Syntax Directed Translation

Rupesh Nasre.

CS3300 Compiler Design

IIT Madras
July 2018

Character stream

v v

Machine-Independent

Lexical Analyzer Code Optimizer

v v

Token stream Intermediate representation
Syntax Analyzer Code Generator
Syntax tree Target machine code

v v

Machine-Dependent

Semantic Analyzer Code Optimizer

v v

Syntax tree Target machine code

v

Intermediate

Code Generator Symbol

Table

v

Intermediate representation

Role of SDT

To associate actions with productions
To associate attributes with non-terminals
‘0 create implicit or explicit syntax tree

To perform semantic analysis

... essentially, to add life to the skeleton.

FE S E+T

E S E+T

Productions

Example

$$.code =,
strcat($$.code, $1.code);

strcat($$.code, $3.code);

strcat($$.code, “+7);

\
{ printf(“+"); }

Attributes

- SDD

SDT

SDTs may be viewed as
implementations of SDDs
and are important from
efficiency perspective.

Actions

Syntax Directed Definition

e An SDD i1s a CFG with attributes and rules.

- Attributes are associated with grammar symbols.
- Rules are associated with productions.

 An SDD specifies the semantics of productions.

- It does not enforce a specific way of achieving the
semantics.

Syntax Directed Translation

 An SDT Is done by attaching rules or program
fragments to productions.

 The order induced by the syntax analysis
produces a translation of the input program.

Attributes

e Inherited

- |In terms of the attributes of the
node, its parent and siblings.

- e.g., Intx,y, z;, or
nested scoping

e Synthesized

— In terms of the attributes of the
node and its children.

- eg,a+b*cor
most of the constructs from your
assignments

~N o OO A WODN P

SDD for Calculator

Parse Tree

Input string v

3*5+4% Q@@
® &

SDD Annotated Parse Tree
Production Semantic Rules E .val:&
E.val = 19 $

E'-ES$ E'.val = E.val /N

E-E +T E.wal=E, val+Tval

E.val =15 + Tval=4
E-T |
T - Tl = T.val = 15 F.val = 4
= F Tval=3 * Fval=5 digit.lexval = 4
F - (E) | |
F - digit F.val = digit.lexval F.val =3 digit.lexval = 5

digit.lexval = 3

Order of Evaluation

Inherited

* |f there are only synthesized)
attributes in the SDD, there ©
exists an evaluation order. e

* Any bottom-up order would do; K
for Instance, post-order. .

» Helpful for LR parsing. ®

« How about when the attributes (Y
are both synthesized as well as o 2 ®
inherited? a

« How about when the attributes ®

are only inherited? Synthesized

Order of Evaluation

*
B B.i Production Semantic Rule
A-B A.s =B.j;
B.i=As+1,;

e This SDD uses a combination of synthesized
and inherited attributes.

e A.s (head) is defined in terms of B.i (body non-
terminal). Hence, it Is synthesized.

e B.i (body non-terminal) is defined in terms of A.s
(head). Hence, it is inherited.

e There exists a circular dependency between
their evaluations.

* In practice, subclasses of SDDs required for our
purpose do have an order.

Inherited

Y
b @

Synthesized

Classwork

* Write semantic rules for the following grammar.
- It computes terms likke 3*5and 3*5 * 7.
 Now write the annotated parse tree for 3*5 * 7.

 What is the associativity of *?

Sr. No.

Production
T-FT

T > *FT

e
F - digit

Semantic Rules
T.val = Fval * T'.val

T'.val=Fval *T .val

T.wval=1
F.val = digit.lexval

Classwork

* Write semantic rules for the following grammar.

- It computes terms likke 3*5and 3*5 * 7.
 Now write the annotated parse tree for 3*5 * 7.

 What is the associativity of *?

 Can you make It left-associative?

Sr. No.
1

2

Production
T-FT

T > *FT

e
F - digit

Semantic Rules

T".inh = F.val
T.val = T'.syn

T' .inh = T'.inh * F.val
T.syn =T'.syn
T'.syn = T".inh

F.val = digit.lexval

Classwork

T.val =15
_/ﬁh =3
F.val =3 T'.syn = 15
digit.lexval =3 « Fval=5 T,.nh=15
T .syn=15

digit.lexval =5 3

Sr. No. Production Semantic Rules
1 T-FT T".inh = F.val
T.val = T'.syn
2 T -*FT T' .inh = T".inh * F.val
T.syn=T" .syn
3 T - € T'.syn = T".inh

4 F - digit F.val = digit.lexval

Classwork
T.val : 15—

" TMinh=3

Fval = 3» T'.syn =15 /
\ .
digitlexval =3 « Fval=5 TInh=157/
\ T syn - 15

digit.lexval = 5 €

What is the order in which rules are evaluated?

