Up Parsing

Shift-Reduce Parsers
LR(0), SLR
LR(1), LALR L .

il

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