Sr. No. Production Semantic Rules
1 T-FT T".inh = F.val
T.val = T'.syn
2 T -*FT" T'.inh = T"inh * F.val
T.syn=T" .syn
3 T - € T'.syn = T".inh

4 F - digit F.val = digit.lexval

Dependency Graph

Tval = 15

/\ T.inh =3
F.val = T'.syn =15
‘ 4
\

WK
digitlexval =3 « Fval=5 TInh=157/
\ T syn - 15

digit.lexval = 5 E

» A dependency graph depicts the flow of information amongst attributes.
 An edge attrl - attr2 means that the value of attrl is needed to
compute attr2.
e Thus, allowable evaluation orders are those sequences of rules
N1, N2, ..., Nk such that if Ni - Nj, theni <.
 What are such allowable orders?
» Topological sort
« What about cycles?

* If there are only synthesized
attributes in the SDD, there

Order of Evaluation

Inherited
{ S-attributed J ‘

©

exists an evaluation order. ® Q D

* Any bottom-up order would do;
for instance, post-order.

* Helpful for LR parsing. ®
« How about when the attributes LY
are both synthesized as well as S 2 ®
inherited? a
» How about when the attributes ®
Synthesized

are only inherited?

Sr.

No.

~N o OO A WODN

Input string
3*5+4%

SDD -

Production

E'-ES$
E-E +T
E-T
T-T,*F
T~ F
F - (E)
F - digit

SDD for Calculator

Parse Tree
|

L]
i
5

Annotated Parse Tree

S-attributed

Semantic Rules E'.val = 1A9
|
E'.val = E.val E.val = vlygv $
E.val = E,.val + T.val E val = 15 N Tval =4
¥ T
T.val = 115! F.val = 4Y
T.val = :A% + Fval = 5Y digit.lexval = 4

] N

F.val = digit.lexval Fval = 3v\ digit.lexval = 5 "

digit.lexval = 3

S-attributed SDD

* Every attribute Is synthesized.

» Atopological evaluation order is well-defined.
* Any bottom-up order of the parse tree nodes.
* |In practice, preorder Is used.

preorder(N) {
for (each child C of N, from the left) preorder(C)
evaluate attributes of N

}

Can we allow more orderings?

18

Issues with S-attributed SDD

e |t IS tooO strict!

* There exist reasonable non-cyclic orders that it
disallows.

- If a non-terminal uses attributes of its parent only
(no sibling attributes)

- If a non-terminal uses attributes of its left-siblings
only (and not of right siblings).

* The rules may use information “from above”
and “from left”.

L-attributed |

19

L-attributed SDD

 Each attribute must be either

- synthesized, or
— Inherited, but with restriction.

For production A - X, X_ ... X with inherited attributes
X.a computed by an action, the rule may use only

 Inherited attributes of A.
» either inherited or synthesized attributes of X, X, ..., X ..

« Inherited or synthesized attributes of X with no cyclic
dependence.

* L Is for left-to-right.

Have you seen any such SDD? 20

Example of L-attributed SDD

Sr. No. Production Semantic Rules
1 T-FT T".inh = F.val
T.val = T'.syn
2 T -*FT, T' .inh =T".inh * F.val
T.syn=T".syn
3 T - € T'.syn =T"inh
4 F - digit F.val = digit.lexval
T.val = 15—
/\AT'.inh =3
F.val = 3» T'.syn =15 /
\ o~
digitlexval =3 « Fval=5 T,Inh=157/
\ T syn B 15

digit.lexval =5 E 21

Example of non-L-attributed SDD

Production Semantic rule

A-BC A.s = B.b;
B.i=C.c+A.s

First rule uses synthesized attributes.

Second rule has inherited attributes.

However, B's attribute is dependent on C's attribute, which
IS on the right.

Hence, it is not L-attributed SDD.

/S SLLLIL Classwork:
L L|.3 ||3 * What does this grammar generate?
B - 0] 1' » Design L-attributed SDD to compute S.val, the decimal

value of an input string.

» For instance, 101.101 should output 5.625.

* Idea: Use an inherited attribute L.side that tells which side
(left or right) of the decimal point a bit is on.

22

SDT Applications

* Creating an explicit syntax tree. \

®

-eg,a-4+c Q ®
e pl =new Leaf(id); &) @
e P2 = new Leaf(num,);
® p3 = new Op(pl, -, p2);
e p4 = new Leaf(id);
® p5 = new Op(p3, '+, p4);

Production Semantic Rules
E-E+T $$.node = new Op($1.node, '+', $3.node)
E-E-T $$.node = new Op($1.node, '-', $3.node)
E->T $$.node = $1.node
T-(E) 3.node = $2.node
T - id $$.node = new Leaf($1)

T - num $$.node = new Leaf($1)

23

SDT Applications

* Creating an explicit syntax tree. \

-eg,a-4+c ﬁl

e Classwork:

©
@Q@

- Generate syntax tree using the following grammar.

Production
E-TE

E - +TE,
E - -TE,

E'- €
T-(E)
T - id
T - num

Semantic Rules

3.node = $2.syn
$2.inh = $1.node

$3.inh = new Op($$.inh, '+', $2.node)
3.syn = $3.syn

$3.inh = new Op($$.inh, '-', $2.node)
$3.syn = $3.syn

$$.syn = $$.inh
3.node = $2.node
$$.node = new Leaf($1)
$$.node = new Leaf($1)

24

SDT Applications

* FInding type expressions
- Int a[2][3] is array of 2 arrays of 3 integers.
- In functional style: array(2, array(3, int))

Production Semantic Rules

T-BidC Tt=C.t
B - int B.t =int

B — float B.t = float

- Ct= , C.t
- C - [num]C, | arrfay(num 1)
C.1=C.

C- € Ct=C.i

p
Classwork: Write productions and semantic rules for creating W
type expressions from array declarations. 75

SDD for Calculator

Sr. Production Semantic Rules
No.

1 E-ES$ E'.val = E.val
E-E +T E.wal=E, val+Tval
E-T

T-T,*F

T-F

F - (E) .

F - digit F.val = digit.lexval

~N OO OO~ WODN

SDT for Calculator

Sr. Production Semantic Rules
No.

1 E-ES$ print(E.val)

E-E +T Ewval=E, val+ Tval
E-T

T-T,*F

T-F

F - (E) .

F - digit F.val = digit.lexval

~N o O B~ WODN

SDT for Calculator

E-E$ { print(E.val); }

E-E +T {E.val = E,.val + T.val; }
E-T

T-T, *F

T-F

F - (E)

F - digit { F.val = digit.lexval; }

Postfix SDT ’

SDTs with all the actions at the right ends of the production bodies are
called postfix SDTs.

Only synthesized attributes are useful here.

Can be implemented during LR parsing by executing actions when
reductions occur.

The attribute values can be put on a stack and can be retrieved.

Parsing Stack

A- XYZ
X Y Z State / grammar symbol
Xx Yy Zz Synthesized attribute
stack top Compare with $1, $2, ... in Yacc.
Production Actions
E-E$ { print(stack[top — 1].val); --top; }
E-E +T { stack[top — 2].val += stack[top].val; top -= 2; }
E-T { stack[top].val = stack[top].val; }
T-T,*F { stack[top — 2].val *= stack[top].val; top -= 2; }
T->F { stack[top].val = stack[top].val; }
F - (E) { stack[top — 2].val = stack[top — 1].val; top -= 2; }

F - digit

{ stack[top].val = stack[top].val; } 29

Actions within Productions

* Actions may be placed at any position within production
body. Considered as empty non-terminals called markers.

* For production B - X {action} Y, action is performed

— as soon as X appears on top of the parsing stack in
bottom-up parsing.

- just before expanding Y in top-down parsing if Y is a non-
terminal.

- Just before we check for Y on the input in top-down parsing
If Y Is a terminal.

« SDTs that can be implemented during parsing are
- Postfix SDTs (S-attributed definitions)
- SDTs implementing L-attributed definitions

Classwork: Write SDT for infix-to-prefix translation. 30

Infix-to-Prefix

* What is the issue with this SDT?

 The SDT has shift-reduce and reduce-reduce conflicts.

* Recall that each marker is an empty non-terminal. Thus, the parser
doesn't know whether to reduce or reduce or shift on seeing a digit.

* Note that the grammar had no conflicts prior to adding actions.

e Such an SDT won’t work with top-down or bottom-up parsing.

E'-ES$

E- {print'+;}E +T

E-T

T - {print™;}T *F

T-F

F - (E)

F - digit { print digit.lexval; }

Classwork: Write SDT for infix-to-prefix translation. 31

Code Generation for while

* \We want to generate code for while-construct
- S - while (C) S,

» We assume that code for S, and C are

avallable.

* We also (for now) generate a single code string.
* Classwork: What all do we require to generate

this code?

- This would give us an idea of what attributes we

label L1:
C =

JES.

if true jJump L2 else 13~
label L2:

C.code
S

S =
jump L1
label L3:=

S,.code

S.next 32

Code Generation for while

* Assume we have the following mechanism.

newlLabel() returns a new label name.
You may have used a similar one for temporaries.

Each statement has an attribute next, that points to

the next statement to be executed.
Each conditional has two branches true and false.
Each non-terminal has an attribute code.

33

SDD for while

S - while (C) S1 L1 = newLabel();
L2 = newLabel();
S .next =L1;
C.false = S.next;
C.true =1L2;
S.code ="‘label”+ L1 +
C.code +
"label” + L2 +
S .code;
SDT
S - while ({L1=newLabel(); L2 = newLabel(); C. false = S.next; C.true = L2; }
C) {S, next=L12;}
S { S.code = “label” + L1 + C.code + “label” + L2 + S .code; }

1

What is the type of this SDD? .

S—>while(C)S

SDT

S - while (
C)
S

1

SDD for while

1

L1 = newLabel();

L2 = newLabel();

S .next =L1;

C.false = S.next;

C.true =1L2;

S.code ="“label”’ + L1 +
C.code +
"label” + L2 +
S .code;

{ L1 = newLabel(); L2 = newLabel(); C. false = S.next; C.true = L2;

print(“label”,

L1); }

{S,.next = L2; print(“label”, L2);}

What is the type of this SDD?

On-the-fly

code

generation

35

Homework

e Exercises 5.5.5 from ALSU book.

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

